人教版初中数学 根与系数的关系
- 格式:ppt
- 大小:312.00 KB
- 文档页数:12
第四册一元二次方程根与系数的关系八年级数学教案一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。
教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2=得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。
然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。
根与系数的关系也称为韦达定理(韦达是法国数学家)。
韦达定理是初中代数中的一个重要定理。
这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。
通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。
出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。
通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。
(二)重点、难点一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
(三)教学目标1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
一元二次方程第2节 根的判别式和根与系数的关系【知识梳理】1、一元二次方程根的判别式关于x 的一元二次方程)0(02≠=++a c bx ax ,用配方法可得222442a ac b a b x -=+)(ac b 42-=∆称为根的判别式0>∆,则方程有两个不相等的实数根 0<∆,则方程没有实数根0=∆,则方程有两个相等的实数根反过来也成立。
2、一元二次方程根与系数的关系如果21,x x 是方程)0(02≠=++a c bx ax 的两个根, 则acx x a b x x =-=+2121 【诊断自测】1.一元二次方程的两个根x 1、x 2和系数a 、b 、c 的关系:。
2.若方程3x 2−4x −4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( ) A .−4B .3C .−43D .433.已知x 1、x 2是一元二次方程x 2−4x+1=0的两个根,则x 1•x 2等于( ) A .−4B .−1C .1D .44.已知x 1、x 2是一元二次方程3x 2=6−2x 的两根,则x 1−x 1x 2+x 2的值是( )A .B .83C .−83D 【考点突破】类型一:根的判别式常见题型1、已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).答案:见解析。
解析:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.例2、已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.答案:见解析解析:对于等腰三角形,需要讨论a是腰还是底边。
根与系数的关系说课稿一、说教材本文《根与系数的关系》在数学课程中占据着重要的地位,是代数学中的基础内容,同时也是解决多项式问题的重要工具。
本节内容主要围绕一元二次方程的根与系数之间的关系展开,通过探索根与系数之间的内在联系,使学生能够更好地理解和掌握一元二次方程的性质。
(1)作用与地位:本节课是初中数学课程的难点,对于学生来说,理解并掌握根与系数的关系对于提高数学思维能力具有重要意义。
此外,本节课还为后续学习一元二次方程的求根公式、根的判别式等内容打下基础。
(2)主要内容:本节课主要包括以下几个方面的内容:- 一元二次方程的根的定义及其性质;- 根与系数之间的关系,如韦达定理;- 通过具体例题,让学生掌握如何运用根与系数的关系解决实际问题。
二、说教学目标学习本课后,学生应达到以下教学目标:(1)理解一元二次方程的根的概念,掌握根与系数之间的关系;(2)能够运用根与系数的关系解决实际问题,提高分析和解决问题的能力;(3)培养学生观察、归纳、总结的数学思维能力,激发学生的学习兴趣。
三、说教学重难点(1)教学重点:- 根与系数之间的关系,特别是韦达定理的理解与应用;- 能够解决实际问题时运用根与系数的关系。
(2)教学难点:- 理解根与系数之间的内在联系,尤其是韦达定理的推导过程;- 学会将根与系数的关系应用于解决具体问题,提高解题能力。
在教学过程中,要注意针对重点和难点内容进行详细讲解和反复练习,确保学生能够真正理解和掌握本节课的知识点。
四、说教法为了让学生更好地理解和掌握根与系数的关系,我采用了以下几种教学方法,并在教学中突显自己的特色:1. 启发法:在引入根与系数的关系时,我通过提出问题,引导学生思考,激发学生的求知欲。
例如,我会先给出一个一元二次方程的例子,然后提问:“这个方程的根与系数之间有什么关系?”让学生尝试自己发现规律,从而引出韦达定理。
2. 问答法:在教学过程中,我注重与学生互动,通过问答的方式检验学生对知识点的掌握情况。
1 / 1 根与系数的关系
1.根与系数的关系
(1)若二次项系数为1 ,常用以下关系:1x ,2x 是方程2
0x px q ++=的两根时,12x x p +=- ,12x x q =,反过来可得()12p x x =-+,12q x x =,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.
(2)若二次项系数不为1,则常用以下关系:1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根时,12b x x a +=- ,12c x x a =,反过来也成立,()12b x x a =-+ ,12=c x x a
. (3)常用根与系数的关系解决以下问题:
①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③
不解方程求关于根的式子的值,如求,2212x x +等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足
的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑()0a ≠,0∆≥ 这两个前提条件.。
专题04 根与系数关系阅读与思考根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值;3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式.当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的关系解题时,必须满足判别式△≥0.例题与求解【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为s ,则s 的取值范围是_________.【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取值范围是_________.A .01m ≤≤B .34m ≥C .314m <≤D .314m ≤≤【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求223βα+的值.【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求41st s t++的值.【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式1111b a a b --+--的值; (2)关于,,x y z 的方程组32236x y z axy yz zx ++=⎧⎨++=⎩有实数解(,,)x y z ,求正实数a 的最小值;(3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值.【例6】 ,,a b c 为实数,0ac <0++=,证明一元二次方程20ax bx c ++=有大于1的根.能力训练A 级1.已知m ,n 为有理数,且方程20x mx n ++=2,那么m n += .2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程228(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m的方程23280x x m ++-=有两个大于2-的根.4.对于一切不小于2的自然数n .关于x 的一元二次方程22(2)20x n x n -+-=的两根记为,n n a b (2)n ≥则223320072007111(2)(2)(2)(2)(2)(2)a b a b a b +++=------ .5.设12,x x 是方程222(1)(2)0x k x k -+++=的两个实根,且12(1)(1)8x x ++=,则k 的值为( )A .31-或B .3-C .1D .12k ≥的一切实数 6.设12,x x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1210,30x x x <-<,则 ( ) A .12m n >⎧⎨>⎩ B .12m n >⎧⎨<⎩ C .12m n <⎧⎨>⎩ D .12m n <⎧⎨<⎩7.设12,x x 是方程220x x k +-=的两个不等的实数根,则22122x x +-是( )A .正数B .零C .负数D .不大于零的数8.如图,菱形ABCD 的边长是5,两对角线交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 的值是( )A .3-B .5C .53-或D .53-或9.已知关于x 的方程:22(2)04m x m x --=. (1)求证:无论m 取什么实数值,方程总有两个不相等的实数根;(2)若这个方程的两个根是12,x x ,且满足212,x x =+求m 的值及相应的12,x x .10.已知12,x x 是关于x 的一元二次方程2430kx x +-=的两个不相等的实数根. (1)求k 的取值范围;(2)是否存在这样的实数k ,使12123222x x x x +-=成立?若存在,求k 的值;若不存在,说明理由.11.如图,已知在△ABC 中,∠ACB =90°,过C 点作CD ⊥AB 于D ,设AD =m ,BD =n ,且AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.DBAC12.已知,m n 是正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求,m n 的值.B 级1.设1x ,2x 是二次方程032=-+x x 的两根,则3212419x x -+= .2.已知1ab ≠,且有25199580a a ++=及28199550b b ++=则ab= . 3.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12,x x ,且221224x x +=,则k = .4.已知12,x x 是关于x 的一元二次方程22x ax a ++=的两个实数根,则1221(2)(2)x x x x --的最大值为 .5.如果方程210x px ++=(p >0)的两根之差为1,那么p 等于( )A .2B .4CD 6.已知关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12,x x ,且22127x x +=,则212()x x -的值是 ( )A .1B .12C .13D .257.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是 ( ) A .23 B .25C .5D .2 8.设213a a +=,213b b +=且a b ≠,则代数式2211a b +的值为( ) A .5 B .7 C .9 D .119.已知,a b 为整数,a b >,且方程233()40x a b x ab +++=的两个根,αβ满足关系式(1)(1)(1)(1)ααββαβ+++=++.试求所有整数点对(,)a b .10.若方程2310x x ++=的两根,αβ也是方程620x px q -+=的两根,其中,p q 均为整数,求,p q 的值.11.设,a b 是方程2310x x -+=的两根,c ,d 是方程2420x x -+=的两根,已知a b c dM b c d c d a d a b a b c+++=++++++++.求证:(1)222277a b c d M b c d c d a d a b a b c +++=-++++++++; (2)33334968a b c d M b c d c d a d a b a b c+++=-++++++++.12.设m 是不小于1-的实数,使得关于x 的一元二次方程222(2)310x m x m m +-+-+=有两个不相等实数根12,x x .(1)若22126x x +=,求m 的值;(2)求22121211mx mx x x +--的最大值.13.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.专题 04 根与系数的关系例1. 152s ≥-且3,5s s ≠-≠ 例2. C 提示: 设三根为121,,x x ,则121x x -<例 3. 设223,A βα=+223,B αβ=+ 31004A B += ①A B -= ② 解由① ②联立的 方程组得1(4038A =-例 4.0,s ≠故第一个等式可变形为211()99()190,s s ++= 又11,,st t s ≠∴是一元二次方程299190x x ++=的两个不同实根, 则1199,19,t t s s+=-=即199,19.st s t s +=-=故41994519st s s st s++-+==-例5. (1) 当a b =时, 原式=2; 当a b ≠时, 原式=-20, 故原式的值为2或-20(2) 由方程组得232,326(6),x y a z x y z az +=-=-+易知3,2x y 是一元二次方程22()6(6)0t a z t z az --+-+=的两个实数根,0∴∆≥, 即2223221440z az a -+-≤,由z 为实数知,22'(22)423(144)0,a a ∆=--⨯⨯-≥解得a ≥故正实数a(3) xy 与x y +是方程217660m m -+=的两个实根,解得11,6x y xy +=⎧⎨=⎩或6,()xy 11.x y +=⎧⎨=⎩舍原式=()()222222212499x y x y xy x y +-++=.例6 解法一:∵ac <0,2=40b ac ∆->,∴原方程有两个异号实根,不妨设两个根为x 1,x 2,且x 1<0<x 2,由韦达定理得x 1+ x 2=b a -,12c x x a =,由0c =,得0b ca a =,即)12120x x x x +=,解得2x =,假设2x,则,由10x <推得3-不成立,故2x 21x ≥1,由10x <推得10x ,矛盾.故21x <21x <.解法二:设()2f x ax bx c =++,由条件得)b =,得)3355f a c a c =+=++=, ()1f a b c a a c ⎤=++=-⎦.若a >0,0c <,则0f <,()10f >;若a <0,0c >,则0f >,()10f <.∴0ac <时,总有()10f f .<与1之间.A 级 1.3 2.2 3.-2 m >2 0<m ≤183提示:12x ->,22x ->与124x x +->,124x x ⋅>不等价.4.100134016-提示:由条件得2n n a b n +=+,22n n a b n ⋅=-,则()()()2221n n a b n n --=-+,则()()211112221n a b n n ⎛⎫=-- ⎪--+⎝⎭.5.C 6.C 7.A 8.A 9.提示:(1)()2=2120m ∆-+> (2)2124m x x =-≤0,m =4或m =0. 10.(1)43k ->且0k ≠ (2)存在k =4 11.由题意得2m n =,224840n m n --+<.当n =1时,m =2;当n =2时,m =4. 12.设方程两根为1x ,2x ,则1212,.x x mn x x m n +=⎧⎨=+⎩∵m ,n ,1x ,2x 均为正整数,设121x x ≥≥,1m n ≥≥,则()1212x x x x mn m n +-=-+,即有()()()()1211112x x m n --+--=,则()()()()12112,1,0,110,1,2.x x m n ⎧--=⎪⎨--=⎪⎩∴123,2,5,2,2,1,5,2,3,1,2,2.x x m n =⎧⎪=⎪⎨=⎪⎪=⎩故5,2,3,1;2; 2.m m m n n n ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ B 级 1.0 提示:由条件得21130x x +-=,22230x x +-=,∴2113x x =-,2223x x =-,∴()3211111111333343x x x x x x x x =-=-+=-+=-,∴原式=()()121212434319431241944x x x x x x ---+=--++=++.又∵121x x +=-,∴原式=0. 2.853.5 4.638- 提示:()2=240a ∆-+>,原式=2963632488a ⎛⎫---- ⎪⎝⎭≤. 5.D 6.C 7.B 8.B9.()231αβαβ+-=,由根与系数关系得()241a b ab +-=,即()21a b -=,a -b =1.又由0∆≥得()2316a b ab +≥,从而()24a b +≤.由a -b =1,()24a b +≤,得满足条件的整数点对(a ,b )是(1,0)或(0,-1). 104447αβ+=,662248p αβαβ-==-,()2244227q αβαβαβ-==-. 11.a +b =3,c +d =4,ab =1,cd =2,a +b +c +d =7,222219a b c d +++=.(1)原式=()()()()7a a b c d a b c d d a b c d d a b c aa b c d a b c b c d+++-+++++-+++=-++++++…+77777.b c d b c d M c d a d a b a b c +-+-+-=-++++++ (2)原式=()()()()2222a a b c d a b c d d a b c d d a b c b c da b c+++-+++++-+++=++++…+()()22227774968M a b c d M --+++=-.12.(1)m =. (2)原式=()()()22212121221212352312122m x x x x x x m m m x x x x ⎡⎤+-+⎛⎫⎣⎦=-+=-- ⎪-++⎝⎭.∵11m -≤≤,∴当m =-1时,22121211mx mx x x +--的最大值为10. 13.设20x ax b ++=的两根分别为,αβ(其中,αβ为整数且αβ≤),则方程20x cx a ++=的两根分别为1,1αβ++,又∵,(1)(1)a a αβαβ+=-++=,两式相加,得2210αβαβ+++=,即(2)(2)3αβ++=,从而2123αβ+=⎧⎨+=⎩,或2321αβ+=-⎧⎨+=-⎩,解得12αβ=-⎧⎨=⎩,或53αβ=-⎧⎨=-⎩,∴012a b c =⎧⎪=-⎨⎪=-⎩,或8156a b c =⎧⎪=⎨⎪=⎩,∴3a b c ++=-或29.。
第03讲一元二次方程的解法(公式法)和根与系数的关系【人教版】·模块一根的判别式·模块二公式法解一元二次方程·模块三根与系数的关系·模块四课后作业一元二次方程根的判别式b 2-4ac 叫做方程ax 2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b 2-4ac △>0,方程ax 2+bx+c=0(a≠0)有两个不相等得实数根△=0,方程ax 2+bx+c=0(a≠0)有两个相等得实数根△<0,方程ax 2+bx+c=0(a≠0)无实数根【考点1根据判别式判断方程根的情况】【例1.1】关于一元二次方程2+3=4根的情况,下列说法中正确的是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【例1.2】已知实数k ,现甲、乙、丙、丁四人对关于x 的方程B 2−(+2)+14=0讨论如下.甲:该方程一定是关于x 的一元二次方程乙:该方程有可能是关于x 的一元二次方程丙:当≥−1时,该方程有实数根丁:只有当≥−1且≠0时,该方程有实数根则下列判断正确的是()A .甲和丙说的对B .甲和丁说的对C .乙和丙说的对D .乙和丁说的对【例1.3】若=1是一元二次方程B 2−B +2=0(≠0)的一个根,那么方程B 2+B +2=0的根的情况是()A.有两个不相等的实数根B.有一个根是J−1C.没有实数根D.有两个相等的实数根【变式1.1】已知a为实数,下列关于x的一元二次方程一定有实数根的是()A.2−2B+2+1=0B.2−2B+22+1=0 C.2+2−1−2=0D.2+2+1+2=0【变式1.2】对于实数a,b定义运算“⊗”为⊗=2−B,例如3⊗2=22−3×2=−2,则关于x的方程+2⊗=1−的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【变式1.3】对于一元二次方程B2+B+=0(≠0),有下列说法:①若方程B2+=0有两个不相等的实数根,则方程B2+B+=0(≠0)必有两个不相等的实数根;②若方程B2+B+=0(≠0)有两个实数根,则方程B2+B+=0一定有两个实数根;③若c是方程B2+B+=0(≠0)的一个根,则一定有B++1=0成立;④若0是一元二次方程B2+B+=0(≠0)的根,则2−4B=(2B0−p2其中正确的有()A.1个B.2个C.3个D.4个【考点2已知根的情况确定字母的值或取值范围】【例2.1】若关于的方程2−+=0有两个实数根,则的取值范围是()A.≥14B.<14C.≤14D.≤14且≠0【例2.2】关于的方程B2−3+2=0有实数根,则的值不可能是()A.−1B.0C.1D.2【例2.3】若一元二次方程B2+B+1=0有两个相同的实数根,则2−2+5的最小值为()A.5B.1C.−9D.−1【变式2.1】关于x的方程2−+−2=0有两个不相等的实数根,则实数a可取的最大整数为()A.2B.3C.4D.5【变式2.2】在实数范围内,存在2个不同的的值,使代数式2−3+与代数式+2值相等,则的取值范围是___________.【变式2.3】关于x的一元二次方程2−+3++2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.【变式2.4】如果关于x的方程(+p(+p+(+p(+p+(+p(+p=0(其中,,均为正数)有两个相等的实数根,证明:以,,为长的线段能够组成一个三角形,并指出三角形的特征.公式法解一元二次方程当b2-4ac≥0时,方程ax2+bx+c=0的实数根可写为:=做一元二次方程ax2+bx+c=0的求根公式。
九年级数学一元二次方程的根与系数的关系嘿,伙计们!今天我们来聊聊一个很有趣的话题——九年级数学一元二次方程的根与系数的关系。
你们知道吗,这个知识点可是让我们这些初中生头疼不已啊!不过别担心,我会让你们轻松愉快地掌握这个知识点的!我们来看看什么是一元二次方程。
简单来说,就是一个方程里有两个未知数,而且这两个未知数之间还有一个乘号。
比如说,我们要解这个方程:x^2 5x + 6 = 0。
这个方程里有两个未知数,分别是x和5。
而且,它们之间还有一个减号和一个乘号。
好了,现在我们要找出这个方程的根和系数。
那么,什么是根和系数呢?根就是方程里的未知数的值,而系数就是方程里每个未知数前面的数字。
比如说,在这个方程里,5就是系数,因为它前面有一个5。
那么,这个方程的根和系数分别是什么呢?我们先来看这个方程的两个根。
根据求根公式,我们可以得到:x1 = (5 + sqrt(25 48)) / 2 = (5 + sqrt(-3)) / 2 ≈ 1.96x2 = (5 sqrt(25 48)) / 2 = (5 sqrt(-3)) / 2 ≈ -0.96所以,这个方程的两个根分别是1.96和-0.96。
接下来,我们来看一下这个方程的系数。
在这个方程里,5就是系数,因为它前面有一个5。
那么,这个方程的系数就是5。
好了,现在我们已经知道了这个方程的根和系数。
那么,它们有什么关系呢?其实,根和系数之间的关系非常简单。
我们可以把系数看作是未知数前面的数字,而把根看作是未知数的值。
比如说,在这个方程里,5就是系数,而1.96和-0.96就是根。
我们可以用等式表示这种关系:5x1 = x1^2 5x1 + 65x2 = x2^2 5x2 + 6这就是一元二次方程的根与系数的关系。
希望你们能够理解并掌握这个知识点!学习数学就像是一场冒险,充满了未知和挑战。
但是,只要我们勇敢地面对这些挑战,就一定能够找到答案。
所以,伙计们,加油吧!让我们一起在数学的世界里畅游吧!。
初中数学解题方法|根与系数的关系和完全平方公式一、介绍在初中数学的学习中,根与系数的关系和完全平方公式是一个重要且基础的内容。
掌握了这两个概念和方法,可以帮助学生更好地解决代数题目,提高解题效率和准确率。
本文将分别介绍根与系数的关系和完全平方公式的相关知识,并共享解题方法,帮助学生更好地理解和运用这两个重要的数学概念。
二、根与系数的关系1. 什么是根与系数?在代数中,一个一元二次方程可以用一般形式表示为ax²+bx+c=0,其中a、b、c分别为二次项系数、一次项系数和常数项。
方程的根指的是能够使方程成立的未知数的值,不同的根可以使方程等式成立。
而系数则是指在方程中与未知数相关的常数。
2. 根与系数的关系根与系数之间存在着重要的关系,这一关系可以通过韦达定理来描述。
设一元二次方程ax²+bx+c=0的根为x₁和x₂,则有以下结论:(1)根的和与系数的关系x₁+x₂=-b/a根的和等于一次项系数b的相反数除以二次项系数a的负数。
(2)根的积与系数的关系x₁x₂=c/a根的积等于常数项c除以二次项系数a。
通过根与系数的关系,我们可以利用方程的系数来求解方程的根,或者根据已知的根来推导方程的系数,从而更好地理解方程的性质和特点。
三、完全平方公式1. 什么是完全平方公式?在代数运算中,完全平方公式是指一个代数式能够被一个一元二次不等式平方并展开成二次式的方法。
对于一元二次不等式(a+b)²,根据完全平方公式展开后得到a²+2ab+b²。
2. 完全平方公式的应用完全平方公式在代数运算中有着广泛的应用,尤其是在解决代数方程或不等式的过程中。
通过完全平方公式,我们可以将一个一元二次不等式进行因式分解,从而更好地理解并解决数学问题。
四、解题方法1. 根与系数的关系的解题方法(1)已知方程的系数求根当已知一元二次方程的系数时,我们可以通过根与系数的关系来求解方程的根。
专题04 根与系数的关系题型汇总 一、单选题1.(2021·上海)已知方程220x mx ++=的一个根是1,则它的另一个根是( )A .1B .2C .2-D .3-【答案】B 【分析】设方程的另一个根为x 1,根据两根之积等于c a ,即可得出关于x 1的方程,解之即可得出结论. 【详解】解:设方程的另一个根为x 1, 根据题意得:1×x 1=2,则x 1=2.故选:B .【点睛】 本题考查了根与系数的关系、一元二次方程的解以及解一元一次方程,牢记一元二次方程ax 2+bx+c=0(a≠0)的两根之积等于c a是解题的关键. 2.(2020·成都市三原外国语学校九年级期中)一元二次方程230x x --=的两根分别为1x 、2x ,则12x x +的值为( )A .-1B .1C .-3D .3【答案】B【分析】根据一元二次方程的根与系数的关系12b x x a +=-解答并作出选择. 【详解】∵一元二次方程230x x --=的两根分别为1x 、2x ,∵由韦达定理,得121x x =+∵B 选项是正确的.故选:B【点睛】本题考查了一元二次方程的根与系数的关系.在利用韦达定理时,一定要弄清楚12x x +=b a -中a b 、的意义. 3.(2020·广州市真光中学九年级月考)设α,β是一元二次方程240x x +=的两个根,则α+β的值是( ).A .-4B .4C .0D .1【答案】A 【分析】直接利用根与系数的关系求解.【详解】解:α,β是一元二次方程240x x +=的两个根,∴α+β4=-, 故选A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=c a . 4.(2020·江苏)已知x 1、x 2是一元二次方程x 2-5x+6=0的两个实数根,则x 1+x 2=( )A .5B .6C .-5D .-6 【答案】A【分析】直接根据一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系计算即可.【详解】解:根据题意得12551b x x a -+=-=-=, 故选:A【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,熟记定理的内容是解题的关键. 5.(2021·河南九年级专题练习)若关于x 的一元二次方程2x 2x m 0-+=有实数根,则实数m 的取值范围是( )A .1m <B .1mC .1mD .m 1≥ 【答案】B【分析】因为一元二次方程有实数根,所以2=40b ac ∆-≥ ,即可解得. 【详解】∵一元二次方程2x 2x m 0-+=有实数根∵2=4=4-40b ac m ∆-≥解得1m故选B 【点睛】 本题考查一元二次方程根的判别式,掌握方程根的个数与根的判别式之间关系是解题关键.6.(2021·安徽亳州·八年级期末)若x 1、x 2是方程x 2-2x -3=0的两根,则x 1+x 2+x 1x 2的值是( ) A .1B .-1C .5D .-5【答案】B 【分析】先利用根与系数的关系式求得x 1+x 2=2,x 1x 2=-3,再整体代入求解即可. 【详解】解:∵x 1、x 2是方程x 2-2x -3=0的两个根∵x 1+x 2=-b a =2,x 1x 2=c a =-3 ∵x 1+x 2+2x 1x 2=2-3=-1.故选B.【点睛】本题考查了一元二次方程根与系数的关系.掌握根与系数的关系式:x 1+x 2=-b a,x 1x 2=c a 是解答本题的关键. 7.(2021·山东八年级期中)已知a ,b 是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111a b+=-,则m 的值是( ) A .﹣3或1B .3或﹣1C .3D .1 【答案】C【分析】根据一元二次方程根与系数的关系,计算出,a b ab +再代入分式计算,即可求得m .【详解】解:由根与系数的关系得: 2(23),a b m ab m +=-+=,111a b a b ab+∴+==-, 即223m m +=,解得:3m =或1m =-,而当1m =-时,原方程22(23)41430m m ∆=+-=-=-<,无实数根,不符合题意,应舍去,∵ 3m =故选C .【点睛】本题考查一元二次方程中根与系数的关系应用,求得结果后需进行检验是顺利解题的关键.8.(2021·浙江)若,m n 是方程220180x x --=的两个根,则代数式()()222201822018m m n n ---++的值为( ) A .2018B .2017C .2016D .2015【答案】A【分析】根据根与系数的关系得出m +n =1,mn =-2018,根据一元二次方程解的定义得出220180m m --=,220180n n --=,求出222018m m m --=-,222018n n n -++=,代入求出即可. 【详解】解:∵m ,n 是方程220180x x --=的两个根,∵m +n =1,mn =-2018,220180m m --=,220180n n --=,∵222018m m m --=-,()22220182018n n n n n n -++=----=,∵()()222201822018m m n n ---++=2018mn -=,故选:A .【点睛】本题考查了根与系数的关系和一元二次方程解的定义,能根据题意求出m +n =1,mn =-2018,220180m m --=,220180n n --=是解此题的关键.9.(2021·四川南充·中考真题)已知方程2202110x x -+=的两根分别为1x ,2x ,则2122021x x -的值为( ) A .1 B .1- C .2021 D .2021-【分析】根据一元二次方程解的定义及根与系数的关系可得21120211x x =-,121x x ⋅=,再代入通分计算即可求解. 【详解】∵方程2202110x x -+=的两根分别为1x ,2x ,∵211202110x x -+=,121x x ⋅=,∵21120211x x =-, ∵2122021x x -=21202112021x x --=1222220011222x x x x x -⋅-=22202112021x x ⨯--=22x x -=-1. 故选B .【点睛】本题考查了一元二次方程解的定义及根与系数的关系,熟练运用一元二次方程解的定义及根与系数的关系是解决问题的关键.10.(2021·河南九年级一模)定义新运算“a b *”:对于任意实数a ,b ,都有()()2a b a b a b =+--*,例如43(43)(43)2725=+--=-=*.若2x k x *=(k 为实数)是关于x 的方程,则它的根的情况为( ) A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根【答案】C 【分析】 根据新定义,得()()2*=+--x k x k x k ,转化成一元二次方程,利用根的判别式判断即可.【详解】∵()()2a b a b a b =+--*,∵22()()22*=+--=--x k x k x k x k ,∵2x k x *=变形为22220---=x x k ,∵∵=222(2)41(2)448--⨯--=++k k=2412+k >0,∵原方程有两个不相等的实数根,故选C .本题考查了新定义问题,一元二次方程根的判别式,准确理解新定义,灵活运用根的判别式是解题的关键. 11.(2021·杭州市建兰中学)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,其中正确的有( )个. ①方程x 2+5x +6=0是倍根方程:②若pq =2,则关于x 的方程px 2+4x +q =0是倍根方程;③若(x ﹣3)(mx +n )=0是倍根方程,则18m 2+15mn +2n 2=0;④若方程ax 2+bx +c =0是倍根方程,且3a +b =0,则方程ax 2+bx +c =0的一个根为1A .1B .2C .3D .4【答案】B 【分析】①解得方程后即可利用倍根方程的定义进行判断;②已知条件2pq =,然后解方程240px x q ++=即可得到正确的结论.③根据(3)()0x mx n -+=是倍根方程,且且13x =,2n x m =-,得到32n m =-,或6n m =-,从而得到320m n +=,60m n +=,进而得到2218152(32)(6)0m mn n m n m n ++=++=正确;④利用“倍根方程”的定义进行解答.【详解】解:①解方程2560x x ++=得:12x =-,23x =-,∴方程2560x x ++=不是倍根方程,故①错误;②2pq =,解方程240px x q ++=得:122x p-+=,222x p --=, 122x x ∴≠,故②错误; ③(3)()0x mx n -+=是倍根方程,且13x =,2n x m=-, ∴32n m =-,或6n m =-, 320m n ∴+=,60m n +=,2218152(32)(6)0m mn n m n m n ∴++=++=,故③正确;④方程20ax bx c ++=是倍根方程,∴设122x x =,123x x ∴+=,2223x x ∴+=,21x ∴=,故④正确.故选:B . 【点睛】本题考查了一元二次方程的解,根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.12.(2021·全国)已知关于x 的方程220x bx c ++=的根为12x =-,23x =,则+b c 的值是( ) A .-10B .-7C .-14D .-2【答案】C 【分析】根据一元二次方程根与系数的关系分别求出b ,c 的值即可得到结论. 【详解】解:∵关于x 的方程220x bx c ++=的根为12x =-,23x =, ∵121222b c x x x x +=-=, ∵232322b c -+=--⨯=,,即b=-2,c=-12 ∵21214b c +=--=-.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a,x 1•x 2=c a. 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·山东九年级期末)若1x ,2x 是一元二次方程2101110100x x -+=的两个实数根,则1212x x x x ++=__________.【答案】2021 【分析】利用一元二次方程的根与系数的关系求得12x x +,12x x ⋅的值,并将其代入所求的代数式求值即可. 【详解】解:∵1x ,2x 是一元二次方程2101110100x x -+=的两个实数根,∵121011x x +=,121010x x ⋅=,∵1212101110102021x x x x ++=+=.故答案为:2021. 【点睛】本题主要考查了一元二次方程的根与系数的关系,熟练掌握若1x ,2x 是一元二次方程()200++=≠ax bx c a 的两个实数根,则12b x x a +=-,12c x x a⋅=是解题的关键. 14.(2021·江苏)若关于x 的一元二次方程250x x m ++=的一个根为2-,则另一个根为________.【答案】3-【分析】根据一元二次方程根与系数的关系,代入求解即可【详解】设另一个根为2x ,根据根与系数的关系有:12b x x a+=- 即225x -+=-解得:23x =-故答案为3-【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键. 15.(2021·四川省内江市第六中学九年级三模)若1x ,2x 是方程2420200x x --=是方程的两个实数根,则代数式211222x x x -+的值等于___________.【答案】2028【分析】根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式=221112111242242x x x x x x x x -++=-++()计算可得. 【详解】解:∵1x ,2x 是方程2420200x x --=的两个实数根,∵124x x +=,211420200x x --=,即21142020x x -=,则原式=21112422x x x x -++=2111242x x x x -++()=202024+⨯=20208+=2028.故答案为:2028. 【点睛】本题主要考查根与系数的关系,解题的关键是掌握1x ,2x 是一元二次方程()200++=≠ax bx c a 的两根时,12b a x x +=-,12x a x c =. 16.(2021·浙江嘉兴一中)设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=b a -,x 1•x 2=c a.已知x 1,x 2是方程x 2﹣2x ﹣1=0的两实数根,则(x 1﹣3)(x 2﹣3)=________.【答案】2【分析】先将代数式化简,再根据一元二次方程根与系数的关系求得1212,x x x x +⋅的值,代入求解即可【详解】x1,x 2是方程x 2﹣2x ﹣1=0的两实数根,12122,1x x x x ∴+=⋅=-,(x1﹣3)(x 2﹣3)12123()9x x x x =-++∴原式1329792=--⨯+=-+=故答案为:2 【点睛】 本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键. 17.(2021·江苏南通市·南通田家炳中学九年级其他模拟)设α,β是一元二次方程2370x x +-=的两个根,则24ααβ++=________.【答案】4 【分析】由,αβ是一元二次方程2370x x +-=的两个根,得出23,37αβαα+=-+=,再把24ααβ++变形为23αααβ+++,即可求出答案. 【详解】解:∵,αβ是一元二次方程2370x x +-=的两个根,∵23,370αβαα+=-+-=,∵237αα+=,∵2243734ααβαααβ++=+++=-=,故答案为:4. 【点睛】本题主要考查了一元二次方程根与系数的关系、整体代入思想,属于计算综合题型,解题的关键是整体代换思想,即将原方程中含未知数的部分看作一个整体.一元二次方程20(a 0)++=≠ax bx c 的根与系数的关系为:1212,b c x x x x a a+=-⋅=. 18.(2021·四川九年级一模)已知关于x 的一元二次方程()212022-++=m mx m x 有两个不等的实数根1x ,2x .若12112+=m x x ,则m 的值为______. 【答案】2【分析】根据根的判别式先求出“∵”的值,再根据根与系数的关系得出x 1+x 2=2(m +2),x 1•x 2=m ,变形后代入,即可求出答案.【详解】解:∵()22424022m m b ac m =-=+-⨯⨯>,且0m ≠,∵1m >-,且0m ≠,∵12x x 、是方程()212022-++=m mx m x 有两个实数根, ∵()1222m x x m ++=,121x x =, ∵12112+=m x x , ∵12122x x m x x +=,即()222m m m+=, 整理得:220m m --=,解得:1221m m ==-,. ∵1m >-,且0m ≠,∵2m =.故答案为:2.【点睛】本题考查了解一元二次方程,一元二次方程根的判别式,根与系数的关系等知识点,能熟记知识点的内容是解此题的关键.19.(2021·河北)若ab ,且2410a a -+=,2410b b -+=,则(1)a b +的值为______;(2)221111a b +++的值为_____.【答案】4 1【分析】(1)根据题意,a ,b 是一元二次方程2410x x -+=的两个不相等的实数根,利用根与系数关系定理求解即可;(2)变形2410a a -+=,2410b b -+=得214a a +=,214b b +=,化简后,利用(1)的结论计算即可.【详解】(1)∵a b ,且2410a a -+=,2410b b -+=, ∵a ,b 是一元二次方程2410x x -+=的两个不相等的实数根,∵a +b =4,故答案为:4;利用根与系数关系定理求解即可;(2)∵2410a a -+=,2410b b -+=,∵214a a +=,214b b +=, ∵221111a b +++=1111()44a b a b ab ++⨯=⨯, ∵a b ,且2410a a -+=,2410b b -+=, ∵a ,b 是一元二次方程2410x x -+=的两个不相等的实数根,∵a +b =4,ab =1,∵221111a b +++=144⨯=1, 故答案为:1.【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数关系定理,熟练构造一元二次方程,灵活运用根与系数关系定理是解题的关键.三、解答题20.(2020·渝中·重庆市实验学校)已知关于 的一元二次方程 x 2+2x +2k -4 = 0有两个不相等的实数根. (1)求 k 的取值范围;(2)若 k 为正整数,且该方程的根都是整数,求方程的根.【答案】(1)k <52 ;(2)当2k =时,120,2x x ==. 【分析】(1)根据判别式的意义得到24b ac ∆=->0,然后解不等式即可得到k 的范围; (2)先确定整数k 的值为1或2,然后把k=1或k=2代入方程得到两个一元二次方程,然后解方程,确定方程的整数解即可.【详解】解:(1)因为x 2+2x +2k -4 = 0有两个不相等的实数根,所以24b ac ∆=->0,即2241(24)k -⨯⨯->0,所以8k <20,解得:k <52 (2)因为k <52且k 为正整数, 所以k =l 或2, 当k =l 时,方程化为2220x x +-=,∵=12,此方程无整数根;当k =2时,方程化为220x x += 解得120,2x x ==,所以k =2,方程的有整数根为120,2x x ==.【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(a≠0)的根与24b ac ∆=-有如下关系:当∵>0时,方程有两个不相等的两个实数根;当∵=0时,方程有两个相等的两个实数根;当∵<0时,方程无实数根.同时考查了不等式的正整数解及解一元二次方程,掌握基础是关键.21.(2019·河南九年级期中)已知关于x 的一元二次方程:2(2)(3)0x x p ---=.(1)小明说:“不论p 取任何实数,该方程都有两个不相等的实数根.”他的说法正确吗?为什么? (2)若方程:2(2)(3)0x x p ---=的两个实数根α,β满足:111αβ+=,请求出P 的值.【答案】(1)小明的说法正确;(2)p 的值为±1【分析】(1)表示出根的判别式,配方后得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)利用根与系数的关系可以得到5αβ+=,26p αβ=-,再把111a β+=进行变形可得265p -=,然后代入计算即可求解.【详解】解:(1)方程2(2)(3)0x x p ---=可化为22560x x p -+-=,∵()22(5)416p ∆=-⨯⨯-2225244140p p =-+=+>,∵对于任意实数p ,方程都有两个不相等实数根,小明的说法正确,(2)方程22560x x p -+-=由根与系数的关系得:5αβ+=,26p αβ=-∵111a β+=, ∵1a a ββ+= ∵2516p=-,变形得265p -= ∵1p =±,即p 的值为±1.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.22.(2020·湖北九年级其他模拟)关于x 的一元二次方程()23220x k x k ---+=.(1)求证:方程总有两个实数根;(2)若方程的两根分为1x 、2x ,且12122x x x x ++=,求k 的值.【答案】(1)见解析;(2)-3 【分析】(1)利用根的判别式大于等于0即可证明;(2)根据根与系数的关系得到121223,2x x x x k k +=-=+-,然后代入12122x x x x ++=中即可求出k 的值. 【详解】解:(1)22224[(3)]41(22)21(1)0b ac k k k k k -=---⨯⨯-+=++=+≥∵方程总有两个实数根;(2)根据根与系数的关系有,121223,2x x x x k k +=-=+-,∵1212(3)(22)2x x x x k k ++=-+-+=解得3k =- 【点睛】本题主要考查一元二次方程根的判别式和根与系数的关系,掌握一元二次方程根的判别式和根与系数的关系是解题的关键.23.(2021·招远市教学研究室八年级期末)已知关于x 的一元二次方程230kx x +-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为1x ,2x ,且满足()212124x x x x ++⋅=,求k 的值.【答案】(1)112k >-且0k ≠;(2)14k =. 【分析】(1)根据一元二次方程根的判别式和一元二次方程的定义求解即可;(2)根据一元二次方程根与系数的关系求解即可.【详解】解:(1)∵方程有两个不相等的实数根,∵0>且0k ≠,即()21430k -⨯->且0k ≠, 解得112k >-且0k ≠;(2)由根与系数的关系可得121x x k +=-,123x x k ⋅=-, 由题意可得2134k k⎛⎫--= ⎪⎝⎭,即24310k k +-=, ∵()()411k k -+解得14k =或1k =-,经检验可知:114k =,21k =-都是原分式方程的解.由(1)可知112k >-且0k ≠ ∵14k =.【点睛】本题主要考查了解分式方程,解一元二次方程,一元二次方程的定义,一元二次方程根与系数的关系,解题的关键在于能够熟练掌握相关知识进行求解.24.(2021·广西八年级期中)已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求a 的取值范围:(2)若该方程的一个根为2-,求方程的另一个根.【答案】(1)3a <;(2)0.【分析】(1)根据一元二次方程根的判别式列不等式求解即可;(2)根据根与系数的关系列式解答即可【详解】解:(1)∵方程有两个不相等的实数根.∵2241(2)0a ∆=-⨯⨯->,即4120a -+>,解得3a <;答:a 的取值范围是3a <;(2)设方程的另一个根是2x ,由根与系数的关系得:2221x -+=- 解之得20x =答:方程的另一个根是0.【点睛】本题主要考查了一元二次方程根的判别式、一元二次方程根与系数的关系等知识点,一元二次方程根的情况与判别式∵的关系:(1)∵>0时,方程有两个不相等的实数根;(2)∵=0时,方程有两个相等的实数根;(3)∵<0时,方程没有实数根.25.(2021·呼和浩特市回民区教育局教科研室九年级二模)已知关于x的一元二次方程x2-5x+6=p(p+1)(1)试证明:无论p取何值,此方程总有两个实数根(2)若原方程的两根x1,x2满足x12+x22-x1x2=3p2+1,求p值.【答案】(1)见解析;(2)-2【分析】(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出Δ=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.【详解】(1)证明:原方程可变形为x2-5x+6-p2-p=0.∵Δ=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∵无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∵x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∵(x1+x2)2-3x1x2=3p2+1,∵52-3(6-p2-p)=3p2+1,∵25-18+3p2+3p=3p2+1,∵3p=-6,∵p=-2.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当∵≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x 12+x 22-x 1x 2=3p 2+1,求出p 值.26.(2021·湖北黄石八中九年级三模)已知关于x 的一元二次方程2()323x m x m -+=-有两个实数根x 1,x 2. (1)求m 的取值范围;(2)若方程的两根满足22211270x x x x ⋅--+=,求m 的值. 【答案】(1)34m ≤-;(2)1m =-. 【分析】将原方程变形为一般式.(1)由方程有两个实数根结合根的判别式,即可得出430m ∆=--≥,解之即可得出结论;(2)由根与系数的关系可用m 表示出12x x +和12x x ,利用已知条件可得到关于m 的方程,则可求得m 的值. 【详解】解:原方程可变形为22(23)230x m x m m --+-+=.(1)原方程有两个实数根,∴()()2223423430m m m m ∆=----+=--≥⎡⎤⎣⎦, 解得:34m ≤-. (2)方程的两实根分别为1x 与2x , 1223x x m ∴+=-,21223x x m m ⋅=-+,22211270x x x x ⋅--+=,223(23)(23)70m m m ∴-+--+=,即2(3)160m --+=.解得11m =-,27m =,34m ≤-, 1m ∴=-.【点睛】本题主要考查根与系数的关系及判别式,由根的情况得到判别式的符号是解题的关键.27.(2021·湖南师大附中梅溪湖中学八年级期末)已知关于x 的一元二次方程x 2+2x +2k ﹣4=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k =1时,设方程的两根分别为x 1,x 2,求x 12+x 22的值;(3)若k 为正整数,且该方程的根都是整数,求k 的值.【答案】(1)52k <;(2)8;(3)2 【分析】(1)根据方程有两个不相等的实数根得到0∆>,求出k 的取值范围即可;(2)把x =1代入方程,求出121222x x x x +==-,-,进而求出2212x x +的值; (3)首先求出方程的根为152x k ±-=-,且根为整数,则52k ﹣为完全平方数,结合k 的取值范围即可求出k 的值.【详解】解:(1)∵一元二次方程22240x x k ++-=有两个不相等的实数根,∵()2241242080k k ∆⨯⨯=--=->,解得52k <; (2)当1k =时,方程为2220x x +-=, 解得121222x x x x +==-,-,则()22212121228x x x x x x +=+-=.(3)∵k 为正整数,且52k <, ∵k =1或2.根据一元二次方程根的公式可得方程的根为152x k ±-=-又根为整数,∵52k -为完全平方数,∵2k =.【点睛】本题考查的是二次函数根与系数的关系,掌握二次函数根与系数的公式是解决本题的关键.28.(2020·北京汇文中学)阅读:对于两个不等的非零实数a 、b ,若分式x a x b x(-)(-)的值为零,则x a =或x b =. 又因为2()()()()x a x b x a b x ab ab x a b x x x---++==+-+,所以关于x 的方程ab x a b x +=+有两个解,分别为12,x a x b ==. 应用上面的结论解答下列问题:(1)方程p x q x +=的两个解分别为121,4x x =-=,则p =_____;q =________; (2)方程34x x+=的两个解中较大的一个为_______; (3)关于x 的方程222221n n x n x +-+=+的两个解分别为1212x x x x (<)、,则1x =_____,2x =_____. 【答案】(1)-4,3;(2)3;(3)122122n n x x -+==, 【分析】 (1)根据定义得到p=12x x ,q=12x x +,然后代入121,4x x =-=即可求解;(2)方程34x x+=的两个解根据公式可以解出; (3)要将原式构造成题目中的形式,首先将方程左右两端+1,将右端变形为()()21n n ++-,然后将()21x +当做题目中的x ,整体代入求解,最后解两个一元一次方程即可.【详解】(1)由题意得:p=12x x ,q=12x x +∵方程的解为121,4x x =-=∵p=12·4x x =-,q=123x x +=; (2)由题意得:123x x =,124x x +=∵()1143x x -=,解得11x =或3∵当11x =时,23x =;当13x =时,21x =∵较大的解为3(3)∵222221n n x n x +-+=+ ∵22212121n n x n x +-++=++ ∵()()()()21212121n n x n n x +-++=++-+∵211x n +=-或 212x n +=+∵22n x -=或 12n x += ∵12x x <∵122122n n x x -+==,. 【点睛】此题涉及的知识点是分式的综合应用,解一元二次方程,整体代入法解方程,难度较大,解题时先搞清楚规律,把握已知的结论是解本题的关键.。
一元二次方程的根与系数的关系(一)教学内容:一元二次方程的根与系数的关系 教学目标:知识与技能目标:掌握一元二次方程的根与系数的关系并会初步应用. 过程与方法目标:培养学生分析、观察、归纳的能力和推理论证的能力. 情感与态度目标:1.渗透由特殊到一般,再由一般到特殊的认识事物的规律;2.培养学生去发现规律的积极性及勇于探索的精神.教学重、难点:重点:根与系数的关系及其推导.难点:正确理解根与系数的关系,灵活运用根与系数的关系。
教学程序设计: 一、复习引入:1、写出一元二次方程的一般式和求根公式.请两位同学写在黑板上,其他同学在纸上默写,交换检查,互相更正。
对出错严重之处加以强调。
2、解方程①x 2-5x +6=0,②-2x 2-x+3=0.观察、思考两根和、两根积与系数的关系.提问:所有的一元二次方程的两个根都有这样的规律吗? 观察、思考两根和、两根积与系数的关系. 在教师的引导和点拨下,由学生大胆猜测,得出结论。
二、探究新知推导一元二次方程两根和与两根积和系数的关系.设x 1、x 2是方程ax 2+bx+c=0(a ≠0)的两个根.试计算(1)x 1+x 2(2)x 1*x 2 板书推导过程。
由此得出,一元二次方程的根与系数的关系:结论1.如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么:a cx x a b x x =⋅-=+2121,教师举例说明,学生理解记忆。
三、反馈训练应用提高练习1.(口答)下列方程中,两根的和与两根的积各是多少?此组练习的目的是更加熟练掌握根与系数的关系.根据题目的计算难易选择不同层次的学生回答,对答对的同学给与充分的表扬,对答错者应引导其掌握方法,并多给一次机会,让其得以消化和巩固,同时增强学生自信,提高学习积极性。
反思(1)(2)导出结论2:如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.注意:结论1具有一般形式,结论2有时给研究问题带来方便.四、一元二次方程根与系数关系的应用:1、验根.(口答)判定下列各方程后面的两个数是不是它的两个根.(1)x2-6x+7=0;(-1,7)(2)-3x2-5x+2=0;(5/3,-2/3)(3)x2+9=6x (3,3)要求:学生先思考,再举手抢答,调动学习气氛。
基本信息课题人教版九年级上册第22章第4节:一元二次方程的根与系数的关系作者及沈祥明陕西省安康市仓上初级中学工作单位教材分析本部分内容为选学内容,供有能力的学生学习。
但是考虑到解题的需要以及为高中打好基础,我觉得有必要给学生讲解一下。
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。
教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。
然后通过1个例题介绍了利用根与系数的关系简化一些计算的知识。
学习了本节内容后可以使学生更加灵活的运用这一关系解题。
学情分析1.学生已学习用求根公式法解一元二次方程,。
2.本课的教学对象是初中三年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
4、部分学生在学习了这一关系后感觉到了它的强大的解题的作用,可以激发学生进一步去探索其他规律的欲望。
教学目标1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。
体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重点和难点1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。