典型CAN节点原理图
- 格式:doc
- 大小:200.50 KB
- 文档页数:4
can通讯接口电路原理
CAN(Controller Area Network)通信接口电路原理是一种常
用的串行通信协议,用于在汽车电子系统以及其他工业控制领域中进行数据传输和通信。
其原理如下:
1. 差分信号传输:CAN通信使用差分信号传输,即同时传输
两个信号(CAN_L和CAN_H),分别代表0和1的状态。
这种差分信号传输可以有效地抵抗电磁干扰和噪声,提高通信的可靠性。
2. 线路结构:CAN通信采用双线结构,即CAN_H和CAN_L
两根线,分别用于数据传输和信号接收。
CAN总线上可以连
接多个节点,形成一个总线网络。
3. 帧格式:数据传输使用帧格式,每个帧包含一个标识符、数据、控制域和错误校验码。
标识符用于识别不同的数据包,数据用于传输实际的信息,控制域用于描述帧的类型和数据长度,错误校验码用于检测数据传输的正确性。
4. 碰撞检测:当多个节点同时发送数据时,可能发生碰撞,会导致数据传输错误。
CAN通信使用了非阻塞的仲裁机制,通
过在传输过程中不断检测总线上的信号来解决碰撞问题,高优先级的节点可以在传输过程中抢占总线。
5. 错误检测和纠正:CAN通信使用了CRC(循环冗余校验)
来检测和纠正错误。
每个节点在接收到数据后会进行CRC校验,如果数据错误,则会进行重传。
综上所述,CAN通信接口电路实现了差分信号传输、双线结构、帧格式、碰撞检测和仲裁机制以及错误检测和纠正功能,从而实现了可靠的数据传输和通信。
汽车CAN总线详解概述CAN(Controller Area Network)总线协议是由 BOSCH 发明的一种基于消息广播模式的串行通信总线,它起初用于实现汽车内ECU之间可靠的通信,后因其简单实用可靠等特点,而广泛应用于工业自动化、船舶、医疗等其它领域。
相比于其它网络类型,如局域网(LAN, Local Area Network)、广域网(WAN, Wide Area Network)和个人网(PAN, Personal Area Network)等,CAN 更加适合应用于现场控制领域,因此得名。
CAN总线是一种多主控(Multi-Master)的总线系统,它不同于USB或以太网等传统总线系统是在总线控制器的协调下,实现A节点到B节点大量数据的传输,CAN网络的消息是广播式的,亦即在同一时刻网络上所有节点侦测的数据是一致的,因此比较适合传输诸如控制、温度、转速等短消息。
CAN起初由BOSCH提出,后经ISO组织确认为国际标准,根据特性差异又分不同子标准。
CAN国际标准只涉及到 OSI(开放式通信系统参考模型)的物理层和数据链路层。
上层协议是在CAN标准基础上定义的应用层,市场上有不同的应用层标准。
发展历史1983年,BOSCH开始着手开发CAN总线;1986年,在SAE会议上,CAN总线正式发布;1987年,Intel和Philips推出第一款CAN控制器芯片;1991年,奔驰500E 是世界上第一款基于CAN总线系统的量产车型;1991年,Bosch发布CAN 2.0标准,分 CAN 2.0A (11位标识符)和 CAN 2.0B (29位标识符);1993年,ISO发布CAN总线标准(ISO 11898),随后该标准主要有三部分:ISO 11898-1:数据链路层协议ISO 11898-2:高速CAN总线物理层协议ISO 11898-3:低速CAN总线物理层协议注意:ISO 11898-2和ISO 11898-3物理层协议不属于BOSCH CAN 2.0标准。
【论文摘要】以液压综合试验台控制系统中各参量的检测与控制为例介绍CAN总线在机电一体化中的应用。
文中介绍了CAN接口电路设计、SJA1000 CAN控制器的初始化流程和液压综合试验台控制系统的设计。
0、引言在传统的液压控制系统中,对系统的控制主要采用机械手段。
而采用传统的机械方法控制液压系统,使得整个系统的体积增大,同时增加系统复杂度和维护难度。
随着计算机技术、现场总线技术及人工智能等技术的发展,使越来越复杂的液压控制系统有良好的发展前景。
基于以上特点,该试验台采用CAN总线技术实现实时控制,用于液压软管脉冲压力试验,对被试件施加脉冲压力以测试软管的寿命。
1、CAN接口电路的设计CAN总线节点接口电路如图1所示。
P89LPC932是单片封装的高性能、低功耗的带片内8KFlash的微控制器,其指令执行时间只需2到4个时钟周期,6倍于标准80C51器件。
P 89LPC932内部主要集成了字节方式的I2C总线、SPI接口、UART通信接口、实时时钟、EEPR OM、A/D转换器、ISP/IAP在线编程和远程编程方式等一系列有特色的功能部件;其可用I /O口数为24~26。
该微控制器在低电压(3 V)下工作,可以很好的工作在以电池供电的便携式系统中。
其集成了许多系统级的功能,适合于许多要求高集成度、低成本的场合;可以大大减少元件的数目和电路板面积,满足多方面的性能要求。
图1 CAN总线节点接口电路SJA1000是独立的CAN通信控制器,它支持CAN2.0A,CAN2.0B,与PCA82C200 CAN控制器兼容,并可替代PCA82C200;而且新增了一种工作模式(PeliCAN),使得SJA1000支持具有很多新特性的CAN2.0B协议。
SJA1000集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,该控制器具有多主结构、总线访问优先权、硬件滤波等特点。
PC82C250为CAN总线收发器,是CAN控制器和物理总线间的接口,提供对总线的驱动发送能力、对CAN控制器的差动发送能力和对CAN控制器的差动接收能力。
摘要介绍了采用PHILIP公司生产的控制器局域网的高度集成的通信控制器SJA1000和82C250作为收发器的CAN总线接口电路的硬件设计方法,介绍了控制器和收发器及看门狗芯片的特点、内部结构、寄存器结构及地址分配,说明一种通用型CAN总线的设计和开发.探讨应用中需注意的一些问题。
关键词:CAN总线;控制器;收发器;电路设计目次摘要 (I)1 绪论 (1)1.1 CAN总线简介 (1)1.1.1 CAN协议 (1)1.1.2电气参数及信号表示 (2)1.2 CAN的主要技术特点 (2)1.3 CAN总线通信系统拓扑结构 (3)2 CAN总线接口电路设计 (3)2.1 总体方案设计 (3)2.2 各模块电路的设计 (4)2.2.1单片机最小系统 (4)2.2.2 CAN总线接口控制电路设计 (5)2.2.2.1SJA1000简介 (5)2.2.2.2基于SJA1000的控制电路设计 (10)2.2.3 CAN总线收发电路设计 (11)2.2.3.1CAN总线收发器82C250介绍 (11)2.2.3.2基于82C250收发电路设计 (14)2.2.4复位、监控电路设计 (15)2.2.4.1X5045P简介 (15)2.2.4.2基于X5045P的电路设计 (18)2.2.5电源设计 (18)2.3 接口电路总体电路原理图 (19)3 结束语 (21)参考文献 (22)附录1: 接口电路总体电路原理图 (23)1 绪论1.1 CAN总线简介CAN[Control(Controller) Area Network]是控制(器)局域网的简称。
CAN是一种有效支持分布式控制或实时控制的串行通信网络,最初由德国Bosch公司80年代用于汽车内部测试和控制仪器之间的数据通信。
目前CAN 总线规范已被国际标准化组织ISO制订为国际标准ISO11898,并得到了Motorola,Intel ,Philips等大半导体器件生产厂家的支持,迅速推出各种集成有CAN协议的产品。
CAN总线的特点及J1939协议通信原理、内容和使用来源:众多国际知名汽车公司早在20世纪80年代就积极致力于汽车网络技术的研究及使用。
迄今已有多种网络标准,如专门用于货车和客车上的SAE的J1939、德国大众的ABUS、博世的CAN、美国商用机器的AutoCAN、ISO的VAN、马自达的PALMNET等。
在我国的轿车中已基本具有电子控制和网络功能,排放和其他指标达到了一定的要求。
但货车和客车在这方面却远未能满足排放法规的要求。
计划到2006年,北京地区的货车和客车的排放要满足欧Ⅲ标准。
因此,为了满足日益严格的排放法规,载货车和客车中也必须引入计算机及控制技术。
采用控制器局域网和国际公认标准协议J1939来搭建网络,并完成数据传输,以实现汽车内部电子单元的网络化是一种迫切的需要也是必然的发展趋势。
1 CAN总线特点及其发展控制器局域网络(CAN)是德国Robert bosch公司在20世纪80年代初为汽车业开发的一种串行数据通信总线。
CAN是一种很高保密性,有效支持分布式控制或实时控制的串行通信网络。
CAN的使用范围遍及从高速网络到低成本底多线路网络。
在自动化电子领域、发动机控制部件、传感器、抗滑系统等使用中,CAN的位速率可高达1Mbps。
同时,它可以廉价地用于交通运载工具电气系统中,如灯光聚束、电气窗口等,可以替代所需要的硬件连接。
它采用线性总线结构,每个子系统对总线有相同的权利,即为多主工作方式。
CAN网络上任意一个节点可在任何时候向网络上的其他节点发送信息而不分主从。
网络上的节点可分为不通优先级,满足不同的实时要求。
采用非破坏性总线裁决技术,当两个节点(即子系统)同时向网络上传递信息时,优先级低的停止数据发送,而优先级高的节点可不受影响地继续传送数据。
具有点对点、一点对多点及全局广播接收传送数据的功能。
随着CAN在各种领域的使用和推广,对其通信格式的标准化提出了要求。
1991年9月Philips Semiconductors制定并发布了CAN技术规范(Versio 2.0)。
CAN总线接口电路原理图和注意事项CAN 总线是一种有效支持分布式控制和实时控制的串行通信网络,以其高性能和高可靠性在自动控制领域得到了广泛的应用。
为提高系统的驱动能力,增大通信距离,实际应用中多采用Philips公司的82C250作为CAN控制器与物理总线间的接口,即CAN 收发器,以增强对总线的差动发送能力和对CAN控制器的差动接收能力。
为进一步增强抗干扰能力,往往在CAN 控制器与收发器之间设置光电隔离电路。
典型的CAN总线接口电路原理如图1所示。
图1 典型的CAN总线接口电路原理图1 接口电路设计中的关键问题1.1 光电隔离电路光电隔离电路虽然能增强系统的抗干扰能力,但也会增加CAN总线有效回路信号的传输延迟时间,导致通信速率或距离减少。
82C250等型号的CAN收发器本身具备瞬间抗干扰、降低射频干扰(RFI)以及实现热防护的能力,其具有的电流限制电路还提供了对总线的进一步保护功能。
因此,如果现场传输距离近、电磁干扰小,可以不采用光电隔离,以使系统达到最大的通信速率或距离,并且可以简化接口电路。
如果现场环境需要光电隔离,应选用高速光电隔离器件,以减少CAN总线有效回路信号的传输延迟时间,如高速光电耦合器6N137,传输延迟时间短,典型值仅为48 ns,已接近TTL电路传输延迟时间的水平。
1.2 电源隔离1.3 上拉电阻图1中的CAN收发器82C250的发送数据输入端TXD与光电耦合器6N137的输出端OUT 相连,注意TXD必须同时接上拉电阻R3。
一方面,R3保证6N137中的光敏三极管导通时输出低电平,截止时输出高电平;另一方面,这也是CAN 总线的要求。
具体而言,82C250的TXD端的状态决定着高、低电平CAN 电压输入/输出端CANH、CANL的状态(见表1)。
CAN总线规定,总线在空闲期间应呈隐性,即CAN 网络中节点的缺省状态是隐性,这要求82C25O的TXD端的缺省状态为逻辑1(高电平)。