1.3.1 第2课时 函数的最大(小)值
- 格式:doc
- 大小:102.50 KB
- 文档页数:6
函数的基本性质1.3.1单调性与最大(小)值第二课时函数的最大(小)值[新知初探]函数的最大(小)值小值是0,有f (0)=0.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( ) 答案:(1)× (2)√2.函数y =f (x )在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 答案:C3.设函数f (x )=2x -1(x <0),则f (x )( ) A .有最大值 B .有最小值C .既有最大值又有最小值D .既无最大值又无最小值 答案:D4.函数f (x )=2x ,x ∈[2,4],则f (x )的最大值为______;最小值为________.答案:112[例1] 如图为函数y =f (x ),x ∈[-4,7]的图象,指出它的最大值、最小值.[解] 观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是(-1.5,-2), 所以当x =3时,函数y =f (x )取得最大值,即y max =3;当x =-1.5时,函数y =f (x )取得最小值,即y min =-2.用图象法求最值的3个步骤[活学活用]1.求函数f (x )=⎩⎪⎨⎪⎧1x ,0<x <1,x ,1≤x ≤2的最值.解:函数f (x )的图象如图所示.由图象可知f (x )的最小值为f (1)=1,无最大值.[例2] 已知函数f (x )=x +1x .(1)证明:f (x )在(1,+∞)内是增函数; (2)求f (x )在[2,4]上的最值.[解] (1)证明:设对于任意x 1,x 2∈(1,+∞),且x 1<x 2.则f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=(x 1-x 2)·⎝⎛⎭⎫1-1x 1x 2=(x 1-x 2)(x 1x 2-1)x 1x 2. ∵x 2>x 1>1,∴x 1-x 2<0, 又∵x 1x 2>1,∴x 1x 2-1>0,图象法求函数的最值利用单调性求函数的最值故(x 1-x 2)·(x 1x 2-1)x 1x 2<0,即f (x 1)<f (x 2),所以f (x )在(1,+∞)内是增函数. (2)由(1)可知f (x )在[2,4]上是增函数, ∴当x ∈[2,4]时,f (2)≤f (x )≤f (4). 又f (2)=2+12=52,f (4)=4+14=174,∴f (x )在[2,4]上的最大值为174,最小值为52.[活学活用] 2.已知函数f (x )=2x -1(x ∈[2,6]),求函数的最大值和最小值. 解:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1-2x 2-1=2[(x 2-1)-(x 1-1)](x 1-1)(x 2-1)=2(x 2-x 1)(x 1-1)(x 2-1).由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以函数f (x )=2x -1是区间[2,6]上的减函数. 因此,函数f (x )=2x -1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x =2时取得最大值,最大值是2,在x =6时取得最小值,最小值是0.4.[例3] 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:实际应用中的最值R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400.其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)[解] (1)设月产量为x 台,则总成本为20 000+100x ,从而 f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时, f (x )=-12(x -300)2+25 000,∴当x =300时,[f (x )]max =25 000. 当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,[f (x )]max =25 000.即每月生产300台仪器时利润最大,最大利润为25 000元.[活学活用]3.将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润为多少?解:设售价为x 元,利润为y 元,单个涨价(x -50)元,销量减少10(x -50)个,销量为500-10(x -50)=(1 000-10x )个,则y =(x -40)(1 000-10x )=-10(x -70)2+9 000≤9 000.故当x =70时,y max =9 000.即售价为70元时,利润最大值为9 000元.[例4] 求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值. [解] ∵函数图象的对称轴是x =a , ∴当a <2时,f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2. ∴f (x )min =⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.[一题多变]1.[变设问]在本例条件下,求f (x )的最大值. 解:∵函数图象的对称轴是x =a , ∴当a ≤3时,f (x )max =f (4)=18-8a , 当a >3时,f (x )max =f (2)=6-4a .∴f (x )max =⎩⎪⎨⎪⎧18-8a ,a ≤3,6-4a ,a >3.2.[变设问]在本例条件下,若f (x )的最小值为2,求a 的值. 解:由本例解析知f (x )min =⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.当a <2时,6-4a =2,a =1; 当2≤a ≤4时,2-a 2=2,a =0(舍去); 当a >4时,若18-8a =4,a =74(舍去).∴a 的值为1.3.[变条件,变设问]本例条件变为,若f (x )=x 2-2ax +2,当x ∈[2,4]时,f (x )≤a 恒成立,求实数a 的取值范围.解:在[2,4]内,f (x )≤a 恒成立, 即a ≥x 2-2ax +2在[2,4]内恒成立, 即a ≥f (x )max ,x ∈[2,4].二次函数的最大值,最小值由本例探究1知f (x )max =⎩⎪⎨⎪⎧18-8a ,a ≤3,6-4a ,a >3.(1)当a ≤3时,a ≥18-8a ,解得a ≥2,此时有2≤a ≤3. (2)当a >3时,a ≥6-4a ,解得a ≥65,此时有a >3.综上有实数a 的取值范围是[2,+∞).层级一 学业水平达标1.函数y =f (x )(-2≤x ≤2)的图象如下图所示,则函数的最大值、最小值分别为( )A .f (2),f (-2)B .f ⎝⎛⎭⎫12,f (-1)C .f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫-32D .f ⎝⎛⎭⎫12,f (0)解析:选C 根据函数最值定义,结合函数图象可知,当x =-32时,有最小值f ⎝⎛⎭⎫-32;当x =12时,有最大值f ⎝⎛⎭⎫12. 2.函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1D .以上都不对解析:选B 因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,y min =1,当x =-2时,y max =(-2-1)2+1=10.故选B.3.设函数f (x )=2x x -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M =( )A.23B.38C.32D.83解析:选D 易知f (x )=2x x -2=2+4x -2,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =166=83.4.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2D .0解析:选C 由题意知a ≠0,当a >0时,有(2a +1)-(a +1)=2,解得a =2;当a <0时,有(a +1)-(2a +1)=2,解得a =-2.综上知a =±2.5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .(-∞,0)D .(0,+∞)解析:选C 令f (x )=-x 2+2x , 则f (x )=-x 2+2x =-(x -1)2+1. 又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0. ∴a <0.6.函数y =-1x ,x ∈[-3,-1]的最大值与最小值的差是________. 解析:易证函数y =-1x 在[-3,-1]上为增函数,所以y min =13,y max =1,所以y max -y min =1-13=23.答案:237.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为________.解析:函数f (x )=-x 2+4x +a =-(x -2)2+4+a ,x ∈[0,1],且函数有最小值-2. 故当x =0时,函数有最小值, 当x =1时,函数有最大值.∵当x =0时,f (0)=a =-2,∴f (x )=-x 2+4x -2, ∴当x =1时,f (x )max =f (1)=-12+4×1-2=1. 答案:18.函数y =f (x )的定义域为[-4,6],若函数f (x )在区间[-4,-2]上单调递减,在区间(-2,6]上单调递增,且f (-4)<f (6),则函数f (x )的最小值是________,最大值是________.解析:作出符合条件的函数的简图(图略),可知f (x )min =f (-2),f (x )max =f (6). 答案:f (-2) f (6)9.求函数f (x )=xx -1在区间[2,5]上的最大值与最小值. 解:任取2≤x 1<x 2≤5, 则f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1). 因为2≤x 1<x 2≤5,所以x 1-x 2<0,x 2-1>0,x 1-1>0. 所以f (x 2)-f (x 1)<0. 所以f (x 2)<f (x 1). 所以f (x )=xx -1在区间[2,5]上是单调减函数. 所以f (x )max =f (2)=22-1=2,f (x )min =f (5)=55-1=54. 10.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,f (x )max =f (1)=a ; 当0<a <1时,f (x )max =f (a )=a 2-a +1; 当a ≤0时,f (x )max =f (0)=1-a .根据已知条件得,⎩⎪⎨⎪⎧ a ≥1,a =2或⎩⎪⎨⎪⎧ 0<a <1,a 2-a +1=2或⎩⎪⎨⎪⎧a ≤0,1-a =2,解得a =2或a =-1.层级二 应试能力达标1.下列函数在[1,4]上最大值为3的是( ) A .y =1x +2B .y =3x -2C .y =x 2D .y =1-x解析:选A B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1],则f (x )的最大值与最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A ∵x ∈[1,2]时,f (x )max =2×2+6=10,f (x )min =2×1+6=8;x ∈[-1,1]时,f (x )max =1+7=8,f (x )min =-1+7=6, ∴f (x )max =10,f (x )min =6.3.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)B .[0,2]C .(-∞,2]D .[1,2]解析:选D f (x )=(x -1)2+2,∵f (x )min =2,f (x )max =3,且f (1)=2,f (0)=f (2)=3,∴1≤m ≤2,故选D.4.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析:选C 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎫x -1922+30+1924, ∴当x =9或10时,L 最大为120万元.5.已知-x 2+4x +a ≥0在x ∈[0,1]上恒成立,则实数a 的取值范围是________. 解析:法一:-x 2+4x +a ≥0,即a ≥x 2-4x ,x ∈[0,1],也就是a 应大于或等于f (x )=x 2-4x 在[0,1]上的最大值,函数f (x )=x 2-4x 在x ∈[0,1]的最大值为0,∴a ≥0.法二:设f (x )=-x 2+4x +a ,由题意知⎩⎪⎨⎪⎧f (0)=a ≥0,f (1)=-1+4+a ≥0,解得a ≥0.答案:[0,+∞)6.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.解析:如图可知f (x )在[1,a ]内是单调递减的, 又∵f (x )的单调递减区间为(-∞,3], ∴1<a ≤3.答案:(1,3]7.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:(1)确定x 与y (2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?解:(1)因为f (x )是一次函数,设f (x )=ax +b ,由表格得方程组⎩⎪⎨⎪⎧ 45a +b =27,50a +b =12, 解得⎩⎪⎨⎪⎧a =-3,b =162, 所以y =f (x )=-3x +162.又y ≥0,所以30≤x ≤54,故所求函数关系式为y =-3x +162,x ∈[30,54].(2)由题意得,P =(x -30)y =(x -30)(162-3x )=-3x 2+252x -4 860=-3(x -42)2+432,x ∈[30,54].当x =42时,最大的日销售利润P =432,即当销售单价为42元时,获得最大的日销售利润.8.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23. (1)求证:f (x )是R 上的单调减函数.(2)求f (x )在[-3,3]上的最小值.解:(1)证明:设x 1,x 2是任意的两个实数,且x 1<x 2,则x 2-x 1>0,因为x >0时,f (x )<0,所以f (x 2-x 1)<0,又因为x 2=(x 2-x 1)+x 1,所以f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1),所以f (x 2)-f (x 1)=f (x 2-x 1)<0,所以f (x 2)<f (x 1).所以f (x )是R 上的单调减函数.(2)由(1)可知f (x )在R 上是减函数, 所以f (x )在[-3,3]上也是减函数, 所以f (x )在[-3,3]上的最小值为f (3).而f (3)=f (1)+f (2)=3f (1)=3×⎝⎛⎭⎫-23 =-2. 所以函数f (x )在[-3,3]上的最小值是-2.。
第2课时 函数的最大值、最小值知识点 函数的最大值与最小值最大(小)值必须是一个函数值,是值域中的一个元素,如函数y =x 2(x ∈R )的最大值是0,有f(0)=0.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( ) -=答案=-:(1)× (2)×2.函数f (x )=1x 在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值解析:函数f (x )=1x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )为减函数,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.故选A.-=答案=-:A3.函数f (x )=-2x +1(x ∈[-2,2])的最小、最大值分别为( ) A .3,5 B .-3,5 C .1,5 D .-5,3解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.-=答案=-:B4.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是()A.f(-2),0 B.0,2C.f(-2),2 D.f(2),2解析:由图象知点(1,2)是最高点,故y max=2.点(-2,f(-2))是最低点,故y min=f(-2).-=答案=-:C类型一图象法求函数的最值例1如图所示为函数y=f(x),x∈[-4,7]的图象,指出它的最大值、最小值及单调区间.【解析】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是(-1.5,-2),所以函数y=f(x)当x=3时取得最大值,最大值是3.当x=-1.5时取得最小值,最小值是-2.函数的单调递增区间为[-1.5,3),[5,6),单调递减区间为[-4,-1.5),[3,5),[6,7].观察函数图象,最高点坐标(3,3),最低点(-1.5,-2).方法归纳图象法求最值的一般步骤跟踪训练1 已知函数y =-|x -1|+2,画出函数的图象,确定函数的最值情况,并写出值域.解析:y =-|x -1|+2=⎩⎨⎧3-x ,x ≥1,x +1,x <1,图象如图所示.由图象知,函数y =-|x -1|+2的最大值为2,没有最小值, 所以其值域为(-∞,2].利用x 的不同取值先去绝对值,再画图.类型二 利用单调性求函数的最大(小值)例2 已知f (x )=1x -1,(1)判断f (x )在(1,+∞)上的单调性,并加以证明. (2)求f (x )在[2,6]上的最大值和最小值.【解析】 (1)函数f (x )在(1,+∞)上是减函数. 证明:任取x 2>x 1>1,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1),因为x 1-1>0,x 2-1>0,x 2-x 1>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以f (x )在(1,+∞)上是减函数. (2)由(1)可知f (x )在(1,+∞)上是减函数,即最大值为f(1)=3,最小值为f(5)=13.(1)判断函数的单调性.(2)利用单调性求出最大(小)值.类型三二次函数最值例3求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【解析】f(x)=(x-a)2-1-a2,其图象的对称轴为直线x=a.(1)当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.(2)当0≤a≤1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.(3)当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.(4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.由于二次函数的最值与其图象的对称轴有关,而题中函数图象的对称轴为直线x=a,位置不确定,所以应按对称轴与区间[0,2]的相对位置进行分类讨论.方法归纳1.如何求二次函数在闭区间[m,n]上的最值?①确定二次函数的对称轴x=a;②根据a<m,m≤a<m+n2,m+n2≤a<n,a≥n这4种情况进行分类讨论;③写出最值.2.求二次函数的最值常用的数学思想方法数形结合思想、分类讨论思想.跟踪训练3已知函数f(x)=3x2-12x+5,当自变量x在下列范围内取值时,求函数的最大值和最小值:(1)R;(2)[0,3];(3)[-1,1].解析:f(x)=3x2-12x+5=3(x-2)2-7.(1)当x∈R时,f(x)=3(x-2)2-7≥-7,当x=2时,等号成立.故函数f(x)的最小值为-7,无最大值.(2)函数f(x)=3(x-2)2-7的图象如图所示,由图可知,在[0,3]上,函数f(x)在x=0处取得最大值,最大值为5;在x=2处取得最小值,最小值为-7.(3)由图可知,函数f(x)在[-1,1]上是减函数,在x=-1处取得最大值,最大值为20;在x=1处取得最小值,最小值为-4.求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函数,所以可以采用配方法和图象法求解.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)为f (b )=1b =14,所以b =4.-=答案=-:4三、解答题(每小题10分,共20分)9.已知函数f (x )=|x |(x +1),试画出函数f (x )的图象,并根据图象解决下列两个问题.(1)写出函数f (x )的单调区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-1,12上的最大值.解析:f (x )=|x |(x +1)=⎩⎨⎧-x 2-x ,x ≤0,x 2+x ,x >0的图象如图所示.(1)f (x )在⎝ ⎛⎦⎥⎤-∞,-12和[0,+∞) 上是增函数,在⎣⎢⎡⎦⎥⎤-12,0上是减函数, 因此f (x )的单调递增区间为⎝ ⎛⎦⎥⎤-∞,-12,[0,+∞); 单调递减区间为⎣⎢⎡⎦⎥⎤-12,0.(2)因为f ⎝ ⎛⎭⎪⎫-12=14,f (12)=34, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-1,12上的最大值为34.10.已知函数f (x )=2x -1x +1,x ∈[3,5].(1)判断函数在区间[3,5]上的单调性,并给出证明;=min{4x+1,x+4,-x+8}的最大值是________.解析:在同一坐标系中分别作出函数y=4x+1,y=x+4,y=-x +8的图象后,取位于下方的部分得函数f(x)=min{4x+1,x+4,-x +8}的图象,如图所示,由图象可知,函数f(x)在x=2时取得最大值6.-=答案=-:613.求函数f(x)=x2-2x+2在区间[t,t+1]上的最小值g(t).解析:f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,其图象的对称轴为x=1.当t+1<1,即t<0时,函数图象如图(1)所示,函数f(x)在区间[t,t +1]上为减函数,所以最小值g(t)=f(t+1)=t2+1;当t≤1≤t+1,即0≤t≤1时,函数图象如图(2)所示,最小值g(t)=f(1)=1;当t>1时,函数图象如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值g(t)=f(t)=t2-2t+2.综上可得,g(t)=⎩⎪⎨⎪⎧t2+1,t<0,1,0≤t≤1,t2-2t+2,t>1.。
第2课时 函数的最大(小)值1.理解函数的最大(小)值的概念及其几何意义.(重点)2.了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.(重点、难点)[基础·初探]教材整理 函数的最大(小)值阅读教材P 30至“例3”以上部分,完成下列问题.1.函数f (x )=1x ,x ∈[-1,0)∪(0,2]( ) A .有最大值12,最小值-1 B .有最大值12,无最小值 C .无最大值,有最小值-1D .无最大值,也无最小值【解析】 函数f (x )=1x 在[-1,0)上单调递减,在(0,2]上也单调递减,所以无最大值,也无最小值,故选D.【答案】 D2.函数f (x )=x 2-2x +2,x ∈[-1,2]的最小值为________;最大值为________.【解析】 因为f (x )=x 2-2x +2=(x -1)2+1,x ∈[-1,2],所以f (x )的最小值为f (1)=1,最大值为f (-1)=5.【答案】 1 5[小组合作型]【精彩点拨】 先把y =x -|x -1|化成分段函数的形式,再画出其图象,并由图象求值域. 【自主解答】 y =x -|x -1|=⎩⎨⎧1,x≥12x -1,x<1,画出该函数的图象如图所示.由图可知,函数y =x -|x -1|的值域为(-∞,1].1.函数的最大值、最小值分别是函数图象的最高点、最低点的纵坐标.对于图象较容易画出来的函数,可借助于图象直观的求出其最值,但画图时要求尽量精确.2.利用图象法求函数最值的一般步骤作图象→找图象的最高点和最低点→确定最高点和最低点的纵坐标→确定最值[再练一题]1.已知函数f (x )=错误!(1)在如图1-3-2给定的直角坐标系内画出f (x )的图象; (2)写出f (x )的单调递增区间及值域. 【导学号:97030053】图1-3-2【解】 (1)图象如图所示:(2)由图可知f (x )的单调递增区间为[-1,0),(2,5],值域为[-1,3].求函数f (x )=x +4x 在[1,4]上的最值.【精彩点拨】 先利用单调性的定义判断函数的单调性,再根据单调性求最值即可. 【自主解答】 设1≤x 1<x 2≤2,则f (x 1)-f (x 2)=x 1+4x1-x 2-4x2=x 1-x 2+错误!=(x 1-x 2)·⎝ ⎛⎭⎪⎫1-4x1x2=(x 1-x 2)x1x2-4x1x2=错误!. ∵1≤x 1<x 2≤2,∴x 1-x 2<0,x 1x 2-4<0,x 1x 2>0,∴f (x 1)>f (x 2),∴f (x )是减函数. 同理f (x )在(2,4]上是增函数.∴当x =2时,f (x )取得最小值4,当x =1或x =4时,f (x )取得最大值5.函数的单调性与其最值的关系1.若函数f(x)在闭区间[a,b]上是减函数,则f(x)在闭区间[a,b]上的最大值为f(a),最小值为f(b).2.若函数f(x)在闭区间[a,b]上是增函数,则f(x)在闭区间[a,b]上的最大值为f(b),最小值为f(a).3.求函数的最值时一定要注意所给的区间是闭区间还是开区间,若是开区间,则不一定有最大值或最小值.[再练一题]2.已知函数f(x)=1x-2,(1)判断f(x)在[3,5]上的单调性,并证明;【导学号:97030054】(2)求f(x)在[3,5]上的最大值和最小值.【解】(1)f(x)在[3,5]上为减函数.证明:任取x1,x2∈[3,5],有x1<x2,∴f(x1)-f(x2)=1x1-2-1x2-2=错误!.∵x1<x2,∴x2-x1>0.又∵x1,x2∈[3,5],∴(x1-2)(x2-2)>0,∴错误!>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在[3,5]上是减函数.(2)∵f(x)在[3,5]上是减函数,∴f(x)在[3,5]上的最大值为f(3)=1,f(x)在[3,5]上的最小值为f(5)=1 3.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x 元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y 表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).(1)求函数y =f (x )的解析式及定义域;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元? 【精彩点拨】 (1)函数y =f (x )=出租自行车的总收入-管理费;当x ≤6时,全部租出;当6<x ≤20时,每提高1元,租不出去的就增加3辆,所以要分段求出解析式;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值. 【自主解答】 (1)当x ≤6时,y =50x -115,令50x -115>0,解得x >2.3. ∵x ∈N ,∴3≤x ≤6,且x ∈N .当6<x ≤20时,y =[50-3(x -6)]x -115=-3x 2+68x -115, 综上可知y =⎩⎨⎧50x -115,3≤x≤6,x ∈N-3x2+68x -115,6<x≤20,x ∈N.(2)当3≤x ≤6,且x ∈N 时,∵y =50x -115是增函数,∴当x =6时,y m ax =185元. 当6<x ≤20,x ∈N 时,y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113,∴当x =11时,y m ax =270元.综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.1.本题建立的是分段函数模型,分段求出各段的最大值,两段中的最大值即为所求,其中求一次函数的最值应用单调性,求二次函数的最值则应用配方法.2.解决实际应用问题,首先要理解题意,然后建立数学模型转化成数学模型解决;分清各种数据之间的关系是正确构造函数关系式的关键.[再练一题]3.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=错误!假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使盈利最多? 【解】 (1)由题意得G (x )=2.8+x . ∵R (x )=错误! ∴f (x )=R (x )-G (x ) =错误!(2)当x >5时,函数f (x )递减, ∴f (x )<f (5)=3.2(万元).当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6(万元).所以当工厂生产4百台时,可使盈利最大为3.6万元.[探究共研型]探究1 函数f (x )=x 1,0],[-1,2],[2,3]上的最大值和最小值分别是什么?【提示】 函数f (x )=x 2-2x +2的图象开口向上,对称轴为x =1.(1)因为f (x )在区间[-1,0]上单调递减,所以f (x )在区间[-1,0]上的最大值为f (-1)=5,最小值为f (0)=2.(2)因为f (x )在区间[-1,1]上单调递减,在[1,2]上单调递增,则f (x )在区间[-1,2]上的最小值为f (1)=1,又因为f (-1)=5,f (2)=2,f (-1)>f (2),所以f (x )在区间[-1,2]上的最大值为f (-1)=5.(3)因为f (x )在区间[2,3]上单调递增,所以f (x )在区间[2,3]上的最小值为f (2)=2,最大值为f (3)=5.探究2 你能说明二次函数f (x )=ax 2+bx +c 的单调性吗?若求该函数f (x )在[m ,n ]上的最值,应考虑哪些因素?【提示】 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增;当a <0时,f (x )在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增.若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.已知函数f (x )=x 2-ax +1, (1)求f (x )在[0,1]上的最大值;(2)当a =1时,求f (x )在闭区间[t ,t +1](t ∈R )上的最小值. 【精彩点拨】 (1)根据二次函数图象的对称性求函数的最大值.(2)根据函数在区间[t ,t +1]上的单调性分三种情况讨论,分别求出f (x )的最小值. 【自主解答】 (1)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,所以区间[0,1]的哪一个端点离对称轴远,则在哪个端点取到最大值,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ; 当a 2>12,即a >1时,f (x )的最大值为f (0)=1.(2)当a =1时,f (x )=x 2-x +1,其图象的对称轴为x =12, ①当t ≥12时,f (x )在其上是增函数,∴f (x )min =f (t )=t 2-t +1; ②当t +1≤12,即t ≤-12时,f (x )在其上是减函数, ∴f (x )min =f (t +1)=⎝ ⎛⎭⎪⎫t +122+34=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=34.探求二次函数的最值问题,要根据函数在已知区间上的单调性求解,特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,如果二者的位置关系不确定,那么就应对其位置关系进行分类讨论来确定函数的最值.[再练一题]4.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【导学号:97030055】【解】f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)在区间[0,2]上是增函数,所以f(x)min=f(0)=-1,f(x)m ax=f(2)=3-4a.(2)当0≤a≤1时,由图②可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(2)=3-4a.(3)当1<a≤2时,由图③可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(0)=-1.(4)当a>2时,由图④可知,f(x)在[0,2]上为减函数,所以f(x)min=f(2)=3-4a,f(x)m ax=f(0)=-1.1.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5 B.-3,5C.1,5 D.5,-3【解析】因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.【答案】 B2.函数y=x2-2x,x∈[0,3]的值域为( )A.[0,3] B.[-1,0]C.[-1,+∞) D.[-1,3]【解析】∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为3,故函数的值域为[-1,3],故选D.【答案】 D3.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( )【导学号:97030056】A.2 B.-2C.2或-2 D.0【解析】由题意,a≠0,当a>0时,有(2a+1)-(a+1)=2,解得a=2;当a<0时,有(a +1)-(2a+1)=2,解得a=-2.综上知a=±2.【答案】 C4.函数f(x)=6-x-3x在区间[2,4]上的最大值为________.【解析】∵6-x在区间上是减函数,-3x在区间上是减函数,∴函数f(x)=6-x-3x在区间上是减函数,∴f(x)m ax=f(2)=6-2-3×2=-4.【答案】-45.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.【解】(1)函数f(x)在x∈[2,6]上是增函数.证明:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则f(x1)-f(x2)=2x1-1-2x2-1=错误!=错误!.由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,于是f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=2x-1是区间[2,6]上的减函数.(2)由(1)可知,函数f(x)=2x-1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4.。
第三节 函数的基本性质1.3.1 第二课时 函数的最大(小)值(李波)一、教学目标(一)核心素养教材以二次函数2()f x x =图象为例,观察出函数图象的最低点(0,0),这给我们提供了一种求函数最值的方法“图象观察法”,这也是一种最直接,最直观的方法.结合上一课时函数的单调性,学生通过函数图象,研究函数性质,寻求最值.在实际生活中,常遇到最值问题,我们是通过建立函数模型来进行研究,体现了数学与社会生活紧密联系.本节课,在探究函数的最值问题中,不断培育学生的数学运算、数学抽象、数学建模等数学核心素养.(二)学习目标1.通过函数图象,理解函数最大(小)值及几何意义.2.结合函数单调性求最大(小)值.3.函数最大(小)值的实际问题中的应用.(三)学习重点1.理解函数最大(小)值的概念及几何意义.2.求函数的最大(小)值.(四)学习难点结合函数单调性求最大(小)值.二、教学设计(一)课前设计1.预习任务一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有______;(2)存在0x I ∈,使得_______,那么我们称M 是函数()y f x =的最____值. 详解:()f x M ≤;0()f x M =;大或 ()f x M ≥;0()f x M =;小.2.预习自测(1)作函数22y x x =-+的图象,指出函数是否有的最值?若有,请求出最值. 详解:有最大值,无最小值;最大值为1.(二)课堂设计1.知识回顾(1)常见初等函数的图象.(2)函数的单调性.2.问题探究探究一 通过函数图象,函数最高(低)点的位置特征及几何意义●活动① 学生作函数y x =,1y x =,2y x =图象,观察图象的最高(低)点生:y x =图象上下无限延伸,没有最高点,也没有最低点;1y x=图象上下无限延伸,没有最高点,也没有最低点,且中间断开; 2y x =图象往上无限延伸,没有最高点,最低点在(0,0)处;师:结合图像观察结论,能否阐述函数图象最高(低)点的位置特质及几何意义? 生:2y x =图象最低点在(0,0)处.仔细观察发现,位置特征:最低点位于函数图象上,不是图像外的其他点;几何意义:函数图象上所有点在坐标系中的位置都高于它或和它一样高(最低点本身).【设计意图】观察图象易找到最高(低)点,教学时对最高(低)点的位置特征、几何意义进行探究,展现数学概念生成的过程,培养学生严谨的逻辑推理能力. ●活动② 图象的最高(低)点所体现的函数对应关系本质师:点之间位置高度的如何量化,更显数学的严谨性.由第一课时函数单调性推导,我们在描述()f x 随着x 的增大而增大,任取点11(,)A x y 到22(,)B x y ,其中12x x <刻画x 的增大,因此,我们是借助于点的坐标来探究.同学们可以想一想:在坐标系中,图象的点的高度,是由构成图象点的纵坐标决定的.师:下面以2y x =图象最低点在(0,0)O 为例,探究函数对应关系本质图象上其他点的位置不低于点O⇔图象上任意点(,)Q x y 位置不低于点(0,0)O⇔任意点(,)Q Q Q x y 的纵坐标Q y 的值与(0,0)O 纵坐标O y 的值关系:Q O y y ≥;而任意点(,)Q Q Q x y 的横坐标Q x 的值与(0,0)O 横坐标O x 的关系:,Q O x x R ∈(定义域) ⇔定义域R 内,寻求纵坐标的最小值因此,我们可以下结论:函数图象的最高(低)点(,)Q Q Q x y 的实质是:函数在定义域内任取x 所对应的y 值小于或等于(大于或等于)该点的函数值Q y ;也可以这样描述,函数整个定义域I 内的函数值y 在Q x x =处有最大(小)值Q y ,称Q y 为函数的最大(小)值.关系流程如图:【设计意图】从图象的最高(低)点的“形”,如何过渡到最大(小)值这个“数”,是教学设计的重点.我们从最高(低)点的位置特征,几何意义分析,让学生充分认识到点的坐标,是图象的构成元素点的数量体现,对“形”的认识自然过渡到“数”的分析.点的坐标由横、纵坐标组成,在坐标系中图象上的点投影在x 轴所覆盖的范围、y 轴所覆盖的范围,分别对应了函数的定义域和值域.最高(低)点的横、纵坐标,在坐标系中该点投影在x 轴是其横坐标取值、y 轴上是其纵坐标取值,与其他点投影到y 轴上的值相比较,是最大(小)值,同时该点横、纵坐标分别对应了定义域内某个值,值域内的最大(小)值.●活动③函数最大(小)值的概念师:由以上的推导,我们能否生成函数最大(小)值的概念?生:存在某个值使得所有函数值都比它大(小)也可相等.师:由几何特征,这个值在值域中吗?请继续完善.生:这个值在值域中.值域中存在某个值,使得所有函数值都比它大(小). 师:函数定义域优先,值域中某个值是否有一个x 与之对应?生:至少有一个x 与之对应,即存在性.师:一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有()f x M ≤(()f x M ≥);(2)存在0x I ∈,使得0()f x M =,那么我们称M 是函数()y f x =的最大(小)值.【设计意图】学生要充分认识图象的最高(低)点的位置、该点坐标形式、坐标的对应实质这三者之间的联系,才能从“形”的位置特征及几何意义,到“数”对应方式,呈现了函数最大(小)值概念的生成过程.探究二 结合函数单调性求最大(小)值●活动①由图象观察函数最值.例1已知函数()11f x x x =++-.(1)画出()f x 的图象;(2)根据图象写出()f x 的最小值.【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】(1)解:()11f x x x =++-2,12,112,1x x x x x -≤-⎧⎪=-<<⎨⎪≥⎩其图象如图所示:(2)由图象,得函数()f x 的最小值为2.【思路点拨】画出函数()y f x =的图象,依据函数最值的几何意义,借助图象写出最值.【答案】(1)略;(2)2.同类训练 如图为函数()y f x =,[4,7]x ∈-的图象,指出它的最大值、最小值.【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是( 1.5,2)--,所以当3x =时取得最大值,最大值是3;当 1.5x =-时取得最小值,最小值是-2.【思路点拨】从左至右观察图象,在最高(低)点对应的纵坐标值,为函数的最大(小)值.【答案】3,-2.【设计意图】考查学生如何观察函数最值●活动②利用函数单调性求最值例2:求函数21y x =-在区间[2,6]上的最大值和最小值. 【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】解:12,[2,6]x x ∀∈,且12x x <211212122()22()()11(1)(1)x x f x f x x x x x --=-=----, 12,[2,6]x x ∈,12(1)(1)0x x ∴-->.12x x <,120x x ∴->,12()()0f x f x ∴->,即12()()f x f x >.21y x ∴=-是区间[2,6]上的减函数. 因此,函数21y x =-在区间[2,6]的两个端点分别取得最大值与最小值,即在2x =时取得最大值,最大值为2,在6x =时取得最小值,最小值为0.4.【思路点拨】由图象可观察函数单减,在2x =处有最大值,在6x =处有最小值.在实际解答题中,能说明函数的单调性应先证明,再求最值.【答案】2,0.4.同类训练 求函数4()f x x x=+在[1,2]x ∈上的最大值与最小值. 【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】解:12,[1,2]x x ∀∈,且12x x <,则121212121212444()()()()()x x f x f x x x x x x x x x --=+-+=-. 12x x <,120x x ∴-<,1212,[1,2](1,4)x x x x ∈∴∈,,1212401x x x x ∴-<,>,1212()()0()().f x f x f x f x ∴->,即>4()f x x x∴=+在[1,2]x ∈上是减函数. 从而函数的最大值是(1)145f =+=,最小值是(2)224f =+=.【思路点拨】由函数单调性求最值.【答案】5,4.【设计意图】求函数最值时,首先判定函数在给定区间的单调性,结合函数图象,在区间的端点值处取得最值.●活动③二次函数的最值问题例3求函数2()22f x x ax =-+在[2,4]上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x ax =-+的对称轴是x a =,当2a <时,()f x 在[2,4]上单增,min ()(2)64f x f a ==-,当4a >时,()f x 在[2,4]上单减,min ()(4)188f x f a ==-,当24a ≤≤时,2min ()()2f x f a a ==-.综上所述2min64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩同类训练 求函数2()22f x x x =-+在[,1]t t +上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x x =-+的对称轴是1x =.当110t t +<⇒<时,()f x 在[,1]t t +上单减,2min ()(1)1f x f t t =+=+; 当1t >时,()f x 在[,1]t t +上单增,2min ()()22f x f t t t ==-+;当1101t t t ≤≤+⇒≤≤时,min ()(1)1f x f ==.综上所述2min21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩例4 函数2()34f x x x =--的定义域为[0,]m (0m >),值域为25[,4]4--,求m 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:2()34(4)(1)f x x x x x =--=-+如图min 325()()24f x f ==-,=-43[,3]2m ∴∈. 【思路点拨】由值域求定义域,本质是求值域方法的逆向思维,根据图象找到最值所对应的图象段,投影到x 轴,找到相应的变化范围.同类训练:函数2()23f x x x =-+在[0,]a (0a >)上最大值是3,最小值是2,求a 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:22()23(1)2f x x x x =-+=-+如图:要取到最小值2,a 必须对称轴1x =右侧取值.最大值为3,则a 的必须在对称轴1x =左侧取值.[1,2]a ∴∈.【答案】[1,2]a ∈.【思路点拨】由值域求定义域,本质是求值域方法的逆向思维,根据图象找到最值所对应的图象段,投影到x 轴,找到相应的变化范围.【设计意图】通过值域寻求定义域的问题,结合二次函数图象,找出对应的坐标轴的取值范围.●活动④函数关系中恒成立问题例5已知函数223()x x f x x++=([2,)x ∈+∞). (1)求()f x 的最小值;(2)若()f x a >恒成立,求a 的取值范围.【知识点】函数单调性求最值,恒成立问题转化.【数学思想】变量分离思想、等价转化思想.【解题过程】解:(1) 12,[2,)x x ∀∈+∞,且12x x <,223()x x f x x++=则12121212(3)()()()x x f x f x x x x x --=-.12x x <,120x x ∴-<,12,[2,)x x ∈+∞,124x x ∴>,1230x x ∴->,12()()0f x f x ∴-<,即12()()f x f x <. 故函数223()x x f x x++=在[2,)+∞上为增函数. ∴当2x =时,()f x 有最小值,即11(2)2f =. (2) ()f x 有最小值为11(2)2f =. ()f x a >恒成立,只需min ()f x a >,即112a <. 【思路点拨】恒成立问题,常分离变量,转化为求函数最值问题.【答案】(1)112;(2)112a <. 同类训练 函数2()3f x x x a =++-,[1,1]x ∈-时,()0f x ≥恒成立,求实数a 的取值范围.【知识点】函数单调性、不等式恒成立问题.【数学思想】变量分离思想、等价转化思想.【解题过程】解:[1,1],()0x f x ∈-≥恒成立,23a x x ∴≤++,[1,1]x ∈-时恒成立.记:2()3g x x x =++, 只需min 11()4a g x ≤=,即114a ≤. 【思路点拨】恒成立问题,常分离变量,转化为求函数最值问题. 【答案】114a ≤. 例6 函数2()3,f x x ax a =++-若[2,3]a ∈-时,()0f x ≥恒成立,求实数x 的取值范围.【知识点】一次函数图象性质、不等式恒成立问题.【数学思想】变量分离思想、等价转化思想、分类讨论思想.【解题过程】解:22()3(1)(3)f x x ax a a x x =++-=-++,[2,3]a ∈-,()0f x ≥恒成立,记:2()(1)(3)g a a x x =-++,转化为()0g a ≥恒成立,[2,3]a ∈-.当1x =时,()40g a =>恒成立1x ∴=…………….①当1x >时,2()(1)(3)g a a x x =-++在[2,3]-上单增,22min ()(2)25(1)40g a g x x x =-=-+=-+>恒成立,1x ∴>…………….②当1x <时,2()(1)(3)g a a x x =-++在[2,3]-上单减,2min ()(3)30g a g x x ==+> 31x x ∴≤-≤<或0…………….③由①②③:(,3][,)x ∈-∞-⋃+∞0.【思路点拨】也可用二次函数图象问题求解,若向一次函数图象问题转化,问题变得相对容易.【答案】(,3][,)-∞-⋃+∞0.同类训练 函数2()3,f x x ax a =++-[2,2]x ∈-时,()0f x ≥恒成立,求实数a 的取值范围.【知识点】一次函数图象性质、不等式恒成立问题.【数学思想】分类讨论思想.【解题过程】函数2()3f x x ax a =++-图象的对称轴是2a x =-. 当22a -≤-,即4a ≥时,()f x 在[2,2]-上单增,min ()(2)730f x f a =-=-≥73a ∴≤. a ∴∈Φ………….① 当22a -≥,即4a ≤-时,()f x 在[2,2]-上单减,min ()(2)70f x f a ==+≥7a ∴≥-, [7,4]a ∴∈--.…………….②当222a -<-<,即44a -<<时,2min 412()()024a a a f x f ---+==≥62a ∴-≤≤, (4,2]a ∴∈-.………….③由①②③:[7,2]a ∈-.【思路点拨】对称轴与给定区间位置不同关系,由函数图象观察单调性,结合最值求解.【答案】[7,2]a ∈-.【设计意图】函数的最值与单调性的关系:若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最大值为()f a ,最小值为()f b ;若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最大值为()f b ,最小值为()f a .探究三 函数最大(小)值的实际问题中的应用●活动① 生活问题构建函数模型例7 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:2400,0400()280000,400x x x R x x ⎧-≤≤⎪=⎨⎪>⎩,其中x 是仪器的月产量. (1)将利润表示为月产量的函数()f x ;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)【知识点】数学建模.【数学思想】函数与方程思想.【解题过程】解:(1)月产量为x 台,则总成本为20000100x +元,从而⎪⎩⎪⎨⎧>-≤≤-+-=)400(,10060000)4000(,2000030021)(2x x x x x x f(2)当0400x ≤≤时,21()(300)25000,2f x x =--+ 当300x =时,max ()25000f x =;当400x >时,()60000100f x x =-是减函数,()60001004002000025000.f x <-⨯=<综上所述:300x ∴=时,max ()25000f x =.即每月生产300台仪器时利润最大,最大利润为25000元.【思路点拨】分段函数模型要注意x 的不同取值范围,所对应的利润求值问题.【答案】(1)2130020000,(0400)()260000100,(400)x x x f x x x ⎧-+-≤≤⎪=⎨⎪->⎩;(2)每月生产300台仪器时利润最大,最大利润为25000元.同类训练 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少?【知识点】数学建模.【数学思想】函数与方程思想.【解题过程】解:设售价为x 元,利润为y 元,单个涨价50x -元,销量减少10(50)x -个. 2(40)[50010(50)](40)(100010)10(70)9000.y x x x x x =---=--=--+故当70x =时,max 9000y =所以售价为70元时,利润最大为9000元.【思路点拨】构建一元二次方程求最值.【答案】售价为70元时,利润最大为9000元.【设计意图】 (1)解决实际问题,首先要理解题意,然后建立数学模型转化成数学问题解决.(2)分清各种数据之间的关系是正确构造函数关系式的关键.3. 课堂总结知识梳理(1)通过函数图象,探究函数最大(小)值及几何意义.(2)结合函数单调性求函数最大(小)值.(3)函数最大(小)值在实际问题中的应用.重难点归纳(1)函数最大(小)值概念的生成.(2)求函数最大(小)值.(三)课后作业基础型 自主突破1.若函数()f x x =则( ) A ()f x 的最大值为0,无最小值 B ()f x 无最大值,最小值为0C ()f x 的最大值为+∞,最小值为0D ()f x 的最大值为0,最小值为-∞【知识点】图象应用【数学思想】数形结合思想【解题过程】如图: ()f x x =在(,0),[0,)-∞+∞在0x =处有最小值(0)0f =,无最大值【思路点拨】由图象观察求最值【答案】B 2.若函数26,12()7,11x x f x x x +<≤⎧=⎨+-≤≤⎩,则()f x 的最大值、最小值分别为( ) A 10,6 B 10,8 C 8,6 D 8,8【知识点】一次函数图象性质【数学思想】【解题过程】解:由一次函数单调性26,(1,2]y x x =+∈,7,[1,1]y x x =+∈-,因此26,12()7,11x x f x x x +<≤⎧=⎨+-≤≤⎩在区间[1,2]x ∈-,min max ()(1)6,()(2)10f x f f x f =-===【思路点拨】也可用图象观察的方法.【答案】A3.函数2()2f x x x =+(1)在(2,5]-的最大值,最小值分别是________(2)在(1,2]-的最大值,最小值分别是________【知识点】二次函数图象【数学思想】数形结合思想【解题过程】函数2()2f x x x =+对称轴1x =-(1)(2,5]x ∈-,函数在1x =-处有最小值,min ()(1)1f x f =-=-在5x =处有最大值,max ()(5)35f x f ==(2)函数在(1,2]-上单增,在2x =处有最大值,max ()(2)8f x f ==【思路点拨】给定区间求最值,作图观察.【答案】(1)35,-1;(2)8,无4.函数1()12f x x=--在(2,5]x ∈上的值域是______ 【知识点】函数单调性【数学思想】数形结合思想【解题过程】解:函数11()122x f x x x-=-=--,定义域为(,2)(2,)-∞⋃+∞ 由一次分函数图象知: ()f x 在(2,5]上单减min 4()(5)3f x f ==,函数无最大值【思路点拨】可用定义法证明函数单调性,也可分析法2y x =-在(2,5]为减,12y x =-在(2,5]为增, 112y x=--在(2,5]为减. 【答案】4[,)3+∞ 5. 已知二次函数()f x 满足且()f x 的最大值为8,求此二次函数的解析式【知识点】待定系数法求函数解析式 【数学思想】函数与方程的思想【解题过程】解:设2()(0)f x ax bx c a =++≠ (2)(1)1f f =-=-,()f x 的最大值为824211484a b c a b c ac b a ⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得447a b c =-⎧⎪=⎨⎪=⎩2()447f x x x ∴=-++【思路点拨】也可以用顶点式、两点式求解【答案】2()447f x x x =-++6. ()1f x ax =+在[1,2]上的最大值与最小值之差为2,求a 的值【知识点】一次函数单调性【数学思想】分类讨论思想【解题过程】解:()1f x ax =+当0a =时,()1f x =常值函数,在[1,2]上无单调性当0a >时,()1f x ax =+在[1,2]上单增,min max ()(1)1,()(2)21f x f a f x f a ==+==+ max min ()()(21)(1)2f x f x a a a ∴-=+-+==当0a <时,()1f x ax =+在[1,2]上单减,max min ()(1)1,()(2)21f x f a f x f a ==+==+max min ()()(1)(21)22f x f x a a a a ∴-=+-+=-=⇒=-【思路点拨】一次函数y kx b =+的单调性,0,();0,()k f x k f x ><【答案】2或-2能力型 师生共研7.已知2()2(1)2f x x a x =+-+在区间[1,5]上的最小值为(5)f ,求a 的范围【知识点】二次函数单调性【数学思想】数形结合思想【解题过程】解:2()2(1)2f x x a x =+-+对称轴为1x a =- min ()(5)f x f =2()2(1)2f x x a x ∴=+-+在区间[1,5]单减,称轴为154x a a =-≥⇒≤-【思路点拨】【答案】4a ≤-8.设1()1f x kx x =--,其中1k >,若()f x 在[2,)+∞上有最小值,求k 的值 【知识点】单调性应用【数学思想】【解题过程】解:11()11f x kx kx x x =-=+--,其中y kx =,11y x =-在[2,)+∞均单调递增1()1f x kx x ∴=--在[2,)+∞单增min 3()(2)2f x f k ⇒=⇒= 【思路点拨】性质法判断函数单调性【答案】32k = 探究型 多维突破9.若函数2(),[1,1]f x ax x a x =+-∈-的最大值为178,求a 的值.【知识点】二次函数根的分布【数学思想】数形结合思想、分类讨论思想【解题过程】解:函数2(),[1,1]f x ax x a x =+-∈-当0a =时,()f x x =在[1,1]-上单增,max ()(1)1f x f ==矛盾当0a >时,函数2()f x ax x a =+-图象对称轴102x a =-< max ()(1)1f x f ∴==矛盾当0a <时,函数2()f x ax x a =+-图象对称轴102x a=-> 当112a -≤,即12a ≤-时, 2max14117()()248a f x f a a --=-==,2a ∴=- 当112a ->,即102a -<<时max ()(1)1f x f ∴== 矛盾 综上所述:2a =-【思路点拨】二次函数根的分布问题,结合函数图象及函数在区间上的单调性讨论【答案】2a =-10.建造一个容积为6400立方米,深为4米的长方体无盖蓄水池,池壁的造价为每平方米200元,池底的造价为每平方米100元.(1)把总造价y 元表示为池底的一边长x 米的函数;(2)由于场地原因,蓄水池的一边长不能超过40米,问蓄水池的这个底边长为多少时总造价最低?总造价最低是多少?【知识点】数学建模【数学思想】函数与方程思想【解题过程】解:(1)由已知池底的面积为640016004=平方米,底面的另一边长为1600x 米, 则池壁的面积为:160024()x x⨯⨯+平方米. 所以总造价: 16001600()160000,(0,)y x x x=++∈+∞ (2)由题意知16001600()160000,(0,40]y x x x=++∈ 设12040x x <<≤,则121212121212(1600)160016001600()1600()1600()x x y y x x x x x x x x --=+-+=- 12040x x <<≤,120x x ∴-<,1201600x x ∴<<1216000x x ∴-<,120y y ∴->即12y y >从而这个函数在(0,40]上是减函数,故当40x =时,min 288000y =所以当池底是边长为40米的正方形时,总造价最低为288000元.【思路点拨】函数单调性求最值【答案】边长为40米的正方形时,总造价最低为288000元.自助餐1.函数2()43,[1,4]f x x x x =-+∈,则()f x 的最大值为( )A. -1B.0C.3D.-2【知识点】二次函数求最值【数学思想】数形结合思想【解题过程】解:2()43(1)(3)f x x x x x =-+=--, 如图:max ()(4)3f x f ==【思路点拨】给定区间求最值【答案】C2.函数()21f x x x =-+的值域为( )A.1[,)2+∞B.1(,]2-∞ C.[1,)+∞ D.(0,)+∞ 【知识点】函数值域【数学思想】等价转化思想【解题过程】()21f x x x =-+定义域1[,)2+∞ 21,y x y x =-=在1[,)2+∞上单增 ()21f x x x ∴=-+在1[,)2+∞上单增,∴值域1[,)2+∞ 【思路点拨】性质法判断函数单调性,再求最值【答案】A3. 函数2202,()02,x x x f x x x -≤≤⎧--=⎨<≤⎩,则()f x 的最大值、最小值分别为______ 【知识点】分段函数求最值【数学思想】数形结合思想【解题过程】解:如图所示max ()(2)2f x f ==min ()(2)(0)0f x f f =-==【思路点拨】分段函数在对应区间求一次函数、二次函数的最值【答案】2,04.函数2()45f x x x =-+在[0,]m 上的最大值5,最小值1,则m 的取值范围______【知识点】二次函数图象性质【数学思想】数形结合思想【解题过程】解:22()45(2)1f x x x x =-+=-+如图所示:max ()(0)(4)5f x f f ===min ()(2)1f x f == [2,4]m ∴∈【思路点拨】由值域反推定义域【答案】[2,4]5.已知函数2()22,[5,5]f x x ax x =++∈-(1)当1a =-时,求函数()f x 的最大值和最小值(2)函数()y f x =在区间[5,5]-上是单调函数,则a 的取值范围【知识点】二次函数图象性质【数学思想】数形结合思想【解题过程】解:(1)当1a =-时,22()22(1)1f x x x x =++=++ [5,5]x ∈-,min ()(1)1f x f ∴=-=,max ()(5)37f x f =-=(2)22()()2f x x a a =++-,函数对称轴x a =-函数在区间[5,5]-上是单调函数,5a ∴≤-或5a ≥【思路点拨】二次函数的对称轴与开口方向,决定了函数单调区间6.求函数223,[1,2]y x ax x =--∈的最大值()M a 和最小值()m a .【知识点】二次函数单调性【数学思想】分类讨论思想【解题过程】解:函数2()23f x x ax =--的对称轴是x a = 当1a <时,()f x 在[1,2]上单增,min ()(1)22()f x f a m a ==--=max ()(2)14()f x f a M a ==-=当2a >时,()f x 在[1,2]上单减,max ()(1)22()f x f a M a ==--=min ()(2)14()f x f a m a ==-=当12a ≤≤时,2min ()()3()f x f a a m a ==--= 最大值由区间端点与对称轴决定1 1.5a ≤≤max ()(2)14()f x f a M a ==-=1.52a <≤max ()(1)22()f x f a M a ==--=综上所述:222,1()3,1214,2a a m a a a a a --<⎧⎪=--≤≤⎨⎪->⎩,14, 1.5()22, 1.5a a M a a a -<⎧=⎨--≥⎩ 【思路点拨】对称轴与区间的位置关系,分类讨论【答案】222,1()3,1214,2a a m a a a a a --<⎧⎪=--≤≤⎨⎪->⎩,14, 1.5()22, 1.5a a M a a a -<⎧=⎨--≥⎩。
第一章1.3 1.3.1第二课时 函数的最大值、最小值课时分层训练‖层级一‖|学业水平达标| 1.函数y =-|x |在R 上( ) A .有最大值0,无最小值 B .无最大值,有最小值0 C .既无最大值,又无最小值 D .以上都不对解析:选A 因为函数y =-|x |的图象如图所示,所以函数y =-|x |在R 上有最大值0,无最小值.2.函数y =x -1x 在[1,2]上的最大值为( ) A .0 B .32 C .2D .3解析:选B 函数y =x 在[1,2]上是增函数,函数y =-1x 在[1,2]上是增函数,所以函数y =x -1x 在[1,2]上是增函数. 当x =2时,y max =2-12=32.3.函数y =⎩⎨⎧x +3,x <1,-x +6,x ≥1的最大值是( )A .3B .4C .5D .6解析:选C 当x <1时,函数y =x +3单调递增,且有y <4,无最大值;当x ≥1时,函数y =-x +6单调递减,则在x =1处取得最大值为5.所以,函数在整个定义域内的最大值为5.4.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( )A .2B .-2C .2或-2D .0解析:选C 当a >0时,由题意得2a +1-(a +1)=2,即a =2;当a <0时,a +1-(2a +1)=2,所以a =-2.综上a =±2.5.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .2解析:选C 因为f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a , 所以函数f (x )图象的对称轴为x =2. 所以f (x )在[0,1]上单调递增.又因为f (x )min =-2,所以f (0)=-2,即a =-2. 所以f (x )max =f (1)=-1+4-2=1.6.函数f (x )=x +x -2在[3,4]上的值域为________. 解析:∵函数f (x )=x +x -2在[3,4]上单调递增, ∴f (x )min =f (3)=3+1=4,f (x )max =f (4)=4+ 2. 答案:[4,4+ 2 ]7.定义在R 上的函数f (x )对任意两个不等实数a ,b ,总有f (a )-f (b )a -b >0成立,且f (-3)=m ,f (-1)=n ,则f (x )在[-3,-1]上的最大值是________.解析:由f (a )-f (b )a -b>0知f (x )在R 上为增函数, ∴f (x )在[-3,-1]上的最大值为f (-1)=n .答案:n8.函数f (x )=x -1的最小值是________. 解析:设x =t ,t ≥0,所以f (t )=t 2-1,t ≥0. 所以f (x )=x 2-1,x ≥0,因为f (x )=x 2-1在[0,+∞)上为增函数,所以f (x )的最小值为-1.即f (x )=x -1的最小值是-1. 答案:-19.已知函数y =x 2-2x +3在区间[0,m ]上有最大值3,最小值2,求实数m 的取值范围.解:y =x 2-2x +3=(x -1)2+2,由(x -1)2+2=3,得x =0或x =2.作出函数图象如图所示,由图象知,m 的取值范围是1≤m ≤2.10.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:x 45 50 y2712(1)确定x 与y 注明函数定义域);(2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?解:(1)因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 由表格得方程组⎩⎨⎧ 45a +b =27,50a +b =12,解得⎩⎨⎧a =-3,b =162,所以y =f (x )=-3x +162. 又y ≥0,所以30≤x ≤54,故所求函数关系式为y =-3x +162,x ∈[30,54],x ∈N . (2)由题意得,P =(x -30)y =(x -30)(162-3x )=-3x 2+252x -4 860,x ∈[30,54],x ∈N . 配方得,P =-3(x -42)2+432,当x =42时,最大的日销售利润P =432,即当销售单价为42元时,获得最大的日销售利润.‖层级二‖|应试能力达标|1.函数y =⎩⎨⎧x -1,x ≥0,1-x ,x <0的值域是( )A .RB .[0,+∞)C .[-1,+∞)D .(-1,+∞)解析:选C 画出y =⎩⎨⎧x -1,x ≥0,1-x ,x <0的图象.由图象知,值域为[-1,+∞).2.某公司在甲、乙两地同时销售一种品牌车,利润(单价:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析:选C 设该公司在甲地销售x 辆(0≤x ≤15,x ∈N ),则在乙地销售(15-x )辆,公司获得利润为L =-x 2+21x +2(15-x )=-x 2+19x +30.故当x =9或10时,L 取得最大值120万元.3.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2,2]解析:选C 要求函数y =2--x 2+4x 的值域,只需求t =-x 2+4x (x ∈[0,4])的值域即可.设二次函数f (x )=-x 2+4x =-(x -2)2+4(x ∈[0,4]),所以f (x )的值域是[0,4].因为t =f (x ),所以t 的值域是[0,2],-t 的值域是[-2,0].故函数y =2--x 2+4x 的值域是[0,2].故选C.4.函数f (x )=x 2-4x +5在区间[0,m ]上的最大值为5,最小值为1,则m 的取值范围是( )A .[2,+∞)B .[2,4]C .(-∞,2]D .[0,2]解析:选B f (x )=x 2-4x +5=(x -2)2+1,x ∈[0,m ]. 由最小值为1知m ≥2.又最大值为5,f (0)=5,f (4)=5. 所以2≤m ≤4.故选B.5.若函数f (x )=x 2-6x +m 在区间[2,+∞)上的最小值是-3,则实数m 的值为________.解析:函数f (x )=x 2-6x +m 的对称轴是x =3,开口向上,所以函数f (x )在[2,3]上单调递减,在(3,+∞)上单调递增,故函数在x =3处取得最小值,由f (3)=32-6×3+m =-3,解得m =6. 故实数m 的值为6. 答案:66.用min{a ,b }表示a ,b 两个数中的最小值.设f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.解析:在同一平面直角坐标系内画出函数y =x +2和y =10-x 的图象,如图所示.根据min{x +2,10-x }(x ≥0)的含义可知,f (x )=⎩⎨⎧x +2,0≤x ≤4,10-x ,x >4,所以函数f (x )的图象应为图中的实线部分.解方程x +2=10-x 得x =4,此时y =6,故两图象的交点为(4,6).观察图象知,f (x )的最大值为图象最高点的纵坐标,即f (x )的最大值为6.答案:67.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.解析:设矩形花园的宽为y m,则x40=40-y40,即y=40-x,矩形花园的面积S=x(40-x)=-x2+40x=-(x-20)2+400,当x=20时,面积最大.答案:208.已知函数f(x)=x2-2x+2,x∈[t,t+1],t∈R的最小值为g(t),试写出g(t)的函数表达式.解:f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,对称轴为x=1.当t+1<1,即t<0时,函数图象如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为g(t)=f(t+1)=t2+1;当t≤1≤t+1,即0≤t≤1时,函数图象如图(2)所示,最小值为g(t)=f(1)=1;当t>1时,函数图象如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为g(t)=f(t)=t2-2t+2.综上可得g (t )=⎩⎨⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.由Ruize收集整理。
1.3.1单调性与最大(小)值(第二课时)教学设计一、学情分析本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,次要学惯用符号言语刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,先生对函数曾经有了一个初步的了解,同时,由于上一节曾经学习函数单调性的定义,先生能初步理解用数学言语抽象概括函数概念的必要性和表达方式,为函数最值概念的构成提供极大帮助.因而本节课经过函数的图象,先生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让先生有一个从具体到抽象、特殊到普通的认识过程,本节课经过设计成绩串,逐渐让先生用数学言语描述函数最值的概念,并利用对概念的辨析深化了解最值的内涵.二、教学目标:1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.理解函数的最大(小)值是函数的全体性质.(2)能解决与二次函数有关的最值成绩,和利用函数的单调性和函数的图象求函数的最值,掌握用函数的思想解决一些理论成绩.2.过程与方法经过日常生活实例,引导先生进行分析、归纳、概括函数最值的概念.并借助函数的单调性,从数到形,以形助数,逐渐浸透、培养先生数形结合思想、分类讨论思想、优化思想.3.情感、态度与价值观以丰富的实例背景引入,让先生领会数学与日常生活毫不相关.在概念的构成过程中,培养先生从特殊到普通、从直观到抽象的思想提升过程,让先生感知数学成绩求解途径与方法,享用成功的快乐.三、重点、难点:重点:建构函数最值的概念过程,利用函数的单调性和函数的图象求函数的最值.难点:函数最值概念的构成.高一先生的逻辑思想和抽象概括能力较弱,面对抽象的方式化定义,容易产生思想妨碍.对此,本课紧紧捉住新旧知识间的内在联系,设置一系列成绩,让先生充分参与定义的符号化过程,从图形言语和自然言语向数学符号言语转化,逐渐打破难点.四、教学过程:(一)提出成绩,引入目标背景1:成绩1:求函数2)(x x f -=的最大值.意图:从熟习的二次函数动手,将求函数的最大值转化为研讨函数图象的最高点,引导先生经过图象分析.背景2:请看下图,这是某气象观测站某日00:00—24:00这24小时内的气温变化图.(图)成绩2:.(1)我们常说昼夜温差大,是指一天当中的最高温度和最低温度之差.请问,该天的最高气温是多少?(2)该图象能否建立一个函数关系?如何定义自变量?意图:明确是在函数背景下研讨成绩.回顾函数的定义和函数的表示法(图象法) 师:我们称此时该函数的最大值是32.意图:启发先生明确函数图象中存在最高点与函数存在最大值之间是分歧的,即明确函数图象和函数解析式是反映函数关系的不同表现方式,从而无认识地培养先生以形助数解决成绩的认识,并引出课题——《函数的最大(小)值》(二)层层深化,概念建构成绩3:经过这两个成绩,我们能否用数学言语给出普通函数最大值的定义? 意图:以具体实例为背景,让先生用数学言语来进行归纳表达,引导先生过渡到任意化的符号化表示,呈现知识的自然生成,领会从特殊到普通的思想.定义:普通地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(成立;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值.(预设:函数最大值定义中的第(1)点成绩不大,第(2)点容易被忽略。
1.函数f(x)(-2≤x ≤2)的图象如下图所示,则函数的最大值、最小值分别为( )A .f(2),f(-2)B .f(12),f(-1)C .f(12),f(-32)D .f(12),f(0)【解析】 根据函数最值定义,结合函数图象知,当x =-32时,有最小值f(-32);当x =12时,有最大值f(12).【答案】 C2.y =2x 在区间[2,4]上的最大值、最小值分别是( )A .1,12 B.12,1C.12,14D.14,12【解析】 因为y =2x 在[2,4]上单调递减,所以y max =22=1,y min =24=12.【答案】 A3.函数y =ax +1在区间[1,3]上的最大值为4,则a =________.【解析】 若a<0,则函数y =ax +1在区间[1,3]上是减函数,则在区间左端点处取得最大值,即a +1=4,a =3不满足a<0;若a>0,则函数y=ax+1在区间[1,3]上是增函数,则在区间右端点处取得最大值,即3a+1=4,a=1,满足a>0,所以a=1.【答案】 14.已知函数y=-x2+4x-2,x∈[0,5].(1)写出函数的单调区间;(2)若x∈[0,3],求函数的最大值和最小值.【解析】y=-x2+4x-2=-(x-2)2+2,x∈[0,5].所以(1)此函数的单调区间为[0,2),[2,5];(2)此函数在区间[0,2)上是增函数,在区间[2,3]上是减函数,结合函数的图象知:当x=2时,函数取得最大值,最大值为2;又x=3时,y=1,x=0时,y=-2,所以函数的最小值为-2.一、选择题(每小题5分,共20分)1.函数y=|x-1|在[-2,2]上的最大值为()A.0 B.1C.2 D.3【解析】函数y=|x-1|的图象,如右图所示可知y max=3.【答案】 D2.函数f(x)=⎩⎨⎧2x +6 x ∈[1,2]x +8 x ∈[-1,1],则f(x)的最大值、最小值为( ) A .10,7 B .10,8C .8,6D .以上都不对【解析】 本题为分段函数最值问题,其最大值为各段上最大值中的最大值,最小值为各段上最小值中的最小值.当1≤x ≤2时,8≤2x +6≤10,当-1≤x ≤1时,7≤x +8≤9.∴f(x)min =f(-1)=7,f(x)max =f(2)=10.【答案】 A3.函数f(x)=x 2+3x +2在区间(-5,5)上的最大值、最小值分别为( )A .42,12B .42,-14C .12,-14D .无最大值,最小值-14【解析】 f(x)=x 2+3x +2=(x +32)2-14,∵-5<-23<5,∴无最大值f(x)min =f(-32)=-14.【答案】 D4.已知函数f(x)=-x 2+4x +a(x ∈[0,1]),若f(x)有最小值-2,则f(x)的最大值为( )A .-1B .0C.1 D.2【解析】函数f(x)=-x2+4x+a的图象开口向下,对称轴为直线x=2,于是函数f(x)在区间[0,1]上单调递增,从而f(0)=-2,即a=-2,于是最大值为f(1)=-1+4-2=1,故选C.【答案】 C二、填空题(每小题5分,共10分)5.函数y=-3x,x∈(-∞,-3]∪[3,+∞)的值域为________.【解析】y=-3x在(-∞,-3]及[3,+∞)上单调递增,所以值域为(0,1]∪[-1,0).【答案】(0,1]∪[-1,0)6.已知二次函数f(x)=ax2+2ax+1在区间[-2,3]上的最大值为6,则a的值为________.【解析】f(x)=ax2+2ax+1=a(x+1)2+1-a,对称轴x=-1,当a>0时,图象开口向上,在[-2,3]上的最大值为f(3)=9a+6a+1=6,所以a=1 3,当a<0时,图象开口向下,在[-2,3]上的最大值为f(-1)=a-2a+1=6,所以a=-5.【答案】13或-5三、解答题(每小题10分,共20分)7.求函数y=2x-1在区间[2,6]上的最大值和最小值.【解析】设x1、x2是区间[2,6]上的任意两个实数,且x1<x2,则f(x1)-f(x2)= -== .由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,f(x1)-f(x2)>0,即f(x1)>f(x2).所以,函数y= 是区间[2,6]上的减函数.如上图.因此,函数y= 在区间[2,6]的两个端点上分别取得最大值与最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4.8.求f(x)=x2-2ax+2在[2,4]上的最小值.【解析】f(x)=(x-a)2+2-a2,当a≤2时,f(x)min=f(2)=6-4a;当2<a<4时,f(x)min=f(a)=2-a2;当a≥4时,f(x)min=f(4)=18-8a.综上可知,f(x)min =⎩⎪⎨⎪⎧ 6-4a (a ≤2)2-a 2 (2<a<4)18-8a (a ≥4)9.(10分)某市一家报刊摊点,从该市报社买进该市的晚报价格是每份0.40元,卖出价格是每份0.60元,卖不掉的报纸以每份0.05元的价格退回报社.在一个月(按30天计算)里,有18天每天可卖出400份,其余12天每天只能卖出180份.摊主每天从报社买进多少份,才能使每月获得最大利润(设摊主每天从报社买进的份数是相同的)?【解析】 若设每天从报社买进x(180≤x ≤400,x ∈N )份,则每月(按30天计算)可销售(18x +12×180)份,每份获利0.20元,退回报社12(x -180)份,每份亏损0.35元,建立月纯利润函数,再求它的最大值.设每天从报社买进x 份报纸,每月获利为y 元,则有y =0.20(18x +12×180)-0.35×12(x -180)=-0.6x +1 188,180≤x ≤400,x ∈N .函数y =-0.6x +1 188在区间[180,400]上是减函数,所以x =180时函数取最大值,最大值为y =-0.6×180+1 188=1 080.即摊主每天从报社买进180份时,每月获得的利润最大,最大利润为1 080元.。
1.3.1 第2课时 函数的最大值、最小值[课时作业] [A 组 基础巩固]1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-a D .9-a 2解析:∵a >0,∴f (x )=9-ax 2(a >0)开口向下以y 轴为对称轴, ∴f (x )=9-ax 2(a >0)在[0,3]上单调递减, ∴x =0时,f (x )最大值为9. 答案:A 2.函数y =1x -1在[2,3]上的最小值为( ) A .2 B.12 C.13D .-12解析:函数y =1x -1在[2,3]上为减函数,∴y min =13-1=12. 答案:B3.函数y =|x +1|-|2-x |的最大值是( ) A .3 B .-3 C .5D .-2解析:由题意可知y =|x +1|-|2-x |=⎩⎪⎨⎪⎧-3, x <-1;2x -1, -1≤x ≤2;3, x >2.画出函数图象即可得到最大值3.故选A.答案:A4.函数y =x +2x -1( )A .有最小值12,无最大值B .有最大值12,无最小值C .有最小值12,有最大值2D .无最大值,也无最小值解析:f (x )=x +2x -1的定义域为⎣⎢⎡12,+,在定义域内单调递增,∴f (x )有最小值f ⎝ ⎛⎭⎪⎫12=12,无最大值.答案:A5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .(-∞,0)D .(0,+∞)解析:a <-x 2+2x 恒成立,即a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值, 而f (x )=-x 2+2x ,x ∈ [0,2]的最小值为0,∴a <0. 答案:C6.函数y =-x 2+6x +9在区间[a ,b ](a <b <3)有最大值9,最小值-7.则a =________,b =________.解析:∵y =-x 2+6x +9的对称轴为x =3,而a <b <3. ∴函数在[a ,b ]单调递增.∴⎩⎪⎨⎪⎧f a =-a 2+6a +9=-7,fb =-b 2+6b +9=9,解得⎩⎪⎨⎪⎧a =-2,b =0或⎩⎪⎨⎪⎧a =8,b =6,又∵a <b <3,∴⎩⎪⎨⎪⎧a =-2,b =0.答案:-2 07.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为________.解析:设f (x )=kx +b (k ≠0)当k >0时,⎩⎪⎨⎪⎧-k +b =1,2k +b =3即⎩⎪⎨⎪⎧k =23,b =53.∴f (x )=23x +53.当k <0时,⎩⎪⎨⎪⎧-k +b =3,2k +b =1,即⎩⎪⎨⎪⎧k =-23,b =73∴f (x )=-23x +73.∴f (x )的解析式为f (x )=23x +53或f (x )=-23x +73.答案:f (x )=23x +53或f (x )=-23x +738.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________. 解析:f (x )=4x +a x(x >0,a >0)在(0,a2]上单调递减,在(a2,+∞)上单调递增,故f (x )在x =a2时取得最小值,由题意知a2=3,∴a =36.答案:369.已知函数f (x )=x -1x +2,x ∈[3,5]. (1)判断函数f (x )的单调性; (2)求函数f (x )的最大值和最小值.解析:(1)任取x 1,x 2∈[3,5]且x 1<x 2,则f (x 1)-f (x 2)=x 1-1x 1+2-x 2-1x 2+2=x 1-x 2+-x 2-x 1+x 1+x 2+=x 1x 2+2x 1-x 2-2-x 1x 2-2x 2+x 1+2x 1+x 2+=x 1-x 2x 1+x 2+.∵x 1,x 2∈[3,5]且x 1<x 2, ∴x 1-x 2<0,x 1+2>0,x 2+2>0. ∴f (x 1)-f (x 2)<0.∴f (x 1)<f (x 2). ∴函数f (x )=x -1x +2在[3,5]上为增函数.(2)由(1)知,当x =3时,函数f (x )取得最小值,为f (3)=25;当x =5时,函数f (x )取得最大值,为f (5)=47.10.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)求实数a 的范围,使y =f (x )在区间[-5,5]上是单调函数; (2)求f (x )的最小值.解析:(1)f (x )=(x +a )2+2-a 2,可知f (x )的图象开口向上,对称轴方程为x =-a ,要使f (x )在[-5,5]上单调,则-a ≤-5或-a ≥5, 即a ≥5或a ≤-5.(2)当-a ≤-5,即a ≥5时,f (x )在[-5,5]上是增函数,所以f (x )min =f (-5)=27-10a . 当-5<-a ≤5,即-5≤a <5时,f (x )min =f (-a )=2-a 2,当-a >5,即a <-5时,f (x )在[-5,5]上是减函数, 所以f (x )min =f (5)=27+10a ,综上可得,f (x )min =⎩⎪⎨⎪⎧27-10a a ,2-a 2-5≤a <,27+10a a <-[B 组 能力提升]1.函数y =2x +1-2x ,则( ) A .有最大值54,无最小值B .有最小值54,无最大值C .有最小值12,最大值54D .既无最大值,也无最小值解析:设1-2x =t (t ≥0),则x =1-t 22,所以y =1-t 2+t =-⎝ ⎛⎭⎪⎫t -122+54(t ≥0),对称轴t =12∈[0,+∞),所以y 在⎣⎢⎡⎦⎥⎤0,12上递增,在⎣⎢⎡⎭⎪⎫12,+∞上递减,所以y 在t =12处取得最大值54,无最小值.选A. 答案:A2.y =3x +2(x ≠-2)在区间[-5,5]上的最大值、最小值分别是 ( ) A.37,0 B.32,0 C.32,37D .无最大值,无最小值解析:由图象可知答案为D.答案:D3.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 解析:设f (x )=x 2+mx +4,则f (x )图象开口向上,对称轴为x =-m2.(1)当-m2≤1时,即m ≥-2时,满足f (2)=4+2m +4≤0,∴m ≤-4,又m ≥-2,∴此时无解.(2)当-m2≥2,即m ≤-4时,需满足f (1)=1+m +4≤0∴m ≤-5,又m ≤-4,∴m ≤-5.(3)当1<-m2<2,即-4<m <-2时,需满足⎩⎪⎨⎪⎧-4<m <-2,f=1+m +4≤0,f=4+2m +4≤0.此时无解.综上所述,m ≤-5. 答案:m ≤-54.已知函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,则实数a 的取值范围是________.解析:解法一:因为函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,所以不等式x 2+x >a -x 对一切x ∈R 都成立,即a <x 2+2x 对一切x ∈R 都成立.因为x 2+2x =(x +1)2-1,所以a <-1.解法二:因为函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,所以不等式x 2+x >a -x 对一切x ∈R 都成立,即x 2+2x -a >0对一切x ∈R 都成立,所以Δ=4+4a <0即可,解得a <-1.答案:(-∞,-1)5.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解析:f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1),函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2),最小值为f (1)=1;当t >1时,函数图象如图(3),函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2.6.已知(x +2)2+y 24=1,求x 2+y 2的取值范围.解析:由(x +2)2+y 24=1,得(x +2)2=1-y 24≤1,∴-3≤x ≤-1,∴x 2+y 2=x 2-4x 2-16x -12=-3x 2-16x -12=-3⎝ ⎛⎭⎪⎫x +832+283,因此,当x =-1时,x 2+y 2有最小值1;当x =-83时,x 2+y 2有最大值283.故x 2+y 2的取值范围为⎣⎢⎡⎦⎥⎤1,283.。
学业分层测评(十)
(建议用时:45分钟)
[学业达标]
一、选择题
1.函数f (x )在[-2,2]上的图象如图1-3-3所示,则此函数的最小值、最大值分别是( )
图1-3-3
A .f (-2),0
B .0,2
C .f (-2),2
D .f (2),2
【解析】 由题图可知,此函数的最小值是f (-2),最大值是2. 【答案】 C
2.函数f (x )=1
x 在[1,+∞)上( ) A .有最大值无最小值 B .有最小值无最大值 C .有最大值也有最小值
D .无最大值也无最小值
【解析】 结合函数f (x )=1
x 在[1,+∞)上的图象可知函数有最大值无最小值.
【答案】 A
3.函数f (x )=|x +1|在[-2,2]上的最小值为( ) A .5 B .2 C .1
D .0
【解析】 当-2≤x ≤-1时,f (x )=|x +1|=-x -1,函数单调递减;当-
1≤x≤2时,f(x)=|x+1|=x+1,函数单调递增,
∴当x=-1时,函数f(x)取得最小值,
∴f(x)min=f(-1)=|-1+1|=0,故选D.
【答案】D
4.函数f(x)=9-ax2(a>0)在[0,3]上的最大值为()
A.9 B.9(1-a)
C.9-a D.9-a2
【解析】f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上的最大值为9.
【答案】A
5.下列四个函数:①y=3-x;②y=
1
x2+1
;③y=x2+2x-10;④y=-
2
x.
其中值域为R的函数个数有()
A.1个B.2个
C.3个D.4个
【解析】y=3-x是一次函数,值域为R;x2+1≥1,
∴0<1
x2+1≤1,∴函数y=
1
x2+1
的值域不是R;y=x2+2x-10=(x+1)2-11≥
-11,∴该函数的值域不是R;对于y=-2
x,y≠0,即该函数的值域不是R.∴
值域为R的函数有一个.
【答案】 A
二、填空题
6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为________.
【解析】函数f(x)=-x2+4x+a=-(x-2)2+4+a,x∈[0,1],且函数有最小值-2.
故当x=0时,函数有最小值,
当x=1时,函数有最大值.
∵当x=0时,f(0)=a=-2,
∴f(x)=-x2+4x-2,
∴当x =1时,f (x )m ax =f (1)=-12+4×1-2=1. 【答案】 1
7.函数y =f (x )的定义域为[-4,6],若函数f (x )在区间[-4,-2]上单调递减,在区间(-2,6]上单调递增,且f (-4)<f (6),则函数f (x )的最小值是________,最大值是________.
【解析】 作出符合条件的函数的简图(图略),可知f (x )min =f (-2),f (x )m ax =f (6).
【答案】 f (-2) f (6)
8.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是________. 【解析】 令f (x )=-x 2+2x , 则f (x )=-x 2+2x =-(x -1)2+1. 又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0. ∴a <0. 【答案】 a <0 三、解答题
9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 【解】 f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,f (x )m ax =f (1)=a ; 当0<a <1时,f (x )m ax =f (a )=a 2-a +1; 当a ≤0时,f (x )m ax =f (0)=1-a .
根据已知条件得,⎩⎨⎧ a ≥1,a =2或⎩⎨⎧
0<a <1,a 2-a +1=2
或⎩⎨⎧
a ≤0,
1-a =2, 解得a =2或a =-1.
10.有一长为24米的篱笆,一面利用墙(墙最大长度是10米)围成一个矩形花圃,设该花圃宽AB 为x 米,面积是y 平方米,
(1)求出y 关于x 的函数解析式,并指出x 的取值范围;
(2)当花圃一边AB 为多少米时,花圃面积最大?并求出这个最大面积? 【解】 (1)如图所示:
∵0<24-2x ≤10,∴7≤x <12,
∴y =x (24-2x )=-2x 2+24x ,(7≤x <12). (2)由(1)得,y =-2x 2+24x =-2(x -6)2+72, ∴AB =6 m 时,y 最大为72 m 2.
[能力提升]
1.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤
-254,-4,则m 的取
值范围是( )
A .(0,4] B.⎣⎢⎡⎦⎥⎤
32,4 C.⎣⎢⎡⎦
⎥⎤
32,3 D.⎣⎢⎡⎭
⎪⎫32,+∞ 【解析】 ∵f (x )=x 2
-3x -4=-25
4,
∴f ⎝ ⎛⎭
⎪⎫
32=-254,又f (0)=-4,
故由二次函数图象可知:m 的值最小为32;最大为3.故m 的取值范围是⎣⎢⎡⎦⎥⎤
32,3,
故选C.
【答案】 C
2.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1
=-x 2+21x 和L 2=2x (其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( )
A .90万元
B .60万元
C .120万元
D .120.25万元
【解析】 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为
L =-x 2+21x +2(15-x )=-x 2
+19x +30=-+30+192
4,
∴当x =9或10时,L 最大为120万元. 【答案】 C
3.函数g(x )=2x -x +1的值域为________. 【解析】 设x +1=t ,(t ≥0),则x +1=t 2,
即x =t 2-1,∴y =2t 2-t -2=-17
8,t ≥0,
∴当t =14时,y min =-17
8, ∴函数g (x )的值域为⎣⎢⎡⎭⎪⎫
-178,+∞.
【答案】 ⎣⎢⎡⎭⎪⎫
-178,+∞
4.已知函数f (x )=-x 2+2x -3.
(1)求f (x )在区间[2a -1,2]上的最小值g(a ); (2)求g(a )的最大值. 【解】 (1)f (x )=-(x -1)2-2,f (2)=-3,f (0)=-3, ∴当2a -1≤0,即a ≤1
2时,f (x )min =f (2a -1)=-4a 2+8a -6; 当0<2a -1<2,即12<a <3
2时,f (x )min =f (2)=-3. 所以g (a )=⎩⎪⎨⎪⎧
-4a 2
+8a -6,a ≤12,
-3,12<a <3
2,
(2)当a ≤1
2时,g (a )=-4a 2+8a -6单调递增,
∴g (a )≤g ⎝ ⎛⎭⎪⎫
12=-3;
又当12<a <3
2时,g (a )=-3, ∴g (a )的最大值为-3.。