备战2013高考真题测试:导数与积分理科教师版
- 格式:doc
- 大小:1.54 MB
- 文档页数:25
2013年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013?北京)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.2对应的点位于())(2013?北京)在复平面内,复数(2﹣i2.(5分)A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数为代数形式,求出复数对应点的坐标,即可判断复数对应点所在象限.22=3﹣4i,=4﹣4i+【解答】解:复数(2﹣i)i复数对应的点(3,﹣4),2对应的点位于第四象限.i﹣)所以在复平面内,复数(2故选:D.3.(5分)(2013?北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件D.充分必要条件.既不充分也不必要条件C【分析】按照充要条件的定义从两个方面去求①曲线y=sin(2x+φ)过坐标原点,求出φ的值,②φ=π时,曲线y=sin(2x+φ)过坐标原点.【解答】解:φ=π时,曲线y=sin(2x+φ)=﹣sin2x,过坐标原点.但是,曲线y=sin(2x+φ)过坐标原点,即O(0,0)在图象上,将(0,0)代入解析式整理即得sinφ=0,φ=kπ,k∈Z,不一定有φ=π.故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.故选:A.4.(5分)(2013?北京)执行如图所示的程序框图,输出的S值为().C.A.1DB.的大2从框图赋值入手,先执行一次运算,然后判断运算后的i的值与【分析】小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止..1赋值0和【解答】解:框图首先给变量i和S;+1=1,i=0执行;+1=2不成立,执行,i=1≥判断12的值为成立,算法结束,跳出循环,输出S2≥2判断..故选:C个单位长度,所得图象与1(x)的图象向右平移分)(5(2013?北京)函数f5.x)(f轴对称,则(x)曲线y=e=关于y11xxx11x﹣++﹣﹣﹣e.eA.eDB.e.Cx然后换轴对称的图象的函数解析式,的图象关于【分析】首先求出与函数y=ey 即可得到要求的答案.+1x为xxx﹣,y=e解:函数【解答】y=ey的图象关于轴对称的图象的函数解析式为x yy=e1xf而函数()的图象向右平移个单位长度,所得图象与曲线的图象关于轴对称,x1x1x1﹣)﹣﹣﹣(+﹣.=e(x)=e所以函数f(x)的解析式为y=e.即f故选:D.的离心率为,则其渐近线方程北京)若双曲线(2013?.(5分)6)为(D.±A.y=2xB.C.【分析】通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.【解答】解:由双曲线的离心率,可知c=a,222,所以b=a+b,=c又a=±x.所以双曲线的渐近线方程为:y=故选:B.2=4y的焦点且与yx:轴垂直,则l与(5分)(2013?北京)直线l过抛物线C7.C 所围成的图形的面积等于().BA..2C.D先确定直线的方程,再求出积分区间,确定被积函数,由此利用定积分【分析】与抛物线围成的封闭图形面积.可求直线l2,)【解答】解:抛物线x=4y的焦点坐标为(0,12轴垂直,=4yy的焦点且与:∵直线l过抛物线Cx,y=1l的方程为∴直线.,可得交点的横坐标分别为﹣2,由2﹣=(x.与抛物线围成的封闭图形面积为∴直线l |=).故选:C,>,<的不等式组,y(2013?北京)设关于x.表示的平面区8(5分)>)=2,求得m的取值范围是(,y),满足x﹣2y域内存在点P(x0000B,A.,.D,C.,>,<画出可行域.要使可行域存在,必有【分析】先根据约束条件>﹣1m,x﹣1上的点,只要边界点(﹣,要求可行域包含直线m<﹣2m+1y=的下方,从而建﹣1m)在直线y=x)在直线2my=x﹣1的上方,且(﹣m,的不等式组,解之可得答案.立关于m,>,<画出可行域,【解答】解:先根据约束条件>上的点,只1x﹣2m+1,要求可行域包含直线y=要使可行域存在,必有m<﹣)﹣2m要边界点(﹣m,1的下方,1y=x﹣1﹣的上方,且(﹣m,m)在直线在直线y=x<>,故得不等式组<解之得:m<﹣.故选:C.分.分,共306小题,每小题5二、填空题共ρsinθ=2的距离等于2)到直线.(5分)(2013?北京)在极坐标系中,点(9.1然后用先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程,【分析】点到直线的距离来解.ρsinθ=2,直线,1)化为直角坐标为(,【解答】解:在极坐标系中,点,y=2化为直角坐标方程为,1ρsinθ=2的距离到直线,,即为点(,1),到y=2的距离1.1故答案为:(2013?北京)若等比数列5n4231n+.﹣,则公比q=a+a=40a{}满足a+a=20,.10(5分)项和S=22n2;前n,解出即可利用等比数列的通项公式和已知即可得出【分析】.,再利用等比数列的前n项和公式即可得出a得到及q1,q}的公比为a【解答】解:设等比数列{n2①q=20)1=aa∵+a(+2242②q1(=a+aa+)=40353.∴①②两个式子相除,可得到==2即等比数列的公比q=2,将q=2带入①中可求出a=42则a===21∴数列{a}时首项为2,公比为2的等比数列.n n1+∴数列{a}的前n项和为:S===2﹣2.nnn1+﹣,22.故答案为:211.(5分)(2013?北京)如图,AB为圆O的直径,PA为圆O的切线,PB与圆.,AB=4:16,则PD=DO相交于,若PA=3,PD:DB=92,利用切割线定理可得PA=PD?PB可设PD=9x,DB=16x.:【分析】由PD:DB=916,的切线,利用OPA为圆.AB为圆O的直径,PD即可求出x,进而得到,PB.ABPA.再利用勾股定理即可得出切线的性质可得AB⊥.DB=16xPD=9x,DB=9:16,可设【解答】解:由PD:2,=PD?PB为圆O的切线,∴PA∵PA2,∴+16x),化为.∴39x=9x?(.,PB=25x=5∴PD=9x=.PAABPAO的直径,为圆O的切线,∴⊥AB∵为圆.=4=∴.故答案分别为,44的55张参观券全部分给,,,,北京)将序分别为(5.12(分)2013?1234张参观券连,那么不同的分法种数张,如果分给同一人的人,每人至少12.是962张,如果分给同一人的1人,每人至少4张参观券全部分给5求出【分析】.张参观券连的组数,然后分给4人排列即可.【解答】解:5张参观券全部分给4人,分给同一人的2张参观券连,方法数为:1和2,2和3,3和4,4和5,四种连,其它码各为一组,分给4人,共有=96种.4×故答案为:96.若在正方形格中的位置如图所示,513.(分)(2013?北京)向量,,.4,则=(λ,μ∈R)、【分析】以向量、的公共点为坐标原点,建立如图直角坐标系,得到向量μ=2且解之得、μ的方程组,λ=﹣、的坐标,结合题中向量等式建立关于λ的值.,即可得到﹣的公共点为坐标原点,建立如图直角坐标系【解答】解:以向量、)32),=(﹣1,﹣,可得=(﹣1,1)=(6,,∵﹣μ=﹣∴,解之得λ=2且=4因此,=4故答案为:为E中,﹣ABCDABCD北京)如图,在棱长为514.(分)(2013?2的正方体1111.的距离的最小值为到直线点EDP的中点,BC点在线段上,PCC11,利用线面平行的判定即可EDEF,C的中点F,连接【分析】如图所示,取B111的距离.CC,进而得到异面直线DE与C得到C∥平面DEF1111,,ED的中点F,连接EF【解答】解:如图所示,取BC111,∥EF∴CC1,DEFCC?平面又EF?平面DEF,111.DEF∴CC∥平面11的距离.CCDE与C∴直线C上任一点到平面DEF的距离是两条异面直线1111,FM⊥D过点C作C111.DBCEF∵平面D⊥平面A11111.EF ⊥平面D∴CM11.CCP,则MP∥于点过点M作MP∥EF交DE11是矩形.,则四边形MPNCCN=MP,连接PN取11,DEF可得NP⊥平面1.=F,得?C 中,在Rt△DCFCM?DF=DC1111111.CCP的距离的最小值为到直线∴点1故答案为分.解答应写出文字说明,演算步骤506三、解答题共小题,共.∠AB=2b=2a=3ABC北京)在△(13.15(分)2013?中,,,∠(Ⅰ)求cosA的值;(Ⅱ)求c的值.【分析】(Ⅰ)由条件利用正弦定理和二倍角公式求得cosA的值.(Ⅱ)由条件利用余弦定理,解方程求得c的值,再进行检验,从而得出结论.,∠B=2∠A,(Ⅰ)由条件在△ABC中,a=3,【解答】解:.利用正弦定理可得,即=.解得cosA=2222,2×cc,即9=+×﹣(Ⅱ)由余弦定理可得a=b2+c×﹣2bc?cosA 2.即c﹣8c+15=0.解方程求得c=5,或c=3,,A=C=45°B=90°∠A,可得时,此时当c=3a=c=3,根据∠B=2222,故舍去.=b+a△ABC是等腰直角三角形,但此时不满足c,=cosB=当c=5时,求得=,cosA=2,满足条件.,∴=cosBB=2Acos2A=2cosA﹣1=∴综上,c=5.16.(13分)(2013?北京)如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;的分布列与数学期望是此人停留期间空气质量优良的天数,求(Ⅱ)设XX (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)由题意可知X所有可能取值为0,1,2,得出P(X=0),P(X=1),p(x=2)及分布列与数学期望;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:设A表示事件“此人于5月i日到达该地”(i=1,2,…,13)i)≠j?(i)=,A∩A=依据题意P(A jii(Ⅰ)设B表示事件“此人到达当日空气质量优良”,则P(…(3分)B)=(Ⅱ)X的所有可能取值为0,1,2分)6X=2)=…(=,P(X=1)=,P((PX=0)的分布列为∴X210XP…(8分)∴X的数学期望为E(X)=…(11分)(Ⅲ)从5月5日开始连续三天的空气质量指数方差最大.…(13分)17.(14分)(2013?北京)如图,在三棱柱ABC﹣ABC中,AACC是边长为411111的正方形.平面ABC⊥平面AACC,AB=3,BC=5.11(Ⅰ)求证:AA⊥平面ABC;1(Ⅱ)求证二面角A﹣BC﹣B的余弦值;111的值.,并求BAADD上存在点(Ⅲ)证明:在线段BC,使得⊥11,再利用面面垂直的性质即可⊥ACC是正方形,可得AA【分析】(I)利用AAC111证明;.通过建立空间直角坐标系,利用两个⊥ACII)利用勾股定理的逆定理可得AB (平面的法向量的夹角即可得到二面角;,可得E⊥BC于),在平面BCCB中作DEt(III)设点D的竖坐标为t,(0<<411,,利用向量垂直于数量积得关系即可得出.,D.AC是正方形,∴AA⊥(I)证明:∵AACC【解答】111,C=AC∩平面AACAACC,平面ABC又∵平面ABC⊥平面1111.ABC∴AA⊥平面1.AB=3BC=5,(II)解:由AC=4,222.ACABAB=BC⊥∴AC,∴+,30,),B(),B(0,3,0(建立如图所示的空间直角坐标系,则A0,0,411,4),(40,4),C1,,,,,,.,,∴B,平面,,,,y的法向量为=(xBC的法向量为BC设平面A211211.z)2,,.∴x,则令y=4,解得=0,z=3,111,,.∴z,=0,解得令,x=3,y=4222<>,.===B的余弦值为.﹣BC﹣∴二面角A111(III)设点D的竖坐标为t,(0<t<4),在平面BCCB中作DE⊥BC于E,可得11,,,D,,,,4),3∴=,﹣=(0,,∴∵,解得t=.∴.∴)处的切线.,0:y=在点((.(13分)2013?北京)设l为曲线C18的方程;(Ⅰ)求l的下方.在直线l,0)之外,曲线C(Ⅱ)证明:除切点(1(Ⅰ)求出切点处切线斜率,代入代入点斜式方程,可以求解;【分析】(Ⅱ)利用导数分析函数的单调性,进而分析出函数图象的形状,可得结论.(Ⅰ)∵【解答】解:∴=1|l的斜率k=y′∴x=11﹣l的方程为y=x∴)>0lnx)﹣,(xx(Ⅱ)令f()=x(x﹣1证明:,0)﹣lnx>)x=x(x﹣1的下方,即曲线C在直线lf(=1﹣x)=2x﹣则f′(=01f+110xf∴()在(,)上单调递减,在(,∞)上单调递增,又()∴x∈(0,1)时,f(x)>0,即<x﹣1x∈(1,+∞)时,f(x)>0,即<x﹣1即除切点(1,0)之外,曲线C在直线l的下方上的三个点,:C是椭圆W19.(14分)(2013?北京)已知A,B,是坐标原点.O(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.【分析】(I)根据B的坐标为(2,0)且AC是OB的垂直平分线,结合椭圆方程算出A、C两点的坐标,从而得到线段AC的长等于.再结合OB的长为2并利用菱形的面积公式,即可算出此时菱形OABC的面积;(II)若四边形OABC为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A、C的2﹣1,从而得到A=r、横坐标满足C的横坐标相等或互为相反数.再分两不可能为OABCW的顶点时,四边形种情况加以讨论,即可得到当点B不是菱形.【解答】解:(I)∵四边形OABC为菱形,B是椭圆的右顶点(2,0)∴直线AC是BO的垂直平分线,可得AC方程为x=1,解之得t=(舍负)(设A1,t),得∴A的坐标为(1,),同理可得C的坐标为(1,﹣)因此,|AC|=,可得菱形OABC的面积为S=|AC|?|BO|=;(II)∵四边形OABC为菱形,∴|OA|=|OC|,222=r两点是圆xy+A(r>1),得、C|设|OA|=|OC=r2的公共点,解之得:﹣=r与椭圆1设A、C两点横坐标分别为x、x,可得A、C两点的横坐标满足21且x,x,或??=x=x?=﹣= 2121时,可得若四边形OABC为菱形,则B点必定是右顶点?=①当x=x21(2,0);,则且xx+x=0,?②若x==﹣?2112可得AC的中点必定是原点O,因此A、O、C共线,可得不存在满足条件的菱形OABC综上所述,可得当点B不是W的顶点时,四边形OABC不可能为菱形.n是由非负整数组成的无穷数列,该数列前{a}13分)(2013?北京)已知20.(n.B=A ﹣…的最小值记为B,d项的最大值记为A,第n项之后各项a,a nnn1nnn2n++的数列(即对任意43…,是一个周期为1,4,,1,4,3,2,a(Ⅰ)若{}为2n*的值;,d,d,d∈N),a=a,写出dn4231n4n+}{a2,3…)的充分必要条件为d=﹣d(n=1,(Ⅱ)设d是非负整数,证明:nn的等差数列;是公差为d,且或者2}的项只能是1,…),则{an=1(Ⅲ)证明:若a=2,d=1(,2,3nn1.1有无穷多项为的值.d,d,﹣B的定义,直接求得d,d【分析】(Ⅰ)根据条件以及d=A4n 2n1n3,d1)=a+(n﹣{(Ⅱ)设d是非负整数,若a}是公差为d的等差数列,则a1nn,d=﹣d=A﹣B从而证得nnn是一个不}a).可得{n=1,2,3,4…=)n=1,2,3,4….若d=A﹣B﹣d,((nnnn减的数列,的等差数列,命题得证.是公差为}d=d,即{aad=A求得d﹣B=﹣,即a﹣nnnnnn1+的项不能等于零,再用反证法得},则{a,,23,…)(,(Ⅲ)若a=2d=1n=1n1n,的项不能超过}2到{a n从而证得命题.的数4,是一个周期为3…,4,1,2a(Ⅰ)若【解答】解:{,3,4,1,2为}n 列,∴d=A﹣B=2﹣1=1,111d=A﹣B=2﹣1=1,d=A﹣B=4﹣1=3,d=A﹣B=4﹣1=3.442423323(Ⅱ)充分性:设d是非负整数,若{a}是公差为d的等差数列,则a=a+(n1nn﹣1)d,∴A=a=a+(n﹣1)d,B=a=a+nd,∴d=A﹣B=﹣d,(n=1,2,3,4…).n1n1nnnnn1+必要性:若d=A﹣B=﹣d,(n=1,2,3,4…).假设a是第一个使a﹣a<01nknknk﹣的项,则d=A﹣B=a﹣B≥a﹣a>0,这与d=﹣d≤0相矛盾,故{a}是一个不减nnk1k1kkkkk﹣﹣的数列.∴d=A﹣B=a﹣a=﹣d,即a﹣a=d,故{a}是公差为d的等差数列.nnnn1nnnn1++(Ⅲ)证明:若a=2,d=1(n=1,2,3,…),首先,{a}的项不能等于零,否n1n则d=2﹣0=2,矛盾.1而且还能得到{a}的项不能超过2,用反证法证明如下:n假设{a}的项中,有超过2的,设a是第一个大于2的项,由于{a}的项中一定nnm有1,否则与d=1矛盾.1当n≥m时,a≥2,否则与d=1矛盾.mn因此,存在最大的i在2到m﹣1之间,使a=1,此时,d=A﹣B=2﹣B≤2﹣2=0,iiiii矛盾.综上,{a}的项不能超过2,故{a}的项只能是1或者2.nn下面用反证法证明{a}的项中,有无穷多项为1.n若a是最后一个1,则a是后边的各项的最小值都等于2,故d=A﹣B=2﹣2=0,kkkkk矛盾,故{a}的项中,有无穷多项为1.n综上可得,{a}的项只能是1或者2,且有无穷多项为1.n。
2013年高考数学理知识与能力测试题(2)DF ,右准线l 与两条渐线交于P 、Q 两点,如果△PQF 是直角三角形,则双曲线的离心率e= 。
(3)函数y =的最大值是 。
三、解答题:本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知)cos ,sin 3(x x m ωω=,)cos ,(cos x x ωω=,0>ω,记函数n m x f •=)(,若函数)(x f 的最小正周期为π。
(1) 求ω; (2) 当30π≤≤x 时,试求)(x f 的值域。
16.(本小题满分13分)设飞机A 有两个发动机,飞机B 有四个发动机,如有半数或半数以上的发动机没有故障,飞机就能安全飞行。
现设各发动机发生故障的概率p 是 t 的函数tep λ--=1,其中t 为发动机启动后所经历的时间,λ为正常数,试论证飞机A 与飞机B 哪一个安全(这里不考虑其他故障)。
17.(本小题满分14分)在棱长为a 的正方体''''ABCD A B C D -中,E是棱BC 、CD 上的点,且 ''B F D E ⊥。
(1) 求证:CF BE =;(2) 当三角形CEF 角'C EF C --的余弦值。
18.(本小题满分14分)在xoy 平面上有一系列的点 ),,(,),,(),,(222111nny x P y x P y x P ,对于正整数n ,点nP 位于函数)0(2≥=x x y 的图象上,以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1+n P 又彼此外切,若11=x ,且nn x x <+1。
(1) 求证:数列⎭⎬⎫⎩⎨⎧nx1是等差数列; (2) 设⊙nP 的面积为nS ,nnS S S S T ++++= 321,求证:23π<nT19.(本小题满分12分) 已知函数x ax x x f 3)(23+-=(1)若)(x f 在[)+∞∈,1x 是增函数,求实数a 的取值范围;(2)若3=x 是)(x f 的极值点,求)(x f 在[]a ,1的最小值和最大值。
各地解析分类汇编(二)系列: 导 数 11.【云南师大附中2013届高三高考适应性月考卷(四)理】已知定义在R 上的函数2()sin xf x e x x x =+-+,则曲线()y f x =在点(0,(0))f 处的切线方程是A .1y x =+B .32y x =-C . 21y x =-D .23y x =-+【答案】A【解析】令0x =,解得(0)1f =. 对()f x 求导,得()f x 'xe =+2x−1+cosx,令0x =,解得(0)1f '=,故切线方程为1y x =+。
选A.2。
【北大附中河南分校2013届高三第四次月考数学(理)】如果)(x f '是二次函数, 且)(x f '的图象开口向上,顶点坐标为(1,3),那么曲线)(x f y =上任一点的切线的倾斜角α的取值范围是( )A .]3,0(πB .)2,3[ππC .]32,2(ππD .),3[ππ【答案】B【解析】由题意可设2'()(1)0)f x a x a =-+>,即函数切线的斜率为2'()(1)k f x a x ==-+tan α≥32ππα≤<,选B.3.【北大附中河南分校2013届高三第四次月考数学(理)】由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( )A .329B .2ln3-C .4ln3+D .4ln3-【答案】D【解析】由1xy =得1y x=。
当13y x==,解得13Bx=,由1xy y x=⎧⎨=⎩,解得1C x =,由3y y x=⎧⎨=⎩得3D x =。
所以根据积分的应用知所求面积为13123111133111(3)(3)(3ln )(3)4ln 4ln 323dx x dx x x x x x -+-=-+-=+=-⎰⎰.选D 。
4.【云南省玉溪一中2013届高三第五次月考理】设定义在R 上的函数)(x f 是最小正周期为π2的偶函数,()f x '是)(x f 的导函数,当[]0,x π∈时,1)(0<<x f ;当),0(π∈x 且2π≠x 时 ,()()02x f x π'->,则函数x x f y sin )(-=在]2,2[ππ-上的零点个数为( )A.2B.4C.5 D 。
2013年全国高考理科数学试题分类汇编:导数与积分一、选择题1.(新课标Ⅱ卷)已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x =2 .(江西)若22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰则123S S S 的大小关系为( ) A .123S S S << B .213S S S <<C .231S S S <<D .321S S S <<3.(辽宁)设函数()()()()()222,2,0,8xe ef x x f x xf x f x f x x '+==>满足则时,( ) A .有极大值,无极小值 B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值4.(福)设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( ) A .0,()()x R f x f x ∀∈≤ B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点5.(北)直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A .43 B .2 C .83 D .36.(浙江))已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则( ) A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值7.(江西)设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)x f =______2________8.(湖南)若209,Tx dx T =⎰则常数的值为___3______.9.(广东)若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =____1-__. 二、解答题10.(新课标Ⅱ)已知函数)ln()(m x e x f x +-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >.11.(江苏卷)设函数ax x x f -=ln )(,ax e x g x-=)(,其中a 为实数. (1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围;(2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论.12.(广东省)设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间; (Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .13.(2013年高考江西卷(理))已知函数1()=(1-2-)2f x a x ,a 为常数且>0a . (1) 证明:函数()f x 的图像关于直线1=2x 对称; (2) 若0x 满足00(())=f f x x ,但00()f x x ≠,则称0x 为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,,x x 试确定a 的取值范围;14.(重庆数学)设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值.15.(四川)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;16.(福建)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)求函数()f x 的极值.17.(新课标1)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围.18.(山东)设函数2()x x f x c e =+(e =2.71828是自然对数的底数,c R ∈).(Ⅰ)求()f x 的单调区间、最大值; (Ⅱ)讨论关于x 的方程ln ()x f x =根的个数.19.(浙江)已知R a ∈,函数.3333)(23+-+-=a ax x x x f (1)求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当]2,0[∈x 时,求|)(|x f 的最大值.20.(大纲版)已知函数()()()1=ln 1.1x x f x x xλ++-+ (I)若0x ≥时,()0f x ≤,求λ的最小值;(II)设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明: 21.(天津)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<. 22.(北京)设L 为曲线C:ln x y x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方.。
山东省各地市2013届高三理科数学试题分类汇编14:导数与积分一、选择题1 .(山东省潍坊市2013届高三第二次模拟考试理科数学)定义在R 上的函数()f x 的导函数为'()f x ,已知(1)f x +是偶函数(1)'()0x f x -<. 若12x x <,且122x x +>,则1()f x 与2()f x 的大小关系是( )A .12()()f x f x <B .12()()f x f x =C .12()()f x f x >D .不确定【答案】C 由(1)'()0x f x -<可知,当1x >时,'()0f x <函数递减.当1x <时,'()0f x >函数递增.因为函数(1)f x +是偶函数,所以(1)(1)f x f x +=-,()(2)f x f x =-,即函数的对称轴为1x =.所以若121x x <<,则12()()f x f x >.若11x <,则必有22x >,则2121x x >->,此时由21()(2)f x f x <-,即211()(2)()f x f x f x <-=,综上12()()f x f x >,选C .2 .(山东省济南市2013届高三3月高考模拟理科数学)设235111111,,a dx b dx c dx xxx===⎰⎰⎰,则下列关系式成立的是 ( )A .235a b c << B .325b a c<< C .523c a b <<D .253a cb <<【答案】C22111ln ln 2a dx x x ===⎰,33111ln ln 3b dx x x ===⎰,55111ln ln 5c dx x x ===⎰,所以ln 222a ==,ln 3ln 33b ==,ln 555c ==.因为6328==,6239==,所以<.105232==,102525==,<,<<所以523c a b<<,选 C .3 .(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)设函数()()3402f x x x a a =-+<<有三个零点1x 、x 2、x 3,且123,x x x <<则下列结论正确的是 ( )A .11x >-B .20x <C .32x >D .201x <<【答案】D∵函数()()3402f x x x a a =-+<<,∴f′(x)=3x 2﹣4.令f′(x)=0,得 x=±.∵当x <,'()0f x >;在(上,'()0f x <;在)+∞上,'()0f x >.故函数在(,-∞)上是增函数,在(上是减函数,在)+∞上是增函数.故(f是极大值,f 是极小值.再由 f (x)的三个零点为x 1,x 2,x 3,且123,x x x <<得 x 1<﹣,﹣<x 2,x 3>.根据f(0)=a>0,且f()=a ﹣<0,得>x 2>0.∴0<x 2<1.选D .4 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)若()y f x =既是周期函数,又是奇函数,则其导函数'()y f x =( )A .既是周期函数,又是奇函数B .既是周期函数,又是偶函数C .不是周期函数,但是奇函数D .不是周期函数,但是偶函数【答案】B因为()y f x =是周期函数,则有()()f x T f x +=,两边同时求导,得'()()''()f x T x T f x ++=,即'()'()f x T f x +=,所以导函数为周期函数.因为()y f x =是奇函数,所以()()f x f x -=-,两边求导得'()()''()f x x f x --=-,即'()'()f x f x --=-,所以'()'()f x f x -=,即导函数为偶函数,选B .5 .(山东省烟台市2013届高三上学期期末考试数学(理)试题)设函数()sin cos f x x x x =+的图像在点(,())t f t 处切线的斜率为k,则函数k=g(t)的部分图像为【答案】B【解析】函数的导数为'()sin cos cos f x x x x x x =+=,即()cos k g t t t ==.则函数()g t 为奇函数,所以图象关于原点对称,所以排除A,C .当02t π<<时,()0g t >,所以排除排除D,选 B .6 .(山东省泰安市2013届高三上学期期末考试数学理)由曲线1xy =,直线,3y x x ==及x 轴所围成的曲边四边形的面积为 ( )A .116 B .92C .1ln 32+ D .4ln 3-【答案】C【解析】由1xy =得1y x =,由1y xy x =⎧⎪⎨=⎪⎩得1D x =,所以曲边四边形的面积为132130101111ln ln 322xdx dx x x x +=+=+⎰⎰,选 C .7 .(山东省临沂市2013届高三5月高考模拟理科数学)若函数1()e (0,)axf x a b b=->>0的图象在0x =处的切线与圆221x y +=相切,则a b +的最大值是 ( )A .4B.C .2D【答案】D 函数的导数为1'()e ax f x a b =-⋅,所以01'(0)e af a b b=-⋅=-,即在0x =处的切线斜率为a k b =-,又011(0)e f b b =-=-,所以切点为1(0,)b -,所以切线方程为1ay x b b+=-,即10ax by ++=,圆心到直线10ax by ++=的距离1d ==,即221a b +=,所以2212a b ab +=≥,即102ab <≤.又222()21a b a b ab +=+-=,所以2()21112a b ab +=+≤+=,即a b +≤所以a b +,选D .8 .(山东省临沂市2013届高三5月高考模拟理科数学)函数sin e ()x yx =-π≤≤π的大致图象为【答案】D 因为函数为非奇非偶函数,所以排除A,C .函数的导数为sin 'cos xy e x =⋅由sin 'cos 0x y e x =⋅=,得cos 0x =,此时2x π=或2x π=-.当02x π<<时,'0y >,函数递增.当2x ππ<<时,'0y <,函数递减,所以2x π=是函数的极大值,所以选D .(A)(B)(C)(D)9 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时其导函数()f x '满足()2(),xf x f x ''>若24a <<则( )A .2(2)(3)(log )a f f f a <<B .2(3)(log )(2)a f f a f <<C .2(log )(3)(2)a f a f f <<D .2(log )(2)(3)a f a f f <<【答案】C 由()f x =(4)f x -,可知函数关于2x =对称.由()2(),xf x f x ''>得(2)()0x f x '->,所以当2x >时,()0f x '>,函数递增,所以当2x <时,函数递减.当24a <<,21log 2a <<,24222a <<,即4216a <<.所以22(log )(4log )f a f a =-,所以224log 3a <-<,即224log 32a a <-<<,所以2(4log )(3)(2)af a f f -<<,即2(log )(3)(2)a f a f f <<,选C .10.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)已知偶函数)(x f 在R 上的任一取值都有导数,且'(1)1f =,(2)(2),f x f x +=-则曲线)(x f y =在5-=x 处的切线的斜率为 ( ) A .2B .-2C .1D .-1【答案】D【 解析】由(2)(2),f x f x +=-得(4)(),f x f x +=可知函数的周期为4,又函数)(x f 为偶函数,所以(2)(2)=(2)f x f x f x +=--,即函数的对称轴为2x =,所以(5)(3)(1)f f f -==,所以函数在5-=x 处的切线的斜率'(5)'(1)1k f f =-=-=-,选D .二、填空题11.(山东省威海市2013届高三上学期期末考试理科数学)10(2)x e x dx -=⎰____________________.【答案】2e -12100(2)()2x x e x dx e x e -=-=-⎰.12.(山东省济南市2013届高三上学期期末考试理科数学)221x dx =⎰_____________;【答案】73【 解析】22321118173333x dx x ==-=⎰. 13.(山东省烟台市2013届高三上学期期末考试数学(理)试题)由曲线23yx =-和直线2y x =所围成的面积为【答案】323【解析】由232y x y x⎧=-⎨=⎩得1x =或3x =-,所以曲线23y x =-和直线2y x =所围成的面积为1232133132(32)(3)33x x dx x x x ----=--=⎰. 14.(山东省德州市2013届高三上学期期末校际联考数学(理))已知2(),()(1),x f x xe g x x a ==-++若12,,x x R ∃∈使得21()()f x g x ≤成立,则实数a 的取值范围是.【答案】1a e≥-【解析】'()(1)xxxf x e xe x e =+=+,当1x >-时,'()0f x >函数递增;当1x <-时,'()0f x <函数递减,所以当1x =-时()f x 取得极小值即最小值1(1)f e-=-.函数()g x 的最大值为a ,若12,,x x R ∃∈使得21()()f x g x ≤成立,则有()g x 的最大值大于或等于()f x 的最小值,即1a e≥-.15.(山东省德州市2013届高三上学期期末校际联考数学(理))抛物线2yx =在A(l,1)处的切线与y 轴及该抛物线所围成的图形面积为.【答案】13【解析】函数2y x =的导数为'2y x =,即切线斜率为2k =,所以切线方程为12(1)y x -=-,即21y x =-,由221y x y x=-⎧⎨=⎩,解得1x =,所以所求面积为112232100011((21))(21)()33x x dx x x dx x x x --=-+=-+=⎰⎰. 16.(山东省青岛市2013届高三第一次模拟考试理科数学)若11(2)3ln 2(1)ax dx a x+=+>⎰,则a 的值是_____________ ;【答案】2 由 22111(2)(ln )ln 13+ln2aax dx x x a a x+=+=+-=⎰,所以213ln ln2a a ⎧-=⎨=⎩,解得2a =. 17.(山东省泰安市2013届高三上学期期末考试数学理)已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示,给出关于()f x 的下列命题:①函数()2y f x x ==在时,取极小值②函数()[]0,1f x 在是减函数,在[]1,2是增函数,③当12a <<时,函数()y f x a =-有4个零点④如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最小值为0,其中所有正确命题序号为_________. 【答案】①③④【解析】由导数图象可知,当10x -<<或24x <<时,'()0f x >,函数递增.当02x <<或45x <<时,'()0f x <,函数递减.所以在2x =处,函数取得极小值,所以①正确,②错误.当12a <<时,由()0y f x a =-=得()f x a =.由图象可知,此时有四个交点,所以③正确.当[]1,x t ∈-时,()f x 的最大值是2,由图象可知0t ≥,所以t 的最小值为0,所以④正确.综上所有正确命题序号为①③④.18.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知(),103202=+⎰dx t x则常数t =_________.【答案】1【解析】()2232003()8210xt dx x tx t +=+=+=⎰,解得1t =.19.(山东省烟台市2013届高三3月诊断性测试数学理试题)给出下列命题:①函数24xy x =+在区间[1,3]上是增函数;②函数f(x)=2x -x 2的零点有3个;③函数y= sin x(x ∈],[ππ-)图像与x 轴围成的图形的面积是S= ⎰-ππxdx sin ;④若ξ~N(1,2σ),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2. 其中真命题的序号是(请将所有正确命题的序号都填上): 【答案】②④①2224'(4)x y x -+=+,由2224'0(4)x y x -+=>+,解得22x -<<,即函数的增区间为(2,2)-,所以①错误.②正确.③当0x π-≤≤时,sin 0x ≤,所以函数y= sin x(x ∈],[ππ-)图像与x 轴围成的图形的面积是sin x dx ππ-⎰,所以③错误.④因为12(01)10.6(2)0.222P P ξξ-≤≤-≥===,所以④正确,所以正确的为②④.三、解答题20.(山东省潍坊市2013届高三上学期期末考试数学理(A ))函数()R a x ax nx x x f ∈--=21)(.(I)若函数)(x f 在1=x 处取得极值,求a 的值;(II)若函数)(x f 的图象在直线x y -=图象的下方,求a 的取值范围; (III)求证:2012201320132012<.【答案】21.(山东省烟台市2013届高三上学期期末考试数学(理)试题)设函数1()(01)1f x x x x nx=≠>且 (1)求函数()f x 的单调区间;(2)已知1121n a nx x>对任意(0,1)x ∈成立,求实数a 的取值范围.【答案】22.(山东省济南市2013届高三上学期期末考试理科数学)设函数()2ln f x x ax x =+-.(1)若1a =,试求函数()f x 的单调区间;(2)过坐标原点O 作曲线)(x f y =的切线,证明:切点的横坐标为1;(3)令()()xf xg x e =,若函数()g x 在区间(0,1]上是减函数,求a 的取值范围.【答案】解: (1)1a =时, 2()(0)f x x x lnx x =+->1'()21f x x x ∴=+-(21)(1)x x x -+=()()110,,'0,,,'022x f x x f x ⎛⎫⎛⎫∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭()f x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间1,2⎛⎫+∞ ⎪⎝⎭(2)设切点为()(),M t f t ,()1'2f x x ax x=+- 切线的斜率12k t a t=+-,又切线过原点()f t k t=()22212ln 211ln 0f t t a t at t t at t t tt =+-+-=+-∴-+=,即:1t =满足方程21ln 0t t -+=,由21,ln y x y x =-=图像可知21ln 0x x -+=有唯一解1x =,切点的横坐标为1; 或者设()21ln t t t ϕ=-+,()1'20t t tϕ=+>()()0+t ϕ∞在,递增,且()1=0ϕ,方程21ln 0t t -+=有唯一解(3)()()()''xf x f xg x e-=,若函数()g x 在区间(0,1]上是减函数,则()()()(0,1],'0,:'x g x f x f x ∀∈≤≤即,所以()212ln 10x x x a x x-+-+-≥---(*) ()()212ln 1h x x x x a x x =-+-+-设()()()222122111'222x x x h x x a a x x x -++=---+=--+若2a ≤,则()'0,h x ≤()h x 在(]0,1递减,()()10h x h ≥=即不等式()()',(0,1],f x f x x ≤∀∈恒成立若2a >,()()232112122'20x x x x x x x ϕϕ=---∴=++> ()x ϕ在(]0,1上递增,()()12x ϕϕ≤=-()()000,1,x x aϕ∃∈=-使得()()0,1,x x x a ϕ∈>-,即()'0h x >,()(]0,1h x x 在上递增,()()10h x h ≤=这与(]0,1x ∀∈,()212ln 10x x x a x x -+-+-≥矛盾综上所述,2a ≤解法二:()()()''xf x f xg x e-=,若函数()g x 在区间(0,1]上是减函数,则()()()(0,1],'0,:'x g x f x f x ∀∈≤≤即,所以()212ln 10x x x a x x-+-+-≥ 显然1x =,不等式成立 当()0,1x ∈时,212ln 1x x x x a x-+-≤-恒成立 设()()()22221112ln 21ln ,'11x x x x x x x x x h x h x x x -+--+--+-==-- 设()()()()()223121121ln ,'210x x x x x x x x x x x ϕϕ-+=-+--+-=-+> ()x ϕ在()0,1上递增,()()10x ϕϕ<= 所以()'0h x <()h x 在()0,1上递减,()()221112ln 111limlim 2221x x x x xx h x h x x x x →→-+-⎛⎫>==-+++= ⎪-⎝⎭所以 2a ≤23.(山东省威海市2013届高三上学期期末考试理科数学)已知函数32()f x ax bx =+在点(3,(3))f 处的切线方程为122270x y +-=,且对任意的[)0,x ∈+∞,()ln(1)f x k x '≤+恒成立. (Ⅰ)求函数()f x 的解析式; (Ⅱ)求实数k 的最小值; (Ⅲ)求证:1111ln(1)223n n++++<++ (*N n ∈). 【答案】解:(Ⅰ)将3x =代入直线方程得92y =-,∴92792a b +=-① 2()32,(3)6f x ax bx f ''=+=-,∴2766a b +=-②①②联立,解得11,32a b =-= ∴3211()32f x x x =-+ (Ⅱ)2()=f x x x '-+,∴2ln(1)x x k x -+≤+在[)0,x ∈+∞上恒成立; 即2ln(1)0x x k x -++≥在[)0,x ∈+∞恒成立;设2()ln(1)g x x x k x =-++,(0)0g =, ∴只需证对于任意的[)0,x ∈+∞有()(0)g x g ≥[)221()21,0,11k x x k g x x x x x ++-'=-+=∈+∞++设2()21h x x x k =++-,【D 】1.)当=18(1)0k ∆--≤,即98k ≥时,()0h x ≥,∴()0g x '≥ ()g x 在[)0,+∞单调递增,∴()(0)g x g ≥【D 】2.)当=18(1)0k ∆-->,即98k <时,设12,x x 是方程2210x x k ++-=的两根且12x x < 由1212x x +=-,可知10x <,分析题意可知当20x ≤时对任意[)0,x ∈+∞有()(0)g x g ≥;∴10,1k k -≥≥,∴918k ≤<综上分析,实数k 的最小值为1(Ⅲ)令1k =,有2ln(1),x x x -+≤+即2ln(1)x x x ≤++在[)0,x ∈+∞恒成立;令1x n=,得221111ln(1)ln(1)ln n n n n n n ≤++=++-∴22222211111111(ln 2ln1)(ln 3ln 2)(ln(1)ln )2323111=1ln(1)231111ln(1)1223(1)12ln(1)2ln(1)n n n nn nn n n n n n++++≤+++++-+-+++-++++++<++++++⨯⨯-=-++<++ ∴原不等式得证24.(山东省济南市2013届高三上学期期末考试理科数学)设函数()sin x f x e x =(1)求函数()f x 单调递增区间;(2)当[0,]x π∈时,求函数()f x 的最大值和最小值.【答案】解:(1)'()(sin cos )x f x e x x =+sin()4x x π=+'()0,sin()0.4f x x π≥∴+≥322,22,444k x k k x k ππππππππ∴≤+≤+-≤≤+即 3()2,2,44f x k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调增区间为(2)[]0,,x π∈ 3310,,44x x πππ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦由()知,是单调增区间,是单调减区间343(0)0,()0,(),4f f f e πππ===所以43max22)43(ππe f f ==,0)()0(min ===πf f f25.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)设函数1()(2)ln 2f x a x ax x=-++. (Ⅰ)当0a =时,求()f x 的极值; (Ⅱ)当0a ≠时,求()f x 的单调区间;(Ⅲ)当2a =时,对任意的正整数n ,在区间11[,6]2n n++上总有4m +个数使得1231234()()()()()()()()m m m m m f a f a f a f a f a f a f a f a +++++++<+++ 成立,试问:正整数m 是否存在最大值?若存在,求出这个最大值;若不存在,说明理由【答案】解:(I)函数()f x 的定义域为(0,)+∞当0a =时,1()2ln f x x x =+,∴222121()x f x x x x -'=-= 由()0f x '=得12x =. ()f x ,()f x '随x 变化如下表:由上表可知,()()22ln 22f x f ==-极小值,没有极大值(II)由题意,222(2)1()ax a x f x x +--'=.令()0f x '=得11x a =-,212x = 若0a >,由()0f x '≤得1(0,]2x ∈;由()0f x '≥得1[,)2x ∈+∞若0a <,① 当2a <-时,112a -<,1(0,]x a ∈-或1[,)2x ∈+∞,()0f x '≤;11[,]2x a ∈-,()0f x '≥.②当2a =-时,()0f x '≤. ③当20a -<<时,112a ->,1(0,]2x ∈或1[,)x a ∈-+∞,()0f x '≤;11[,]2x a∈--,()0f x '≥.综上,当0a >时,函数的单调递减区间为1(0,]2,单调递增区间为1[,)2+∞; 当2a <-时,函数的单调递减区间为1(0,]a -,1[,)2+∞,单调递增区间为11[,]2a -; 当2a =-时,函数的单调减区间是(0,)+∞, 当20a -<<时,函数的单调递减区间为1(0,]2,1[,)a -+∞,单调递增区间为11[,]2a--. (Ⅲ) 当2a =时,1()4f x x x=+,2241()x f x x -'=. ∵11[,6]2x n n∈++,∴()0f x '≥.∴min 1()()42f x f ==,max 1()(6)f x f n n=++ 由题意,11()4(6)2mf f n n<++恒成立.令168k n n =++≥,且()f k 在1[6,)n n +++∞上单调递增,min 1()328f k =,因此1328m <,而m 是正整数,故32m ≤,所以,32m =时,存在123212a a a ==== ,12348m m m m a a a a ++++====时,对所有n 满足题意.∴32max m =26.(山东省烟台市2013届高三3月诊断性测试数学理试题)已知函数f(x)=axlnx 图像上点(e,f(e))处的切线与直线y=2x 平行(其中e= 2.71828),g(x)=x 2-x 2-tx-2.(1)求函数f(x)的解析式;(2)求函数f(x)在[n,n+2](n>0)上的最小值;(3)对一切x ∈(]e ,0,3f(x)≥g(x)恒成立,求实数t 的取值范围.【答案】27.(【解析】山东省济宁市2013届高三第一次模拟考试理科数学 )(本小题满分l3分)已知函数3f (x )a ln x ax (a R )=--∈.(I)若a=-1,求函数f (x )的单调区间;(Ⅱ)若函数y f (x )=的图象在点(2,f (2))处的切线的倾斜角为45o,对于任意的t ∈ [1,2],函数322mg(x )x x [f '(x )](f '(x )=++是f (x )的导函数)在区间(t,3)上总不是单调函数,求m 的取值范围;(Ⅲ)求证:23412234*ln ln ln ln n ...(n ,n N )n n⨯⨯⨯⨯<≥∈ 【答案】解:(Ⅰ)当1a =-时,(1)'() (0)x f x x x-=> 解'()0f x >得),1(+∞∈x ;解'()0f x <得)1,0(∈x )(x f 的单调增区间为()+∞,1,减区间为()1,0(Ⅱ)∵)0()1()('>-=x xx a x f ∴12)2('=-=af 得2-=a ,32ln 2)(-+-=x x x fx x mx x g 2)22()(23-++=,∴2)4(3)('2-++=x m x x g ∵)(x g 在区间)3,(t 上总不是单调函数,且()02'g =-∴⎩⎨⎧><0)3('0)('g t g由题意知:对于任意的]2,1[∈t ,'()0g t <恒成立,所以,'(1)0'(2)0'(3)0g g g <⎧⎪<⎨⎪>⎩,∴9337-<<-m . (Ⅲ)证明如下: 由(Ⅰ)可知当),1(+∞∈x 时)1()(f x f >,即01ln >-+-x x , ∴0ln 1x x <<-对一切),1(+∞∈x 成立∵2,≥∈N *n n ,则有1ln 0-<<n n ,∴nn n n 1ln 0-<<ln 2ln 3ln 4ln 12311(2,N )234234n n n n n n n*-∴⋅⋅⋅⋅<⋅⋅⋅⋅=≥∈28.(山东省青岛市2013届高三第一次模拟考试理科数学)已知向量(,ln )xm e x k =+ ,(1,())n f x = ,//m n (k 为常数, e 是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,()()x F x xe f x '=.(Ⅰ)求k 的值及()F x 的单调区间;(Ⅱ)已知函数2()2g x x ax =-+(a 为正实数),若对于任意2[0,1]x ∈,总存在1(0,)x ∈+∞, 使得21()()g x F x <,求实数a 的取值范围.【答案】解:(I)由已知可得:()f x =1xnx k e+1ln ()x x k x f x e --'∴=,由已知,1(1)0kf e-'==,∴1k = ∴()()x F x xe f x '=1(ln 1)1ln x x x x x x=--=--所以()ln 2F x x '=--由21()ln 200F x x x e '=--≥⇒<≤,由21()ln 20F x x x e'=--≤⇒≥()F x ∴的增区间为21(0,]e ,减区间为21[,)e+∞(II) 对于任意2[0,1]x ∈,总存在1(0,)x ∈+∞, 使得21()()g x F x <,∴max max ()()g x F x < 由(I)知,当21x e =时,()F x 取得最大值2211()1F e e=+ 对于2()2g x x ax =-+,其对称轴为x a =当01a <≤时,2max ()()g x g a a ==, ∴2211a e <+,从而01a <≤ 当1a >时,max ()(1)21g x g a ==-, ∴21211a e -<+,从而21112a e<<+综上可知: 21012a e<<+29.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)已知函数()ln(1)(1)1()f x x k x k =---+∈R ,(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若()0f x ≤恒成立,试确定实数k 的取值范围; (Ⅲ)证明:ln 2ln 334++ln 1n n ++<(1)4n n -(,n N n ∈>1).【答案】30.(2013年临沂市高三教学质量检测考试理科数学)已知函数22af(x)a ln x x(a)x=-++≠(I)若曲线y f (x )=在点(1,1f ()))处的切线与直线20x y -=垂直,求实数a 的值; (Ⅱ)讨论函数f (x )的单调性;(Ⅲ)当0a (,)∈-∞时,记函数f (x )的最小值为g(a),求证:4()g a e -≥-【答案】31.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)已知32()1,()2f x x nx g x x ax x ==+-+(1)求函数()f x 的单调区间;(2)求函数()f x 在[t,t+2](0t >)上的最小值;(3)对一切的(0,),2()'()2x f x g x ∈+∞≤+恒成立,求实数a 的取值范围.【答案】32.(山东省临沂市2013届高三5月高考模拟理科数学)已知函数21()e ln ,()ln 1,()2f x xg x x xh x x ==--=. (Ⅰ)求函数()g x 的极大值.(Ⅱ)求证:存在0(1,)x ∈+∞,使01()()2g x g =;(Ⅲ)对于函数()f x 与()h x 定义域内的任意实数x ,若存在常数k,b,使得()f x kx b +≤和()h x kx b +≥都成立,则称直线y kx b =+为函数()f x 与()h x 的分界线.试探究函数()f x 与()h x 是否存在“分界线”?若存在,请给予证明,并求出k ,b 的值;若不存在,请说明理由.【答案】解:(Ⅰ)11()1(0).x g x x x x-'=-=> 令()0,g x '>解得01;x << 令()0,g x '<解得1x >.∴函数()g x 在(0,1)内单调递增,在(1,)+∞上单调递减. 所以()g x 的极大值为(1) 2.g =-(Ⅱ)由(Ⅰ)知()g x 在(0,1)内单调递增,在(1,)+∞上单调递减,令1()()()2x g x g ϕ=- ∴1(1)(1)()0,2g g ϕ=->取e 1,x '=>则111(e)(e)()ln e (e 1)ln (1)222g g ϕ=-=-+-++3e ln 20.2=-++<故存在0(1,e),x ∈使0()0,x ϕ=即存在0(1,),x ∈+∞使01()().2g x g = (说明:x '的取法不唯一,只要满足1,x '>且()0x ϕ'<即可) (Ⅱ)设21()()()eln (0)2F x h x f x x x x =-=->则2e e ()x F x x x x -'=-==则当0x <,()0F x '<,函数()F x 单调递减;当x 时,()0F x '>,函数()F x 单调递增.∴x =()F x 的极小值点,也是最小值点,∴min ()0.F x F ==∴函数()f x 与()h x 的图象在x =1e 2).设()f x 与()h x 存在“分界线”且方程为1e (2y k x -=,令函数1()e 2u x kx =+-①由()h x ≥()u x ,得211e 22x kx +-≥在x ∈R 上恒成立,即22e 20x kx --+在x ∈R 上恒成立,∴2=44(e 20k ∆--+≤,即24(0k -≤,∴k =故1() e.2u x =-②下面说明:()()f x u x ≤,即1eln e(0)2x x ->恒成立.设1()eln e 2V x x =+则e ()V x x '==∵当0x <,()0V x '>,函数()V x 单调递增,当x 时,()0V x '<,函数()V x 单调递减,∴当x =,()V x 取得最大值0,max ()()0V x V x =≤.∴1eln e(0)2x x ->成立.综合①②知1()e,2h x -且1()e,2f x -故函数()f x 与()h x 存在“分界线”1e 2y =-,此时1e.2k b ==-33.(山东省烟台市2013届高三上学期期末考试数学(理)试题)某幼儿园准备建一个转盘,转盘的外围是一个周长为k 米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k 元/根,且当两相邻的座位之间的圆弧长为x 米时,相邻两座位之间的钢管和其中一个座位的总费用为2k ⎡+⎢⎢⎣元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y 元.(1)试写出y 关于x 的函数关系式,并写出定义域; (2)当k=50米时,试确定座位的个数,使得总造价最低? 【答案】34.(山东省泰安市2013届高三上学期期末考试数学理)已知函数()()ln f x x x ax a R =+∈(I)若函数()f x 在区间)2,e ⎡+∞⎣上为增函数,求a 的取值范围;(II)若对任意()()()1,,1x f x k x ax x ∈+∞>-+-恒成立,求正整数k 的值.【答案】35.(山东省潍坊市2013届高三第二次模拟考试理科数学)已知函数()ln ,()x f x ax x g x e =+=.(I)当0a ≤时,求()f x 的单调区间(Ⅱ)若不等式()g x<,求实数m 的取值菹围; (Ⅲ)定义:对于函数()y F x =和()y G x =在其公共定义域内的任意实数0x .,称00()()F x G x -的值为两函数在0x 处的差值.证明:当a=0时,函数()y f x =和()y g x =在其公共定义域内的所有差值都大干2.【答案】36.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)已知函数),1()1ln()1(2)1(2)(2+∞∈--+-+=x x a x a x x f .(1)23=x 是函数的一个极值点,求a 的值; (2)求函数)(x f 的单调区间; (3)当2=a 时,函数)0(,)(2>--=b b x x g ,若对任意⎥⎦⎤⎢⎣⎡++∈1,11,21e e m m ,e e m f m g 22|)()(|212+<-都成立,求b 的取值范围.【答案】解:(1)函数)1(1)1(2)1(2)(2--+-+=x n a x a x x f 1)1(2)1(22)(--+-+='x a a x x f , 23=x 是函数的一个极值点 0)23(='∴f解得:23=a(2)1)(21)1(2)1(22--=--+-+='x a x x x a a x f ),的定义域是(又∞+1)(x f),)的单调增区间为((时,函数当∞+≤∴11x f a 为增区间)为减区间,(,时,(当),11+∞〉a a a(3)当a=2时,由(2)知f(x)在(1,2)减,在(2,+∞)增.3)1(,11)11(,0)2(22-=++=+=e e f e e f f]3,0[]1,11[)(2-++=∴e e ex f y 的值域在为减函数在]1,11[)(2++--=e e b x x g])11(,1[]1,11[)(22b eb e e e x g y -+--+-++=∴)(的值域为在b>0成立,只要所以e e m g m f b e b e22)()(0)1(,0)11(22122+〈-〈-+-〈-+-∴成立即可e e b e e b e e b e e 22222)1(3))1(3222222+〈+-+=+++-=-+---解得:0<b<237.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知(),P x y 为函数1ln y x =+图象上一点,O 为坐标原点,记直线OP 的斜率()k f x =.(I)若函数()f x 在区间1,3m m ⎛⎫+ ⎪⎝⎭()0m >上存在极值,求实数m 的取值范围; (II)当 1x ≥时,不等式()1tf x x ≥+恒成立,求实数t 的取值范围; (III)求证()()()22*1!1n n n e n N -+>+∈⎡⎤⎣⎦ .【答案】解:(Ⅰ)由题意()1ln xk f x x+==,0x > 所以()21ln ln x x f x x x '+⎛⎫'==- ⎪⎝⎭当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以()f x 在()0,1上单调递增,在()1,+∞上单调递减. 故()f x 在1x =处取得极大值 因为函数()f x 在区间1,3m m ⎛⎫+⎪⎝⎭(其中0m >)上存在极值, 所以01113m m <<⎧⎪⎨+>⎪⎩得213m <<. 即实数m 的取值范围是213⎛⎫⎪⎝⎭,(Ⅱ)由()1tf x x ≥+得()()11ln x x t x ++≤令()()()11ln x x g x x++=则()2ln x xg x x-'=令()ln h x x x =- 则()111=xh x x x-'=-因为1,x ≥所以()0h x '≥,故()h x 在[)1+∞,上单调递增 所以()()110h x h ≥=>,从而()0g x '>()g x 在[)1+∞,上单调递增, ()()12g x g ≥=所以实数t 的取值范围是(],2-∞(Ⅲ)由(Ⅱ) 知()21f x x ≥+恒成立, 即 1ln 2122ln 11111x x x x x x x x+-≥⇔≥=->-+++令()1,x n n =+则()()2ln 111n n n n +>-+所以()2ln 12112⨯>-⨯, ()2ln 23123⨯>-⨯, ,()()2ln 111n n n n +>-+.所以()()222111ln 1231212231n n n n n ⎡⎤⎡⎤⨯⨯⨯⋅⋅⋅⨯⨯+>-++⋅⋅⋅+⎢⎥⎣⎦⨯⨯+⎣⎦12121n n n ⎛⎫=-->- ⎪+⎝⎭所以()22221231n n n e-⨯⨯⨯⋅⋅⋅⨯⨯+>所以()()()221!1n n n en -*+>+⋅∈⎡⎤⎣⎦N38.(山东省德州市2013届高三3月模拟检测理科数学)已知函数21()122f x nx ax x =-- (1)若函数()f x 在x=2处取得极值,求实数a 的值; (2)若函数()f x 在定义域内单调递增,求实数a 的取值范围; (3)当12a =-时,关于x 的方程1()2f x x b =-+在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.【答案】39.(山东省枣庄市2013届高三3月模拟考试数学(理)试题)某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳a 元(a 为常数,2≤a≤5)的管理费,根据多年的统计经验,预计当每件产品的售价为x 元时,产品一年的销售量为x ke(e 为自然对数的底数)万件,已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价x 最低不低于35元,最高不超过41元.(1)求分公司经营该产品一年的利润L(x)万元与每件产品的售价x 元的函数关系式; (2)当每件产品的售价为多少元时,该产品一年的利润L(x)最大,并求出L(x)的最大值.【答案】40.(山东省济南市2013届高三3月高考模拟理科数学)设函数x xe x f =)(.(1) 求)(x f 的单调区间与极值;(2)是否存在实数a ,使得对任意的),(21+∞∈a x x 、,当21x x <时恒有ax a f x f a x a f x f -->--1122)()()()(成立.若存在,求a 的范围,若不存在,请说明理由.【答案】解: (1)x e x x f )1()(+='.令0)(='x f ,得1-=x ;)(x f ∴的单调递减区间是)1,(--∞,单调递增区间是),1(+∞-)(x f 极小值=e f 1)1(-=-(2) 设a x a f x f x g --=)()()(,由题意,对任意的),(21+∞∈a x x 、,当21x x <时恒有)()(12x g x g >,即)(x g y =在),(+∞a 上是单调增函数222222()()[()()](1)()()()()()()()x x axxaxxxaf x x a f x f a x e x a xe aeg x x a x a x x ax a e xe ae x e axe ae aex a x a '---+--+'==--+---+--+==--),(+∞∈∀a x ,0)(≥'x g令0)(2≥+--=axxxae ae axe e x x h2()2(1)(2)(2)x x x x x x h x xe x e a x e ae x x e a x e '=+-+-=+-+ (2)()x x x a e =+-若2-≥a ,当a x >时,0)(>'x h ,)(x h 为),[+∞a 上的单调递增函数,0)()(=>∴a h x h ,不等式成立若2-<a ,当)2,(-∈a x 时,0)(<'x h ,)(x h 为]2,[-a 上的单调递减函数,)2,(0-∈∃∴a x ,0)()(0=<a h x h ,与),(+∞∈∀a x ,0)(≥x h 矛盾所以,a 的取值范围为)[-2,+∞41.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)已知函数()()()()201,10.x f x ax bx c e f f =++==且(I)若()f x 在区间[]0,1上单调递减,求实数a 的取值范围;(II)当a=0时,是否存在实数m 使不等式()224141xf x xe mx x x +≥+≥-++对任意x R ∈恒成立?若存在,求出m 的值,若不存在,请说明理由.【答案】42.(山东省潍坊市2013届高三第一次模拟考试理科数学)设函数321()(4),()ln(1)3f x mx m xg x a x =++=-,其中0a ≠. ( I )若函数()y g x =图象恒过定点P,且点P 关于直线32x =的对称点在()y f x =的图象上,求m 的值;(Ⅱ)当8a =时,设()'()(1)F x f x g x =++,讨论()F x 的单调性; (Ⅲ)在(I)的条件下,设(),2()(),2f x x G x g x x ≤⎧=⎨>⎩,曲线()y G x =上是否存在两点P 、Q, 使△OPQ(O 为原点)是以O 为直角顶点的直角三角形,且斜边的中点在y 轴上?如果存在,求a 的取值范围;如果不存在,说明理由.【答案】(Ⅰ)令ln(1)0x -=,则2x =,(2,0)P \关于32x =的对称点为(1,0), 由题知1(1)0,(4)0,33f m m m =\++=\=- (Ⅱ)2()2(4)8ln F x mx m x x =+++,定义域为(0,)+ , 8()2(82)F x mx m x¢=+++ 22(82)8mx m x x+++= (28)(1)mx x x++= 0,x >Q 则10x +>,\当0m ³时,280,()0,mx F x ¢+>>此时()F x ¥在(0,+)上单调递增, 当0m <时,由4()00,F x x m ¢><<-得 由4()0,F x x m ¢<>-得 此时4()0,F x m骣÷ç-÷ç÷ç桫在上为增函数, 在4,m骣÷ç-+ ÷ç÷ç桫为减函数, 综上当0m ³时,()F x ¥在(0,+)上为增函数, 0m <时,在40,m 骣÷ç-÷ç÷ç桫上为增函数,在4,m骣÷ç-+ ÷ç÷ç桫为减函数 (Ⅲ)由条件(Ⅰ)知32,2,()ln(1),2,x x x G x a x x ìï-+ ï=íï->ïî. 假设曲线()y G x =上存在两点P 、Q 满足题意,则P 、Q 两点只能在y 轴两侧,设(,())(0),P t G t t >则32(,),Q t t t -+ POQ D Q 是以O 为直角顶点的直角三角形,2320,()()0OP OQ t G t t t \?\-++=uur uuu r .①(1)当02t < 时,32(),G t t t \=-+此时方程①为23232()()0,t t t t t -+-++=化简得4210t t -+=.此方程无解,满足条件的P 、Q 两点不存在(2)当2t >时,()ln(1)G t a t =-,方程①为232ln(1)()0,t a t t t -+-+= 即1(1)ln(1),t t a=+- 设()(1)ln(1)(1),h t t t t =+->则1()ln(1),1t h t t t +¢=-+- 显然当2t >时()0()h t h t > 即在(2,+)为增函数, ()h t \的值域为((2),),h +ゥ即(0,+),\当0a >时方程①总有解.综上若存在P 、Q 两点满足题意,则a 的取值范围是¥(0,+)43.(山东省德州市2013届高三上学期期末校际联考数学(理))已知函数2(),()1(1)f x ax x g x n x =+=+.(1)若a=l,求()()()F x g x f x =-在(1,)-+∞上的最大值;(2)利用(1)的结论证明:对任意的正整数n,不等式234121(1)49n n n n++++>+ 都成立: (3)是否存在实数a(a>0),使得方程2(1)'()(41)g x f x a x -=--在区间1(,)e e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.【答案】。
2013年全国高考函数与导数真题汇编一、选择题1. 【2013·安徽理·4】" a≤0"是"函数f(x)=∣(ax−1)x∣在区间(0,+∞)内单调递增"的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2. 【2013·安徽理·8】函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,⋯,x n,使得f(x1)x1=f(x2)x2=⋯=f(x n)x n,则n的取值范围是( )A. {3,4}B. {2,3,4}C. {3,4,5}D. {2,3}3. 【2013·安徽理·10】若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是( )A. 3B. 4C. 5D. 64. 【2013·北京理·10】函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y轴对称,则f(x)=( )A. e x+1B. e x−1C. e−x+1D. e−x−15. 【2013·福建理·8】设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )A. ∀x∈R,f(x)≤f(x0)B. −x0是f(−x)的极小值点C. −x0是−f(x)的极小值点D. −x0是−f(−x)的极小值点6. 【2013·广东理·8】定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是( )A. 4B. 3C. 2D. 17. 【2013·湖北理·8】已知a为常数,函数f(x)=x(lnx−ax)有两个极值点x1,x2(x1<x2),则( )A. f(x1)>0,f(x2)>−12B. f(x1)<0,f(x2)<−12C. f(x1)>0,f(x2)<−12D. f(x1)<0,f(x2)>−128. 【2013·湖南理·8】函数f(x)=2lnx的图象与函数g(x)=x2−4x+5的图象的交点个数为( )A. 3B. 2C. 1D. 09. 【2013·江西理·2】函数y=√xln(1−x)的定义域为( )A. (0,1)B. [0,1)C. (0,1]D. [0,1]10.【2013·江西理·10】如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧FG⏜的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是( )A. B.C. D.11. 【2013·辽宁理·11】已知函数f(x)=x2−2(a+2)x+a2,g(x)=−x2+2(a−2)x−a2+8,设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A−B=( )A. 16B. −16C. a2−2a−16D. a2+2a−1612. 【2013·辽宁理·12】设函数f(x)满足x2fʹ(x)+2xf(x)=e xx ,f(2)=e28,则x>0时,f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值又有极小值D. 既无极大值也无极小值13. 【2013·全国大纲理·4】已知函数f(x)的定义域为(−1,0),则函数f(2x+1)的定义域为( )A. (−1,1)B. (−1,−12)C. (−1,0)D. (12,1)14. 【2013·全国大纲理·5】函数f(x)=log2(1+1x)(x>0)的反函数f−1(x)=( )A. 12x−1(x>0) B. 12x−1(x≠0)C. 2x−1(x∈R)D. 2x−1(x>0)15. 【2013·全国大纲理·9】若函数f(x)=x2+ax+1x 在(12,+∞)是增函数,则a的取值范围是( )A. [−1,0]B. [−1,+∞)C. [0,3]D. [3,+∞)16. 【2013·新课标Ⅱ理·8】设a=log36,b=log510,c=log714,则( )A. c>b>aB. b>c>aC. a>c>bD. a>b>c17. 【2013·新课标Ⅱ理·10】已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A. ∃x0∈R,f(x0)=0B. 函数y=f(x)的图象是中心对称图形C. 若x0是f(x)的极小值点,则f(x)在区间(−∞,x0)单调递减D. 若x0是f(x)的极值点,则fʹ(x0)=018. 【2013·陕西理·3】已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(−1)=( )A. 2B. 1C. 0D. −219. 【2013·四川理·7】函数y=x33x−1的图象大致是( )A. B. C. D.20. 【2013·四川理·10】设函数 f (x )=√e x +x −a (a ∈R ,e 为自然对数的底数).若曲线 y =sinx 上存在 (x 0,y 0) 使得 f(f (y 0))=y 0,则 a 的取值范围是 ( ) A. [1,e ] B. [e −1−1,1] C. [1,1+e ] D . [e −1−1,e +1]21. 【2013·天津理·7】函数 f (x )=2x ∣log 0.5x ∣−1 的零点个数为 ( ) A. 1 B. 2 C. 3 D. 422. 【2013·天津理·8】已知函数 f (x )=x (1+a∣x∣).设关于 x 的不等式 f (x +a )<f (x ) 的解集为 A ,若 [−12,12]⊆A ,则实数 a 的取值范围是 ( ) A. (1−√52,0) B. (1−√32,0)C. (1−√52,0)∪(0,1+√32) D. (−∞,1−√52)23. 【2013·浙江理·3】已知 x ,y 为正实数,则 ( )A. 2lgx+lgy =2lgx +2lgyB. 2lg (x+y )=2lgx ⋅2lgyC. 2lgx⋅lgy =2lgx +2lgyD. 2lg (xy )=2lgx ⋅2lgy 24. 【2013·浙江理·8】已知 e 为自然对数的底数,设函数 f (x )=(e x −1)(x −1)k (k =1,2) ,则 ( ) A. 当 k =1 时, f (x ) 在 x =1 处取得极小值 B. 当 k =1 时, f (x ) 在 x =1 处取得极大值 C. 当 k =2 时, f (x ) 在 x =1 处取得极小值 D. 当 k =2 时, f (x ) 在 x =1 处取得极大值25. 【2013·重庆理·6】若 a <b <c ,则函数 f (x )=(x −a )(x −b )+(x −b )(x −c )+(x −c )(x −a ) 的两个零点分别位于区间 ( ) A. (a,b ) 和 (b,c ) 内 B. (−∞,a ) 和 (a,b ) 内 C. (b,c ) 和 (c,+∞) 内 D. (−∞,a ) 和 (c,+∞) 内二、填空题1.【2013·湖北理·12】若曲线 y =kx +lnx 在点 (1,k ) 处的切线平行于 x 轴, 则 k = .2. 【2013·湖南理·12】若 ∫x 2T0dx =9,则常数 T 的值为________________ .3. 【2013·湖南理·16】设函数 f (x )=a x +b x −c x ,其中 c >a >0,c >b >0. (1)记集合 M ={(a,b,c )∣ a,b,c 不能构成一个三角形的三条边长,且 a =b},则 (a,b,c )∈M 所对应的 f (x ) 的零点的取值集合为________________ ;(2)若 a ,b ,c 是 △ABC 的三条边长,则下列结论正确的是________________ .(写出所有正确结论的序号) ① ∀x ∈(−∞,1),f (x )>0; ② ∃x ∈R ,使 a x ,b x ,c x 不能构成一个三角形的三条边长; ③若 △ABC 为钝角三角形,则 ∃x ∈(1,2),使 f (x )=0.4. 【2013·江苏理·11】已知 f (x ) 是定义在 R 上的奇函数.当 x >0 时, f (x )=x 2−4x ,则不等式 f (x )>x 的解集用区间表示为________________ .5. 【2013·江苏理·13】在平面直角坐标系 xOy 中,设定点 A (a,a ) , P 是函数 y =1x(x >0) 图象上一动点,若点 P,A 之间的最短距离为 2√2 ,则满足条件的实数 a 的所有值为________________ .6. 【2013·江西理·13】设函数 f (x ) 在 (0,+∞) 内可导,且 f (e x )=x +e x ,则 fʹ(1)=________________ .7. 【2013·新课标Ⅰ理·16】若函数 f (x )=(1−x 2)(x 2+ax +b ) 的图象关于直线 x =−2 对称,则 f (x ) 的最大值是________________ .8. 【2013·陕西理·16】定义"正对数":ln +x ={0,0<x <1lnx,x ≥1,现有四个命题:①若 a >0,b >0,则 ln +(a b )=bln +a ;②若 a >0,b >0,则 ln +(ab )=ln +a +ln +b ; ③若 a >0,b >0,则 ln +(ab)≥ln +a −ln +b ;④若 a >0,b >0,则 ln +(a +b )≤ln +a +ln +b +ln2.其中真命题有________________ (写出所有真命题的编号).9. 【2013·上海理·12】设 a 为实常数,y =f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=9x +a 2x+7,若 f (x )≥a +1 对一切 x ≥0 成立,则 a 的取值范围为________________ .10. 【2013·上海理·14】对区间 I 上有定义的函数 g (x ),记 g (I )={y∣ y =g (x ),x ∈I },已知定义域为 [0,3] 的函数 y =f (x ) 有反函数 y =f −1(x ),且 f −1([0,1))=[1,2),f −1((2,4])=[0,1),若方程 f (x )−x =0 有解 x 0,则 x 0=________________ .11. 【2013·四川理·14】已知 f (x ) 是定义域为 R 的偶函数,当 x ≥0 时, f (x )=x 2−4x ,那么,不等式 f (x +2)<5 的解集是________________ .2013参考答案一、选择题1. C2. B3. A4. D5. D6. C7. D8. B9. B 10. D 11. B 12. D 13. B 14. A 15 D 16. D 17. C 18. D 19. C 20. A 21. B 22. A 23. D 24. C 25. A二、填空题1. -12. 33. {x∣ 0<x≤1};①②③4. (−5,0)∪(5,+∞)5. −1;√106. 27. 168. ①③④9. a≤−8710. 211. {x∣ −7<x<3}2013年高考真题1. 【2013·安徽理·20】设函数f n(x)=−1+x+x222+x332+⋯+x nn2(x∈R,n∈N∗).证明:Ⅰ 对每个n∈N∗,存在唯一的x n∈[23,1],满足f n(x n)=0;Ⅰ 对任意p∈N∗,由(1)中x n构成的数列{x n}满足0<x n−x n+p<1n.2. 【2013·北京理·20】设L为曲线C:y=lnxx在点(1,0)处的切线.Ⅰ 求L的方程;Ⅰ 证明:除切点(1,0)之外,曲线C在直线L的下方.3. 【2013·广东理·17】已知函数f(x)=x−alnx(a∈R).Ⅰ 当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;Ⅰ 求函数f(x)的极值.4. 【2013·福建理·17】设函数 f (x )=(x −1)e x −kx 2(k ∈R ). Ⅰ 当 k =1 时,求函数 f (x ) 的单调区间;Ⅰ 当 k ∈(12,1] 时,求函数 f (x ) 在 [0,k ] 上的最大值 M .5. 【2013·湖北理·22】设 n 为正整数,r 为正有理数. Ⅰ 求函数 f (x )=(1+x )r+1−(r +1)x −1(x >−1) 的最小值; Ⅰ 证明:n r+1−(n−1)r+1r+1<n r <(n+1)r+1−n r+1r+1;Ⅰ 设 x ∈R ,记 [x ] 为不小于 x 的最小整数,例如 [2]=2,[π]=4,[−32]=−1.令 S =√813+√823+√833+⋯+√1253,求 [S ] 的值.(参考数据:8043≈344.7,8143≈350.5,12443≈618.3,12643≈631.7)6. 【2013·湖南理·22】已知 a >0,函数 f (x )=∣∣x−a x+2a ∣∣.Ⅰ 记 f (x ) 在区间 [0,4] 上的最大值为 g (a ),求 g (a ) 的表达式;Ⅰ 是否存在 a ,使函数 y =f (x ) 在区间 (0,4) 内的图象上存在两点,在该两点处的切线相互垂直?若存在,求 a 的取值范围;若不存在,请说明理由.7. 【2013·江苏理·20】设函数 f (x )=lnx −ax,g (x )=e x −ax ,其中 a 为实数.Ⅰ 若 f (x ) 在 (1,+∞) 上是单调减函数,且 g (x ) 在 (1,+∞) 上有最小值,求 a 的取值范围;Ⅰ 若 g (x ) 在 (−1,+∞) 上是单调增函数,试求 f (x ) 的零点个数,并证明你的结论.8. 已知函数f(x)=a(1−2∣∣x−12∣∣),a为常数且a>0.Ⅰ 证明:函数f(x)的图象关于直线x=12对称;Ⅰ 若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;Ⅰ 对于(2)中的x1,x2和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性9. 【2013·辽宁理·21】已知函数f(x)=(1+x)e−2x,g(x)=ax+x32+1+2xcosx,当x∈[0,1]时,Ⅰ 求证:1−x≤f(x)≤11+x;Ⅰ 若f(x)≥g(x)恒成立,求实数a的取值范围.10. 【2013·全国大纲理·22】已知函数f(x)=ln(1+x)−x(1+λx)1+x.Ⅰ 若x≥0时f(x)≤0,求λ的最小值;Ⅰ 设数列{a n}的通项a n=1+12+13+⋯+1n,证明:a2n−a n+14n>ln2.11. 【2013·新课标Ⅰ理·21】设函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+ 2.Ⅰ 求a,b,c,d的值;Ⅰ 若 x ≥−2 时, f (x )≤kg (x ) ,求 k 的取值范围.12. 【2013·新课标Ⅱ理·21】已知函数 f (x )=e x −ln (x +m ). Ⅰ 设 x =0 是 f (x ) 的极值点,求 m ,并讨论 f (x ) 的单调性; Ⅰ 当 m ≤2 时,证明 f (x )>0.13. 【2013·陕西理·21】设函数 f (x )=xe 2x +c (e =2.71828⋯ 是自然对数的底数,c ∈R ). Ⅰ 求f (x ) 的单调区间、最大值;Ⅰ 讨论关于 x 的方程 ∣lnx∣=f (x ) 根的个数14. 【2013·四川理·21】已知函数 f (x )={x 2+2x +a,x <0lnx,x >0,其中 a 是实数.设A(x 1,f (x 1)),B(x 2,f (x 2)) 为该函数图象上的两点,且 x 1<x 2.Ⅰ 指出函数 f (x ) 的单调区间;Ⅰ 若函数 f (x ) 的图象在点 A ,B 处的切线互相垂直,且 x 2<0,求 x 2−x 1 的最小值; Ⅰ 若函数 f (x ) 的图象在点 A ,B 处的切线重合,求 a 的取值范围.15. 【2013·天津理·20】 已知函数 f (x )=x 2lnx . Ⅰ 求函数 f (x ) 的单调区间;Ⅰ 证明:对任意的t>0,存在唯一的s,使t=f(s).Ⅰ 设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有25<lng(t)lnt<12.16. 【2013·浙江理·20】已知a∈R,函数f(x)=x3−3x2+3ax−3a+3Ⅰ 求曲线y=f(x)在点(1,f(1))处的切线方程;Ⅰ 当x∈[0,2]时,求∣f(x)∣的最大值.17. 【2013·重庆理·17】设f(x)=a(x−5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).Ⅰ 确定a的值;Ⅰ 求函数f(x)的单调区间与极值.2013参考答案1. (1) 对每个 n ∈N ∗,当 x >0 时,f n ′(x )=1+x 2+⋯+x n−1n>0,故 f n (x ) 在 (0,+∞) 内单调递增. 由于 f 1(1)=0,当 n ≥2,f n (1)=122+132+⋯+1n 2>0, 故 f n (1)≥0.又f n (23)=−1+23+∑(23)kk2nk=2≤−13+14∑(23)knk=2=−13+14⋅(23)2[1−(23)n−1]1−23=−13⋅(23)n−1<0,所以存在唯一的 x n ∈[23,1],满足 f n (x n )=0.(2) 当 x >0 时,f n+1(x )=f n (x )+x n+1(n +1)2>f n (x ),故f n+1(x n )>f n (x n )=f n+1(x n+1)=0.由 f n+1(x ) 在 (0,+∞) 内单调递增知,x n+1<x n ,故 {x n } 为单调递减数列.从而对任意的 n,p ∈N ∗,x n+p <x n ,对任意的 p ∈N ∗,由于f n (x n )=−1+x n +x n 222+⋯+x n nn2=0, ⋯⋯①f n+p (x n+p )=−1+x n+p +x n+p 222+⋯+x n+p n n 2+x n+pn+1(n +1)2+⋯+x n+p n+p (n +p )2=0, ⋯⋯②①式减去②式并移项,利用 0<x n+p <x n ≤1,得x n −x n+p=∑x n+pk−x nk k 2nk=2+∑x n+pk k 2n+pk=n+1≤∑x n+pk k 2n+pk=n+1≤∑12n+pk=n+1<∑1k (k −1)n+pk=n+1=1n −1n +p <1n .因此,对任意 p ∈N ∗,都有0<x n −x n+p <1n.2(1) 设 f (x )=lnx x,则fʹ(x )=1−lnxx 2. 所以 fʹ(1)=1 ,所以 L 的方程为 y =x −1 .(2) 令 g (x )=x −1−f (x ) ,则除切点之外,曲线 C 在直线 L 的下方等价于g (x )>0(∀x >0,x ≠1).g (x ) 满足 g (1)=0 ,且gʹ(x )=1−fʹ(x )=x 2−1+lnx x 2.当 0<x <1 时,x 2−1<0,lnx <0,所以 gʹ(x )<0 ,故 g (x ) 单调递减; 当 x >1 时,x 2−1>0,lnx >0,所以 gʹ(x )>0 ,故 g (x ) 单调递增.所以,g (x )>g (1)=0(∀x >0,x ≠1).所以除切点之外,曲线 C 在直线 L 的下方.3(1) 当 a =2 时,f (x )=x −2lnx,fʹ(x )=1−2x(x >0),因而f (1)=1,fʹ(1)=−1,所以曲线 y =f (x ) 在点 A(1,f (1)) 处的切线方程为y −1=−(x −1),即x +y −2=0.(2) 由fʹ(x )=1−a x =x −ax,x >0知:①当 a ≤0 时,fʹ(x )>0,函数 f (x ) 为 (0,+∞) 上是增函数,函数 f (x ) 无极值. ②当 a >0 时,由 fʹ(x )=0,解得 x =a . 又当 x ∈(0,a ) 时,fʹ(x )<0; 当 x ∈(a,+∞) 时,fʹ(x )>0,从而函数 f (x ) 在 x =a 处取得极小值,且极小值为f (a )=a −alna,无极大值.综上,当 a ≤0 时,函数 f (x ) 无极值;当 a >0 时,函数 f (x ) 在 x =a 处取得极小值 a −alna ,无极大值. 4(1)fʹ(x )=(x −1)e x +e x −2kx=xe x −2kx=x (e x−2k ).当 k =1 时,令 fʹ(x )=x (e x −2)=0,得x 1=0,x 2=ln2;当 x <0 时,fʹ(x )>0;当 0<x <ln2 时,fʹ(x )<0;当 x >ln2 时,fʹ(x )>0; Ⅰ函数 f (x ) 的单调递增区间为 (−∞,0),(ln2,+∞);单调递减区间为 (0,ln2). (2) Ⅰ 12<k ≤1,Ⅰ 1<2k ≤2,所以0<ln (2k )<ln2.记 h (k )=k −ln (2k ),则 hʹ(k )=1−22k=k−1k在 k ∈(12,1) 有 hʹ(k )<0,Ⅰ当 k ∈(12,1) 时,h (k )=k −ln (2k )>h (1)=1−ln2>0,即k >ln (2k )>0.Ⅰ当 k ∈(12,1) 时,函数 f (x ) 在 [0,ln (2k )) 单调递减,在 (ln (2k ),k ] 单调递增. f (0)=−1,f (k )=(k −1)e k −k 3,记 g (k )=f (k )=(k −1)e k −k 3,下证明 g (k )≥−1.gʹ(k )=k(e k −3k),设 p (k )=e k −3k ,令pʹ(k )=e k −3=0,得k =ln3>1, Ⅰ p (k )=e k −3k 在 (12,1] 为单调递减函数,而p (12)=√e −32>√2.25−1.5=0,p (1)=e −3<0,Ⅰ gʹ(k )=k(e k −3k)=0 的一个非零的根为 k 0∈(12,1],且 e k 0=3k 0. 显然 g (k )=(k −1)e k −k 3 在 (12,k 0) 单调递增,在 (k 0,1] 单调递减, Ⅰ g (k )=f (k )=(k −1)e k −k 3 在 (12,1) 上的最大值为g (k 0)=(k 0−1)3k 0−k 03=−k 03+3k 02−3k 0=(1−k 0)3−1>−1,g (12)=−12√e −18>−1⇔74>√e 而 74>√3>√e 成立,Ⅰ g (12)>−1,g (1)=−1.综上所述,当 k ∈(12,1] 时,函数 f (x ) 在 [0,k ] 的最大值M =(k −1)e k −k 3.5(1)因为fʹ(x)=(r+1)(1+x)r−(r+1)=(r+1)[(1+x)r−1],令fʹ(x)=0,解得x=0.当−1<x<0时,fʹ(x)<0,所以f(x)在(−1,0)内是减函数;当x>0时,fʹ(x)>0,所以f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处取得最小值f(0)=0.(2)由(1)知,当x∈(−1,+∞)时,f(x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,当且仅当x=0时等号成立,故当x>−1且x≠0时,有(1+x)r+1>1+(r+1)x. ⋯⋯①在①中,令x=1n(这时x>−1且x≠0),得(1+1n)r+1>1+r+1n.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即n r<(n+1)r+1−n r+1r+1. ⋯⋯②当n>1时,在①中令x=−1n(这时x>−1且x≠0),类似可得n r>n r+1−(n−1)r+1r+1. ⋯⋯③且当n=1时,③也成立.综合②③,得n r+1−(n−1)r+1r+1<n r<(n+1)r+1−n r+1r+1. ⋯⋯④(3)在④中,令r=13,n分别取值81,82,83,⋯,125,得34(8143−8043)<√813<34(8243−8143),34(8243−8143)<√823<34(8343−8243),34(8343−8243)<√833<34(8443−8343),⋯⋯,34(12543−12443)<√1253<34(12643−12543). 将以上各式相加并整理,得34(12543−8043)<S <34(12643−8143). 代入数据计算,可得34(12543−8043)≈210.2,34(12643−8143)≈210.9. 由 [S ] 的定义,得 [S ]=211.6(1) 当 0≤x ≤a 时,f (x )=a−x x+2a ;当 x >a 时,f (x )=x−a x+2a.因此,当 x ∈(0,a ) 时,fʹ(x )=−3a(x+2a )2<0,f (x ) 在 (0,a ) 上单调递减; 当 x ∈(a,+∞) 时,fʹ(x )=3a(x+2a )2>0,f (x ) 在 (a,+∞) 上单调递增. ①当 a ≥4 时,则 f (x ) 在 x ∈(0,4) 上单调递减,g (a )=f (0)=12.②当 0<a <4 时,则 f (x ) 在 (0,a ) 上单调递减,在 (a,4) 上单调递增,所以g (a )=max {f (0),f (4)}. 而f (0)−f (4)=12−4−a 4+2a =a −12+a, 故当 0<a ≤1 时,g (a )=f (4)=4−a4+2a ;当 1<a <4 时,g (a )=f (0)=12. 综上所述,g (a )={4−a4+2a ,0<a ≤1,12,a >1.(2) 由(1)知,当 a ≥4 时,f (x ) 在 x ∈(0,4) 上单调递减,故不满足要求. 当 0<a <4 时,f (x ) 在 (0,a ) 上单调递减,在 (a,4) 上单调递增.若存在x1,x2∈(0,4)(x1<x2)使曲线y=f(x)在(x1,f(x1)),(x2,f(x2))两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且fʹ(x1)⋅fʹ(x2)=−1,即−3a (x1+2a)2⋅3a(x2+2a)2=−1亦即x1+2a=3ax2+2a. ⋯⋯①由x1∈(0,a),x2∈(a,4)得x1+2a∈(2a,3a),3ax2+2a ∈(3a4+2a,1).故①成立等价于集合A={x∣ 2a<x<3a}与集合B={x∣ 3a4+2a<x<1}的交集非空.因为3a4+2a <3a,所以当且仅当0<2a<1,即0<a<12时,A∩B≠∅.综上所述,存在a使函数f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是(0,12).7(1)令fʹ(x)=1−a=1−ax<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a−1,即f(x)在(a−1,+∞)上是单调减函数.同理,f(x)在(0,a−1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a−1,+∞),从而a−1≤1,即a≥1.令gʹ(x)=e x−a=0,得x=lna.当x<lna时,gʹ(x)<0;当x>lna时,gʹ(x)>0.又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e.综上可知,a∈(e,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令gʹ(x)=e x−a>0,解得a<e x,即x>lna.因为g(x)在(−1,+∞)上是单调增函数,类似(1)有lna≤−1,即0<a≤e−1.结合上述两种情况,得a≤e−1.①当a=0时,由f(1)=0以及fʹ(x)=1x>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a−ae a=a(1−e a)<0,f(1)=−a>0,且函数f(x)在[e a,1]上的图象连续,所以f(x)在(e a,1)上存在零点.另外,当x>0时,fʹ(x)=1x−a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.③当0<a≤e−1时,令fʹ(x)=1−a=0,解得x=a−1.当0<x<a−1时,fʹ(x)>0;当x>a−1时,fʹ(x)<0,所以,x=a−1是f(x)的最大值点,且最大值为f(a−1)=−lna−1.a.当−lna−1=0,即a=e−1时,f(x)有一个零点x=e.b.当−lna−1>0,即0<a<e−1时,f(x)有两个零点.实际上,对于0<a<e−1,由于f(e−1)=−1−ae−1<0,f(a−1)>0,且函数f(x)在[e−1,a−1]上的图象连续,所以f(x)在(e−1,a−1)上存在零点.另外,当x∈(0,a−1)时,fʹ(x)=1x−a>0,故f(x)在(0,a−1)上是单调增函数,所以f(x)在(0,a−1)上只有一个零点.下面考虑f(x)在(a−1,+∞)上的情况.先证f(e a−1)=a(a−2−e a−1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x−x2,则hʹ(x)=e x−2x,再设l(x)=hʹ(x)=e x−2x,则lʹ(x)=e x−2.当x>1时,lʹ(x)=e x−2>e−2>0,所以l(x)=hʹ(x)在(1,+∞)上是单调增函数.故当x>2时,hʹ(x)=e x−2x>hʹ(2)=e2−4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h (x )=e x −x 2>h (e )=e e −e 2>0,即当 x >e 时,e x >x 2.当 0<a <e −1,即 a −1>e 时,f(e a −1)=a −1−ae a−1=a(a −2−e a −1)<0. 又 f (a −1)>0,且函数 f (x ) 在 [a −1,e a −1] 上的图象连续,所以 f (x ) 在 (a −1,e a −1) 上存在零点. 又当 x >a −1 时,fʹ(x )=1x−a <0, 故 f (x ) 在 (a −1,+∞) 上是单调减函数, 所以 f (x ) 在 (a −1,+∞) 上只有一个零点. 综合①②③可知,当 a ≤0 或 a =e −1 时,f (x ) 的零点个数为 1,当 0<a <e −1 时,f (x ) 的零点个数为 2.8(1) 因为f (1+x)=a (1−2∣x∣), f (12−x)=a (1−2∣x∣), 有f (1+x)=f (1−x). 所以函数 f (x ) 的图象关于直线 x =12 对称. (2) 当 0<a <12 时,有f(f (x ))={4a 2x,x ≤12,4a 2(1−x ),x >12,所以 f(f (x ))=x 只有一个解 x =0. 又 f (0)=0,故 0 不是二阶周期点. 当 a =12 时,有f(f (x ))={x,x ≤12,1−x,x >12,所以 f(f (x ))=x 有解集 {x∣ x ≤12}.又当 x ≤12时,f (x )=x ,故 {x∣ x ≤12} 中的所有点都不是二阶周期点.当 a >12 时,有f(f (x ))={4a 2x,x ≤14a ,2a −4a 2x,14a <x ≤12,2a (1−2a )+4a 2x,12<x ≤4a −14a ,4a 2−4a 2x,x >4a −14a,所以 f(f (x ))=x 有四个解:0,2a 1+4a2,2a1+2a ,4a 21+4a 2.又f (0)=0,f (2a )=2a,f (2a 1+4a 2)≠2a 1+4a 2,f (4a 21+4a 2)≠4a 21+4a 2, 故只有 2a1+4a 2,4a 21+4a 2 是 f (x ) 的二阶周期点. 综上所述,所求 a 的取值范围为 a >12. (3) 由(2)得x 1=2a1+4a 2,x 2=4a 21+4a 2, 因为 x 3 为函数 f(f (x )) 的最大值点,所以x 3=14a 或 x 3=4a −14a. 当 x 3=14a 时,S (a )=2a−14(1+4a 2),求导得Sʹ(a )=2(a −1+√22)(a −1−√22)(1+4a 2)2,所以当 a ∈(12,1+√22) 时,S (a ) 单调递增,当 a ∈(1+√22,+∞) 时,S (a ) 单调递减;当x3=4a−14a 时,S(a)=8a2−6a+14(1+4a2),求导得Sʹ(a)=12a2+4a−32(1+4a2)2,因为a>12,从而有Sʹ(a)=12a2+4a−32(1+4a2)2>0,所以当a∈(12,+∞)时,S(a)单调递增.9(1)要证x∈[0,1]时,(1+x)e−2x≥1−x,只需证明(1+x)e−x≥(1−x)e x.记h(x)=(1+x)e−x−(1−x)e x,则hʹ(x)=x(e x−e−x),当x∈(0,1)时,hʹ(x)>0,因此h(x)在[0,1]上是增函数,故h(x)≥h(0)=0.所以f(x)≥1−x,x∈[0,1].要证x∈[0,1]时,(1+x)e−2x≤11+x,只需证明e x≥x+1.记K(x)=e x−x−1,则Kʹ(x)=e x−1,当x∈(0,1)时,Kʹ(x)>0,因此K(x)在[0,1]上是增函数,故K(x)≥K(0)=0.所以f(x)≤11+x,x∈[0,1].综上,1−x≤f(x)≤11+x,x∈[0,1].(2)方法一:f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≥1−x−ax−1−x32−2xcosx=−x(a+1+x22+2cosx).设G(x)=x22+2cosx,则Gʹ(x)=x−2sinx.记H(x)=x−2sinx,则Hʹ(x)=1−2cosx,当x∈(0,1)时,Hʹ(x)<0,于是Gʹ(x)在[0,1]上是减函数,从而当x∈(0,1)时,Gʹ(x)<Gʹ(0)=0,故G(x)在[0,1]上是减函数,于是G(x)≤G(0)=2,从而a+1+G(x)≤a+3,所以,当a≤−3时,f(x)≥g(x)在[0,1]上恒成立,下面证明,当a>−3时,f(x)≥g(x)在[0,1]上不恒成立.f(x)−g(x)≤11+x−1−ax−x32−2xcosx=−x1+x−ax−x32−2xcosx=−x(11+x +a+x22+2cosx).记I(x)=11+x+a+x22+2cosx=11+x+a+G(x),则Iʹ(x)=−1(1+x)2+Gʹ(x),当x∈(0,1)时,Iʹ(x)<0.故I(x)在[0,1]上是减函数.于是I(x)在[0,1]上的值域为[a+1+2cos1,a+3].因为当a>−3时,a+3>0,所以存在x0∈(0,1),使得I(x0)>0,此时f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a的取值范围是(−∞,−3].方法二:先证当x∈[0,1]时,1−12x2≤cosx≤1−14x2.记F(x)=cosx−1+12x2,则Fʹ(x)=−sinx+x.记G(x)=−sinx+x,则Gʹ(x)=−cosx+1,当x∈(0,1)时,Gʹ(x)>0,于是G(x)在[0,1]上是增函数,因此当x∈(0,1)时,G(x)>G(0)=0,从而F(x)在[0,1]上是增函数,因此F(x)≥F(0)=0,所以当x∈[0,1]时,1−12x2≤cosx.同理可证,当x∈[0,1]时,cosx≤1−14x2.综上,当x∈[0,1]时,1−12x2≤cosx≤1−14x2.因为当x∈[0,1]时,f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≥(1−x)−ax−x32−1−2x(1−14x2)=−(a+3)x.所以当a≤−3时,f(x)≥g(x)在[0,1]上恒成立.下面证明,当a>−3时,f(x)≥g(x)在[0,1]上不恒成立.因为f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≤1−1−ax−x3−2x(1−1x2)=x2+x3−(a+3)x≤32x[x−23(a+3)],所以存在x0∈(0,1)(例如x0取a+33和12中的较小值)满足f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a的取值范围是(−∞,−3].10(1) 由已知f (0)=0,fʹ(x )=(1−2λ)x −λx 2(1+x )2,fʹ(0)=0.若 λ≤0,则在 (0,+∞) 上,fʹ(x )>0,f (x ) 单调递增,f (x )>f (0)=0,不符题意; 若 0<λ<12,则当 0<x <1−2λλ时,fʹ(x )>0,所以 f (x )>0.若 λ≥12,则当 x >0 时,fʹ(x )<0,f (x ) 单调递减,所以当 x >0 时,f (x )<0. 综上,λ 的最小值是 12.(2) 令 λ=12.由(1)知,当 x >0 时,f (x )<0,即x (2+x )2+2x>ln (1+x ).取 x =1k ,则2k +12k (k +1)>ln (k +1k).于是a 2n −a n +14n =∑(12k +12(k +1))2n−1k=n=∑2k +12k (k +1)2n−1k=n >∑lnk +1k2n−1k=n=ln2n −lnn =ln2,所以a 2n −a n +14n>ln2.11. (1) 由已知得 f (0)=2,g (0)=2,fʹ(0)=4,gʹ(0)=4. 而fʹ(x)=2x+a,gʹ(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)−f(x)=2ke x(x+1)−x2−4x−2,则Fʹ(x)=2ke x(x+2)−2x−4=2(x+2)(ke x−1).由题设可得F(0)≥0,即k≥1.令Fʹ(x)=0,得x1=−lnk,x2=−2.(i)若1≤k<e2,则−2<x1≤0,从而当x∈(−2,x1)时,Fʹ(x)<0;当x∈(x1,+∞)时,Fʹ(x)>0,即F(x)在(−2,x1)上单调递减,在(x1,+∞)上单调递增,故F(x)在[−2,+∞)上的最小值为F(x1),而F(x1)=2x1+2−x12−4x1−2=−x1(x1+2)≥0.故当x≥−2时,F(x)≥0,即f(x)≤kg(x)恒成立.(ii)若k=e2,则Fʹ(x)=2e2(x+2)(e x−e−2),从而当x>−2时,Fʹ(x)>0,即F(x)在(−2,+∞)上单调递增,而F(−2)=0,故当x≥−2时,F(x)≥0,即f(x)≤kg(x)恒成立.(iii)若k>e2,则F(−2)=−2ke−2+2=−2e−2(k−e2)<0.从而当x≥−2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].12. (1)fʹ(x)=e x−1x+m.由x=0是f(x)的极值点得fʹ(0)=0,所以m=1.于是f(x)=e x−ln(x+1),定义域为(−1,+∞),fʹ(x)=e x−1 x+1.函数fʹ(x)=e x−1x+1在(−1,+∞)上单调递增,且fʹ(0)=0,因此,当x∈(−1,0)时,fʹ(x)<0;当x∈(0,+∞)时,fʹ(x)>0.所以f(x)在(−1,0)上单调递减,在(0,+∞)上单调递增.(2)当m≤2,x∈(−m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数fʹ(x)=e x−1 x+2在(−2,+∞)上单调递增.又fʹ(−1)<0,fʹ(0)>0,故fʹ(x)=0在(−2,+∞)上有唯一实根x0,且x0∈(−1,0).当x∈(−2,x0)时,fʹ(x)<0;当x∈(x0,+∞)时,fʹ(x)>0,从而当x=x0时,f(x)取得最小值.由fʹ(x0)=0得e x0=1x0+2,ln(x0+2)=−x0,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2 x0+2>0.综上,当m≤2时,f(x)>0.13. (1)因为fʹ(x)=(1−2x)e−2x,由fʹ(x)=0,解得x=1 2 .当x<12时,fʹ(x)>0,f(x)单调递增;当x>12时,fʹ(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是(−∞,12),单调递减区间是(12,+∞),最大值为f(12)=12e−1+c.(2)令g(x)=∣lnx∣−f(x)=∣lnx∣−xe−2x−c,x∈(0,+∞).(1)当x∈(1,+∞)时,lnx>0,则g (x )=lnx −xe −2x −c,所以gʹ(x )=e−2x(e 2x x+2x −1). 因为e 2x x>0,2x −1>0,所以gʹ(x )>0.因此 g (x ) 在 (1,+∞) 上单调递增. (2)当 x ∈(0,1) 时,lnx <0,则g (x )=−lnx −xe −2x −c,所以gʹ(x )=e −2x(−e 2xx +2x −1).因为 e 2x ∈(1,e 2),e 2x >1>x >0,所以−e 2x x<−1. 又 2x −1<1,所以 −e 2x x+2x −1<0,即gʹ(x )<0.因此 g (x ) 在 (0,1) 上单调递减. 综合(1)(2)可知,g (x ) 在 (0,1) 单调递减,在 (1,+∞) 单调递增; 所以,g (x ) 的最小值是 g (1)=−e −2−c .①当 g (1)=−e −2−c >0,即 c <−e −2 时,g (x ) 没有零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 0;②当 g (1)=−e −2−c =0,即 c =−e −2 时,g (x ) 只有一个零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 1;③当 g (1)=−e −2−c <0,即 c >−e −2 时, 当 x ∈(1,+∞) 时,由(1)知g (x )=lnx −xe −2x −c ≥lnx −(12e −1+c)>lnx −1−c,要使 g (x )>0,只需 lnx −1−c >0,,即 x ∈(e 1+c ,+∞); 当 x ∈(0,1) 时,由(1)知g (x )=−lnx −xe −2x −c ≥−lnx −(12e −1+c)>−lnx −1−c,要使 g (x )>0,只需 −lnx −1−c >0,即 x ∈(0,e −1−c ).所以当 c >−e −2 时,g (x ) 有两个零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 2. 综上所述,当 c <−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 0; 当 c =−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 1; 当 c >−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 2.14. (1)函数f(x)的单调递减区间为(−∞,−1),单调递增区间为[−1,0),(0,+∞).(2)由导数的几何意义可知,点A处的切线斜率为fʹ(x1),点B处的切线斜率为fʹ(x2),故当点A处的切线与点B处的切线垂直时,有fʹ(x1)fʹ(x2)=−1.当x<0时,对函数f(x)求导,得fʹ(x)=2x+2.因为x1<x2<0,所以(2x1+2)(2x2+2)=−1,所以2x1+2<0,2x2+2>0.因此x2−x1=12[−(2x1+2)+2x2+2]≥√[−(2x1+2)](2x2+2)=1,当且仅当−(2x1+2)=2x2+2=1,即x1=−32且x2=−12时,等号成立.所以函数f(x)的图象在点A,B处的切线互相垂直时,x2−x1的最小值为1.(3)当x1<x2<0或x2>x1>0时,fʹ(x1)≠fʹ(x2),故x1<0<x2.当x1<0时,函数f(x)的图象在点(x1,f(x1))处的切线方程为y−(x12+2x1+a)=(2x1+2)(x−x1),即y=(2x1+2)x−x12+a.当x2>0时,函数f(x)的图象在点(x2,f(x2))处的切线方程为y−lnx2=1x2(x−x2),即y=12⋅x+lnx2−1.两切线重合的充要条件是{1x2=2x1+2, ⋯⋯①lnx2−1=−x12+a. ⋯⋯②由①及x1<0<x2知,−1<x1<0.由①②,得a=x12+ln12x1+2−1=x12−ln(2x1+2)−1.∵函数y=x12−1,y=−ln(x1+2)在区间(−1,0)上单调递减,∴a(x1)=x12−ln(2x1+2)−1在(−1,0)上单调递减,且x1→−1时,a(x1)→+∞;x1→0时,a(x1)→−1−ln2.∴a的取值范围是(−1−ln2,+∞).15. (1)函数f(x)的定义域为(0,+∞).fʹ(x)=2xlnx+x=x(2lnx+1),令fʹ(x)=0,得x=√e.当x变化时,fʹ(x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间是√e ),单调递增区间是(√e+∞).(2)当0<x≤1时,f(x)≤0.t>0,令h(x)=f(x)−t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=−t<0,h(e t)=e2t lne t−t=t(e2t−1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)因为s=g(t),由(2)知,t=f(s),且s>1,从而lng(t)=lns ()=lnsln(s2lns)=lns2lns+ln(lns)=u2u+lnu,其中u=lns.要使2 5<lng(t)lnt<12成立,只需0<lnu<u2.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾,所以s>e,即u>1,从而lnu>0成立.另一方面,令F(u)=lnu−u,u>1,Fʹ(u)=1u−12,令Fʹ(u)=0,得u=2,当1<u<2时,Fʹ(u)>0,当u>2时,Fʹ(u)<0.故对u>1,F(u)≤F(2)<0,因此lnu<u2成立.综上,当t>e2时,有2 5<lng(t)lnt<12.16. (1)由题意fʹ(x)=3x2−6x+3a,故fʹ(1)=3a−3.又f(1)=1,所以所求的切线方程为y=(3a−3)x−3a+4.(2)由于fʹ(x)=3(x−1)2+3(a−1),0≤x≤2.故①当a≤0时,有fʹ(x)≤0,此时f(x)在[0,2]上单调递减,故∣f(x)∣max=max{∣f(0)∣,∣f(2)∣}=3−3a.② 当a≥1时,有fʹ(x)≥0,此时f(x)在[0,2]上单调递增,故∣f(x)∣max=max{∣f(0)∣,∣f(2)∣}=3a−1.③ 当0<a<1时,设x1=1−√1−a,x2=1+√1−a,则0<x1<x2<2,fʹ(x)=3(x−x1)(x−x2).列表如下:由于 f (x 1)=1+2(1−a )√1−a,f (x 2)=1−2(1−a )√1−a,故f (x 1)+f (x 2)=2>0,f (x 1)−f (x 2)=4(1−a )√1−a >0,从而f (x 1)>∣f (x 2)∣.所以∣f (x )∣max =max {f (0),∣f (2)∣,f (x 1)}.① 当 0<a <23 时,f (0)>∣f (2)∣.又f (x 1)−f (0)=2(1−a )√1−a −(2−3a )=a 2(3−4a )2(1−a )√1−a +2−3a>0,故 ∣f (x )∣max=f (x 1)=1+2(1−a )√1−a . ② 当 23≤a <1 时,∣f (2)∣=f (2),且 f (2)≥f (0). 又f (x 1)−∣f (2)∣=2(1−a )√1−a −(3a −2)=a 2(3−4a )2(1−a )√1−a +3a −2所以1)当 23≤a <34 时,f (x 1)>∣f (2)∣.故∣f (x )∣max =f (x 1)=1+2(1−a )√1−a.2)当 34≤a <1 时,f (x 1)≤∣f (2)∣.故∣f (x )∣max =∣f (2)∣=3a −1.综上所述,∣f (x )∣max={ 3−3a,a ≤0,1+2(1−a )√1−a,0<a <34,3a −1,a ≥34.17. (1)因为f(x)=a(x−5)2+6lnx,故fʹ(x)=2a(x−5)+6 x .令x=1,得f(1)=16a,fʹ(1)=6−8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y−16a=(6−8a)(x−1).由点(0,6)在切线上可得6−16a=8a−6,故a=1 2 .(2)由(1)知,f(x)=12(x−5)2+6lnx(x>0),fʹ(x)=x−5+6x=(x−2)(x−3)x.令fʹ(x)=0,解得x1=2,x2=3.当0<x<2或x>3时,fʹ(x)>0,故f(x)在(0,2),(3,+∞)上为增函数;当2<x<3时,fʹ(x)<0,故f(x)在(2,3)上为减函数.由此可知,f(x)在x=2处取得极大值f(2)=9+6ln2,在x=3处取得极小值f(3)=2+6ln3.。
2013年全国各省市理科数学—导数1、2013辽宁理T12.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时, (A )有极大值,无极小值 (B )有极小值,无极大值(C )既有极大值又有极小值 (D )既无极大值也无极小值2、2013浙江理T8.已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值3、2013福建理T8. 设函数)(x f 的定义域为R ,()000≠x x 是)(x f 的极大值点,以下结论一定正确的是( )A.)()(,0x f x f R x ≤∈∀B.0x -是)-(x f 的极小值点C. 0x -是)(-x f 的极小值点D.0x -是)-(-x f 的极小值点4、2013湖北理T7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止。
在此期间汽车继续行驶的距离(单位;m )是( ) A. 125ln5+ B. 11825ln 3+ C. 425ln5+ D. 450ln 2+ 5、2013湖北理T10.已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( ) A. 121()0,()2f x f x >>- B. 121()0,()2f x f x <<- C. 121()0,()2f x f x ><- D. 121()0,()2f x f x <>-6、2013江西理T6.若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为A.123S S S <<B.213S S S <<C.231S S S <<D.321S S S <<7、2013上海理T1.计算:20lim ______313n n n →∞+=+ 8、2013广东理T10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.9、2013湖南理T12.若209,T x dx T =⎰则常数的值为 .10、2013江西理T13.设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)x f = 参考答案:1—6、D C D C D B 7、13 8、-1 9、3 10、2。
2013年高考理科数学——函数与导数大题目1.(2013广西卷22题).(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若()0,0,x f x λ≥≤时求的最小值;; (II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:2.(2013全国新课标二卷21题)(本小题满分12分)已知函数f(x)=e x -ln(x+m)(Ι)设x=0是f(x)的极值点,求m ,并讨论f(x)的单调性; (Ⅱ)当m ≤2时,证明f(x)>03.(2013北京卷18题)(本小题共13分)设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方4.(2013安徽卷20题)(本小题满分13分)设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈,证明: (Ⅰ)对每个nn N∈,存在唯一的2[,1]3nx ∈,满足()0n n f x =;(Ⅱ)对任意n p N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<。
5.(2013福建卷17题)(本小题满分13分)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.6.(2013广东卷21题).(本小题满分14分)设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .7.(2013年河南山西河北卷 21)(本小题满分共12分)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+ (Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
2013年普通高等学校招生全国统一考试(浙江卷)数 学(理)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则(1i)(2i)-+-=( ).A .3i -+ B. 13i -+ C. 33i -+ D. 1i -+ 分析 直接利用复数的乘法法则运算求解.解析 ()()21i 2i 23i i 13i -+-=-+-=-+.故选B .2.设集合{}{}2|2,|340S x x T x x x =>-=+-,则()C S T =R ( ).A. ]1,2(-B. ]4,(--∞C. ]1,(-∞D. ),1[+∞ 分析 先求出集合S 的补集,同时把集合T 化简,再求它们的并集. 解析 因为{}2S x x =-,所以{}2S x x =-R ≤,而{}41T x x =-≤≤,所以(){}{}{}2411S T x x x x x x =--=R≤≤≤≤.故选C.3.已知y x ,为正实数,则( ).A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y +=⋅C.lg lg lg lg 222x yx y ⋅=+ D.lg()lg lg 222xy x y =⋅分析 利用指数幂及对数的运算性质逐项验证. 解析 A 项,lg lg lg lg 222x yx y +=⋅,故错误;B 项,()()lg lg lg lg lg lg 22222x y x y x y x y ⋅++⋅==≠,故错误;C 项,()lg lg lg lg 22yx yx ⋅=,故错误;D 项,()lg lg lg lg lg 2222xy x y x y +==⋅,正确. 故选D.4.已知函数()cos()(0,0,)f x A x A ωϕωϕ=+>>∈R ,则“)(x f 是奇函数”是π2ϕ=的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件分析 先判断由()f x 是奇函数能否推出ϕπ=2,再判断由ϕπ=2能否推出()f x 是奇函数. 解析 若()f x 是奇函数,则()00f =,所以cos 0ϕ=,所以()k k ϕπ=+π∈2Z ,故ϕπ=2不成立;开始结束若ϕπ=2,则()()cos sin 2f x A x A x ωωπ⎛⎫=+=- ⎪⎝⎭,()f x 是奇函数.所以()f x 是奇函数ϕπ=2必要不充分条件.故B.5.某程序框图如图所示,若该程序运行后输出的值是59,则( ). A.4=a B.5=a C. 6=a D.7=a分析 可依次求出1,2,3,k =时S 的值进行验证,也可以先求出S 的表达式,通过解方程求出k 的值.解析 (方法一)由程序框图及最后输出的值是95可知:当1k =时, 1,S ka =不成立,故131,2122S k a =+==⨯不成立,故315,32233S k a =+==⨯不成立,故517,43344S k a =+==⨯不成立,故719,4455S =+=⨯此时5k a =成立,所以4a =.(方法二)由程序框图可知:()111111111111111212231223111S k k k k k k =++++=+-+-++-=+-=-⨯⨯++++, 由95S =,得19215k -=+,解得4k =,故由程序框图可知4k a =不成立,5k a =成立,所以4a =.6.已知,sin 2cos 2ααα∈+=R ,则=α2tan ( ). A.34 B. 43 C. 43- D. 34- 分析 先利用条件求出tan α,再利用倍角公式求tan 2α.解析 把条件中的式子两边平方,得225sin 4sin cos 4cos 2αααα++=,即233cos 4sin cos 2ααα+=,所以2223cos 4sin cos 3cos sin 2ααααα+=+,所以234tan 31tan 2αα+=+,即23tan 8tan 30αα--=,解得tan 3α=或1tan 3α=-,所以22tan 3tan 2tan 4ααα==--.故选C. 7.设0,ABC P △是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅⋅.则( ). A.90ABC ∠= B. 90BAC ∠= C. AC AB = D.BC AC =分析 根据向量投影的概念,对选项逐一验证排除不符合的选项.不妨设4AB =,则01P B =,03P A =.设点C 在直线AB 上的投影为点C '.解析 A 项,若90ABC ∠=︒,如图(1)所示,则2cos PB PC PB PC BPC PB ⋅=⋅∠=,2000P B P C P B ⋅=. 当点P 落在点0P 的右侧时,220PBP B ,即00PB PCP B PC ⋅⋅,不符合; B 项,若90BAC ∠=︒,如图(2)所示,则cos PB PC PB PC BPC PB PA ⋅=⋅∠=-,00003P B P A P B P A ⋅=-=-.当P 为AB 的中点时,4PB PC ⋅=-,00PB PCP B P C ⋅,不符合;C 项,若AB AC =,假设120BAC ∠=︒,如图(3)所示,则2AC '=,PB PC PB PC ⋅=⋅cos BPC PB PC ∠=-,0000000cos 5P B P C P B P C BP C P B P C ⋅=∠=-=-.当P 落在A 点时,8PB PC -=-,所以00PB PCP B PC ⋅⋅,不符合,故选D. 8.已知e 为自然对数的底数,设函数()(e 1)(1)(1,2)xkf x x k =--=,则( ).A. 当1=k 时,)(x f 在1=x 处取得极小值B. 当1=k 时,)(x f 在1=x 处取得极大值C. 当2=k 时,)(x f 在1=x 处取得极小值D. 当2=k 时,)(x f 在1=x 处取得极大值分析 分别求出1,2k =时函数的导数,再判断()0f x '=是否成立及1x =两侧导数的符号, 进而确定极值.解析 当1k =时,()()()e 11x f x x =--,则()()()e 1e 1e 1x x xf x x x '=-+-=-,所以()1e 10f '=-≠,所以()1f 不是极值.图(1)P 0PB (C')CA图(2)BC A (C')P P 0A P 0(P )C'CB图(3)当2k =时,()()()2e 11x f x x =--,则()()()()2e 12e 11x xf x x x '=-+--= ()()()()2e 1211e 12x xx x x x ⎡⎤---=-+-⎣⎦,所以()10f '=,且当1x 时,()10f ';在1x =附近的左侧,()0f x ',所以()1f 是极小值.故选C.9. 如图所示,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二.四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( A.2 B. 3C. 23D.26分析 由椭圆可求出12AF AF +,由矩阵求出2212AF AF +,再求出21AF AF -即可求出双曲线方程中的a ,进而求得双曲线的离心率.解析 由椭圆可知124AF AF +=,12FF =因为四边形12AF BF 为矩形, 所以222121212AF AF F F +==,所以()()222121212216124AF AF AF AF AF AF =+-+=-=,所以()22221121221248AF AF AF AF AF AF -=+-=-=,所以21AF AF -=a =c =所以2C的离心率c e a ==.故选D. 10. 在空间中,过点A 作平面π的垂线,垂足为B ,记π()B f A =.设βα,是两个不同的平面,对空间任意一点P ,[]12(),()Q f f P Q f f P βααβ⎡⎤==⎣⎦,恒有21PQ PQ =,则( ).A. 平面α与平面β垂直B. 平面α与平面β所成的(锐)二面角为45C. 平面α与平面β平行D. 平面α与平面β所成的(锐)二面角为60 分析 根据新定义及线面垂直知识进行推理.解析 设()1P f P α=,()2P f P β=,则1PP α⊥,11PQ β⊥,2PP β⊥,22P Q α⊥. 若//αβ,则1P 与2Q 重合、2P 与1Q 重合,所以12PQ PQ ≠,所以α与β相交.设al β=,由俯视图侧视图122//PP P Q ,所以122,,,P P P Q 四点共面.同理121,,,P P P Q 四点共面.所以1212,,,,P P P Q Q 五点共面.且α与β的交线l 垂直于此平面.又因为12PQ PQ =,所以12,Q Q 重合且在l 上,四边形112PPQ P 为矩形.那么112PQ P π∠=2为二面角--l αβ的平面角,所以αβ⊥.故选A . 二.填空题11.设二项式5的展开式中常数项为A ,则=A ________.分析 写出二项展开式的通项1r T +,令通项中x 的指数为零,求出r ,即可求出A . 解析()55526155C C 1rrrr rr r T x --+⎛==- ⎝,令55026r -=,得3r =,所以35C 10A =-=-. 12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________2cm .分析 根据三视图还原出几何体,再根据几何体的具体形状及尺寸求体积.解析 由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥, 如图所示.三棱术的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积()31134530cm 2V =⨯⨯⨯=,小三棱锥的底面与三棱柱的上底面相同, 高为3,故其体积()32113436cm 32V =⨯⨯⨯⨯=,所以所求几何体的体积为()330624cm -=.13.设y kx z +=,其中实数y x ,满足20240240x y x y x y +-⎧⎪-+⎨⎪--⎩,若z 的最大值为12,则实数=k ________.分析 画出可行域,分类讨论确定出最优解,代入最大值即可求出k 的值. 解析 作出可行域如图阴影部分所示:由图可知当102k-≤时, 直线y kx z =-+经过点()4,4M 时z 最大,所以4412k +=,解得2k =(舍去);当12k -≥时,直线y kx z =-+经过点()0,2时z 最大,此时z 的最大值为2,不合题意;当0k-时,直线y kx z=-+x 4MBCA经过点()4,4M 时z 最大,所以4412k +=,解得2k =,符合题意.综上可知,2k =.14.将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)分析 按C 的位置分类计算.解析 ①当C 在第一或第六位时,有55A 120=(种)排法;②当C 在第二或第五位时,有2343A A 72=(种)排法; ③当C 在第三或第四位时,有23232333A A A A 48+=(种)排法.所以共有()21207248480⨯++=(种)排法.15.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线l 的斜率等于________. 答案:1±(特别说明:根据已公布答案,斜率等于1±代入题干可得抛物线C 与直线l 相切,与题干中“直线l 交抛物线C 于,A B 两点”矛盾.——编者注)16.ABC △中,90C ∠=,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________. 分析 画出图形,确定已知量和待求量所在的三角形,利用正弦定理求解. 解析 因为1sin 3BAM ∠=,所以cos 3BAM ∠=.如图所示,在ABM △中,利用正弦定理,得sin sin BM AM BAM B =∠,所以sin sin BM BAM AM B ∠=113sin 3cos B BAC==∠. 在Rt ACM △中,有()sin sin CMCAM BAC BAM AM=∠=∠-∠.由题意知BM CM =,所以()1sin 3cos BAC BAM BAC=∠-∠∠.化简,得2cos cos 1BAC BAC BAC ∠∠-∠=.所以211tan 1BAC BAC ∠-=∠+,解得tan BAC ∠=. 再结合22sin cos 1BAC BAC ∠+∠=,BAC ∠为锐角可解得sin 3BAC ∠=.17. 设12,e e 为单位向量,非零向量12,,x y x y =+∈R b e e ,若12,e e 的夹角为π6, 则||||x b 的最大值等于________. 分析 为了便于计算可先求2x ⎛⎫ ⎪ ⎪⎝⎭b 的范围,再求xb 的最值.解析 根据题意,得()()()1222222212122x x x x y xy x y ⎛⎫=== ⎪ ⎪++⋅+⎝⎭b e e e e e e22222cos 6x x y xy =π++2114y x ==⎛+ ⎝⎭⎝⎭.因为211244y x ⎛++ ⎝⎭≥,所以204x ⎛⎫⎪ ⎪⎝⎭≤b ,所以02x ≤b.故x b的最大值为2.18.在公差为d 的等差数列{}n a 中,已知101=a ,且123,22,5a a a +成等比数列. (1)求,n d a ;(2)若0<d ,求.||||||||321n a a a a ++++分析 (1)用1,a d 把23,a a 表示出来,利用123,22,5a a a +成等比数列列方程即可解出d ,进而根据等差数列的通项公式写出n a .(2)根据(1)及0d确定数列的通项公式,确定n a 的符号,以去掉绝对值符号,这需要对n 的取值范围进行分类讨论.解析(1)由题意得,()2132522a a a ⋅=+,由110a =,{}n a 为公差为d 的等差数列得,2340d d --=,解得1d =-或4d =.所以()*11n a n n =-+∈N 或()*46n a n n =+∈N .设数列{}n a 的前n 项和为n S . 因为0d,由(1)得1d =-,11n a n =-+,所以当11n ≤时,123n a a a a ++++=212122n S n n =-+;当12n ≥时,212311121211022n n a a a a S S n n ++++=-+=-+.综上所述,123n a a a a ++++ 22121,11,22121110,12.22n n n n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩≤≥ 19.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分, 取出蓝球得3分.(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a分析(1)对取出球的颜色进行分类以确定得分值,进而确定随机变量ξ的取值,计算相应的概率,再列出分布列;(2)先用,,a b c 表示出随机事件的概率,列出随机变量η的分布列,求出数学期望和方差,再把条件代入,列方程组求出,,a b c 的关系.解析(1)由题意得2,3,4,5,6ξ=.故()33124P ξ⨯===6⨯6, ()232133P ξ⨯⨯===6⨯6,()231225418P ξ⨯⨯+⨯===6⨯6,()221159P ξ⨯⨯===6⨯6,()111636P ξ⨯===6⨯6.所以ξ的分布列为(2QPMDBA所以2353a b c E a b c a b c a b c η=++=++++++,22255551233339a b c D a b c a b c a b c η⎛⎫⎛⎫⎛⎫=-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得3a c =,2b c =,故::3:2:1a b c =.20. 如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=. (1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为60,求BDC ∠的大小.分析 立体几何题目一般有两种思路:传统法和向量法.传统法是借助立体几何中的相关定义、定理,通过逻辑推理证明来完成.(1)要证明线面平行,根据判定定理可通过证明线线平行来实现;(2)求二面角要先找到或作出二面角的平面角,再通过解三角形求解.向量法则是通过建立空间直角坐标系,求出相关的坐标,利用向量的计算完成证明或求解.直线一般求其方向向量,平面一般求其法向量.(1)只要说明直线的方向向量与对应平面的法向量垂直即可;(2)二面角的大小即为两个平面的法向量的夹角或其补角. 解析 方法一:(1)如图(1)所示,取BD 的中点O ,在线段CD 上取点F ,使得3DF FC =,连接,,OP OF FQ .因为3AQ QC =,所以//QF AD ,且14QF AD =. 因为,O P 分别为,BD BM 的中点,所以OP 是BDM △的中位线,所以//,OP DM 且12OP DM =.又点M 为AD 的中点,所以//OP AD ,且14OP AD =.从而//OP FQ ,且OP FQ =,所以四边形OPQF 为平行四边形,故//PQ OF .又PQ BCD ⊄平面,OF BCD ⊂平面,所以//PQ BCD 平面.(2)如图(1)所示,作CG BD ⊥于点G ,作GH BM ⊥于点H ,连接CH . 因为AD BCD ⊥平面,CG BCD ⊂平面,所以AD CG ⊥.又CG BD ⊥,AD BD D =,故CG ABD ⊥平面.又BM ABD ⊂平面,所以CG BM ⊥.又,GH BM CG GH G ⊥=,故BM CGH ⊥,所以,GH BM CH BM ⊥⊥.O图(1)QGMH PF DC BAx图(2)所以CHG ∠为二面角--C BM D 的平面角,即60CHG ∠=︒.设BDC θ∠=,在Rt BCD △中,cos ,sin sin CD BD CG CD θθθθθ====,2sin ,sin BC BD BG BC θθθθ====.在BGM △中,BG DM HG BM ⋅==.因为CG ABD ⊥平面,GH ABD ⊂平面,所以CG GH ⊥. 在Rt CHG △中,3cos tan sin CG CHG HG θθ∠===.所以tan θ=.从而60θ=︒.即60BDC ∠=︒.方法二:(1)如图(2)所示,取BD 的中点O ,以O 为原点,,OD OP 所在的射线为,y z 轴的正半轴,建立空间直角坐标系-O xyz .由题意知()()(),0,,A B D . 设点C 的坐标为()00,,0x y ,因为3AQ QC =,所以0031,42Q x y ⎛⎫+⎪ ⎪⎝⎭. 因为点M 为AD的中点,故()M .又点P 为BM 的中点,故10,0,2P ⎛⎫ ⎪⎝⎭,所以0033,,0444PQ x y ⎛⎫=+⎪ ⎪⎝⎭.又平面BCD 的一个法向量为()0,0,1=a ,故0PQ ⋅=a .又PQ BCD ⊄平面,所示//PQ BCD 平面.(2)设(),,x y z =m 为平面BMC 的一个法向量.由()()00,2,1,0,2CMx y BM =--=,知)000,0.x x y y z z ⎧-++=⎪⎨⎪+=⎩取1y =-,得00,1,y m x ⎛=- ⎝.又平面BDM 的一个法向量为()1,0,0=n ,于是1cos ,2⋅===m nm n m n,即2003y x ⎛+= ⎝⎭. ①又BC CD ⊥,所以0CB CD ⋅=,故()()0000,,0,00x y x y -⋅-=,即22002x y +=. ②联立①②,解得000,x y=⎧⎪⎨=⎪⎩002x y ⎧=⎪⎪⎨⎪=⎪⎩所以tan BDC ∠==又BDC ∠是锐角,所以60BDC ∠=︒.21. 如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.12,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D . (1)求椭圆1C 的方程;(2)求ABD ∆面积取最大值时直线1l 的方程.分析(1)根据椭圆的几何性质易求出,a b 的值,从而写出椭圆的方程;(2)要求ABD △的面积,需要求出,AB PD 的长,AB 是圆的弦,考虑用圆的知识来求,PD 应当考虑用椭圆的相当知识来求.求出,AB PD 的长后,表示出ABD △的面积,再根据式子的形式选择适当的方法求最值.解析(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为2214x y +=. (2)设()11,A x y ,()22,B x y ,()00,D x y .由题意知直线1l 的斜率存在,不妨设其为k ,则直线1l的方程为1y kx =-.又圆222:4C x y +=,故点O 到直线1l的距离d =,所以AB ==又21l l ⊥,故直线2l 的方程为0x kx k ++=. 由220,44x ky k x y ++=⎧⎨+=⎩消去y ,整理得()22480k x kx ++=,故0284kx k =-+,所以24PD k =+.设ABD △的面积为S,则2124S AB PD k=⋅=+,所以3213S ==当且仅当2k =±时取等号.所以所求直线1l的方程为12y x =±-. 22. 已知a ∈R ,函数.3333)(23+-+-=a ax x x x f (1)求曲线)(x f y =在点()1,(1)f 处的切线方程; (2)当]2,0[∈x 时,求|)(|x f 的最大值.分析 (1)切点处的导数值即为切线的斜率,求导后计算出斜率,写出切线方程即可;(2)要确定()f x 的最大值,首先要确定()f x 的最值. ()f x 的最值又是由其单调性决定的,所以要先利用导数确定()f x 的单调性,在确定函数单调性时,要注意考虑极值点是否在所给区间内,不确定时需要分类讨论.解析 (1)由题意()2363f x x x a '=-+,故()133f a '=-.又()11f =,所以所求的切线方程为()3334y a x a =--+.(2)由于()()()23131,02f x x a x '=-+-≤≤,故①当0a ≤时,有()0f x '≤,此时()f x 在[]0,2上单调递减,故()()(){}max max 0,233f x f f a ==-.②当1a ≥时,有()0f x '≥,此时()f x 在[]0,2上单调递增, 故()()(){}maxmax 0,231f x f f a ==-.③当01a 时,设11x =21x =则1202x x ,()()()123f x x x x x '=--.由于()(1121f x a =+-()(2121f x a =--. 故()()1220f x f x +=,()()(12410f x f x a -=-,从而()()12f x f x .所以()()()(){}1maxmax 0,2,f x f f f x =.①当23a时,()()02f f .又()()(()2134021220a a f x f a a--=--=,故()()(1max121f x f x a ==+-.②当213a ≤时,()()22f f =,且()()20f f ≥.又()()(()213422132a a f x f a a --=--=,所以ⅰ.当2334a ≤时,()()12f x f .故()()(1max 121f x f x a ==+-ⅱ.当314a ≤时,()()12f x f ≤.故()()max 231f x f a ==-.综上所述,()(max33,00,31210,4331,.4a f x a aa a ⎧⎪-⎪⎪=+-⎨⎪⎪-⎪⎩≤≥。
2013年全国高考理科数学试题分类汇编14:导数与积分一、选择题1 .(2013年高考湖北卷(理))已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( )A .121()0,()2f x f x >>- B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-【答案】D2 .(2013年新课标Ⅱ卷数学(理))已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B .函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0f x =【答案】C3 .(2013年高考江西卷(理))若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为 ( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<【答案】B4 .(2013年辽宁数学(理))设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值【答案】D5 .(2013年福建数学(理))设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点【答案】D6 .(2013年高考北京卷(理))直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A .43B .2C .83D .1623【答案】C7 .(2013年浙江数学(理))已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f kx,则 ( )A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值【答案】C二、填空题8 .(2013年高考江西卷(理))设函数()f x 在(0,)+∞内可导,且()xxf e x e =+,则(1)xf =______________【答案】2 9 .(2013年高考湖南卷(理))若209,Tx dx T =⎰则常数的值为_________.【答案】310.(2013年广东省数学(理))若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.【答案】1-三、解答题11.(2013年新课标Ⅱ卷数学(理))已知函数)ln()(m x e x f x +-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >。
备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编14:导数与积分一、选择题1 .(云南师大附中2013届高三高考适应性月考卷(三)理科数学试题)如图3,直线y=2x 与抛物线y=3-x 2所围成的阴影部分的面积是( )A .353 B. C.2 D .323【答案】D 【解析】12332(32)d 3S x x x -=--=⎰,故选D. 2 .(云南省昆明一中2013届高三新课程第一次摸底测试数学理)函数22ln yx x e ==在处的切线与坐标轴所围成的三角形的面积为A .292e B .212Se = C .22e D .2e 【答案】D 【解析】212'2y x x x =⨯=,所以在2x e =处的切线效率为22k e=,所以切线方程为2224()y x e e -=-,令0x =,得2y =,令0y =,得2x e =-,所以所求三角形的面积为22122e e ⨯⨯=,选D. 3 .(贵州省六校联盟2013届高三第一次联考理科数学试题)已知函数()y xf x ='的图象如图3所示(其中()f x '是函数)(x f 的导函数).下面四个图象中,)(x f y =的图象大致是( )图3-11OxyyxO 1-1y xO 1-1y xO 1-1-11O xyA .B .C .D .【答案】C 【解析】由条件可知当01x <<时,'()0f x <,函数递减,当1x >时,'()0f x >,函数递增,所以当1x =时,函数取得极小值.当1x <-时,'()0xf x <,所以'()0f x >,函数递增,当10x -<<,'()0xf x >,所以'()0f x <,函数递减,所以当1x =-时,函数取得极大值.所以选C.4 .(【解析】云南省玉溪一中2013届高三上学期期中考试理科数学)已知曲线x x y ln 342-=的一条切线的斜率为21,则切点的横坐标为( ) A. 3B. 2C. 1D.21 【答案】A 【解析】函数的定义域为(0,)+∞,函数的导数为3'2x y x =-,由31'22x y x =-=,得260x x --=,解得3x =或1x =-(舍去),选A. 5 .(云南省昆明一中2013届高三第二次高中新课程双基检测数学理)曲线sin (0)yx x x π=≤≤与轴所围成图形的面积为A .1B .2C .2πD .π【答案】B 【解析】根据积分的应用可知所求面积为sin (cos )2xdx x ππ=-=⎰,选B.6 .(【解析】贵州省四校2013届高三上学期期末联考数学(理)试题)如果231()x x+的展开式中的常数项为a ,则直线y ax =与曲线2y x =围成图形的面积为( )A.272B. 9C.92D.274【答案】C 【解析】展开式的通项为32331331()()kkk k k k T C x C x x--+==,所以当330k -=时,1k =。
【专项冲击波】2013年高考数学 讲练测系列 专题02 函数与导数(教师版)【考纲解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.4.掌握一次函数的图象和性质;掌握二次函数的对称性、增减性、最值公式及图象与性质的关系,理解“三个二次”的内在联系,讨论二次方程区间根的分布问题.5.了解指数函数模型的实际背景;理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念、单调性,掌握指数函数图象通过的特殊点;知道指数函数是一类重要的函数模型.6.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在简化运算中的作用;理解对数函数的概念、单调性,掌握指数函数图象通过的特殊点;知道指数函数是一类重要的函数模型;了解指数函数(0x y a a =>且1)a ≠与对数函数log (0a y x a =>且1)a ≠互为反函数.7.了解幂函数的概念;结合函数12321,,,,y x y x y x y y x x =====的图象,了解它们的变化情况.8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题.【考点预测】1.对于函数的定义域、值域、图象,一直是高考的热点和重点之一,大题、小题都会考查,渗透面广.特别是分段函数的定义域、值域、解析式的求法是近几年高考的热点.3.由指数函数、对数函数的图象入手,推知单调性,进行相关运算,同时与导数结合在一起的题目是每年必考的内容之一,要在审题、识图上多下功夫,学会分析数与形的结合,把常见的基本题型的解法技巧理解好、掌握好.4.函数的单调性、最值是高考考查的重点,其考查的形式是全方位、多角度,与导数的有机结合体现了高考命题的趋势.5.函数的奇偶性、周期性是高考考查的内容之一,其考查形式比较单一,但出题形式比较灵活,它主要出现在选择题、填空题部分,属基础类题目,复习时要立足课本,切实吃透其含义并能准确进行知识的应用.6.应用导数的概念及几何意义解题仍将是高考出题的基本出发点;利用导数研究函数的单调性、极值、最值、图象仍将是高考的主题;利用导数解决生活中的优化问题将仍旧是高考的热点;将导数与函数、解析几何、不等式、数列等知识结合在一起的综合应用,仍将是高考压轴题.【要点梳理】1.求定义域、值域的方法有:配方法、不等式法、换元法、分离常数法等;求函数解析式的方法有:定义法、换元法、待定系数法、方程组法等;解决实际应用题的一般步骤是:分析实际问题,找出自变量,写出解析式,确定定义域,计算.2.几种常见函数的数学模型:平均增长率问题;储蓄中的得利问题;通过观察与实验建立的函数关系;根据几何与物理概念建立的函数关系.3.指数与对数函数模型是函数应用的基本模型,经常与导数在一起进行考查,应引起我们的高度重视.4.二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,应熟练掌握.函数的零点、二分法、函数模型的应用是高考的常考点和热点,应认真研究、熟练掌握.5.理解函数的单调性、奇偶性、最值及其几何意义,会运用函数图象理解和研究函数的单调性、最值,常与导数结合在一起考查,是高考的常考点.6.对于幂指对函数的性质,只需立足课本,抓好基础,掌握其单调性、奇偶性,通过图象进行判断和应用,常与导数结合在一起考查.7.导数的概念及运算是导数的基本内容,每年必考,一般不单独考查,它主要结合导数的应用进行考查.8.导数的几何意义是高考考查的重点内容之一,经常与解析几何结合在一起考查.9.利用导数研究函数的单调性、极值、最值及解决生活中的优化问题是近几年高考必考的内容之一.10.求可导函数单调区间的一般步骤和方法:(1)确定函数定义域;(2)求导数;(3)令导数大于0,解得增区间, 令导数小于0,解得减区间.11.求可导函数极值的一般步骤和方法:(1)求导数;(2)判断函数单调性;(3)确定极值点;(4)求出极值.12.求可导函数最值的一般步骤和方法:(1)求函数极值;(2)计算区间端点函数值;(3)比较极值与端点函数值,最大者为最大值,最小者为最小值.【考点在线】考点一函数的定义域函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.例1.(2012年高考某某卷文科3)函数21()4ln(1)f x x x =+-+的定义域为( ) (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-【名师点睛】本题主要考查含有分式、无理式和对数的函数的定义域的求法.【备考提示】明确定义域的求法是解答好本题的关键.练习1:(某某省某某外国语学校2013届高三上学期期中)函数121)(-=x x f 的定义域是。
2013年湖南理一、选择题(共8小题;共40分)1. 复数z=i⋅1+i(i为虚数单位)在复平面上对应的点位于 A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 A. 抽签法B. 随机数法C. 系统抽样法D. 分层抽样法3. 在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3b,则角A等于 A. π12B. π6C. π4D. π34. 若变量x,y满足约束条件y≤2x,x+y≤1,y≥−1,则x+2y的最大值是 A. −52B. 0 C. 53D. 525. 函数f x=2ln x的图象与函数g x=x2−4x+5的图象的交点个数为 A. 3B. 2C. 1D. 06. 已知a,b是单位向量,a⋅b=0.若向量c满足c−a−b=1,则c的取值范围是 A. −1,+1B. −1,+2C. 1,2+1D. 1,2+27. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于A. 1B. 2C. 2−12D. 2+128. 在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA反射后又回到点P(如图).若光线QR经过△ABC的重心,则AP等于 A. 2B. 1C. 83D. 43二、填空题(共8小题;共40分)9. 在平面直角坐标系xOy中,若直线l:x=t,y=t−a, t为参数过椭圆C:x=3cosφ,y=2sinφ, φ为参数的右顶点,则常数a的值为.10. 已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为.11. 如图,在半径为 7的⊙O 中,弦AB ,CD 相交于点P ,PA =PB =2,PD =1,则圆心O 到弦CD的距离为 .12. 若 x 2T0d x =9,则常数T 的值为 .13. 执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为 .14. 设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1 a >0,b >0 的两个焦点,P 是C 上一点,若 PF 1 + PF 2 =6a ,且△PF 1F 2的最小内角为30∘,则C 的离心率为 .15. 设S n 为数列 a n 的前n 项和,S n = −1 n a n −12,n ∈N ∗,则a 3= ;S 1+S 2+⋅⋅⋅+S 100= .16. 设函数f x =a x +b x −c x ,其中c >a >0,c >b >0. (1)记集合M = a ,b ,c a ,b ,c 不能构成一个三角形的三条边长,且 a =b ,则 a ,b ,c ∈M 所对应的f x 的零点的取值集合为 ;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是 .(写出所有正确结论的序号)①∀x ∈ −∞,1 ,f x >0;②∃x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则∃x ∈ 1,2 ,使f x =0.三、解答题(共6小题;共78分)17. 已知函数f x =sin x −π6 +cos x −π3 ,g x =2sin 2x2.(1)若α是第一象限角,且f α =3 35,求g α 的值;(2)求使f x ≥g x 成立的x 的取值集合.18. 某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物"相近"是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好"相近"的概率;(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.中,AD∥BC,∠BAD=90∘,AC⊥BD,BC=1,19. 如图,在直棱柱ABCD−A1B1C1D1AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.20. 在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“ L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“ L路径”.某地有三个新建的居民区,分别位于平面xOy内三点A3,20,B−10,0,C14,0处.现计划在x轴上方区域(包含x 轴)内的某一点P处修建一个文化中心.(1)写出点P到居民区A的“ L路径”长度最小值的表达式(不要求证明);(2)若以原点O为圆心,半径为1的圆的内部是保护区,“ L路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“ L路径”长度之和最小.21. 过抛物线E:x2=2py p>0的焦点F作斜率分别为k1、k2的两条不同的直线l1、l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交于点C,D.以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为l.(1)若k1>0,k2>0,证明;FM⋅FN<2p2;(2)若点M到直线l的距离的最小值为75,求抛物线E的方程.5.22. 已知a>0,函数f x=x−ax+2a(1)记f x在区间0,4上的最大值为g a,求g a的表达式;(2)是否存在a,使函数y=f x在区间0,4内的图象上存在两点,在该两点处的切线相互垂直?若存在,求a的取值范围;若不存在,请说明理由.答案第一部分1. B2. D3. D4. C 【解析】如图,可行域为△ABC部分.令z=x+2y,∴y=−12x+z2.显然当直线y=−12x+z2过可行域内的B点时,z最大.由y=2x,x+y=1,得x=13,y=23,即B13,23.∴z最大=x+2y=13+43=53.5. B【解析】提示:如图,当x=2时,f2=2ln2=ln4>1=g2,则点2,2ln2在点2,1的上方.6. A 【解析】由于a和b为单位向量,且a⋅b=0,故a+b是模长为2的向量,考虑c− a+b=1,如图,用AO表示a+b,AB表示向量c,则BO=AO−AB=1.即B在以O为圆心的单位圆上,故当B与C重合时,c取最小值为2−1,当B与D重合时,c取最大值为2+1.7. C 【解析】水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为2,因此要使棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为1,,因此 A、B、D 皆有可能,而2−12<1,故 C 不可能.8. D 【解析】如图,以A为原点、AB所在直线为x轴,建立平面直角坐标系,则B4,0,C0,4,从而直线BC的方程为x+y=4,△ABC的重心为G 4,4.设P t,0为线段AB上一点,则P关于直线AC、BC的对称点分别为N−t,0、M4,4−t,所以直线MN的方程为y=4−tx+t.根据题意,G在直线MN上,则4 3=4−t4+t43+t ,解得t=43.第二部分9. 3【解析】直线l:x−y=a,椭圆C:x 29+y24=1,椭圆C的右顶点为A3,0,故a=3.10. 12【解析】提示:a+2b+3c2=a2+4b2+9c2+4ab+6ac+12bc≤a2+4b2+9c2+a2+4b2+a2+9c2+4b2+9c2=3a2+4b2+9c2.11. 32【解析】由相交弦定理可知PA⋅PB=PC⋅PD,所以PC=4,故CD=5.取CD的中点M,连接OM,OC,在Rt△OMC中,OM= OC2−CM2=7−254=32,由垂径定理可知OM即为圆心O到弦CD的距离,其大小为32.12. 313. 914. 3【解析】设P为右支上的点,根据双曲线定义可知PF1− PF2=2a,又PF1+PF2=6a,所以PF1=4a,PF2=2a,而F1F2=2c,所以∠PF1F2=30∘,由余弦定理cos30∘=4a2+2c2−2a22⋅4a⋅2c,解得ca=3.15. −116,1312−1【解析】当n=1时,a1=−14;当n≥2时,利用a n=S n−S n−1,可得a n=−1n a n+−1n a n−1+12n.所以,当n为正奇数时,a n=−12n+1;当n为正偶数时,a n=12n.另外,−a1+a2=12,−a3+a4=12,−a5+a6=12,则S1+S2+⋯+S100=−a1+a2+−a3+a4+⋯+−a99+a100−12+122+⋯+12100=1+1+⋯+1−1+1+⋯+1=11100−1.16. x0<x≤1,①②③【解析】(1)因为c>a,由c≥a+b=2a,所以ca ≥2,则ln ca≥ln2>0.令f x=a x+b x−c x=2a x−c x=c x2ac x−1=0.得ca x=2,所以x=log ca2=ln2ln ca≤ln2ln2=1.所以0<x≤1.故答案为 x0<x≤1;(2)因为f x=a x+b x−c x=c x ac x+bcx−1,又ac <1,bc<1,所以对∀x∈−∞,1,ac x+bcx−1>ac1+bc1−1=a+b−cc>0.所以命题①正确;令x=−1,a=2,b=4,c=5.则a x=12,b x=14,c x=15.不能构成一个三角形的三条边长.所以命题②正确;若三角形为钝角三角形,由余弦定理可知a2+b2−c2<0.f1=a+b−c>0,f2=a2+b2−c2<0.所以∃x∈1,2,使f x=0.所以③正确.第三部分17. (1)因为f x=sin x−π6+cos x−π3=3sin x−1cos x+1cos x+3sin x=3sin x,所以fα=3sinα=33 5,解得sinα=3 ,又α为第一象限角,从而cosα=45,所以gα=2sin2α2=1−cosα=15.(2)由f x≥g x得3sin x≥1−cos x,即3 2sin x+12cos x=sin x+π6≥12,所以x+π∈2kπ+π,2kπ+5π,k∈Z解得x∈2kπ,2kπ+2π,k∈Z.故使f x ≥g x 成立的x 的取值集合为 x 2kπ≤x ≤2kπ+2π3,k ∈Z .18. (1)所种作物总株数N =1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有C 31C 121=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8种,所以从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为836=29. (2)先求从所种作物中随机选取一株作物的年收获量为Y 的分布列. 因为P Y =51 =P X =1 , P Y =48 =P X =2 , P Y =45 =P X =3 , P Y =42 =P X =4 ,所以只需求出P X =k k =1,2,3,4 即可.记n k 为其“相近”作物恰有k 株的作物株数 k =1,2,3,4 ,则n 1=2,n 2=4,n 3=6,n 4=3.由P X =k =n k N得P X =1 =215, P X =2 =415, P X =3 =615=25, P X =4 =315=15,∴所求的分布列为Y 51484542P2154152515数学期望为E Y =51×2+48×4+45×2+42×1=46.19. (1)∵ABCD −A 1B 1C 1D 1是直棱柱,∴BB 1⊥面 ABCD ,且AC ⊂面 ABCD ,∴BB 1⊥AC . 又∵AC ⊥BD ,且BD ∩BB 1=B ,∴AC ⊥面 BDB 1,∵B 1D ⊂面BDB 1,∴AC ⊥B 1D .(2)∵B 1C 1∥BC ∥AD ,∴直线B 1C 1与平面ACD 1所成的角即直线AD 与平面ACD 1所成的角θ. 如图,以A 为原点,AB ,AD ,AA 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.则A0,0,0,D0,3,0,D10,3,3,设B x,0,0,C x,1,0,则AC=x,1,0,BD=−x,3,0,因为AC⊥BD,所以AC⋅BD=0⇒3−x2+0=0,x>0⇒x= 3.所以AC=3,1,0,AD1=0,3,3.设平面ACD1的法向量为n,则n⋅AC=0,n⋅AD1=0,∴平面ACD1的一个法向量n=1,−3,3,AD=0,3,0,所以sinθ=cos n,AD=37⋅3=21,所以B1C1与平面ACD1所成角的正弦值为217.20. (1)设点P的坐标为x,y.点P到居民区A的“ L路径”长度最小值为x−3+y−20,y≥0,x∈R.(2)点P到A,B,C三点的“ L路径”长度之和的最小值d= +v,其中 表示水平距离之和的最小值,v表示垂直距离之和的最小值,且 和v互不影响.显然当y=1时,v=20+1=21;显然当x∈−10,14时,水平距离之和=x−−10+14−x+x−3 ≥24,且当x=3时, =24.因此,当P3,1时,d=21+24=45.所以,当点P x,y在点P3,1处,点P到A,B,C三点的“ L路径”长度之和d的最小值为45.21. (1)设A x1,y1,B x2,y2,C x3,y3,D x4,y4,M x12,y12,N x34,y34.直线l1的方程为y=k1x+p2,与抛物线E方程联立,化简整理得x2−2pk1x−p2=0,则有x1+x2=2k1p,x1⋅x2=−p2,从而x12=x1+x22=k1p,y12=k12p+p 2 ,所以FM=k1p,k12p.同理可得FN=k2p,k22p.所以FM⋅FN=k1k2p2+k12k22p2=p2k1k2k1k2+1.因为k1>0,k2>0,k1≠k2,所以2=k1+k2>2k1k2,解得k1k2<1,所以FM⋅FN=p2k1k2k1k2+1<p2⋅1⋅1+1=2p2,因此,FM⋅FN<2p2成立.(2)设圆M、N的半径分别为r1、r2,所以r1=12p2+y1+p2+y2=12p+2 k12p+p2=k12p+p,即r1=k12p+p,则圆M的方程为x−pk12+ y−pk12−p2=pk12+p2,化简得x2+y2−2pk1x−p2k12+1y−34p2=0.同理可得圆N的方程为x2+y2−2pk2x−p2k22+1y−3p2=0.于是直线l的方程为k2−k1x+k22−k12y=0,结合k2≠k1,k2+k1=2得直线l的方程为x+2y=0.点M x12,y12到直线l的距离d=x+2y5=p2k2+k+15=p2 k1+12+75则当k1=−14时,d的最大值为85=75,解得p=8.故抛物线的方程为x2=16y.22. (1)当0≤x≤a时,f x=a−xx+2a ;当x>a时,f x=x−ax+2a.因此,当x∈0,a时,fʹx=−3ax+2a2<0,f x在0,a上单调递减;当x∈a,+∞时,fʹx=3ax+2a2>0,f x在a,+∞上单调递增.①当a≥4时,则f x在x∈0,4上单调递减,g a=f0=12.②当0<a<4时,则f x在0,a上单调递减,在a,4上单调递增,所以g a=max f0,f4.而f0−f4=1−4−a=a−1,故当0<a≤1时,g a=f4=4−a4+2a ;当1<a<4时,g a=f0=12.综上所述,g a=4−a,0<a≤1, 12,a>1.(2)由(1)知,当a≥4时,f x在x∈0,4上单调递减,故不满足要求.当0<a<4时,f x在0,a上单调递减,在a,4上单调递增.若存在x1,x2∈0,4x1<x2使曲线y=f x在 x1,f x1, x2,f x2两点处的切线互相垂直,则x1∈0,a,x2∈a,4,且fʹx1⋅fʹx2=−1,即−3a12⋅3a22=−1亦即x1+2a=3ax2+2a. ⋯⋯①由x1∈0,a,x2∈a,4得x1+2a∈2a,3a,3ax2+2a ∈3a4+2a,1.故①成立等价于集合A=x2a<x<3a与集合B= x3a4+2a<x<1的交集非空.因为3a4+2a <3a,所以当且仅当0<2a<1,即0<a<12时,A∩B≠∅.综上所述,存在a使函数f x在区间0,4内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是0,12.。
2013高考真题分类汇编:导数与微分1.【2013湖北】已知a 为常数,函数()()ln f x x x ax =-有两个极值点()1212,x x x x <,则( ) (A )()10f x >,()212f x >- (B )()10f x <,()212f x <- (C )()10f x >,()212f x <- (D )()10f x <, ()212f x >-2.【2013新课标】已知函数()32f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,()00f x = (B )函数()y f x =的图像是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间()0,x -∞上单调递减 (D )若0x 是()f x 的极值点,则()00f x '=3.【2013江西】若22221231111,,x S x dx S dx S e dx x===⎰⎰⎰,则123,,S S S 的大小关系为( ) (A )123S S S << (B )213S S S << (C )231S S S << (D )321S S S <<4.【2013辽宁】设函数()f x 满足()()22xx f x xf x e x '+=,()228f e =,则0x >时,()f x ( ) (A )有极大值,无极小值 (B )有极小值,无极大值(C )既有极大值又有极小值 (D )既无极大值也无极小值5.【2013福建】设函数()f x 的定义域为R ,()000x x ≠是()f x 的极大值点,以下结论一定正确的是( ) (A )x R ∀∈,()()0f x f x ≤ (B )0x -是()f x -的极小值点 (C )0x -是()f x -的极小值点 (D )0x -是()f x --的极小值点6.【2013湖北】一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止。
2013-2017年浙江高考理科数学历年真题之函数与导数大题(教师版)1、(2013年)已知,a R ∈函数32()333 3.f x x x ax a =-+-+(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; ⅠⅠ()当[0,2]x ∈时,求|()|f x 的最大值. (Ⅰ)解:由题意2()363(1)33f x x x a f a ''=--⇒=-因为(1)1,f =故所求切线方程为(33)34y a x a =--+ⅠⅠ()由于2()3(1)3(1),02f x x a x '=-+-≤≤故⑴当0a ≤时,有()0f x '≤,此时()f x 在[0,2]上单调递减,故 max |()|max{|(0)|,|(2)|}33.f x f f a ==-⑵当1,()0,a f x '≥≥时有此时()f x 在[0,2]上单调递增,故 max |()|max{|(0)|,|(2)|}31f x f f a ==-⑶当01a <<时,设1211x x == 121202,()3()().x x f x x x x x '<<<=-- 列表如下:故 1212()()20,()()4(1f x f x f x f x a +=>-=- 从而 12()|()|.f x f x >所以 max 2|()|max{(0),(2),()}.f x f f f x = (i)当203a <<时,(0)|(2)|f f >又 21()(0)2(1(23)0,f x f a a -=--=>故 max 1|()|()12(1f x f x a ==+-(ii)当21,|(2)|(2),(2)(0).3a f f f f ≤<=≥时且 又21()(2)2(1(32)f x f a a -=--=所以①1max 123,()(2),()()12(134a f x f f x f x a ≤<>==+-时故 ②1max 31,()|(2)|,()|(2)|3 1.4a f x f f x f a ≤<≤==-时故 综上所述max 3303|()|12(1043314a a f x a a a a ⎧⎪-≤⎪⎪=+-<<⎨⎪⎪-≥⎪⎩2、(2014年)已知函数()).(33R a a x x x f ∈-+=(Ⅰ)若()x f 在[]1,1-上的最大值和最小值分别记为)(),(a m a M ,求)()(a m a M -;ⅠⅠ()设,R b ∈若()[]42≤+b x f 对[]1,1-∈x 恒成立,求b a +3的取值范围.解析:(I )因为()3333,()33,()x x a x a f x x x a x a ⎧+-≥=⎨-+<⎩,所以()2233,()'33,()x x a f x x x a ⎧+≥=⎨-<⎩,由于11x -≤≤,(i )当1a ≤-时,有x a ≥,故()333f x x x a =+-,此时()x f 在()1,1-上是增函数,因此()()143M a f a ==-,()()143m a f a =-=--,()()()43438M a m a a a -=----=(ii )当11a -<<时,若(),1x a ∈,()333f x x x a =+-,在(),1a 上是增函数,若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,所以()()(){}max 1,1m a f f =-,()()3m a f a a ==,由于()()1162f f a --=-+,因此,当113a -<≤时,()()334M a m a a a -=--+,当113a <<时,()()332M a m a a a -=-++, (iii )当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()x f 在()1,1-上是减函数,因此()()123M a f a =-=+,()()123m a f a ==-+,故()()()23234M a m a a a -=+-+=,综上()()()()338,1134,13132,134,1a a a a M a m a a a a a ≤-⎧⎪⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎪-=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎪≥⎪⎩;(II )令()()h x f x b =+,则()3333,()33,()x x a b x a h x x x a b x a ⎧+-+≥=⎨-++<⎩,()2233,()'33,()x x a h x x x a ⎧+≥=⎨-<⎩,因为()24f x b +≤⎡⎤⎣⎦,对[]1,1-∈x 恒成立,即()22h x -≤≤对[]1,1-∈x 恒成立,所以由(I )知,(i )当1a ≤-时,()h x 在()1,1-上是增函数,()h x 在[]1,1-上的最大值是()143h a b =-+,最小值是()143h a b -=--+,则432a b --+≥-,且432a b -+≤,矛盾;(ii )当113a -<≤时,()h x 在[]1,1-上的最大值是()143h a b =-+,最小值是()3h a a b =+,所以32a b +≥-,432a b -+≤,从而323362a a a b a --+≤+≤-且103a ≤≤,令()323t a a a =--+,则()2'330t a a =->,()t a 在10,3⎛⎫ ⎪⎝⎭上是增函数,故()()02t a t >=-,因此230a b -≤+≤, (iii )当113a <<时,()h x 在[]1,1-上的最大值是()132h ab -=++,最小值是()3h a a b =+,所以32a b +≥-,322a b ++≤,解得283027a b -≤+≤, (iv )当1a ≥时,()h x 在[]1,1-上的最大值是()132h a b -=++,最小值是()123h a b =-++,所以322a b ++≤,232a b -++≥-,解得30a b +=,综上b a +3的取值范围230a b -≤+≤.3、(2015年)已知函数f (x )=x 2+ax +b (a , b ∈R ), 记M (a , b )是|f (x )|在区间[-1,1]上的最大值 (I)证明: 当|a |≥2时, M (a , b )≥2;(II)当a , b 满足M (a , b )≤2, 求|a |+|b |的最大值 解析:(I)∵|a |≥2 ∴|2|a-≥1, 故f (x )在[-1, 1]上为单调函数 ∴M (a , b )=max{|f (-1)|, |f (1)|}=max{|1+b -a |, |1+b +a |}=|1+b |+|a |≥2 (最佳表达式, 重复应用)(II)由(I)知|a |≤2, ∴|2|a -≤1 ∴M (a , b )=max{{|f (-1)|, |f (1)|, f (2a -)} ∴|b |-1+|a |≤|1+b |+|a |=max{|f (-1)|, |f (1)|}≤M (a , b )≤2∴|a |+|b |≤3, 当a = -2, b = -1时, M (a , b )=2, |a |+|b |=3 (每一点的知识都不难, 串起来才难) 因此, |a |+|b |的最大值为3法二: (I)由已知得|f (-1)|≤M (a , b ), |f (1)|≤M (a , b )又f (-1)=1-a +b , f (1)=1+a +b ∴2a =f (1) -f (-1) (隐含着通过函数值反求系数, 常法) ∴4≤2|a |≤|f (1)|+|f (-1)|≤2M (a , b ) ∴M (a , b )≥2 (II)由(I)知a +b =f (1)-1, a -b =1-f (-1)∴|a |+|b |=max{|a +b |, |a -b |}=max{|f (1) -1|, |1- f (-1)|}≤M (a , b )+1≤3当a = -2, b = -1时, f (x )=x 2-2x -1=(x -1)2-2∈[-2, 2], |x |≤1, 此时M (a , b )=2, |a |+|b |=3 因此, |a |+|b |的最大值为34、(2016年)已知3a …,函数{}2()min 21,242F x x x ax a =--+-,其中{}min ,>p,p q,p q q,p q.⎧=⎨⎩…(1)求使得等式2()242F x x ax a =-+-成立的x 的取值范围;(2)(i )求()F x 的最小值()m a ;(ii )求()F x 在区间[]0,6上的最大值()M a . 解析:5、(2017年)已知函数f (x )=(x –2x-1)e -x (x≥12).(1)求f (x )的导函数;(2)求f (x )在区间[12,+∞)上的取值范围.。
2012各地理科数学导数积分解析汇编教师版一、选择题 1. 已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为【解析】选B方法一:()ln(1)()1()010,()00()(0)0xg x x x g x xg x x g x x g x g '=+-⇒=-+''⇒>⇔-<<<⇔>⇒<= 得:0x >或10x -<<均有()0f x < 排除,,A C D 方法二:解答:由0x ≠ 排除D ,当1x e =- 时()()110ln 1112f x e e e==<-+-+- ,排除A ,当11x e=- 时,()110111ln 111f x e ee e===-<⎛⎫--+-+ ⎪⎝⎭ ,排除C ,答案B2.设0,0a b >>( )A .若2223a b a b +=+,则a b >B .若2223a b a b +=+,则a b <C .若2223a b a b -=-,则a b >D .若2223a b a b -=-,则a b <【答案】A【解析】若2223a b a b +=+,必有2222a ba b +>+.构造函数:()22x f x x =+,则()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.3. 设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图 像如题(8)图所示,则下列结论中一定成立的是 ( )A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f 【答案】D【解析】2,10x x <-->,由(1)()0()0x f x f x ''->⇒>,函数()f x 为增;21,10x x -<<->,由(1)()0()0x f x f x ''-<⇒<,函数()f x 为减; 12,10x x <<-<,由(1)()0()0x f x f x ''->⇒<,函数()f x 为减; 2,10x x >-<,由(1)()0()0x f x f x ''-<⇒>,函数()f x 为增.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0,则函数为增,当导函数小于0则函数递减.4. 设函数()xf x xe =,则( )A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点解析:()(1)x f x x e '=+,令()0,f x '=得1x =-,1x <-时,()0f x '<,()xf x xe =为减函数;1x >-时,()0f x '>,()xf x xe =为增函数,所以1x =-为()f x 的极小值点,选D.5. 设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x=-在R 上是增函数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】若函数x a x f =)(在R 上为减函数,则有10<<a .函数3)2()(x a x g -=为增函数,则有02>-a ,所以2<a ,所以“函数xa x f =)(在R 上为减函数”是“函数3)2()(x a x g -=为增函数”的充分不必要条件,选A.6. 已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为( )A .2π5B .43C .32D .π2考点分析:本题考察利用定积分求面积.解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰. 7. 如图所示,在边长为1的正方形OABC 中任取一点P,则点P 恰好取自阴影部分的概率为( )A .14B .15C .16D .17【答案】C【解析】312201211()()13260S x x dx x x S =-=-==⎰ 正阴影,故16P =,答案C【考点定位】本题主要考查几何概型的概率和定积分,考查推理能力、计算求解能力.8. 已知函数33y x x c =-+的图像与x 轴恰有两个公共点,则c = ( )A .2-或2B .9-或3C .1-或1D .3-或1 答案A【命题意图】本试题主要考查了导数在研究三次函数中的极值的运用.要是函数图像与x 轴有两个不同的交点,则需要满足极佳中一个为零即可. 【解析】因为三次函数的图像与x 轴恰有两个公共点,结合该函数的图像,可得极大值或者极小值为零即可满足要求.而2()333()(1)f x x x x '=-=-+,当1x =±时取得极值 由(1)0f =或(1)0f -=可得20c -=或20c +=,即2c =±.二、填空题9. 已知函数)(x f y =的图像是折线段ABC ,若中()()10,0,,5,1,02A B C ⎛⎫⎪⎝⎭函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ .[解析]如图1,⎩⎨⎧≤<-≤≤=1,10100,10)(2121x x x x x f , yB5 y M5 P1-1-y xO11-11-所以⎩⎨⎧≤<+-≤≤==1,10100,10)(212212x x x x x x xf y , 易知,()y xf x =的分段解析式中的两部分抛物线形状完全相同,只是开口方向及顶点位置不同,如图2,封闭图形MNO 与OMP 全等,面积相等,故所求面积即为矩形ODMP 的面积S=155224⨯=. [评注]对于曲边图形,上海现行教材中不出微积分,能用微积分求此面积的考生恐是极少的,而对于极大部分考生,等积变换是唯一的出路.10.设0a >.若曲线y x =与直线,0x a y ==所围成封闭图形的面积为2a ,则a =______.【解析】由已知得223023032|32a a x x S a a====⎰,所以3221=a ,所以94=a .11.计算定积分121(sin )x x dx -+=⎰___________.【解析】23本题考查有关多项式函数,三角函数定积分的应用. 31211111112(sin )cos |cos1cos1333333x x x dx x --⎛⎫-⎛⎫⎛⎫+=-=---=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰. 【点评】这里,许多学生容易把原函数写成3cos 3x x +,主要是把三角函数的导数公式记混而引起的.体现考纲中要求了解定积分的概念.来年需要注意定积分的几何意义求曲面面积等.12.曲线33y x x =-+在点()1,3处的切线方程为___________________.解析:210x y -+=.21|3112x y ='=⨯-=,所以切线方程为()321y x -=-,即210x y -+=.三、解答题13.已知函数()=ln (+)f x x x a -的最小值为0,其中>0a .(Ⅰ)求a 的值;(Ⅱ)若对任意的[0,+)x ∈∞,有2()f x kx ≤成立,求实数k 的最小值; (Ⅲ)证明=12ln (2+1)<221ni n i --∑*()n N ∈. 【命题意图】本试题主要考查导数的运算、利用导数研究函数的单调性、不等式等基础知识,考查函数思想、分类讨论思想、考查综合分析和解决问题的能力.(1)()f x 的定义域为(,)a -+∞()ln()f x x x a =-+11()101x a f x x a a x a x a+-'⇒=-==⇔=->-++ ()01,()01f x x a f x a x a ''>⇔>-<⇔-<<-得:1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔= (2)设22()()ln(1)(0)g x kx f x kx x x x =-=-++≥ 则()0g x ≥在[0,+)x ∈∞上恒成立min ()0(0)g x g ⇔≥=(*)(1)1ln 200g k k =-+≥⇒>1(221)()2111x kx k g x kx x x +-'=-+=++ ①当1210()2k k -<<时,0012()00()(0)02kg x x x g x g k -'≤⇔≤≤=⇒<=与(*)矛盾②当12k ≥时,min ()0()(0)0g x g x g '≥⇒==符合(*) 得:实数k 的最小值为12(3)由(2)得:21ln(1)2x x x -+<对任意的0x >值恒成立取2(1,2,3,,)21x i n i ==- :222[ln(21)ln(21)]21(21)i i i i -+--<-- 当1n =时,2ln32-< 得:=12ln (2+1)<221ni n i --∑ 当2i ≥时,2211(21)2321i i i <---- 得:121[ln(21)ln(21)]2ln 3122121ni i i i n =-++-<-+-<--∑ 【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.14.已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+;(1)求()f x 的解析式及单调区间; (2)若21()2f x x ax b ≥++,求(1)a b +的最大值.【解析】(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+ 令1x =得:(0)1f =1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔=得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增()0(0)0,()0(0)0f x f x f x f x ''''>=⇔><=⇔<得:()f x 的解析式为21()2xf x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++>令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-()00,()0F x x e F x x e ''>⇔<<<⇔>当x e =时,max ()2e F x = 当1,a e b e =-=时,(1)a b +的最大值为2e 15.已知0,a b R >∈,函数()342f x ax bx a b =--+.(Ⅰ)证明:当01x ≤≤时,(ⅰ)函数()f x 的最大值为2a b a -+ (ⅱ)()20f x a b a +-+≥(Ⅱ) 若()11f x -≤≤对[]0,1x ∈恒成立,求a b +的取值范围.【解析】本题主要考察不等式,导数,单调性,线性规划等知识点及综合运用能力.(Ⅰ)(ⅰ)()2122f x ax b '=-.当0b ≤时,()2'1220f x ax b =->在01x ≤≤上恒成立,此时()f x 的最大值为:()1423f a b a b a b =--+=-2a b a =-+ 当0b >时,()2122f x ax b '=-在01x ≤≤ 上的正负性不能判断, 此时()f x 的最大值为:()max 2max{(0)1}max{()3}32b a b af x f f b a a b a b b a ->⎧==--=⎨-<⎩,,(),(),2a b a =-+; 综上所述:函数()f x 在01x ≤≤上的最大值为2a b a -+(ⅱ) 要证()f x 20a b a +-+≥,即证()()2g x f x a b a =-≤-+ 亦即证()g x 在01x ≤≤上的最大值小于(或等于)2a b a -+, ∵()342g x ax bx a b =-++-,∴令()212206bg x ax b x a'=-+=⇒=. 当0b ≤时,()2122g x ax b '=-+0< 在01x ≤≤上恒成立, 此时()g x 的最大值为:()03g a b a b =-<-2a b a =-+; 当0b <时,()2122g x ax b '=-+在01x ≤≤ 上的正负性不能判断,()max max{()1}6bg x g g a=,() 4max{2}36463662bb a b b a a bb a ba b ab a b a =+--⎧≤+-⎪=⎨>⎪-⎩,,,2a b a ≤-+综上所述:函数()g x 在01x ≤≤ 上的最大值小于(或等于)2a b a -+ . 即()f x 20a b a +-+≥在01x ≤≤上恒成立.(Ⅱ)由(Ⅰ)知:函数()f x 在01x ≤≤上的最大值为2a b a -+且函数()f x 在01x ≤≤ 上的最小值比()2a b a --+ 要大. ∵1-≤()f x 1≤对[]0,1x ∈恒成立, ∴21a b a -+≤ 取b 为纵轴,a 为横轴. 则可行域为:21b a b a ≥⎧⎨-≤⎩和231b aa b <⎧⎨-≤⎩,目标函数为z a b =+作图如下:由图易得:当目标函数为z a b =+过()12P , 时,有max 3z =,min 1z =-. ∴所求a b +的取值范围为:[]13-,.【答案】(Ⅰ) 见解析;(Ⅱ) []13-,. 16.设13()ln 1,22f x a x x x =+++其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴.(Ⅰ) 求a 的值;(Ⅱ) 求函数()f x 的极值.【考点定位】本小题主要考查利用导数研究曲线上某点切线方程、函数的最值及其几何意义,两条直线平行的判定等基础知识,考查运算求解能力.解:(1)因()13ln 122f x a x x x =+++,故()21322a f x x x '=-+ 由于曲线()y f x =在点()()1,1f处的切线垂直于y 轴,故该切线斜率为0,即()10f '=,从而13022a -+=,解得1a =- (2)由(1)知()()13ln 1022f x x x x x =-+++>,()222113321222x x f x x x x--'=--+= ()2(31)(1)2x x f x x +-'∴=令()0f x '=,解得1211,3x x ==-(因213x =-不在定义域内,舍去), 当()0,1x ∈时,()0f x '<,故()f x 在()0,1上为减函数; 当()1,x ∈+∞时,()0f x '>,故()f x 在()1,+∞上为增函数; 故()f x 在1x =处取得极小值()13f =.17.设函数()(,,)nn f x x bx cn N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围; (3)在(1)的条件下,设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的零点,判断数列23,,,n x x x 的增减性.解析:(1)1,1b c ==-,2n ≥时,()1nn f x x x =+-∵111()(1)()10222n n n f f =-⨯<,∴()n f x 在1,12⎛⎫⎪⎝⎭内存在零点.又当1,12x ⎛⎫∈ ⎪⎝⎭时,1()10n n f x nx-'=+>∴ ()n f x 在1,12⎛⎫⎪⎝⎭上是单调递增的,所以()n f x 在1,12⎛⎫⎪⎝⎭内存在唯一零点. (2)当2n =时,22()f x x bx c =++对任意12,[1,1]x x ∈-都有2122|()()|4f x f x -≤等价于2()f x 在[1,1]-上最大值与最小值之差4M ≤,据此分类讨论如下:(ⅰ)当||12b>,即||2b >时, 22|(1)(1)|2||4M f f b =--=>,与题设矛盾(ⅱ)当102b-≤-<,即02b <≤时, 222(1)()(1)422b bM f f =---=+≤恒成立(ⅲ)当012b≤≤,即20b -≤≤时,222(1)()(1)422b bM f f =---=-≤恒成立.综上可知,22b -≤≤注:(ⅱ)(ⅲ)也可合并证明如下: 用max{,}a b 表示,a b 中的较大者.当112b-≤≤,即22b -≤≤时, 222max{(1),(1)}()2bM f f f =---22222(1)(1)|(1)(1)|()222f f f f b f -+--=+--21||()4b c b c =++--+2||(1)42b =+≤恒成立 (3)证法一 设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的唯一零点(2)n ≥ ()1n n n n n f x x x =+-,11111()10n n n n n f x x x +++++=+-=,11,12n x +⎛⎫∈ ⎪⎝⎭于是有11111111()0()11()n nn n n n n n n n n n f x f x x x x x f x ++++++++===+-<+-= 又由(1)知()n f x 在1,12⎛⎫⎪⎝⎭上是递增的,故1(2)n n x x n +<≥, 所以,数列23,,,n x x x 是递增数列. 证法二 设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的唯一零点 1111()(1)(1)(111)n n n n n n n f x f x x ++++=+-+- 1110n n n n n n x x x x +=+-<+-=则1()n f x +的零点1n x +在(,1)n x 内,故1(2)n n x x n +<≥, 所以,数列23,,,n x x x 是递增数列.18.已知函数ln ()xx kf x e+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意20,()1x g x e -><+.解析:由f(x) = x e k x +ln 可得=')(x f xexk x ln 1--,而0)1(='f ,即01=-e k ,解得1=k ;(Ⅱ)=')(x f xexx ln 11--,令0)(='x f 可得1=x , 当10<<x 时,0ln 11)(>--='x x x f ;当1>x 时,0ln 11)(<--='x xx f .于是)(x f 在区间)1,0(内为增函数;在),1(+∞内为减函数.(Ⅲ)xx ex x x x e xx x x x g ln )(1ln 11)()(222+--=--+=, (1)当1≥x 时, 0,0,0ln ,0122>>+≥≤-xe x x x x ,210)(-+<≤e x g .(2)当10<<x 时,要证221ln 11)()(-+<--+=e e xx x x x g x. 只需证)ln 1(1112x x e ex x +-+<+-即可设函数)1,0(),ln 1(1)(,1)(∈+-=+=x x x x q ex x p e . 则)1,0(,ln 2)(,0)(∈--='<-='x x x q e xx p x, 则当10<<x 时1)0(1)(=<+=p ex x p e ,令0ln 2)(=--='x x q 解得)1,0(2∈=-ex ,当),0(2-∈e x 时0)(>'x q ;当)1,(2-∈e x 时0)(<'x q , 则当10<<x 时221)()ln 1(1)(--+=≤+-=ee q x x x q ,且0)(>x q ,则≥+-+-)ln 1(112x x e 11122=++--e e ,于是可知当10<<x 时)ln 1(1112x x e ex x +-+<+-成立 综合(1)(2)可知对任意x>0,21)(-+<e x g 恒成立.另证1:设函数)1,0(,1)(∈+=x e x x p e ,则0)(<-='xe xx p , 则当10<<x 时1)0(1)(=<+=p ex x p x ,于是当10<<x 时,要证221)ln 11(ln 11)()(-+<--<--+=e x x x exx x x x g x, 只需证21)ln 11(-+<--e x xx 即可,设)1,0(),ln 1(1)(∈+-=x x x x q ,)ln 1(1)(x x x q +-=', 令0ln 2)(=--='x x q 解得)1,0(2∈=-ex ,当),0(2-∈e x 时0)(>'x q ;当)1,(2-∈e x 时0)(<'x q , 则当10<<x 时221)()ln 1(1)(--+=≤+-=ee q x x x q ,于是可知当10<<x 时221ln 11)(-+<--+e exx x x x成立 综合(1)(2)可知对任意x>0,21)(-+<e x g 恒成立.另证2:根据重要不等式当10<<x 时x x <+)1ln(,即xe x <+1,于是不等式221)ln 11(ln 11)()(-+<--<--+=e x x x exx x x x g x, 设)1,0(),ln 1(1)(∈+-=x x x x q ,)ln 1(1)(x x x q +-=', 令0ln 2)(=--='x x q 解得)1,0(2∈=-ex ,当),0(2-∈e x 时0)(>'x q ;当)1,(2-∈e x 时0)(<'x q , 则当10<<x 时221)()ln 1(1)(--+=≤+-=ee q x x x q ,于是可知当10<<x 时221ln 11)(-+<--+e exx x x x成立. 19.设()ln(1)1(,,,)f x x x ax b a b R a b =+++++∈为常数,曲线()y f x =与直线32y x =在(0,0)点相切. (Ⅰ)求,a b 的值.(Ⅱ)证明:当02x <<时,9()6xf x x <+. 【答案及解析】【点评】本题综合考查导数的概念、几何意义、导数在判断函数单调性与最值中的运用.本题容易忽略函数)(x f 的定义域,根据条件曲线()y f x =与直线32y x =在(0,0)点相切,求出,a b 的值,然后,利用函数的单调性或者均值不等式证明9()6xf x x <+即可.从近几年的高考命题趋势看,此类型题目几乎年年都有涉及,因此,在平时要加强训练.本题属于中档题.20.若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为函数)(x f y =的极值点.已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数. 【答案】解:(1)由32()f x x ax bx =++,得2()32f'x x ax b =++.∵1和1-是函数32()f x x ax bx =++的两个极值点,∴ (1)32=0f'a b =++,(1)32=0f'a b -=-+,解得==3a b -0,. (2)∵ 由(1)得,3()3f x x x =- ,∴()()23()()2=32=12g x f x x x x x '=+-+-+,解得123==1=2x x x -,. ∵当2x <-时,()0g x <';当21<x <-时,()0g x >', ∴=2x -是()g x 的极值点.∵当21<x <-或1x >时,()0g x >',∴ =1x 不是()g x 的极值点. ∴()g x 的极值点是-2.(3)令()=f x t ,则()()h x f t c =-.先讨论关于x 的方程()=f x d 根的情况:[]2, 2d ∈-当=2d 时,由(2 )可知,()=2f x -的两个不同的根为I 和一 2 ,注意到()f x 是奇函数,∴()=2f x 的两个不同的根为一和2.当2d <时,∵(1)=(2)=20f d f d d >----,(1)=(2)=20f d f d d <----- , ∴一2 , -1,1 ,2 都不是()=f x d 的根. 由(1)知()()()=311f'x x x +-.① 当()2x ∈+∞,时,()0f'x > ,于是()f x 是单调增函数,从而()(2)=2f x >f . 此时()=f x d 在()2+∞,无实根. ② 当()1 2x ∈,时.()0f'x >,于是()f x 是单调增函数. 又∵(1)0f d <-,(2)0f d >-,=()y f x d -的图象不间断,∴()=f x d 在(1 , 2 )内有唯一实根.同理,()=f x d 在(一2 ,一I )内有唯一实根.③ 当()11x ∈-,时,()0f'x <,于是()f x 是单调减两数.又∵(1)0f d >--, (1)0f d <-,=()y f x d -的图象不间断, ∴()=f x d 在(一1,1 )内有唯一实根.因此,当=2d 时,()=f x d 有两个不同的根12x x ,满足12=1 =2x x ,;当2d < 时()=f x d 有三个不同的根315x x x ,,,满足2 =3, 4, 5i x <i ,. 现考虑函数()y h x =的零点:( i )当=2c 时,()=f t c 有两个根12t t ,,满足12==2t t 1,.而1()=f x t 有三个不同的根,2()=f x t 有两个不同的根,故()y h x =有5 个零点.( 11 )当2c <时,()=f t c 有三个不同的根345t t t ,,,满足2 =3, 4, 5i t <i ,. 而() =3,() 4, = 5i f x t i 有三个不同的根,故()y h x =有9 个零点.综上所述,当=2c 时,函数()y h x =有 5 个零点;当2c <时,函数()y h x =有9 个零点.【考点】函数的概念和性质,导数的应用.【解析】(1)求出)(x f y =的导数,根据1和1-是函数)(x f y =的两个极值点代入列方程组求解即可.(2)由(1)得,3()3f x x x =-,求出()g x ',令()=0g x ',求解讨论即可.(3)比较复杂,先分=2d 和2d <讨论关于x 的方程()=f x d 根的情况;再考虑函数()y h x =的零点.21.已知函数()f x =axex =-,其中a ≠0.(1) 若对一切x∈R,()f x ≥1恒成立,求a 的取值集合.(2)在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K,问:是否存在()012,x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1axe x =-<,这与题设矛盾,又0a ≠,故0a >.而()1,axf x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a>时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111(ln )ln .f a a a a a=- 于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==--- 令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则 121()12121()()1,ax a x x e x e a x x x x ϕ-⎡⎤=----⎣⎦- 212()21221()()1.ax a x x e x e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1tF t e t =--,则()1tF t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t =,()(0)0,F t F >=即10.te t --> 从而21()21()10a x x e a x x ---->,12()12()10,a x x e a x x ---->又1210,ax e x x >-2210,ax e x x >-所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0,x ϕ=2()0,()ax x a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln,)()ax ax e e x x a a x x -∈-时, 0()f x k '>. 综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x∈R,f(x) ≥1恒成立转化为min ()1f x ≥,从而得出a 的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.22.(Ⅰ)已知函数()(1)(0)r f x rx x r x =-+->,其中r 为有理数,且01r <<. 求()f x 的最小值;(Ⅱ)试用(Ⅰ)的结果证明如下命题:设120,0a a ≥≥,12,b b 为正有理数. 若121b b +=,则12121122b b a a a b a b ≤+; (Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法.....证明你所推广的命题. 注:当α为正有理数时,有求导公式1()x x ααα-'=.考点分析:本题主要考察利用导数求函数的最值,并结合推理,考察数学归纳法,对考生的归纳推理能力有较高要求.解析:(Ⅰ)11()(1)r r f x r rx r x --'=-=-,令()0f x '=,解得1x =.当01x <<时,()0f x '<,所以()f x 在(0,1)内是减函数; 当 1x > 时,()0f x '>,所以()f x 在(1,)+∞内是增函数.故函数()f x 在1x =处取得最小值(1)0f =. (Ⅱ)由(Ⅰ)知,当(0,)x ∈+∞时,有()(1)0f x f ≥=,即(1)r x rx r ≤+- ① 若1a ,2a 中有一个为0,则12121122b b a a a b a b ≤+成立; 若1a ,2a 均不为0,又121b b +=,可得211b b =-,于是 在①中令12a x a =,1r b =,可得1111122()(1)b a ab b a a ≤⋅+-, 即111121121(1)b b a a a b a b -≤+-,亦即12121122b b a a a b a b ≤+.综上,对120,0a a ≥≥,1b ,2b 为正有理数且121b b +=,总有12121122b b a a a b a b ≤+. ② (Ⅲ)(Ⅱ)中命题的推广形式为:设12,,,n a a a 为非负实数,12,,,n b b b 为正有理数.若121n b b b +++= ,则12121122n b b b n n n a a a a b a b a b ≤+++ . ③用数学归纳法证明如下:(1)当1n =时,11b =,有11a a ≤,③成立.(2)假设当n k =时,③成立,即若12,,,k a a a 为非负实数,12,,,k b b b 为正有理数,且121k b b b +++= ,则12121122k b b b k k k a a a a b a b a b ≤+++ .当1n k =+时,已知121,,,,k k a a a a + 为非负实数,121,,,,k k b b b b + 为正有理数, 且1211k k b b b b +++++= ,此时101k b +<<,即110k b +->,于是 111212121121()k k k k b b b b b b b b kk k k a a a aa a a a++++= =12111111111121()kk k k k k b b b b b b b b kk aaaa +++++----+ . 因121111111k k k k b b b b b b ++++++=--- ,由归纳假设可得1211111112k k k k b b b b b b kaaa+++---≤ 1212111111k k k k k b b b a a a b b b +++⋅+⋅++⋅--- 112211k kk a b a b a b b ++++=- , 从而112121k k b b b b k k a a a a ++≤ 1111122111k k b b k k k k a b a b a b a b ++-++⎛⎫+++ ⎪-⎝⎭.又因11(1)1k k b b ++-+=,由②得 1111122111k k b b k k k k a b a b a b a b ++-++⎛⎫+++ ⎪-⎝⎭11221111(1)1k kk k k k a b a b a b b a b b +++++++≤⋅-+-112211k k k k a b a b a b a b ++=++++ ,从而112121k k b b b b k k a a a a ++ 112211k k k k a b a b a b a b ++≤++++ . 故当1n k =+时,③成立.由(1)(2)可知,对一切正整数n ,所推广的命题成立.说明:(Ⅲ)中如果推广形式中指出③式对2n ≥成立,则后续证明中不需讨论1n =的情况.23.(不等式、导数)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B = .(Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点.解析:(Ⅰ)考虑不等式()223160x a x a -++>的解.因为()()()2314263331a a a a ∆=⎡-+⎤-⨯⨯=--⎣⎦,且1a <,所以可分以下三种情况:①当113a <<时,0∆<,此时B =R ,()0,D A ==+∞.②当13a =时,0∆=,此时{}1B x x =≠,()()0,11,D =+∞ .③当13a <时,0∆>,此时()223160x a x a -++=有两根,设为1x 、2x ,且12x x <,则()()()13133314a a a x +---=,()()()23133314a a a x ++--=,于是{}12B x x x x x =<>或.当103a <<时,()123102x x a +=+>,1230x x a =>,所以210x x >>,此时()()120,,D x x =+∞ ;当0a ≤时,1230x x a =≤,所以10x ≤,20x >,此时()2,D x =+∞.综上所述,当113a <<时,()0,D A ==+∞;当13a =时,()()0,11,D =+∞ ;当103a <<时,()()120,,D x x =+∞ ;当0a ≤时,()2,D x =+∞.其中()()()13133314a a a x +---=,()()()23133314a a a x ++--=.(Ⅱ)()()26616f x x a x a '=-++,令()0f x '=可得()()10x a x --=.因为1a <,所以()0f x '=有两根1m a =和21m =,且12m m <.①当113a <<时,()0,D A ==+∞,此时()0f x '=在D 内有两根1m a =和21m =,列表可得x ()0,aa(),1a1 ()1,+∞()f x '+ 0 - 0 + ()f x递增极小值递减极大值递增所以()f x 在D 内有极大值点1,极小值点a . ②当13a =时,()()0,11,D =+∞ ,此时()0f x '=在D 内只有一根113m a ==,列表可得x 10,3⎛⎫ ⎪⎝⎭131,13⎛⎫ ⎪⎝⎭()1,+∞()f x '+ 0 - + ()f x递增极小值递减递增所以()f x 在D 内只有极小值点a ,没有极大值点. ③当103a <<时,()()120,,D x x =+∞ ,此时1201a x x <<<<(可用分析法证明),于是()0f x '=在D 内只有一根1m a =,列表可得x ()0,aa()1,a x()2,x +∞()f x '+ 0 - + ()f x递增极小值递减递增所以()f x 在D 内只有极小值点a ,没有极大值点.④当0a ≤时,()2,D x =+∞,此时21x >,于是()f x '在D 内恒大于0,()f x 在D 内没有极值点.综上所述,当113a <<时,()f x 在D 内有极大值点1,极小值点a ;当103a <≤时,()f x 在D 内只有极小值点a ,没有极大值点.当0a ≤时,()f x 在D 内没有极值点.24.已知函数2()()xf x e ax ex a R =+-∈.(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间; (Ⅱ)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .【考点定位】本题主要考查函数的导数、导数的应用、二次函数的性质、函数的零点等基础知识,考查运算求解能力、抽象与概括的能力、推理与论证的能力,考查数形结合的思想、转化与化归的思想、分类讨论的思想、有限与无限的思想.解:(1)()2xf x e ax e '=+- ,(1)200k f a a '===⇒=,故()xf x e e '=-1x ∴>时,()0f x '>,1x <时,()0f x '<,所以函数()f x 的增区间为(1,)+∞,减区间为(,1)-∞(2)设切点00(,)P x y ,则切线000()()()y f x x x f x '=-+令000()()()()()g x f x f x x x f x '=---,因为只有一个切点,所以函数()g x 就只有一个零点,因为0()0g x =000()()()2()x x g x f x f x e e a x x '''=-=-+-,若0,()0a g x '≥>0()()0g x g x >=,因此有唯一零点,由P 的任意性知0a ≥不合题意若0a <,令00()2()xxh x e e a x x =-+-,则0()0h x =()2x h x e a '=+,存在一个零点(ln(2),(ln 2))P a f a --,使曲线在该点处的切线与曲线只有一个公共点.故a 的取值范围为0a <.25.设函数()cos ,[0,]f x ax x x π=+∈.(1)讨论()f x 的单调性;(2)设()1sin f x x ≤+,求a 的取值范围.【命题意图】本试题考查了导数在研究函数中的运用.第一就是函数中有三角函数,要利用三角函数的有界性,求解单调区间.另外就是运用导数证明不等式问题的构造函数思想的运用.解:()sin f x a x '=-.(Ⅰ)因为[0,]x π∈,所以0sin 1x ≤≤.当1a ≥时,()0f x '≥,()f x 在[0,]x π∈上为单调递增函数; 当0a ≤时,()0f x '≤,()f x 在[0,]x π∈上为单调递减函数;当01a <<时,由()0f x '=得sin x a =,由()0f x '>得0arcsin x a ≤<或arcsin a x ππ-<≤; 由()0f x '<得arcsin arcsin a x a π<<-.所以当01a <<时()f x 在[0,arcsin ]a 和[arcsin ,]a ππ-上为为单调递增函数;在[arcsin ,arcsin ]a a π-上为单调递减函数.(Ⅱ)因为()1sin cos 1sin 1sin cos f x x ax x x ax x x ≤+⇔+≤+⇔≤+- 当0x =时,01sin0cos00≤+-=恒成立 当0x π<≤时,min 1sin cos 1sin cos 1sin cos []x x x xax x x a a x x+-+-≤+-⇔≤⇔≤令1sin cos ()(0)x xg x x xπ+-=<≤,则22(cos sin )1sin cos (1)cos (1)sin 1()x x x x x x x x x g x x x+--+++--'== 又令()(1)cos (1)sin 1c x x x x x =++--,则()cos (1)sin sin (1)cos (sin cos )c x x x x x x x x x x '=-+++-=-+则当3(0,)4x π∈时,sin cos 0x x +>,故()0c x '<,()c x 单调递减 当3(,]4x ππ∈时,sin cos 0x x +<,故()0c x '≥,()c x 单调递增 所以()c x 在(0,]x π∈时有最小值3()214c π=--,而0lim ()(10)cos 0(01)sin 010x c x +→=++--=,lim ()()(1)10x c x c πππ-→==-+-<综上可知(0,]x π∈时,()0()0c x g x '<⇒<,故()g x 在区间(0,]π单调递 所以min 2[()]()g x g ππ==故所求a 的取值范围为2a π≤.另解:由()1sin f x x ≤+恒成立可得2()111f a a πππ≤⇔-≤⇔≤令2()sin (0)2g x x x x ππ=-≤≤,则2()cos g x x π'=-当2(0,arcsin)x π∈时,()0g x '>,当2(arcsin,)2x ππ∈时,()0g x '< 又(0)()02g g π==,所以()0g x ≥,即2sin (0)2x x x ππ≤≤≤故当2a π≤时,有2()cos f x x x π≤+①当02x π≤≤时,2sin x x π≤,cos 1x ≤,所以()1sin f x x ≤+②当2x ππ≤≤时,22()cos 1()sin()1sin 22f x x x x x x ππππ≤+=+---≤+综上可知故所求a 的取值范围为2a π≤.【点评】试题分为两问,题词面比较简单,给出的函数比较新颖,因为里面还有三角函数,这一点对于同学们来说有点难度,不同于平时的练习题,相对来说做得比较少.但是解决的关键还是要看导数的符号,求解单调区间.第二问中,运用构造函数的思想,证明不等式,一直以来是个难点,那么这类问题的关键是找到合适的函数,运用导数证明最值大于或者小于零的问题得到解决.26.已知函数2()1f x ax =+(0a >),3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值;(2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值. 【考点定位】此题应该说是导数题目中较为常规的类型题目,考查的切线、单调性、极值以及最值的问题都是课本中要求的重点内容,也是学生掌握比较好的知识点.解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =, 3()g x x bx =+,则2()=3g x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩.(2) 24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a -<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a --≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 27.设1()(0)x x f x ae b a ae=++>(I)求()f x 在[0,)+∞上的最小值;(II)设曲线()y f x =在点(2,(2))f 的切线方程为32y x =;求,a b 的值. 【解析】(I)设(1)xt e t =≥;则2222111a t y atb y a at at at-'=++⇒=-= ①当1a ≥时,0y '>⇒1y at b at=++在1t ≥上是增函数 得:当1(0)t x ==时,()f x 的最小值为1a b a++②当01a <<时,12y at b b at =++≥+当且仅当11(,ln )xat t e x a a ====-时,()f x 的最小值为2b +(II)11()()x xx x f x ae b f x ae ae ae'=++⇒=-由题意得:2222212(2)333131(2)222f ae b a ae e f ae b ae ⎧⎧=++==⎧⎪⎪⎪⎪⎪⇔⇔⎨⎨⎨'=⎪⎪⎪-==⎩⎪⎪⎩⎩。