高中物理牛顿第二定律教案.doc
- 格式:doc
- 大小:34.51 KB
- 文档页数:5
《牛顿第二定律》第一课时教案隆昌一中刘远乐教学目的:1,总结实验规律,得到牛顿第二定律2,阐述牛顿第二定律的内容和特征3,牛顿第二定律的简单应用及解题思路4,牛顿第二定律的局限性教学类型:新授课(概念教学+规律教学)教学流程: 一,实验回顾1.实验目的:探究加速度与合力、质量的关系2.研究方法:控制变量法(1)质量不变,找加速度与合力的关系(2)合力不变,找加速度与质量的关系3.数据分析:(1)质量不变,改变合力,加速度与合力成正比(2)合力不变,改变质量a.加速度与质量图象未明确显示出关系b.启发:图象形状像双曲线分支,像反比例函数图象c.猜测:加速度和质量可能成反比关系d.做加速度与质量倒数图象,得到加速度与质量倒数成正比结论:合力不变时,加速度与质量成反比二.推导牛顿第二定律1.总结结论:实验结论就是牛顿第二定律的内容。
(1)大量实验说明了加速度与力、质量的正反比关系(2)牛顿第二定律的内容在实验结论基础上增加了方向关系2.整理结论:(1)整理关系:a∝Fm或者F∝ma(2)等式关系:F=kma(3)出现问题:K值不确定给应用造成不便(4)解决问题:为解决不便,也为纪念牛顿贡献,规定力的单位1 N=1 kg·m/s2 K=13.得出结论:国际标准单位制下:F=ma三.生活实例,熟悉牛顿第二定律1.情境一:铅球和篮球的情境分析(1)建立情境:同学抛出的篮球,可以用手接住(2)对比思考:如果抛出的铅球,人要躲闪(3)原因分析:让质量大物体产生相同加速度,需要提供更大的力(4)强化思考:小孩和大人丢铅球距离不同(5)原因分析:同质量的物体,合力大产生的加速度越大2.情境二:超音速车和货力加速分析(1)播放视频:超音速列车40秒内加速到1689km/h,加速度很大(2)学生解决:解决办法:(强大动力,较小质量)(3)对比强化:货车竭尽全力也无法达到超音速车的加速度(4)原因分析:造价低,硬件水平差距太大(动力弱,质量大)四.深入理解牛顿第二定律1.方向关系:矢量性(a和F同向)2.因果关系:(1)提出问题:等式左侧为力,ma的乘积也是力吗(2)引导矛盾:质量和加速度乘积和力是不同的物理量,ma不是力(3)讨论分析:三个物理量的决定关系,因果关系(4)得到结论:表达式中等号表示物理量数值上的因果关系。
高中物理教案:牛顿第二定律的实验验证一、实验简介牛顿第二定律是物理学中非常重要的基本定律之一,也是力学的基础。
通过实验进行的验证能够帮助学生更好地理解和掌握这一定律的概念和实际应用。
二、实验目的本实验旨在验证牛顿第二定律,即物体所受合外力等于物体质量和加速度乘积的关系,加深学生对这一定律的理解,并培养学生的实验操作能力和数据处理能力。
三、实验器材1.小车:一个带有光滑水平轨道的小车,可以通过脉冲法测量小车的加速度。
2.配重盘:用于改变小车的质量。
3.弹簧:用于施加外力于小车上。
四、实验步骤1.准备工作:a.将小车放置在水平轨道上,并保证轨道光滑无阻力。
b.确定小车的初始位置,并保持不动。
c.将配重盘挂在小车上,使得小车的质量增加到所需数值,通过称重器测量质量。
2.实验操作:a.在小车上安装弹簧,保证它能够施加一个合适的外力。
b.从小车的初始位置开始,用手推动小车,使其获得一个初始速度。
c.记录小车在不同位置的加速度数据,以及实际施加在小车上的外力的数值。
d.重复以上操作4-5次,以获得准确的数据。
3.实验数据处理:a.通过脉冲法测量小车的加速度。
根据小车在不同位置的时间间隔和位移计算加速度值。
b.将测得的加速度数据绘制成图表,以直观地分析数据的变化趋势。
c.使用线性回归方法拟合数据,得到斜率k值,代表小车质量与加速度的乘积。
五、实验结果与分析通过实验操作和数据处理,得到了一系列关于小车质量、外力和加速度的数据。
根据线性回归所得的斜率k值,我们可以验证牛顿第二定律。
根据牛顿第二定律公式F=ma,加速度与外力成正比,质量与加速度成反比。
实验结果符合这一理论,可以得出验证牛顿第二定律的结论。
六、实验误差分析实验中可能存在一些误差,导致实验结果与理论值存在一定的偏差。
首先,小车与轨道之间的摩擦力会对测量结果产生一定的影响;其次,测量过程中人为的操作误差也会对数据准确性产生影响;此外,弹簧的弹性系数可能不是完全恒定的,这也会引起一定的误差。
牛顿第二定律的教案示例(之一)一、教学目标1.在学生实验的基础上得出牛顿第二定律,并使学生对牛顿第二定律有初步的理解.2.通过学生分组实验,锻炼学生的动手实验能力.3.渗透科学的发现、分析、研究等方法.二、重点、难点分析1.牛顿第二定律本身是力学的重点内容,所以在学生最初接触这个规律时就应打好基础.2.由于采用新的教学方法,在课堂密度加大的情况下如何完成教学进度,成为教学过程中的一个难点.三、教具1.学生分组实验牛顿第二定律器材.2.计算机及自编软件,电视机.3.投影仪,投影片.四、教学过程引入新课1.复习提问:物体运动状态改变快慢用什么物理量来描述,物体运动状态改变与何因素有关?关系是什么?2.引课提问:物体的加速度与物体所受外力及物体的质量之间是否存在一定的比例关系?如果存在,其关系是什么?请同学猜一猜.我们的猜想是否正确呢,需要用实验来检验.这就是我们这节课所要研究的牛顿第二定律.教学过程1.实验介绍投影:实验装置图讲解:我们用小车作为研究对象,通过在小车上增减砝码可以改变小车质量.在小车上拴一根细线,细线通过定滑轮挂一个小桶,小桶内可以放重物,这时小车受到的拉力大致是小桶及重物的重力,我们可以通过改变小桶内的重物来改变小车受到的拉力.我们研究小车的加速度a与拉力F及小车质量m的关系时,可先保持m一定,研究a与F的关系;再保持F一定,研究a与m的关系.这是物理学中常用的研究方法.下面我们先保持小车质量不变,拉力F取几次不同的数值,测出每一次小车的加速度a,从而研究a与F的关系.提问:如何测出小车的加速度?再追问:测加速度的公式是什么?讲解:怎样才能直观地反映出a与F是否成正比呢?我们可以借助图象:用横轴表示拉力,用纵轴表示加速度,若加速度随拉力的变化图线是一条过原点的直线,就可以说明a与F成正比.我们改变几次拉力的大小,并测出每次拉力所对应的小车加速度,就可以得到几组数据,每组数据对应图象中的一个点,根据这几个点就可以连出加速度随拉力变化的图象,并根据图象作出是否成正比的判断.板图:讲解:在小车运动过程中不可避免的要受到摩擦力的作用,这个摩擦力也会影响到小车的加速度,如何消除摩擦力的影响呢?我们可以把木板的一端垫高,使小车在没有受到拉力时恰能够在木板上做匀速运动,就是用重力的下滑分力与摩擦力平衡,这时再加拉力,小车的加速度就只由拉力而产生了.由于一节课时间有限,所以我们共同完成这个实验:每组只做一个拉力作用下小车产生加速度的情况,但不同的组取的拉力值不同,如第一组拉力为0.1N、第二组拉力为0.2N、第三组拉力为0.3N……而我们所用的小车质量是相同的,这样我们把大家的数据综合起来,就得到质量相同的小车在若干个不同拉力作用下的加速度了.另外为了节约时间,我们采用计算机处理数据.开机并讲解:这个数据处理软件功能是这样的:我们只要把s1、s2、s3、s4、s5、s6及记数点的时间间隔T输入,计算机就会自动算出小车的加速度a,并且根据输入的对应拉力F的数值,作出a随F变化的图线.2.学生实验实验:教师巡视;提问:学生实验数据报出并输入计算机;操作:由数据得出图线;讲解:由实验可知,物体的加速度与所受拉力成正比.板书:a∝F3.实验介绍讲解:下面再保持拉力不变,研究a与m 的关系.刚才我们猜测a与m可能是反比关系,怎样才能从图象上反映a与m是否反比呢?我们可以以1/m为横轴,以a为纵轴,若所得图线为过原点的直线,则表明a与1/m成正比,也就是a与1/m成反比.下面我们仍然分组来进行实验,我们都选拉力为0.1N,通过在小车上增加砝码来改变小车质量,第一组取小车的质量为0.2kg、第二组取小车的质量为0.3kg、第三组取小车的质量为0.4kg……实验数据的处理也与刚才相似,只是此时不再输入拉力,而是输入小车的质量m并自动换算出质量的倒数1/m,并根据几组质量值及对应的加速度作出a随1/m变化的图线.4.学生实验实验:教师巡视;提问:学生实验数据报出并输入计算机;操作:由数据得出图线;讲解:由实验可知,物体的加速度与物体质量成反比.板书:a∝1/m5.结论分析根据实验我们证实了我们的猜想:物体的加速度跟作用力成正比,跟物体质量成反比.这就是著名的牛顿第二定律.板书:物体的加速度跟作用力成正比,跟物体质量成反比.用公式表示为a∝F/mF∝ma若改写为等式,应乘一系数kF=kma如果我们把1牛顿定义为:使质量1千克的物体产生1m/s2加速度的力为1牛顿,这时等式左侧为1,等式右侧为k.也就是说我们采用这种定义方式可以使k=1,此时牛顿第二定律的表达式为板书:F=ma讲解:下面我们对牛顿第二定律进行进一步的讨论:首先我们可以注意刚才小车所受到的拉力,实际是小车所受到的合外力,所以牛顿第二定律中的F应为物体受到的合外力.板书:F为合外力其次我们可以注意到小车的加速度方向与拉力方向是一致的,这就是牛顿第二定律的方向性.板书:a的方向与F一致另外,物体某一时刻的加速度,只由它此刻的受力决定,而与其他时刻的受力无关,这就是牛顿第二定律的即时性.板书:即时性课堂小结:这节课我们通过实验得出了牛顿第二定律,并且对这个规律有了初步的了解.牛顿第二定律是力学中的一个很重要的规律,今后我们还要进一步学习和讨论.五、说明1.设计思路:本节课的设计出发点在于更多地调动学生参与,使其动手动脑,以提高其能力.本节课的关键在于电脑辅助实验数据处理,提高了课堂密度,有可能在一节课内完成讲授与实验.本节课设计时隐含了“假说”——“实验验证”的科学研究方法,电脑辅助实验数据处理,烘托了科学研究气氛.2.本节课学生实验器材即学生分组验证牛顿第二定律器材,电脑软件系自制软件:包括表格和图象,也可以用一些现成的软件如Excel等.。
牛顿第二定律教案牛顿第二定律教案(精选篇1)一、教学目标1、掌握牛顿第二定律的文字内容和数学公式;2、理解公式中各物理量的意义及相互关系3、知道在国际单位制中力的单位“牛顿“是怎样定义的。
二、教学重点1、知道决定物体加速度的因素、2、加速度与力和质量的关系的探究过程三、教学难点1、理解牛顿第二定律各个物理量的意义和联系2、牛顿第二定律的应用四、教学方法在探究过程中,渗透科学研究方法如:控制变量法、实验归纳法、图象法等五、教学过程1、知识回顾物体的运动状态发生变化,即产生加速度。
问学生:加速度的大小与那些因素有关呢?学生回答:力还有物体质量思考:力是促使物体运动状态改变的原因,力似乎“促使”加速度的产生。
质量是物体惯性的`量度,而惯性是保持物体运动状态不变的性质,所以质量似乎是阻碍“加速度”的产生。
猜想:加速度可能与力、质量有关系。
结合实际:小汽车:质量小,惯性小,启动时运动状态相对容易改变。
火车:质量大,惯性大,动力大,启动时运动状态相对难改变。
2、回忆课本所研究的内容(1)、质量m一定,加速度a和力F的关系。
处理数据:得出结论:当m一定时,a和F成正比,即:a FSHAPE MERGEFORMAT(2)、力F一定时,加速度a和质量m的关系SHAPE MERGEFORMAT得出结论:当力F一定,加速度a和质量m成反比,即:a 。
3、引出牛顿第二定律通过大量实验和观察到的事实都能得出同样的结论,由此可以得出一般性的规律:物体加速度的大小跟它所受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同,这就是牛顿第二定律。
牛顿第二定律教案(精选篇2)【教材分析】*教科书将牛顿第二定律的探究实验和公式表达式分成两节内容,目的在于加强实验探究和突出牛顿第二定律在力学中的重要地位。
牛顿第二定律的首要价值应该是确立了力与运动之间的直接关系,即因果关系。
如知道了物体的受力情况,物体的运动状态及其变化就完全确定了。
高中物理第二定律教案
教学目标
1. 理解牛顿第二定律的内容和表达式;
2. 掌握力的测量及单位;
3. 学会应用第二定律解决简单的动力学问题;
4. 培养实验操作能力和科学探究精神。
教学内容
一、牛顿第二定律的概念引入
通过回顾初中所学的力的概念,引导学生思考力和物体运动状态之间的关系。
展示日常生活中的实例,比如推车、拉弓等,让学生直观感受到力的作用效果。
二、牛顿第二定律的公式表述
F=ma,这个简洁的公式蕴含着丰富的物理内涵。
教师应详细解释公式中各个量的物理意义及其相互关系,并通过图表辅助讲解,帮助学生形成清晰的概念图像。
三、力的测量与单位
介绍力的测量工具——弹簧秤的使用方法,以及力的单位“牛顿”的定义。
通过实验演示,让学生观察并记录不同重力下弹簧的伸长情况,加深对力量化描述的理解。
四、第二定律的应用举例
通过具体的例题,如计算摩擦力、空气阻力等,展示如何运用第二定律解决问题。
同时,鼓励学生动手操作,进行小组讨论,以增强实际应用能力。
五、实验探究
设计相关的实验活动,如测定物体的加速度、验证F=ma的关系等,让学生在动手操作中深化对第二定律的认识。
教学方法
- 启发式教学:通过提问激发学生的思考,引导他们自主探索知识点;
- 实验教学:结合实验操作,使学生在实践中学习和体验物理规律;
- 讨论互动:鼓励学生之间的交流与合作,共同解决问题。
教学评价
通过课堂提问、作业布置和小测试等方式,及时了解学生对牛顿第二定律的掌握情况,并给予反馈和指导。
结语。
3.牛顿第二定律一、知识结构二、教学目标1.理解牛顿第二定律,知道牛顿第二定律表达式的确切含义.2.知道在国际单位制中力的单位“牛顿”是怎样定义的.3.会用牛顿第二定律的公式进行计算和处理有关问题三、新知全解知识点一牛顿第二定律1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:(1)比例式:F=kma,式中k是比例系数,F是物体所受的合外力.(2)国际单位制中:F=ma.思考由牛顿第二定律可知无论怎样小的力都可以产生加速度,可是如图所示,小强和小红一起拉车子,无论怎么用力也没拉动,这跟牛顿第二定律矛盾吗?应该怎样解释这个现象?提示:这跟牛顿第二定律不矛盾.物体受多个力作用时,牛顿第二定律中的力F指的是物体所受的合力.牛顿第二定律表达式中F应是物体所受到的合力.如:竖直方向上,小车受到的重力与地面对小车的支持力合力为0,水平方向上小车受到的合力F合=20 N,则小车的加速度由合力20 N来决定,方向沿力F1的方向.知识点二力的单位1.国际单位:牛顿,简称牛,符号为N.一切物体都有惯性B 牛顿第二定律指出物体的加速度与物体所受外力成正比,加速度的方向与合外力的方向一致√C 牛顿第二定律表明外力的作用是物体速度变化的原因,即是产生加速度的原因√D牛顿运动定律只能适用于宏观、低速运动的物体,不能适用于微观高速运动的粒子×【答案】BC训练1(多选)下列对牛顿第二定律的表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m=Fa可知,物体的质量与其所受合力成正比,与其运动的加速度成反比C.由a=Fm可知,物体的加速度与其所受合力成正比,与其质量成反比D.由m=Fa可知,物体的质量可以通过测量它的加速度和它所受到的合力求出解析:牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关;故排除A、B两项,选C、D两项.答案:CD核心二合外力、加速度和速度的关系1.合外力与加速度的关系2.力和运动的关系加速度的方向(或合外力的方向)与运动方向(或速度方向)无关.例2(多选)关于速度、加速度、合力的关系,下列说法正确的是()A.原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同C.在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的D.合力变小,物体的速度一定变小【解析】由牛顿第二定律可知选项A、B正确;初速度为0的匀加速直线运动中,v、a、F三者的方向相同,选项C正确;合力变小,加速度变小,但速度是变大还是变小取决于加速度与速度的方向关系,选项D错误.【答案】ABC训练2原来做匀加速直线运动的物体,当它的合外力逐渐减小时() A.它的加速度将减小,它的速度也减小B.它的加速度将减小,它的速度在增加C.它的加速度和速度都保持不变D.情况复杂,加速度和速度的变化均无法确定解析:物体原来做匀加速直线运动,所以合外力逐渐减小时,加速度也逐渐减小,而速度仍在增加.答案:B核心三牛顿第二定律的应用1.应用牛顿第二定律解题的一般步骤2.合外力的处理方法(1)矢量合成法当物体只受两个力作用时,应用平行四边形定则求出两个力的合力.(2)正交分解法当物体受到三个或三个以上力的作用时,常用正交分解法求物体所受的合力.例3 如图所示,手拉着小车静止在倾角为30°的光滑斜坡上,已知小车的质量为2.6 kg ,求:(1)绳子对小车的拉力; (2)斜面对小车的支持力;(3)如果绳子突然断开,求小车的加速度大小. 【解析】 (1)小车沿斜面方向受力平衡, F 拉=mg sin 30°=2.6×9.8×12 N =12.74 N. (2)小车垂直斜面方向受力平衡, F N =mg cos 30°=2.6×9.8×32 N≈22.07 N.(3)绳子突然断开,沿斜面方向小车受到的合力为mg sin 30°. 由mg sin 30°=ma 得小车的加速度大小 a =g sin 30°=9.8×12m/s 2=4.9 m/s 2.[拓展] 在[例3]中,如果让小车以加速度2 m/s 2 沿斜面向上运动,则需要的拉力为多大?【解析】 以小车为研究对象受力分析如图所示 . 利用正交分解法,由牛顿第二定律得: F -mg sin 30°=ma 所以,需要的拉力为:F =ma +mg sin 30°=2.6×2 N +2.6×9.8×12 N =17.94 N【答案】 17.94 N 斜面模型中加速度的求解 (1)物体A 加速斜向下滑动a =g(sin α-μcos α) ,方向沿斜面向下(2)物体A减速斜向上滑动a=g(sinα+μcosα) ,方向沿斜面向下(3)物体A减速斜向下滑动a=g(μcosα-sinα),方向沿斜面向上训练3如图所示,质量m=10 kg的物体在水平面上向右运动,物体与水平面间的动摩擦因数为0.2,与此同时物体受到一个水平向左的推力F=20 N的作用,g取10 m/s2,则物体的加速度是()A.0B.4 m/s2,水平向右C.4 m/s2,水平向左D.2 m/s2,水平向右解析:取向右为正方向,物体受到的摩擦力F f=-μmg=-0.2×10×10 N=-20 N,由牛顿第二定律得F+F f=ma,解得a=-4 m/s2.答案:C方法技巧(1)物体受三个或三个以上的力的作用做匀变速直线运动时往往利用正交分解法解决问题.(2)正交分解的方法是常用的矢量运算方法,其实质是将复杂的矢量运算转化为简单的代数运算.常见的是沿加速度方向和垂直加速度方向建立坐标系.核心四应用牛顿第二定律求解瞬时加速度1.细线(接触面):形变量极小,可以认为不需要形变恢复时间,在瞬时问题中,弹力能瞬时变化.2.弹簧(橡皮绳):形变量大,形变恢复需要较长时间,在瞬时问题中,认为弹力不变.解题思路:(1)分析悬挂A球的细线剪断前A球和B球的受力情况;(2)分析剪断细线瞬间有哪些力发生了变化;(3)分析剪断细线后A球和B球的受力情况;(4)根据牛顿第二定律列方程求解.例4如图所示,天花板上用细绳吊起两个用轻弹簧相连的质量相同的小球,两小球均保持静止.当突然剪断细绳的瞬间,上面小球A与下面小球B的加速度分别为(以向上为正方向)()A.a1=g a2=g B.a1=2g a2=0C.a1=-2g a2=0 D.a1=0a2=g【解析】分别以A、B为研究对象,分析剪断前和剪断时的受力.剪断前A、B静止,A球受三个力:绳子的拉力F T、重力mg和弹簧力F,B球受两个力:重力mg 和弹簧弹力F′.A球:F T-mg-F=0B球:F′-mg=0F=F′解得F T=2mg,F=mg.剪断瞬间,A球受两个力,因为绳无弹性,剪断瞬间拉力不存在,而弹簧瞬间形状不可改变,弹力不变.如图,A球受重力mg、弹簧的弹力F,同理B球受重力mg和弹力F′.A球:-mg-F=ma1,B球:F′-mg=ma2,解得a1=-2g,a2=0,故C 正确.【答案】 C训练4[2019·厦门高一检测]如图所示,质量为m的光滑小球A被一轻质弹的单位是国际单位时,比例系数k 才为1,故D 正确,A 、B 、C 错误.答案:D2.如图所示,底板光滑的小车上用两个量程为20 N ,完全相同的弹簧测力计甲和乙系住一个质量为1 kg 的物块.在水平地面上,当小车做匀速直线运动时,两弹簧测力计的示数均为10 N ,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8 N ,这时小车运动的加速度大小是( )A .2 m/s 2B .4 m/s 2C .6 m/s 2D .8 m/s 2解析:当弹簧测力计甲的示数变为8 N 时,弹簧测力计乙的示数变为12 N ,这时物块所受的合力为4 N .由牛顿第二定律F =ma 得物块的加速度a =Fm =4 m/s 2,故选项B 正确.答案:B3.(多选)质量为1 kg 的物体受3 N 和4 N 两个共点力的作用,物体的加速度可能是( )A .5 m/s 2B .7 m/s 2C .8 m/s 2D .9 m/s 2解析:当F 1=3 N 和F 2=4 N 的两个力同向时,产生的加速度最大,a max =F 1+F 2m =3+41 m/s 2=7 m/s 2;当F 1与F 2反向时,产生的加速度最小,a min =4-31 m/s 2=1 m/s 2.则a min ≤a ≤a max ,即1 m/s 2≤a ≤7 m/s 2.答案:AB4.一轻弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4 cm ,再将重物向下拉1 cm ,然后放手,则在释放瞬间重物的加速度是(g 取10 m/s 2)( )A .2.5 m/s 2B .7.5 m/s 2C .10 m/s 2D .12.5 m/s 2解析:弹簧伸长量为4 cm 时,重物处于平衡状态,故mg =k Δx 1;再将重物向下拉1 cm ,则弹簧的伸长量变为Δx 2=5 cm ,在重物被释放瞬间,由牛顿第二定律可得k Δx 2-mg =ma ;由以上两式解得a =2.5 m/s 2,故选项A 正确.答案:A5.如图所示,静止在水平地面上的小黄鸭质量m =20 kg ,受到与水平面夹角为53°的斜向上的拉力,小黄鸭开始沿水平地面运动.若拉力F=100 N,小黄鸭与地面的动摩擦因数为0.2,g=10 m/s2,求:(sin53°=0.8,cos53 °=0.6,g =10 m/s2)(1)把小黄鸭看做质点,作出其受力示意图;(2)地面对小黄鸭的支持力;(3)小黄鸭运动的加速度的大小.解析:(1)如图,小黄鸭受到重力、支持力、拉力和摩擦力作用.(2)竖直方向有:F sin53°+F N=mg,解得F N=mg-F sin53°=120 N,方向竖直向上.(3)受到的摩擦力为滑动摩擦力,所以F f=μF N=24 N根据牛顿第二定律得:F cos53°-F f=ma,解得a=1.8 m/s2.答案:(1)见解析图(2)120 N,方向竖直向上(3)1.8 m/s26、(2019·成都高一检测)如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,则小球受到细线的拉力F T和斜面的支持力F N分别为(重力加速度为g)()A.F T=m(g sin θ+a cos θ)F N=m(g cos θ-a sin θ)B.F T=m(g cos θ+a sin θ)F N=m(g sin θ-a cos θ)C.F T=m(a cos θ-g sin θ)F N=m(g cos θ+a sin θ)D.F T=m(a sin θ-g cos θ)F N=m(g sin θ+a cos θ)解析:选A.以平行斜面方向为x 轴、垂直斜面方向为y 轴建立坐标系,分解a ,则a x =a cos θ,a y =a sin θ,则x 方向上有F T -mg sin θ=ma x ,解得F T =m (g sin θ+a cos θ),y 方向上有mg cos θ-F N =ma y ,解得F N =m (g cos θ-a sin θ),故A 正确.7、(2019·河南焦作高一测试)如图所示,在倾角θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m ,物块A静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起但A ,B 之间无弹力,已知重力加速度为g ,某时刻将细线剪断,则在细线剪断瞬间,下列说法正确的是( )A .物块B 的加速度为g 2 B .物块A 、B 间的弹力为mg 2C .弹簧的弹力为mg 3D .物块A 的加速度为g 3解析:选D.剪断细绳前,弹簧的弹力:F 弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,F 弹=12mg ,故C 错误; 剪断细线瞬间,对A 、B 系统,加速度a =3mg sin 30°-F 弹3m=13g ,故A 错误,D 正确;对B ,由牛顿第二定律得:2mg sin 30°-N =2ma ,解得:N =13mg ,故B 错误.8、(多选)半圆形光滑圆槽内放一质量为m 的小球,今用外力拉着圆槽在水平面上匀加速运动,稳定后小球位置如图所示,则小球受圆槽的支持力F N 和加速度a 为( )A .F N =32mgB .F N =233mgC .a =12gD .a =33g解析:选BD.小球受力如图,由牛顿第二定律得:F 合=mg ·tan 30°=ma ,a =g tan 30°=33g ,F N=mgcos 30°=233mg.故B、D正确.9、如图所示,质量为4 kg的物体静止于水平面上.现用大小为40 N、与水平方向夹角为37°的斜向上的力拉物体,使物体沿水平面做匀加速运动(g取10 m/s2,sin 37°=0.6,cos 37°=0.8).(1)若水平面光滑,物体的加速度是多大?(2)若物体与水平面间的动摩擦因数为0.5,物体的加速度是多大?解析:(1)水平面光滑时物体的受力情况如图甲所示,由牛顿第二定律有F cos 37°=ma1,解得a1=8 m/s2.甲乙(2)水平面不光滑时,物体的受力情况如图乙所示,F cos 37°-F f=ma2,F′N+F sin 37°=mg,F f=μF′N,解得a2=6 m/s2.答案:(1)8 m/s2(2)6 m/s2。
高中物理牛顿第二定律教案5篇通过教案能够为教师提供丰富的教学资源和参考资料,教师若希望在教学中脱颖而出,应高度重视教案的撰写和规划,以下是本店铺精心为您推荐的高中物理牛顿第二定律教案5篇,供大家参考。
高中物理牛顿第二定律教案篇1【教材地位与作用】本节内容是在上节实验课程探究加速度、质量与力的关系的基础上进行知识的探究和总结,在知识上要求知道决定加速度的因素、理解加速度、质量、力三者关系;要求经历探究活动、尝试解决问题方法、体验发现规律过程。
牛顿第二定律将力学和运动学有机地结合在一起,具体的、定量的回答了加速度和力、质量的关系,是动力学中的核心内容,是本章的重点内容。
【学情分析】在学习这一节内容之前,学生已经掌握了力、质量、加速度、惯性等概念;知道质量是惯性的量度、力是改变物体运动状态的原因;会分析物体的受力;通过上一节探究加速度与力、质量的关系,知道了加速度与力、质量的关系。
这些都为本节学习准备了知识基础,牛顿第二定律通过加速度把物体的运动和受力紧密的联系在一起,使前三章构成一个整体,是解决力学问题的重要工具,应使学生明确对于牛顿第二定律应深入理解,全面掌握。
【教学目标】1、知识目标(1)理解加速度与力和质量间的关系。
(2)理解牛顿第二定律的内容,知道定律的确切含义。
(3)能运用牛顿第二定律解答有关问题。
2、能力目标培养学生的分析能力、归纳能力、解决问题的能力。
3、德育目标(1)渗透物理学研究方法的教育。
(2)认识到由实验归纳总结物理规律是物理学研究的重要方法。
(3)培养学生严谨思考的能力,激发学生学习物理的兴趣。
【教学重点】理解牛顿第二定律【教学难点】牛顿第二定律的应用【教学策略】回顾与思考→创设物理情景→分组讨论→老师讲解→总结规律。
【教学流程图】【教学过程设计】教学环节和教学内容教师活动学生活动设计意图【知识回顾】回忆上节课探究的a与f、m关系。
向学生提问:回忆上节实验探究课内容,控制变量法的应用?我们研究了哪几个物理量?它们之间有什么关系?能用公式反应他们之间的关系吗?回忆上节课知识,集体回答。
牛顿第二定律教案(优秀3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!牛顿第二定律教案(优秀3篇)作为一名为他人授业解惑的教育工作者,编写教案是必不可少的,借助教案可以有效提升自己的教学能力。
牛顿第二定律教案教案标题:牛顿第二定律教案教案目标:1. 理解牛顿第二定律的概念和公式。
2. 能够运用牛顿第二定律解决与力、质量和加速度相关的物理问题。
3. 培养学生的实验设计和数据分析能力。
教学时长:2个课时教学内容:1. 牛顿第二定律的概念和公式a. 介绍牛顿第二定律的基本概念:力、质量和加速度的关系。
b. 引导学生理解牛顿第二定律的公式:F = ma。
c. 解释公式中的各个变量的含义和单位。
2. 牛顿第二定律的应用a. 给出一些实际生活中的例子,说明牛顿第二定律的应用。
b. 提供一些力、质量和加速度相关的物理问题,并引导学生运用牛顿第二定律解决这些问题。
c. 鼓励学生在解决问题时进行实验设计和数据分析,培养他们的科学思维和实践能力。
教学步骤:第一课时:1. 引入牛顿第二定律的概念和公式,通过实例让学生理解其基本原理。
2. 解释公式中的各个变量的含义和单位,并进行示范计算练习。
3. 提供一些力、质量和加速度相关的问题,让学生运用牛顿第二定律解决,并进行讨论和解答。
第二课时:1. 回顾上节课的内容,巩固学生对牛顿第二定律的理解。
2. 提供更复杂的问题,引导学生进行实验设计和数据分析,运用牛顿第二定律解决问题。
3. 学生展示实验结果和分析过程,进行讨论和评价。
教学资源:1. 牛顿第二定律的教学PPT或白板笔记。
2. 实例和问题的教学材料。
3. 实验器材和材料,如弹簧测力计、小车、不同质量的物体等。
教学评估:1. 课堂练习:在课堂上进行力、质量和加速度相关问题的练习,检查学生对牛顿第二定律的理解和应用能力。
2. 实验报告:要求学生进行实验设计和数据分析,并撰写实验报告,评估他们的实践能力和科学思维。
教学扩展:1. 鼓励学生进行更复杂的实验设计,探究其他与牛顿第二定律相关的问题,如摩擦力、斜面上的运动等。
2. 引导学生研究牛顿第二定律在不同场景中的应用,如航天器的发射、汽车的制动等。
希望这个教案能够对你有所帮助,如有需要,还可以提供更详细的教学资源和评估方式。
高考物理一轮复习牛顿第二定律教学案一.考点整理基本规律1.牛顿第二定律:物体加速度的大小跟作用力成,跟物体的质量成.加速度的方向与作用力方向.①表达式:F= .②适用范围:只适用于参考系(相对地面静止或匀速直线运动的参考系);只适用于物体(相对于分子、原子)、运动(远小于光速)的情况.2.单位制:①力学单位制:单位制由基本单位和导出单位共同组成.②力学中的基本单位:力学单位制中的基本单位有(kg)、______(m)和(s).③导出单位:导出单位有N、m/s、m/s2等.3.牛顿运动定律的应用:两类基本问题,即由受力情况分析判断物体的运动情况;由运动情况分析判断物体的受力情况,关系如图.二.思考与练习思维启动1.关于力和运动的关系,下列说法正确的是()A.物体的速度不断增大,表示物体必受力的作用B.物体的位移不断增大,表示物体必受力的作用C.若物体的位移与时间的平方成正比,表示物体必受力的作用D.物体的速率不变,则其所受合力必为02.在牛顿第二定律公式F = kma中,比例系数k的数值()A.在任何情况下都等于1B.是由质量m、加速度a和力F三者的大小所决定的C.是由质量m、加速度a和力F三者的单位所决定的D.在国际单位制中一定等于13.楼梯口一倾斜的天花板与水平面成θ = 37°角,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F = 10 N,刷子的质量为m = 0.5 kg,刷子可视为质点,刷子与天花板间的动摩擦因数μ= 0.5,天花板长为L= 4 m.sin 37°= 0.6,cos 37°= 0.8,g取10 m/s2.试求:⑴ 刷子沿天花板向上的加速度;⑵ 工人把刷子从天花板底端推到顶端所用的时间.三.考点分类探讨典型问题〖考点1〗对牛顿第二定律的理解【例1】如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1 = a2 = a3 = a4 = 0 B.a1 = a2 = a3 = a4 = gC.a1 = a2 = g,a3 = 0,a4 = (m + M)g/M D.a1 = g,a2 = (m + M)g/M,a3 = 0,a4 = (m + M)g/M 【变式跟踪1】如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为()A.0 B.233g C.g D.33g〖考点2〗整体法、隔离法的灵活应用【例2】如图所示,一夹子夹住木块,在力F作用下向上提升.夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦力均为f.若木块不滑动,力F的最大值是()A.2f(m+M)/M B.2f(m+M)/mC.2f(m+M)/M– (m + M)g D.2f(m+M)/M + (m+M)g【变式跟踪2】如图所示,50个大小相同、质量均为m的小物块,在平行于斜面向上的恒力F作用下一起沿斜面向上运动.已知斜面足够长,倾角为30°,各物块与斜面的动摩擦因数相同,重力加速度为g,则第3个小物块对第2个小物块的作用力大小为()A.F/25 B.24F/25C.24mg + F/2 D.因为动摩擦因数未知,所以不能确定〖考点3〗动力学的两类基本问题【例3】为了研究鱼所受水的阻力与其形状的关系.小明同学用石蜡做成两条质量均为m、形状不同的“A鱼”和“B鱼”,如图所示.在高出水面H处分别静止释放“A鱼”和“B鱼”,“A鱼”竖直下潜h A后速度减为零,“B鱼””竖直下潜h B后速度减为零.“鱼”在水中运动时,除受重力外,还受浮力和水的阻力.已知“鱼”在水中所受浮力是其重力的10/9倍,重力加速度为g,“鱼”运动的位移值远大于“鱼”的长度.假设“鱼”运动时所受水的阻力恒定,空气阻力不计.求:⑴“A鱼”入水瞬间的速度v A1;⑵“A鱼”在水中运动时所受阻力f A;⑶“A鱼”与“B鱼”在水中运动时所受阻力之比f A∶f B.【变式跟踪3】质量为10 kg的物体在F = 200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ = 37°,如图所示.力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移x(已知sin 37° = 0.6,cos 37° = 0.8,g = 10 m/s2).四.考题再练高考试题1.【2012·安徽卷】如图所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则()A.物块可能匀速下滑 B.物块仍以加速度a匀加速下滑C.物块将以大于a的加速度匀加速下滑 D.物块将以小于a的加速度匀加速下滑【预测1】如图所示,质量分别为m和2m的两个小球置于光滑水平面上,且固定在一轻质弹簧的两端,已知弹簧的原长为L,劲度系数为k.现沿弹簧轴线方向在质量为2m的小球上有一水平拉力F,使两球一起做匀加速运动,则此时两球间的距离为()A.F3kB.F2kC.L +F3kD.L +F2k2.【2013广东高考】.如图所示,游乐场中,从高处A到水面B处有两条长度相同的光滑轨道.甲、乙两小孩沿不同轨道同时从A处自由滑向B处,下列说法正确的有()A.甲的切向加速度始终比乙的大 B.甲、乙在同一高度的速度大小相等C.甲、乙在同一时刻总能到达同一高度 D.甲比乙先到达B处【预测2】如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1 B.1∶1 C.3∶1 D.1∶ 33.【2013江苏高考】如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.⑴当纸板相对砝码运动时,求纸板所受摩擦力的大小;⑵要使纸板相对砝码运动,,求需所拉力的大小;⑶本实验中,m1 = 0. 5 kg、m2 = 0. 1 kg,μ= 0. 2,砝码与纸板左端的距离d = 0. 1 m,取g =10m/ s2.若砝码移动的距离超过l = 0. 002 m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大? 【预测3】如图所示,光滑水平桌面上的布带上静止放着一质量为m = 1.0 kg的小铁块,它离布带右端的距离为L= 0.5 m,铁块与布带间动摩擦因数为μ= 0.1.现用力从静止开始向左以a0= 2 m/s2的加速度将布带从铁块下抽出,假设铁块大小不计,铁块不滚动,g取10 m/s2,求:⑴将布带从铁块下抽出需要多长时间?⑵铁块离开布带时的速度大小是多少?4.【2013安徽高考】如图所示,质量为M、倾角为α的斜面体(斜面光滑且足够长)放在粗糙的水平地面上,底部与地面的动摩擦因数为μ,斜面顶端与劲度系数为k、自然长度为l的轻质弹簧相连,弹簧的另一端连接着质量为m的物块.压缩弹簧使其长度为 0.75l时将物块由静止开始释放,且物块在以后的运动中,斜面体始终处于静止状态.重力加速度为g.⑴求物块处于平衡位置时弹簧的长度;⑵选物块的平衡位置为坐标原点,沿斜面向下为正方向建立坐标轴,用x表示物块相对于平衡位置的位移,证明物块做简谐运动;⑶求弹簧的最大伸长量;⑷为使斜面始终处于静止状态,动摩擦因数 应满足什么条件(假设滑动摩擦力等于最大静摩擦力)?mαM【预测4】如图(a )所示,“”形木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 与水平面夹角为θ = 37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b ))所示.已知sin 37° = 0.6,cos 37° =0.8,g 取10 m/s 2.求: ⑴ 斜面BC 的长度; ⑵ 滑块的质量;⑶ 运动过程中滑块发生的位移.五.课堂演练 自我提升1.根据牛顿第二定律,下列叙述正确的是 ( ) A .物体加速度的大小跟它的质量和速度大小的乘积成反比 B .物体所受合力必须达到一定值时,才能使物体产生加速度 C .物体加速度的大小跟它所受作用力中的任一个的大小成正比D .当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比 2.如图所示,一木块在光滑水平面上受一恒力F 作用而运动,前方固定一个弹簧,当木块接触弹簧后 ( ) A .将立即做变减速运动 B .将立即做匀减速运动C .在一段时间内仍然做加速运动,速度继续增大D .在弹簧处于最大压缩量时,物体的加速度为零3.质量为1 kg 的质点,受水平恒力作用,由静止开始做匀加速直线运动,它在t s 内的位移为x m ,则F 的大小为(单位为N ) ( )A .2x t 2B .2x 2t -1C .2x 2t +1D .2x t -14.一个原来静止的物体,质量是7 kg ,在14 N 的恒力作用下,则5 s 末的速度及5 s 内通过的路程为( )A .8 m/s 25 mB .2 m/s 25 mC .10 m/s 25 mD .10 m/s 12.5 m5.如图所示,A 、B 为两个质量相等的小球,由细线相连,再用轻质弹簧悬挂起来,在A 、B 间细线烧断后的瞬间,A 、B 的加速度分别是 ( )A .A 、B 的加速度大小均为g ,方向都竖直向下B .A 的加速度为0,B 的加速度大小为g 、竖直向下C .A 的加速度大小为g 、竖直向上,B 的加速度大小为g 、竖直向下D .A 的加速度大于g 、竖直向上,B 的加速度大小为g 、竖直向下6.如图所示,水平面上质量均为4 kg 的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做加速度为5 m/s 2的匀加速直线运动.选定A 的起始位置为坐标原点,g = 10 m/s 2,从力F 刚作用在木块A 的瞬间到B 刚好离开地面这个过程中,力F 与木块A 的位移x 之间关系图象正确的是 ( )7.如图所示,物块a 放在竖直放置的轻弹簧上,物块b 放在物块a 上静止不动.当用力F 使物块b 竖直向上做匀加速直线运动时,在下面所给的四个图象中,能反映物块b 脱离物块a 前的过程中力F 随时间t 变化规律的是 ( )8.物体由静止开始做直线运动,则上下两图对应关系正确的是(图中F 表示物体所受的合力,a 表示物体的加速度,v 表示物体的速度) ( )9.如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为 ( )A .α = θB .α = θ2C .α = θ3 D .α = 2θ10.质量均为m 的A 、B 两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A紧靠墙壁,如图所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间 ( ) A .A 球的加速度为 F /2m B .A 球的加速度为零 C .B 球的加速度为F /2m D .B 球的加速度为F /m11.如图所示,位于竖直平面内的固定光滑圆轨道与水平轨道面相切于M 点,与竖直墙相切于A 点,竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆轨道的圆心.已知在同一时刻,a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道运动到M 点;c 球由C 点自由下落到M 点.则 ( ) A .a 球最先到达M 点 B .b 球最先到达M 点C .c 球最先到达M 点D .c 、a 、b 三球依次先后到达M 点12.一物体重为50 N ,与水平桌面间的动摩擦因数为0.2,现加上如图所示的水平力F 1和F 2,若F 2 = 15 N 时物体做匀加速直线运动,则F 1的值可能是(g =10 m/s 2) ( ) A .3 N B .25 N C .30 N D .50 N13.受水平外力F 作用的物体,在粗糙水平面上做直线运动,其v – t 图线如图所示,则 ( ) A .在0~t 1时间内,外力F 大小不断增大 B .在t 1时刻,外力F 为零C .在t 1~t 2时间内,外力F 大小可能不断减小D .在t 1~t 2时间内,外力F 大小可能先减小后增大14.用一水平力F 拉静止在水平面上的物体,在F 从0开始逐渐增大的过程中,加速度a 随外力F 变化的图象如图所示,g = 10 m/s 2,则可以计算出 ( ) A .物体与水平面间的最大静摩擦力 B .F 为14 N 时物体的速度C .物体与水平面间的动摩擦因数D .物体的质量15.某同学为了探究物体与斜面间的动摩擦因数进行了如下实验,取一质量为m 的物体使其在沿斜面方向的推力作用下向上运动,如图甲所示,通过力传感器得到推力随时间变化的规律如图乙所示,通过频闪照相处理后得出速度随时间变化的规律如图丙所示,若已知斜面的倾角α = 30°,取重力加速度g = 10 m/s 2,则由此可得 ( ) A .物体的质量为3 kgB .物体与斜面间的动摩擦因数为39C .撤去推力F 后,物体将做匀减速运动,最后可以静止在斜面上D .撤去推力F 后,物体下滑时的加速度为103m/s 216.一辆质量为1.0×103 kg 的汽车,经过10 s 由静止加速到速度为108 km/h 后匀速前进.求:⑴ 汽车受到的合力大小;⑵ 如果关闭汽车发动机油门并刹车,设汽车受到的阻力为6.0×103 N,求汽车由108 km/h 到停下来所用的时间和所通过的路程.17.静止在水平面上的A 、B 两个物体通过一根拉直的轻绳相连,如图,轻绳长L = 1 m ,承受的最大拉力为8 N ,A 的质量m 1 = 2 kg ,B 的质量m 2 = 8 kg ,A 、B 与水平面间的动摩擦因数μ = 0.2,现用一逐渐增大的水平力F 作用在B 上,使A 、B 向右运动,当F 增大到某一值时,轻绳刚好被拉断(g = 10 m/s 2).⑴ 求绳刚被拉断时F 的大小;⑵ 若绳刚被拉断时,A 、B 的速度为2 m/s ,保持此时的F 大小不变,当A 静止时,A 、B 间的距离为多少?18.质量为0.3 kg 的物体在水平面上做直线运动,图中a 、b 直线分别表示物体受水平拉力和不受水平拉力时的v – t 图象,取g = 10 m/s 2.求: ⑴ 物体受滑动摩擦力多大? ⑵ 水平拉力多大?19.如图所示,倾角为37°,长为l = 16 m 的传送带,转动速度为v = 10 m/s ,动摩擦因数μ = 0.5,在传送带顶端A 处无初速度地释放一个质量为m = 0.5 kg 的物体.已知sin 37° = 0.6,cos 37°= 0.8,g = 10 m/s 2.求:⑴ 传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; ⑵ 传送带逆时针转动时,物体从顶端A 滑到底端B 的时间.参考答案:一.考点整理基本规律1.正比反比相同ma惯性宏观低速2.千克米秒二.思考与练习思维启动1.AC;物体的速度不断增大,一定有加速度,由牛顿第二定律知,物体所受合力一定不为0,物体必受力的作用,A正确;位移与运动时间的平方成正比,说明物体做匀加速直线运动,合力不为0,C正确;做匀速直线运动的物体的位移也是逐渐增大的,但其所受合力为0,故B错误;当物体的速率不变,速度的方向变化时,物体具有加速度,合力不为0,D错误.2.CD;物理公式在确定物理量的数量关系的同时也确定了物理量单位的关系.牛顿第二定律的公式F= ma 是根据实验结论导出的,其过程简要如下:实验结论1:a∝F;实验结论2:a∝m-1;综合两个结论,得a∝F/m或F ∝ma.式子写成等式为F = kma,其中k为比例常数.如果选用合适的单位,可使k= 1.为此,对力的单位“N”做了定义:使质量是1 kg的物体产生1 m/s2的加速度的力,叫做1 N,即1 N = 1 kg·m/s2.据此,公式F = kma中,如果各物理量都用国际单位(即F用N作单位、m用kg作单位、a用m/s2作单位),则k = 1.由此可见,公式F = kma中的比例常数k的数值,是由质量m、加速度a和力F三者的单位所决定的,在国际单位制中k = 1,并不是在任何情况下k都等于1,故选项A、B错,选项C、D正确.3.答案⑴2 m/s2⑵2 s⑴刷子受力如图所示,对刷子沿斜面方向由牛顿第二定律得:F sinθ–mg sinθ–F f = ma垂直斜面方向上受力平衡,有:F cos θ = mg cosθ + F N其中F f = μF N由以上三式得:a = 2 m/s2.⑵由L = at2/2得:t = 2 s.三.考点分类探讨典型问题例1 C;在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a1 = a2 = g;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对3向上的弹力大小和对物块4向下的弹力大小仍为mg,因此物块3满足mg = F,a3 = 0;由牛顿第二定律得物块4满足a4 = (F + Mg)/M = (M + m)g/M,所以C对.变式1 B;平衡时,小球受到三个力:重力mg、木板AB的支持力F N和弹簧拉力F T,受力情况如图所示.突然撤离木板时,F N突然消失而其他力不变,因此F T与重力mg的合力F =mgcos 30°=233mg,产生的加速度a =Fm=233g,B正确.例2 A;对木块M,受到两个静摩擦力f和重力Mg三个力而向上运动,由牛顿第二定律得木块不滑动的最大加速度大小为a m = (2f–Mg)/M①对整体,受到两个力,即力F和整体重力(m + M)g,由牛顿第二定律得F–(m+ M)g= (m+ M)a ②代入最大加速度即得力F的最大值F m= 2f(m+ M)/M,A项正确.变式 2 B;设题中50个小物块组成的整体沿斜面向上的加速度大小为a,由牛顿第二定律可得F–50μmg cos30°–50mg sin30° = 50ma;从整体中将第3、4、…、50共48个小物块隔离出来进行受力分析,设第2个小物块对第3个小物块的作用力大小为F N,由牛顿第二定律得F N–48μmg cos30°– 48mgsin30° = 48ma;联立以上两式解得F N= 24F/25,由牛顿第三定律可知,第3个小块对第2个小物块作用力大小为24F/25,故选项B正确.例3 ⑴“A鱼”在入水前做自由落体运动,有v A12– 0 = 2gH①得:v A1 = 2gH ②⑵“A鱼”在水中运动时受重力、浮力和阻力的作用,做匀减速运动,设加速度为a A,有F浮 + f A-mg = ma A③0 - v A12 = – 2 a A h A④由题意:F浮 = 10mg/9 由②③④式得f A = mg(H/h A– 1/9) ⑤⑶考虑到“B鱼”的受力、运动情况与“A鱼”相似,有f B = mg(H/h B– 1/9) ⑥综合⑤、⑥两式,得f A:f B = h B(9H - h A)/[h A(9H - h B)].变式3设力F作用时物体沿斜面上升的加速度大小为a1,撤去力F后其加速度大小变为a2,则:a1t1= a2t2①有力F作用时,对物体受力分析并建立直角坐标系如图所示.由牛顿第二定律可得:F cosθ–mg sinθ–F f1 = ma1②F f1 = μF N1 = μ(mg cos θ + F sin θ) ③撤去力F后,对物体受力分析如图所示.由牛顿第二定律得:–mg sinθ–F f2= –ma2④F f2= μF N2= μm gcosθ⑤联立①②③④⑤式,代入数据得:a2 = 8 m/s2,a1 = 5 m/s2,μ = 0.25,物体运动的总位移x = a1t12/2 + a2t22/2 = 16.25 m..四.考题再练高考试题1.C;设斜面的倾角为θ,根据牛顿第二定律,知物块沿斜面加速下滑时的加速度a = g(sinθ–μcosθ) > 0,即μ< tanθ.对物块施加竖直向下的压力F后,物块的加速度a′= [(mg+ F)sinθ–μ(mg + F)cosθ]/m = a + (F sinθ–μF cosθ)/m,且F sinθ–μF cosθ> 0,故a′ > a,物块将以大于a的加速度匀加速下滑.故选项C正确,选项A、B、D错误.预测 1 C;两个小球一起做匀加速直线运动,加速度相等,对系统进行受力分析,由牛顿第二定律可得:F = (m + 2m)a,对质量为m的小球水平方向受力分析,由牛顿第二定律和胡克定律,可得:kx = ma,则此时两球间的距离为L +F3k,C正确.2.BD预测2 B;由“等时圆”模型结论有:t AP = t CP =2Rg,t PB = t PD=2rg,所以t1 = t AP + t PB,t2 = t CP + t PB,知t1 = t2,B项正确.3.⑴砝码对纸板的摩擦力f1 = μm1g桌面对纸板的摩擦力f2 = μ(m1 + m2)g f = f1 + f2,解得f =μ(2m1 + m2)g.⑵设砝码的加速度为a1,纸板的加速度为a2,则f1= m1a1F–f1–f2= m2a2发生相对运动a2>a1解得F > 2μ(m1 + m2)g.⑶纸抽出前,砝码运动的距离x1 = a1t12/2 纸板运动的距离d + x1 = a2t12/2 纸板抽出后,砝码在桌面上运动的距离x2 = a3t22/2 l = x1 + x2由题意知a1 = a3、a1t1 = a3t3解得F = 2μ[m1 +(1 + d/l)m2]g代入数据解得F = 22.4N预测3 ⑴设铁块离开布带时,相对桌面移动的距离为x,布带移动的距离为L + x,铁块滑动的加速度为a,由牛顿第二定律得:μmg= ma,a= μg= 1 m/s2,根据运动学公式有:L+x= a0t2/2,x = at2/2,解得:t =2La0-μg= 1 s.⑵由v = v0 + at得铁块速度v = 1×1 m/s = 1 m/s.4.⑴设物块在斜面上平衡时,弹簧的伸长量为ΔL,有mg sinα–kΔL = 0解得ΔL = (mg sinα)/k此时弹簧的长度为L + (mg sinα)/⑵当物块的位移为x时,弹簧伸长量为x + ΔL物块所受合力为F合 = mf sinα–k(x + ΔL)联立以上各式可得F合 = –kx则物块作简谐运动⑶物块作简谐运动的振幅为A = L/4 + (mg sinα)/k由对称性可知,最大伸长量为L/4 + (mg sinα)/kxmαMOfFαF N2⑷ 设物块位移x 为正,则斜面体受力情况如图所示,由于斜面 体平衡,所以有水平方向 f + F N1sin α – F cos α = 0竖直方向F N2 – Mg – F N1cos α – F sin α = 0 又F = k (x + ΔL )、F N1 = mg cos α联立可得 f = kx cos α,F N2 = Mg + mg + kx sin α为使斜面体始终处于静止,结合牛顿第三定律,应有︱f ︱≤ μF N2 所以μ ≥︱f ︱/μF N2 =(k ︱x ︱cos α)/(Mg + mg + kx sin α)当 x = – A 时,上式右端达到最大值,于是有≥ [(kL + 4mg sin α)cos α]/(4Mg + 4mg cos 2α- kL sin α)预测 4 ⑴ 分析滑块受力,如图所示,由牛顿第二定律得:a 1 =g sin θ = 6 m/s 2,通过图(b )可知滑块在斜面上运动的时间为:t 1 = 1 s ,由运动学公式得:s = a 1t 21/2 = 3 m . ⑵ 滑块对斜面的压力为:N 1′ = N 1 = mg cos θ,木块对传感器的压力为:F 1 = N 1′sin θ;由图(b )可知:F 1 = 12 N 解得:m = 2.5 kg .⑶ 滑块滑到B 点的速度为:v 1 = a 1t 1 = 6 m/s ,由图(b )可知:f 1 = f 2 = 5 N ,t 2 = 2 s ,a 2 = f 2/m= 2m/s 2,s = v 1t 2 – a 2t 22= 8m .五.课堂演练 自我提升1.D ;物体加速度的大小与质量和速度大小的乘积无关,A 项错误;物体所受合力不为0,则a ≠ 0,B项错误;加速度的大小与其所受的合力成正比,C 项错误.2.C ;物体在力F 作用下向左加速,接触弹簧后受到弹簧向右的弹力,合外力向左逐渐减小,加速度向左逐渐减小,速度增加,当弹簧的弹力大小等于力F 时合外力为0,加速度为0,速度最大,物体继续向左运动,弹簧弹力大于力F ,合外力向右逐渐增大,加速度向右逐渐增大,速度减小,最后速度减小到0,此时加速度最大.综上所述,A 、B 、D 错误,C 正确. 3.A ;由牛顿第二定律F = ma 与x = 12at 2,得出F = 2mx t 2 = 2xt2.4.C ;物体由静止开始在恒力的作用下做初速度为零的匀加速直线运动.由牛顿第二定律和运动学公式得:a = F /m = 2 m/s 2,v = at = 10 m/s ,x = at 2/2 = 25 m . 5.C ;在细线烧断前,A 、B 两球的受力情况如图甲所示,由平衡条件可得:对B 球有F 绳 = mg 对A 球有F 弹 = mg + F 绳;在细线烧断后,F 绳立即消失,弹簧弹力及各球重力不变,两球的受力情况如图乙所示.由牛顿第二定律可得:B 球有向下的重力加速度g ;A 球有F 弹 – mg = ma A 解得a A = g ,方向向上.综上分析,选C .6.A ;设初始状态时,弹簧的压缩量为x 0,弹簧劲度系数为k ,木块的质量为m ,则kx 0 = mg ;力F 作用在木块A 上后,选取A 为研究对象,其受到竖直向上的拉力F 、竖直向下的重力mg 和弹力k (x 0–x )三个力的作用,根据牛顿第二定律,有F + k (x 0 – x ) – mg = ma ,即F = ma + kx = 20 + kx ;当弹簧对B 竖直向上的弹力大小等于重力时B 刚好离开地面,此时弹簧对木块A 施加竖直向下的弹力F 弹,大小为mg ,对木块A 运用牛顿第二定律有F – mg – F 弹 = ma ,代入数据,可求得F = 100 N .7.C ;将a 、b 两物体作为一个整体来进行分析,设两物体的总质量为m ,物体向上的位移为Δx = at 2/2,受到向上的拉力F 、弹簧的弹力F N 和竖直向下的重力G ,由题意得kx 0 = mg ,由牛顿第二定律得F + k (x 0– Δx ) – mg = ma ,即F = mg + ma – (mg – k Δx ) = ma + k ×at 2/2,故C 正确.8.C ;由F = ma 可知加速度a 与合外力F 同向,且大小成正比,故F – t 图象与a – t 图线变化趋势应一致,故选项A 、B 均错误;当速度与加速度a 同向时,物体做加速运动,加速度a 是定值时,物体做匀变速直线运动,故选项C 正确,D 错误.9.B ;如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿斜面滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD = θ,则α= θ/2.10.BD ;恒力F 作用时,A 和B 都平衡,它们的合力都为零,且弹簧弹力为F .突然将力F 撤去,对A来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A 球的合力为零,加速度为零,A 项错、B 项对.而B 球在水平方向只受水平向右的弹簧的弹力作用,加速度a = F /m ,故C 项错、D 项对. 11.CD ;设圆轨道半径为R ,据“等时圆”模型结论有,t a =4Rg= 2 Rg;B 点在圆外,t b > t a ,c 球做自由落体运动t c =2Rg;所以,有t c < t a < t b ,C 、D 正确. 12.ACD ;若物体向左做匀加速直线运动,根据牛顿第二定律可知:F 2 – F 1 – μG = ma > 0,解得F 1 < 5 N ,A 正确;若物体向右做匀加速直线运动,根据牛顿第二定律可知:F 1 – F 2 – μG = ma > 0,解得F 1 > 25 N ,C 、D 正确.13.CD ;0~t 1时间内,物体做加速度减小的加速运动,由F 1 - F f = ma 1,a 1减小,可知外力不断减小,A 错;由图线斜率可知t 1时刻的加速度为零,故外力大小等于摩擦力大小,B 错;t 1~t 2时间内,物体做加速度增大的减速运动,若外力方向与物体运动方向相同,由F f - F 2 = ma 2,a 2增大,可知外力逐渐减小,若外力方向与物体运动方向相反,由F f + F 3 = ma 2,a 2增大,可知外力逐渐增大,又由于在t 1时刻,外力F 大小等于摩擦力F f 的大小,所以F 可能先与物体运动方向相同,大小逐渐减小,减小到0后再反向逐渐增大,故C 、D 对.14.ACD ;由a – F 图象可知,拉力在7 N 之前加速度都是0,因此可知最大静摩擦力为7 N ,选项A正确;再由图象可知,当F = 7 N 时,加速度为0.5 m/s 2,当F = 14 N 时,加速度为4 m/s 2,即F 1 – μmg = ma 1,F 2 – μmg = ma 2,可求得动摩擦因数及物体的质量,选项C 、D 正确;物体运动为变加速运动,不能算出拉力为14 N 时物体的速度,选项B 错误. 15.ABD ;在0~2 s 由速度图象可得:a =Δv Δt=0.5 m/s 2,由速度图象可知,2 s 后匀速,合外力为零,推力大小等于阻力,故0~2 s 内的合外力F 合=21.5 N -20 N =1.5 N ,由牛顿第二定律可得:m =F 合a =1.50.5kg =3 kg ,故选项A 正确;由匀速时F 推=mg sin α+μmg cos α,代入数据可得:μ=39,所以选项B 正确;撤去推力F 后,物体先做匀减速运动到速度为零,之后所受合外力为F 合′=mg sin α-μmg cos α=10 N >0,所以物体将下滑,下滑时的加速度为:a ′=F 合′m =103m/s 2,故选项C 错、D 对,所以正确选项为A 、B 、D .16.汽车运动过程如图所示,v = 108 km/h = 30 m/h .⑴ 由v = v 0 + at 得 加速度a = (v - v 0)/t = 3 m/s 2;由F = ma 知汽车受到的合力大小F = 1.0×103×3 N = 3.0×103 N .⑵ 汽车刹车时,由F = ma 知加速度大小a ′ = f /m = 6 m/s2;据v = v 0 + at 知刹车时间t = v 0/ a ′ =5 s,由x = v 0t /2 知刹车路程x = 75 m .17.⑴ 设绳刚要被拉断时产生的拉力为F T ,根据牛顿第二定律,对A 物体有 F T – μm 1g = m 1a 代入数值得a = 2 m/s 2;对A 、B 整体有:F –μ(m 1 + m 2)g = (m 1 + m 2)a ,代入数值得F = 40 N .⑵ 设绳断后,A 的加速度为a 1,B 的加速度为a 2,则a 1 = μg =2 m/s 2,a 2 = (F – μm 12g )/m 2 = 3m/s 2,A 停下来的时间为t ,则t = v /a 1 = 1 s ,A 的位移为x 1,则x 1 = v 2/2a 1 = 1 m ;B 的位移。
第三节 牛顿第二定律 【三维目标】知识与技能1. 掌握牛顿第二定律的内容和数学表达式。
2. 理解公式中各物理量的意义及相互关系。
3. 知道在国际单位制中的力的单位“牛顿”是怎样定义的。
4. 会用牛顿第二定律的公式进行有关的计算。
过程与方法1. 通过对上节课实验结论的总结,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律,体会科学探索的方法和科学探索需要付出艰辛勇气。
2. 培养学生的概括能力和分析推理能力。
情感态度与价值观1. 渗透物理学研究方法的教育。
2. 认识到由实验归纳总结物理规律是物理学研究的重要方法。
3. 通过牛顿第二定律的应用能深切感受到科学源于生活并服务于生活,激发学生学习物理的兴趣。
【教学重点】1. 牛顿第二定律2. 牛顿第二定律的应用【教学难点】牛顿第二定律的应用【教学过程】引入师:牛顿第一定律告诉我们,力是改变物体运动状态的原因即产生加速度的原因,加速度同时又与物体的质量有关。
上一节课的探究实验我们已经看到,小车的加速度可能与所受的合外力成正比,与物体的质量成反比。
大量实验和观察到的事实都能得出同样的结论,由此可以总结出一般性的规律:物体加速度的大小跟合外力成正比,跟物体的质量成反比,加速度的方向与合外力的方向相同。
这就是牛顿第二定律。
一、牛顿第二定律:(实验定律)1.定义:物体加速度的大小跟合外力成正比,跟物体的质量成反比,加速度的方向与合外力的方向相同。
比例式:mF a ∝或ma F ∝。
等式:kma F =其中k 是比例系数。
(公式中的F 是合外力,而ma 是作用效果,不要看成力,它们只是大小相等)2.力的单位[讲解]在国际单位制单位中,力的单位是牛顿,那么“牛顿”是如何定义的呢?在牛顿第二定律中,如果比例系数 k取1的话,表达式就是F = ma,当质量是m=1kg的物体在某个力的作用下获得加速度a=1 m/s2,由公式F= ma我们知道这个力的大小就是F=ma=1k g×1m/s2=1kg∙m/s2,后人为了纪念牛顿,就称这个单位为“牛顿”,用“N”表示。
高中物理牛二教案
教学目标:
1. 了解牛顿第二定律的内容和意义;
2. 掌握牛顿第二定律的计算方法;
3. 进行实验验证牛顿第二定律。
教学重点:
1. 牛顿第二定律的概念;
2. 牛顿第二定律的计算方法;
3. 实验操作及数据处理。
教学难点:
1. 实验操作的技巧;
2. 实验数据的处理方法。
教学过程:
1. 导入:通过引导学生观察下面的实验现象,引出牛顿第二定律的概念。
2. 发现问题:提出实验的问题,让学生在小组讨论后给出自己的思考。
3. 实验设计:学生根据问题设计实验步骤和方案,并确定所需要的实验器材。
4. 实验操作:学生根据设计好的方案进行实验操作,保证实验的准确性和可靠性。
5. 数据记录:学生记录实验数据,包括所施加的力,物体的质量以及物体的加速度等信息。
6. 数据处理:学生根据实验数据,计算出物体所受合力的大小,并分析实验结果。
7. 结论:学生在小组内讨论实验结果,并给出结论,验证牛顿第二定律。
8. 总结和作业:总结本节课的学习内容,布置相关阅读和练习作业,巩固学习成果。
教学评价:通过对学生实验设计、操作和数据处理的能力进行评价,检验学生对牛顿第二
定律的理解和掌握程度。
《牛顿第二定律》教案(2012.3.3)一、教学背景和教材分析1、教材分析:《牛顿第二定律》是现行人教版第三章第三节的内容,主要内容是:通过控制变量法研究加速度和力、质量的关系。
牛顿第二定律,是动力学的核心内容,在整个高中物理中占有相当重要的地位。
它阐明了力在改变物体运动状态时产生的加速度大小和力及物体质量间的关系,从而把物体的受力和物体的运动紧密联系起来。
2、学情分析:学生已经学习了第一章《力》和第二章《直线运动》,并通过学习牛顿第一定律,对力与运动有了初步认识,但在问题本质的分析等方面还较为薄弱。
在教学中可以从学生的已有知识出发,通过学生自主学习、探究实验、产生问题、协作交流等学习方法,从而解决问题得出加速度和力与质量的关系。
二、教学目标:1、知识目标(1)知道得到牛顿第二定律的实验过程(2)理解加速度与力和质量的关系(3)理解牛顿第二定律的内容,知道定律的确切含义(4)能运用牛顿定律解决答有关问题2、能力目标:培养学生的实验能力,分析解决问题能力3、情感目标使学生学生知道物理中研究问题时常用的一中方法-----控制变量法三、教学重点、难点1、重点:牛顿第二定律的实验过程、牛顿第二定律2、难点:顿第二定律的实验推导和意义四、教学策略和教学设计通过引导分析,探究加速度与质量、合外力的关系,讲解探究实验的理论根据,播放实验视频,总结归纳,得出牛顿第二定律,进一步理解,及简单应用五、教学媒体设计教学常用多媒体(电脑,投影仪等)应用教学全过程六、教学过程流程图复习旧知识,导入新课;实验探究,用控制变量法研究加速度和力的关系,加速度和质量的关系;总结实验结论,得到牛顿第二定律,同时强调该表达式的同时性、同向性、瞬时性,并且结合例题和练习加深学生的理解;方法掺透:牛顿第二定律的表达式是从出比例式推导出来的,使学生明确的知道:只有选择合适的单位才能使比例系数K=1;课堂讨论拓展学生对定律的应用能力七、教学过程设计与分析【PPT课件演示】复习思考:1、牛顿第一定律:物体具有保持原有状态的属性2、从牛顿第一定律你能做出那些思考?3、物体运动状态改变的原因是什么?问题:影响物体加速度的因素?猜想:m 一定时,F 大,加速度大,F 一定时,m 大,加速度小【PPT课件演示】<一>、探究思路:控制变量法<二>、如何设计探究实验方案?(让学生通过课本讨论实验方案)1、m一定,研究a与F的关系.2、F一定,研究a与m的关系.<三>、如何测小车所受合外力F?(PPT课件演示:受力分析如图一)【播放实验视频】(PPT课件演示:探究实验模型并进行理论推导)图一1、m 一定,a 与F 的关系结论1:对质量相同的物体来说,物体的加速度跟作用在物体上的力成正比2、F 一定,a 与F 的关系论结2:在相同力的作用下,物体的加速度跟物体的质量成反比【播放实验视频】【PPT 课件演示】<四>、得出探究结论a ∝F 合a ∝1/m其中k 为比例常数,当所有物理量均取国际单位(即:力的单位取N ,质量单位取kg ,加速度单位取m/s2)时:k =1,此时关系式变为: F 合=ma<五>、牛顿第二定律的内容和理解牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比。
高中物理课程教案探究牛顿第二定律的实验设计实验目的:通过设计一系列实验,探究牛顿第二定律的实验原理和应用。
实验材料:1. 弹簧测力计2. 平滑桌面3. 不同质量的物体4. 光滑水平面5. 数据采集仪器(如计时器、计数器等)实验一:物体的加速度与作用力的关系实验步骤:1. 将弹簧测力计固定于平滑桌面上。
2. 在测力计上方悬挂一个质量为m的物体。
3. 对物体进行固定,以保持其在水平方向上不发生运动。
4. 测量物体静止时测力计示数的大小,记录为F₁。
5. 轻轻拉动物体,使其在水平方向上运动,并测量牵引力大小,记录为F₂。
6. 计算物体的加速度a,公式为a=(F₂-F₁)/m。
实验二:物体的加速度与质量的关系实验步骤:1. 将弹簧测力计固定于平滑桌面上。
2. 在测力计上方悬挂一个质量为m₁的物体。
3. 对物体进行固定,以保持其在水平方向上不发生运动。
4. 测量物体静止时测力计示数的大小,记录为F₁。
5. 改变物体的质量为m₂,重复步骤4并记录为F₂。
6. 计算物体的加速度a,公式为a=(F₂-F₁)/m₂。
实验三:物体的加速度与施加力的关系实验步骤:1. 将弹簧测力计固定于平滑桌面上。
2. 在测力计上方悬挂一个质量为m的物体。
3. 对物体进行固定,以保持其在水平方向上不发生运动。
4. 测量物体静止时测力计示数的大小,记录为F₁。
5. 施加不同大小的力F₂于物体上,并记录测力计示数。
6. 计算物体的加速度a,公式为a=(F₂-F₁)/m。
实验四:物体的加速度与摩擦力的关系实验步骤:1. 将弹簧测力计固定于平滑桌面上。
2. 在测力计上方悬挂一个质量为m的物体。
3. 对物体进行固定,以保持其在水平方向上不发生运动。
4. 测量物体静止时测力计示数的大小,记录为F₁。
5. 施加不同大小的摩擦力F₂于物体上,并记录测力计示数。
6. 计算物体的加速度a,公式为a=(F₂-F₁)/m。
实验五:物体的加速度与施加力方向的关系实验步骤:1. 将弹簧测力计固定于平滑桌面上。
牛顿第二定律教案第一部分:引言牛顿第二定律是物理学中一个基本概念,描述了物体受力时的运动情况。
本教案将介绍牛顿第二定律的概念、公式和应用,以便学生们更好地理解和应用该定律。
第二部分:概念解释牛顿第二定律表明,当一个物体受到外力时,其加速度与所受力成正比,与物体的质量成反比。
即F = ma,其中F 表示物体所受的合力,m 表示物体的质量,a 表示物体的加速度。
第三部分:公式推导可以通过推导来理解牛顿第二定律的原理。
根据牛顿第一定律,当物体处于匀速直线运动或静止状态时,合力为零。
即ΣF = 0。
根据物体匀速直线运动的运动学公式 v = at,结合牛顿第一定律,我们可以得到 F = ma。
第四部分:实例说明下面举几个实例来说明牛顿第二定律的应用。
实例一:一个质量为 2 kg 的物体受到一个 10 N 的合力,求其加速度。
解:根据牛顿第二定律的公式 F = ma,将已知量代入得到 10 N = 2 kg × a,解得 a = 5 m/s²。
实例二:一个牛顿力为 20 N 的物体受到一个 4 kg 物体施加的力,求其加速度。
解:根据牛顿第二定律,合力为物体所受的外力之和。
可得到 20 N = (4 kg × a) + F2,其中 F2 表示外力。
若已知外力 F2 等于 10 N,则可解得 a = 2.5 m/s²。
第五部分:应用拓展除了上述的实例,牛顿第二定律还可以应用于其他物理学问题。
1. 自由下落:当一个物体自由下落时,仅受到重力的作用。
根据牛顿第二定律,可以推导出自由下落物体的加速度公式为 a = g(其中 g为重力加速度)。
2. 斜面上的物体:当物体放置在斜面上时,会受到重力和斜面支持力的作用,根据牛顿第二定律,可以求解物体在斜面上的加速度。
3. 弹性碰撞:在碰撞过程中,物体受到的力会导致加速度的变化。
利用牛顿第二定律,我们可以计算出碰撞后物体的加速度和速度变化。
§4-3 牛顿第二定律教学内容:牛顿第二定律教学目标:1、理解牛顿第二定律的内容和表达式的确切含义,并进行应用。
2、知道国际单位中力的单位牛顿是怎样定义的;教学方法:新课改教学法教学难点:牛顿第二定律的理解教学过程:引入:根据上节课的学生实验得出的结论:加速度跟物体所受的外力成正比,与物体的质量成反比。
根据数据处理情况,得出如下图线关系:一、牛顿第二定律1、内容:物体的加速度跟所受合外力成正比,跟物体的质量成反比,加速度的方向跟合外力方向相同。
2、数学表达式:F=ma理解:F=kma ,在国际单位制中,m —千克,a —米/秒2,F —牛,这时k=1物理意义:使质量1kg 的物体产生1m/s 2的加速度所需要的力,叫做1N3、理解:(1)F 是指合外力,即物体所受一切外力的合力。
以后通常讲的力都是合外力。
(2)瞬时性:物体的加速度总是随着物体的外力产生而产生,消失而消失,变化而变化。
(3)矢量性:物体加速度方向总是跟物体的外力方向相同。
外力方向变,则加速度方向变。
(4)独立性:分方向列式:F x =ma x ;F y =ma y 。
(5)大小关系:F=ma4、牛顿运动定律的适用条件(教材第九节阅读)牛顿运动定律一般适用于:宏观、低速的问题。
对于微观、高速问题不适用。
二、例题讲解【题】已知质量为m 的木块在大小为F 的水平拉力的作用下沿粗糙水平地面做匀加速直线运动,已知物体与水平面间的动摩擦因数为μ,则物体的加速度为多少? 解:物体受力如图所示,由牛顿第二定律得 F-μN=ma ,N=mg ……①两式解得:a=F-μmg m =F m-μg (注:若F=0,则a=-μg) 讨论:(1)若水平力F 的方向与水平方向与θ角向上,则物体的加速度大小为多少?解:物体受力如图所示,由牛顿第二定律得:Fcos θ-f=ma ;Fsin θ+N=mg ;f=μN 斜率k=tan θ=a/F=1/m a 与m 成反比 是一条曲线 a 与1/m 成正比 k=a/(1/m)=F由以上三式解得:a=F(cos θ+μsin θ)m- μg (2)若将此物体放在倾角为θ的斜面上,如图所示,物体与斜面间的动摩擦因数为μ,若使物体沿斜面以加速度a 加速上滑,则施加的水平外力F 多大?解:物体受力如图所示,建立坐标,由F=ma 得:Fcosθ-f-mgsin θ=ma Fsin θ+mgcos θ-N=0f=μN 由以上三式解得:F=mg(sin θ+μcos θ)+ma cos θ-μsin θ小结:用牛顿第二定律解题基本思路①确定研究对象;②分析对象受力情况,求出合外力;③由牛顿第二定律列式;④求解并检验。
高中三年级物理课教案力学中的牛顿第二定律高中三年级物理课教案:力学中的牛顿第二定律一、教学目标在本节课中,学生将能够:1. 理解牛顿第二定律的概念和公式;2. 掌握使用牛顿第二定律解决力学问题的方法;3. 运用牛顿第二定律计算物体的加速度、力或质量;4. 了解牛顿第二定律的应用范围。
二、教学内容1. 牛顿第二定律的概念和公式;2. 牛顿第二定律的应用示例;3. 解决与牛顿第二定律相关的问题。
三、教学过程导入:1. 引发学生思考,提出问题:“为什么我们用力推一个物体它才会运动?”2. 通过讨论,引出牛顿第二定律的概念:“牛顿第二定律是指物体所受合外力等于物体质量与加速度乘积的关系。
”讲解:1. 介绍牛顿第二定律的公式:F = m × a,其中F是物体所受的合外力,m是物体的质量,a是物体的加速度。
2. 分析牛顿第二定律的含义和作用:力使物体产生加速度,物体质量越大,所受力相同情况下加速度越小。
3. 提示学生理解公式的意义:F是物体所受的合外力,m是物体的质量,a是物体的加速度。
强调物体的运动状态与所受力的关系。
示范:1. 展示一些牛顿第二定律的应用示例,如运动摩擦力、受力对象质量变化等。
2. 指导学生通过牛顿第二定律解决力学问题,例如计算物体的加速度、力或质量。
练习:1. 给学生一些练习题,让他们运用牛顿第二定律解答问题。
2. 检查和讨论答案,纠正学生思维中的错误,帮助他们加深对牛顿第二定律的理解。
拓展应用:1. 引导学生思考牛顿第二定律的应用范围,如机械运动、天体运动等。
2. 鼓励学生自主探索更多与牛顿第二定律相关的问题,并总结应用方法。
四、教学总结总结牛顿第二定律的概念、公式和应用方法,强调物体的运动状态与所受力的关系。
激发学生对物理学的兴趣,鼓励他们在日常生活中应用物理知识。
五、课后作业布置课后作业,要求学生通过牛顿第二定律解答相关问题,提高他们运用知识解决实际问题的能力。
六、教学反思针对本节课的教学效果和学生的反应进行反思,为下一次教学做准备。
牛顿第二定律教案牛顿第二定律教案牛顿第二定律教案(一):牛顿第二定律教案一、教学目标1。
物理知识方面的要求:(1)掌握牛顿第二定律的文字资料和数学公式;(2)理解公式中各物理量的好处及相互关系;(3)明白在国际单位制中力的单位"牛顿"是怎样定义的。
2。
以实验为基础,透过观察、测量、归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律。
培养学生的实验潜力、概括潜力和分析推理潜力。
3。
渗透物理学研究方法的教育。
实验采用控制变量的方法对物体的a、F、m三个物理量进行研究;运用列表法处理数据,使学生明白结论是如何得出的;认识到由实验归纳总结物理规律是物理学研究的重要方法。
二、重点、难点分析1。
本节的重点资料是做好演示实验。
让学生观察并读取数据,从而有说服力地归纳出a与F和m的关系,即可顺理成章地得出牛顿第二定律的基本关系式。
因此,熟练且准确地操作实验就是本课的关键点。
同时,也只有讲清实验装置、原理和圆满地完成实验才能使学生体会到物理学研究的方法,才能到达掌握方法、提高素质的目标。
2。
牛顿第二定律的数学表达式简单完美,记住并不难。
但要全面、深入理解该定律中各物理量的好处和相互关联;牢固掌握定律的物理好处和广泛的应用前景,对学生来说是较困难的。
这一难点在本课中可透过定律的辨析和有针对性的巩固练习加以深化和突破,另外,还有待在后续课程的学习和应用过程中去体会和理解。
三、教具小车、木板、滑轮、钩码、投影仪。
四、主要教学过程(一)引入新课由牛顿第必须律可知,力是改变物体运动状态的原因。
而物体运动状态的改变是物体运动速度发生变化,即加速度不为零。
因而力又是产生加速度的原因,加速度与力有关。
由牛顿第必须律还可知:一切物体总持续静止或匀速直线运动状态,这种性质叫惯性。
而质量是物体惯性大小的量度,因而加速度跟质量有关。
那么物体运动的加速度跟物体质量及受力之间存在什么样的关系?我们透过实验来探求。
高一物理第四章第三节
牛顿第二定律教案
一、教学目标
1、掌握牛顿第二定律的文字内容和数学公式;
2、理解公式中各物理量的意义及相互关系
3、知道在国际单位制中力的单位"牛顿"是怎样定义的。
二、教学重点
1、知道决定物体加速度的因素、
2、加速度与力和质量的关系的探究过程
三、教学难点
1、理解牛顿第二定律各个物理量的意义和联系
2、牛顿第二定律的应用
四、教学方法
在探究过程中,渗透科学研究方法如:控制变量法、实验归纳法、图象法等
五、教学过程
1、知识回顾
物体的运动状态发生变化,即产生加速度。
问学生:加速度的大小与那些因素有关呢?
学生回答:力还有物体质量
思考:力是促使物体运动状态改变的原因,力似乎“促使”加速
度的产生。
质量是物体惯性的量度,而惯性是保持物体运动状态不变的性质,所以质量似乎是阻碍“加速度”的产生。
猜想:加速度可能与力、质量有关系。
结合实际:
小汽车:质量小,惯性小,启动时运动状态相对容易改变。
火车:质量大,惯性大,动力大,启动时运动状态相对难改变。
2、回忆课本所研究的内容
(1)、质量m一定,加速度a和力F的关系。
处理数据:得出结论:当m一定时,a和F成正比,
即:a F
a
F
(2)、力F 一定时,加速度a 和质量m 的关系
得出结论:当力F 一定,加速度a 和质量m 成反比,即:a m 1
∝。
3、引出牛顿第二定律
通过大量实验和观察到的事实都能得出同样的结论,由此可以得出一般性的规律:物体加速度的大小跟它所受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同,这就是牛顿第二定律。
它的比例式就是 m F a ∝, 它也可以写成F=kma ,其中k 是比例系数。
由于k 是个常数,如果取k=1,就有
F=ma
这就是今天所熟知的牛顿第二定律数学表达式。
4、力的单位
a
当物体的质量是m=1kg、在某力的作用下它获得的加速度是a=1m/s2时,F=ma=1kg 1m/s2
=1kg·m/s2,这就是力的单位,为了纪念牛顿,把kg·m/s2称作牛顿,用符号N表示。
说明:(1)、因果关系,力是产生加速度的原因。
(2)、同时性,力和加速度同时产生,同时消失。
(3)、失量性,加速度和合外力的方向一致。
5、注意
(1)、F合是物体(研究对象)所受的合外力,m是研究对象的质量,如果研究对象是几个物体,则m为几个物体的质量和。
a为研究对象在合力F合作用下产生的加速度;a与F合的方向一致。
(2)从定律可看到:一物体所受合外力恒定时,加速度也恒定不变,物体做匀变速直线运动;合外力随时间改变时,加速度也随时间改变;合外力为零时,加速度也为零,物体就处于静止或匀速直线运动状态。
6、练习
(1)、从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度。
可是我们用力提一个很重的物体时却提不动它,这跟牛顿第二定律有无矛盾?为什么?
答:没有矛盾,由公式F=ma看,F合为合外力,无论怎样小的力都可以使物体产生加速度,这个力应是合外力。
现用力提一很重的
物体时,物体仍静止,说明合外力为零。
由受力分析可知F+N-mg=0。
(2)下面哪些说法不对?为什么?
A.物体所受合外力越大,加速度越大。
B.物体所受合外力越大,速度越大。
C.物体在外力作用下做匀加速直线运动,当合外力逐渐减小时,物体的速度逐渐减小。
D.物体的加速度大小不变一定受恒力作用。
答;B、C、D说法不对。
根据牛顿第二定律,物体受的合外力决定了物体的加速度。
而加速度大小和速度大小无关。
所以,B说法错误。
物体做匀加速运动说明加速度方向与速度方向一致。
当合外力减小但方向不变时,加速度减小但方向也不变,所以物体仍然做加速运动,速度增加。
C说法错误。
加速度是矢量,其方向与合外力方向一致。
加速度大小不变,若方向发生变化时,合外力方向必然变化。
D说法错。
(3)课本75页例题1进行分析
7、课堂小结
(1)牛顿第二定律得表达和数学表达式
(2)力的单位
8、课后作业:课本77页说一说
(教案设计者:黄雨桐)。