高一物理牛顿第二定律的应用(1)
- 格式:pdf
- 大小:1.25 MB
- 文档页数:9
第十一讲牛顿第二定律应用(一)一、动力学的两类基本问题1.基本思路2.基本步骤3.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析。
(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁。
4.常用方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用合成法。
(2)正交分解法:若物体的受力个数较多(3个或3个以上)时,则采用正交分解法。
类型1已知物体受力情况,分析物体运动情况【典例1】如图甲所示,滑沙运动时,沙板相对沙地的速度大小会影响沙地对沙板的动摩擦因数。
假设滑沙者的速度超过8 m/s时,滑沙板与沙地间的动摩擦因数就会由μ1=0.5变为μ2=0.25。
如图乙所示,一滑沙者从倾角θ=37°的坡顶A 处由静止开始下滑,滑至坡底B (B 处为一平滑小圆弧)后又滑上一段水平地面,最后停在C 处。
已知沙板与水平地面间的动摩擦因数恒为μ3=0.4,AB 坡长L =20.5 m ,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,不计空气阻力,求:(1)滑沙者到B 处时的速度大小;(2)滑沙者在水平地面上运动的最大距离;(3)滑沙者在AB 段与BC 段运动的时间之比。
解析 (1)滑沙者在斜面上刚开始运动时速度较小,设经过t 1时间下滑速度达到8 m/s ,根据牛顿第二定律得mg sin θ-μ1mg cos θ=ma 1解得a 1=2 m/s 2所以t 1=v a 1=4 s 下滑的距离为x 1=12a 1t 21=16 m接下来下滑时的加速度a 2=g sin θ-μ2g cos θ=4 m/s 2下滑到B 点时,有v 2B -v 2=2a 2(L -x 1) 解得v B =10 m/s 。
(2)滑沙者在水平地面减速时的加速度大小a 3=μ3g =4 m/s 2所以能滑行的最远距离x 2=v 2B 2a 3=12.5 m 。
牛顿第二定律的综合应用1.高考真题考点分布题型考点考查考题统计计算题动力学两类基本问题2022年浙江卷选择题连接体问题2024年全国甲卷计算题传送带模型2024年湖北卷选择题、计算题板块模型2024年高考新课标卷、辽宁卷2.命题规律及备考策略【命题规律】高考对动力学两类基本问题、连接体问题、传送带和板块模型考查的非常频繁,有基础性的选题也有难度稍大的计算题。
【备考策略】1.利用牛顿第二定律处理动力学两类基本问题。
2.利用牛顿第二定律通过整体法和隔离法处理连接体问题。
3.利用牛顿第二定律处理传送带问题。
4.利用牛顿第二定律处理板块模型。
【命题预测】重点关注牛顿第二定律在两类基本问题、连接体、传送带和板块模型中的应用。
一、动力学两类基本问题1.已知物体的受力情况求运动情况;2.已知物体的运动情况求受力情况。
二、连接体问题多个相互关联的物体由细绳、细杆或弹簧等连接或叠放在一起,构成的系统称为连接体。
(1)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。
(2)物物叠放连接体:相对静止时有相同的加速度,相对运动时根据受力特点结合运动情景分析。
(3)轻绳(杆)连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等,轻杆平动时,连接体具有相同的平动速度。
三、传送带模型1.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向。
2.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键。
(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口。
四、板块模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。
2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1 -x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。
第五课时:牛顿第二定律应用(一)设计人:审核人:上课时间:【高考要求与解读】掌握应用牛顿运动定律分析问题的基本方法和基本技能【题型探究】一、牛顿运动定律的解题步骤应用牛顿第二定律解决问题时,应按以下步骤进行.1.分析题意,明确已知条件和所求量2、选取研究对象;所选取的对象可以是一个物体,也可以是几个物体组成的系统,同一个题目,根据题意和解题需要也可以先后选取不同的研究对象。
3.对其进行受力情况分析和运动情况分析(切莫多力与缺力);4.根据牛顿第二定律列出方程;说明:如果只受两个力,可以用平行四边形法则求其合力,如果物体受力较多,一般用正交分解法求其合力,如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力;当求某一个力时,可沿该力的方向分解加速度;5.把各量统一单位,代入数值求解;二、动力学的两类基本问题1、已知物体的受力情况求物体运动中的某一物理量:应先对物体受力分析,然后找出物体所受到的合外力,根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量.2、已知物体的运动情况求物体所受到的某一个力:应先根据运动学公式求得加速度a,再根据牛顿第二定律求物体所受到的合外力,从而就可以求出某一分力.综上所述,解决问题的关键是先根据题目中的已知条件求加速度a,然后再去求所要求的物理量,加速度象纽带一样将运动学与动力学连为一体.【例1】如图所示,一名消防队员在模拟演习训练中,沿着长为12m的竖立在地面上的钢管住下滑。
已知这名消防队员的质量为60㎏,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零。
如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3s,g取10m/s2,那么该消防队员A.下滑过程中的最大速度为4 m/sB.加速与减速过程的时间之比为1∶2C.加速与减速过程中所受摩擦力大小之比为1∶7 D.加速与减速过程的位移之比为1∶4(2010年上海物理)11. 将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体(A )刚抛出时的速度最大 (B )在最高点的加速度为零(C )上升时间大于下落时间 (D )上升时的加速度等于下落时的加速度 解析:m f +=g a 上,m f -=g a 下,所以上升时的加速度大于下落时的加速度,D 错误; 根据221h gt =,上升时间小于下落时间,C 错误,B 也错误,本题选A 。
高中物理 必修二【牛顿第二定律的应用】典型题1. (多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( )A .木块立即做减速运动B .木块在一段时间内速度仍增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块速度为零但加速度不为零解析:选BCD .木块刚开始接触弹簧时,弹簧对木块的作用力小于外力F ,木块继续向右做加速度逐渐减小的加速运动,直到二力相等,而后,弹簧对木块的作用力大于外力F ,木块继续向右做加速度逐渐增大的减速运动,直到速度为零,但此时木块的加速度不为零,故选项A 错误,B 、C 、D 正确.2.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m解析:选C .汽车匀速行驶时,F =F f ①,设汽车牵引力减小后加速度大小为a ,牵引力减少ΔF =2 000 N 时,F f -(F -ΔF )=ma ②,解①②得a =2 m/s 2,与速度方向相反,汽车做匀减速直线运动,设经时间t 汽车停止运动,则t =v 0a =102 s =5 s ,故汽车行驶的路程x =v 02t =102×5 m =25 m ,故选项C 正确.3. (多选)建设房屋时,保持底边L 不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A .倾角θ越大,雨滴下滑时的加速度越大B.倾角θ越大,雨滴对屋顶压力越大C.倾角θ越大,雨滴从顶端O下滑至屋檐M时的速度越大D.倾角θ越大,雨滴从顶端O下滑至屋檐M时的时间越短解析:选AC.设屋檐的底角为θ,底边长度为L,注意底边长度是不变的,屋顶的坡面长度为x,雨滴下滑时加速度为a,对雨滴受力分析,只受重力mg和屋顶对雨滴的支持力F N,垂直于屋顶方向:mg cos θ=F N,平行于屋顶方向:ma=mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F N′=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sin θ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力设备故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上的最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间.解析:(1)根据题意,在上升过程中由牛顿第二定律得:F-mg-F f=ma由运动学规律得,上升高度:h =12at 2联立解得:F f =4 N.(2)下落过程由牛顿第二定律: mg -F f =ma 1 得:a 1=8 m/s 2 落地时的速度v 2=2a 1H 联立解得:H =100 m.(3)恢复升力后向下减速,由牛顿第二定律得: F -mg +F f =ma 2 得:a 2=10 m/s 2设恢复升力后的速度为v m ,则有 v 2m 2a 1+v 2m2a 2=H 得:v m =4053 m/s由:v m =a 1t 1 得:t 1=553s.答案:(1)4 N (2)100 m (3)553s5.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以加速度a =2.5 m/s 2匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.解析:(1)对滑块,根据牛顿第二定律可得: mg sin θ-μmg cos θ=ma ,解得:μ=36.(2)使滑块沿斜面做匀加速直线运动,有加速度沿斜面向上和向下两种可能.由x=12a1t2,得a1=2 m/s2,当加速度沿斜面向上时:F cos θ-mg sin θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=7635N;当加速度沿斜面向下时:mg sin θ-F cos θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=437N.答案:(1)36(2)7635N或437N6.(多选)一个质量为2 kg的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.一定做匀变速运动,加速度大小可能等于重力加速度的大小C.可能做匀减速直线运动,加速度大小是2.5 m/s2D.可能做匀速圆周运动,向心加速度大小是5 m/s2解析:选BC.根据平衡条件得知,其余力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为15 N和10 N的两个力后,物体的合力大小范围为5 N≤F合≤25 N,根据牛顿第二定律a=Fm得:物体的加速度范围为2.5 m/s2≤a≤12.5 m/s2.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上,物体做匀变速曲线运动,加速度大小可能为5 m/s2,故A错误.由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于重力加速度的大小,故B正确.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,故C正确.由于撤去两个力后其余力保持不变,在恒力作用下不可能做匀速圆周运动,故D错误.7.如图所示,几条足够长的光滑直轨道与水平面成不同角度,从P 点以大小不同的初速度沿各轨道发射小球,若各小球恰好在相同的时间内到达各自的最高点,则各小球最高点的位置( )A .在同一水平线上B .在同一竖直线上C .在同一抛物线上D .在同一圆周上解析:选D .设某一直轨道与水平面成θ角,末速度为零的匀减速直线运动可逆向看成初速度为零的匀加速直线运动,则小球在直轨道上运动的加速度a =mg sin θm =g sin θ,由位移公式得l =12at 2=12g sin θ·t 2,即l sin θ=12gt 2,不同的倾角θ对应不同的位移l ,但l sin θ相同,即各小球最高点的位置在直径为12gt 2的圆周上,选项D 正确.8.如图所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和BC 段间的动摩擦因数μ2的比值为( )A .1B .2C .3D .4解析:选C .物块从A 到B 根据牛顿第二定律,有μ1mg =ma 1,得a 1=μ1g .从B 到C 根据牛顿第二定律,有μ2mg =ma 2,得a 2=μ2g .设小物块在A 点时速度大小为v ,则在B 点时速度大小为v 2,由于AB =BC =l ,由运动学公式知,从A 到B :⎝⎛⎭⎫v 22-v 2=-2μ1gl ,从B到C ∶0-⎝⎛⎭⎫v22=-2μ2gl ,联立解得μ1=3μ2,故选项C 正确,A 、B 、D 错误.9.有一个冰上滑木箱的游戏节目,规则是:选手们从起点开始用力推箱一段时间后,放手让箱向前滑动,若箱最后停在有效区域内,视为成功;若箱最后未停在有效区域内就视为失败.其简化模型如图所示,AC 是长度为L 1=7 m 的水平冰面,选手们可将木箱放在A 点,从A 点开始用一恒定不变的水平推力推木箱,BC 为有效区域.已知BC 长度L 2=1 m ,木箱的质量m =50 kg ,木箱与冰面间的动摩擦因数μ=0.1.某选手作用在木箱上的水平推力F =200 N ,木箱沿AC 做直线运动,若木箱可视为质点,g 取10 m/s 2.那么该选手要想游戏获得成功,试求:(1)推力作用在木箱上时的加速度大小; (2)推力作用在木箱上的时间满足的条件.解析:(1)设推力作用在木箱上时的加速度大小为a 1,根据牛顿第二定律得 F -μmg =ma 1, 解得a 1=3 m/s 2.(2)设撤去推力后,木箱的加速度大小为a 2,根据牛顿第二定律得 μmg =ma 2, 解得a 2=1 m/s 2.推力作用在木箱上时间t 内的位移为x 1=12a 1t 2.撤去推力后木箱继续滑行的距离为x 2=(a 1t )22a 2.为使木箱停在有效区域内,要满足 L 1-L 2≤x 1+x 2≤L 1, 解得1 s ≤t ≤76s. 答案:(1)3 m/s 2 (2)1 s ≤t ≤76s 10.如图所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的恒力拉着它沿水平地面运动,已知拉力F =6.5 N ,玩具的质量m =1 kg ,经过时间t =2.0 s ,玩具移动的距离x =2 3 m ,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g 取10 m/s 2)求:(1)玩具与地面间的动摩擦因数. (2)松手后玩具还能滑行多远?(3)幼儿要拉动玩具,拉力F 与水平方向夹角θ为多少时拉力F 最小? 解析:(1)玩具做初速度为零的匀加速直线运动,由位移公式可得 x =12at 2,解得a = 3 m/s 2,对玩具,由牛顿第二定律得 F cos 30°-μ(mg -F sin 30°)=ma , 解得μ=33. (2)松手时,玩具的速度v =at =2 3 m/s 松手后,由牛顿第二定律得μmg =ma ′, 解得a ′=1033m/s 2.由匀变速运动的速度位移公式得 玩具的位移x ′=0-v 2-2a ′=335 m.(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则 F cos θ-F f >0,F f =μF N , 在竖直方向上,由平衡条件得 F N +F sin θ=mg , 解得F >μmgcos θ+μsin θ.因为cos θ+μsin θ=1+μ2sin(60°+θ),所以当θ=30°时,拉力最小. 答案:(1)33 (2)335m (3)30°。
高一物理必考知识点牛顿第二定律的应用高一物理必考知识点牛顿第二定律的应用牛顿第二定律是经典力学中的一个重要定律,也是高一物理学习的必考知识点之一。
本文将从牛顿第二定律的基本原理出发,介绍一些常见的应用场景及计算方法,并探讨其重要性。
一、牛顿第二定律的基本原理牛顿第二定律的表达式为F=ma,其中F 表示物体所受合力的大小,a 表示物体的加速度,m 表示物体的质量。
这个定律说明了力与物体的质量和加速度之间的关系。
当物体所受合力增大时,其加速度也会增大;当物体的质量增大时,其加速度会减小。
二、常见的牛顿第二定律应用场景及计算方法1. 平面运动中物体的加速度计算在平面运动中,当物体所受合力已知时,可以利用牛顿第二定律计算物体的加速度。
首先确定物体所受的合力,然后根据 F=ma 计算加速度。
2. 弹簧弹性伸缩力的计算弹簧的弹性伸缩力可以利用牛顿第二定律进行计算。
当物体受到垂直于弹簧伸缩方向的外力时,可以根据 F=ma 计算出物体所受的合力。
然后利用胡克定律 F=-kx(其中 k 表示弹簧的弹性系数,x 表示弹簧的伸缩量)计算出弹簧的弹性伸缩力。
3. 坡道上物体的加速度计算当物体置于斜坡上时,可以利用牛顿第二定律计算物体在坡道上的加速度。
首先确定物体所受的合力,然后根据 F=ma 计算加速度。
需要注意的是,斜坡上的合力包括物体自身重力以及由坡度引起的垂直于坡面的力。
4. 电梯内物体的加速度计算电梯内的物体受到的合力包括物体的重力以及电梯提供的力。
通过设置参考系,可以将问题简化为一个自由下落或上升的问题。
根据物体所受的合力确定加速度,然后利用牛顿第二定律计算出加速度的大小。
三、牛顿第二定律的重要性牛顿第二定律在解决物体运动问题中起着重要的作用。
通过运用牛顿第二定律,我们可以准确地计算物体的加速度,并进一步了解物体受力、受力方向以及运动状态的变化。
同时,牛顿第二定律也为其他物理定律的推导提供了基础。
牛顿第二定律应用广泛,不仅在经典力学中有重要地位,还在其他学科中也有广泛应用。
学案12 牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题一、概念规律题组1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A.由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m =Fa 可知,物体的质量与其所受的合力成正比,与其运动的速度成反比C.由a =Fm 可知,物体的加速度与其所受的合力成正比,与其质量成反比D.由m =Fa可知,物体的质量可以通过测量经的加速度和它所受的合力而求出2.下列说法正确的是( )A .物体所受合力为零时,物体的加速度可以不为零B .物体所受合力越大,速度越大C .速度方向、加速度方向、合力方向总是相同的D .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同图13.如图1所示,质量为20 kg 的物体,沿水平面向右运动,它与水平面间的动摩擦因数为0.1,同时还受到大小为10 N 的水平向右的力的作用,则该物体(g 取10 m /s 2)( ) A .受到的摩擦力大小为20 N ,方向向左 B .受到的摩擦力大小为20 N ,方向向右 C .运动的加速度大小为1.5 m /s 2,方向向左 D .运动的加速度大小为0.5 m /s 2,方向向右 4.关于国秒单位制,下列说法正确的是( ) A .kg ,m /s ,N 是导出单位 B .kg ,m ,h 是基本单位C .在国际单位制中,质量的单位可以是kg ,也可以是gD .只有在国际单位制中,牛顿第二定律的表达式才是F =ma二、思想方法题组图25.(2011·淮南模拟)如图2所示,两个质量相同的物体1和2紧靠在一起,放在光滑水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力大小为( ) A .F 1 B .F 2 C .12(F 1+F 2) D .12(F 1-F 2)图36.如图3所示,在光滑水平面上,质量分别为m 1和m 2的木块A 和B 之下,以加速度a 做匀速直线运动,某时刻空然撤去拉力F ,此瞬时A 和B 的加速度a 1和a 2,则( ) A .a 1=a 2=0 B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=-m 1m 2a一、对牛顿第二定律的理解矢量性公式F=ma是矢量式,任一时刻,F与a总同向瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的合外力因果性F是产生加速度a的原因,加速度a是F作用的结果同一性有三层意思:(1)加速度a是相对同一个惯性系的(一般指地面);(2)F=ma中,F、m、a对应同一个物体或同一个系统;(3)F=ma中,各量统一使用国际单位独立性(1)作用于物体上的每一个力各自产生的加速度都满足F=ma(2)物体的实际加速度等于每个力产生的加速度的矢量和(3)力和加速度在各个方向上的分量也满足F=ma即F x=ma x,F y=ma y【例1】(2010·上海·11)将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的加速度等于下落时的加速度[规范思维]【例2】(2009·宁夏理综·20)如图4所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()图4A.物块先向左运动,再向右运动B.物块向左运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零[规范思维][针对训练1] (2009·上海综合·7)图5如图5所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是()①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③B.②③C.①④D.②④二、动力学两类基本问题1.分析流程图2.应用牛顿第二定律的解题步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.(2)分析物体的受力情况和运动情况.画好受力分析图,明确物体的运动性质和运动过程.(3)选取正方向或建立坐标系.通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.特别提醒(1)物体的运动情况是由所受的力及物体运动的初始状态共同决定的.(2)无论是哪种情况,加速度都是联系力和运动的“桥梁”.(3)如果只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般用正交分解法求其合力.如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力即一般情况不分解加速度;特殊情况下当求某一个力时,可沿该力的方向分解加速度.【例3】如图6图6所示,一质量为m的物块放在水平地面上.现在对物块施加一个大小为F的水平恒力,使物块从静止开始向右移动距离x后立即撤去F,物块与水平地面间的动摩擦因数为μ,求:(1)撤去F时,物块的速度大小;(2)撤去F后,物块还能滑行多远.【例4】(2010·安徽理综·22)图7质量为2 kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图7所示.g取10 m/s2,求:(1)物体与水平面间的动摩擦因数μ;(2)水平推力F的大小;(3)0~10 s内物体运动位移的大小.[规范思维][针对训练2] (2009·江苏·13)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F=28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力f的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.【基础演练】1.(2011·海南华侨中学月考)在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下来的痕迹.在某次交通事故中,汽车的刹车线的长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车开始刹车时的速度为()A.7 m/s B.10 m/s C.14 m/s D.20 m/s2.(2011·吉林长春调研)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是()A.始终变大B.始终变小C.先变大后变小D.先变小后变大3.如图8甲所示,在粗糙水平面上,物体A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是()图8A.在0~1 s内,外力F不断增大B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断增大D.在3~4 s内,外力F的大小恒定图94.(2009·广东理基·4)建筑工人用图9所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)()A.510 N B.490 NC.890 N D.910 N图105.如图10所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ.则图中能客观地反映小木块的速度随时间变化关系的是()图116.(2011·福建福州质检)商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如图11所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()A.mg B.mg sinθC.mg cosθ D.0题号 1 2 3 4 5 6答案7.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F f为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?(3)设游客滑下50 m后进入水平草坪,试求游客在水平面上滑动的最大距离.【能力提升】图128.如图12所示,有一长度x=1 m、质量M=10 kg的平板小车静止在光滑的水平面上,在小车一端放置一质量m=4 kg的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s内运动到小车的另一端,求作用在物块上的水平力F是多少?(g取10 m/s2)图139.质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,如图13所示.力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)10.(2010.天星调研)图14如图14所示,长为L的薄木板放在长为L的正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的中点,木块、木板质量均为m,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然施加水平外力F在薄木板上将薄木板抽出,最后小木块恰好停在桌面边上,没从桌面上掉下.假设薄木板在被抽出的过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上.求水平外力F的大小.学案12牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题【课前双基回扣】1.CD[牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关.故排除A、B,选C、D.]2.D [由牛顿第二定律F =ma 知,F 合为零,加速度为零,由惯性定律知速度不一定为零;对某一物体,F 合越大,a 越大,由a =ΔvΔt知,a 大只能说明速度变化率大,速度不一定大,故A 、B 项错误;F 合、a 、Δv 三者方向一定相同,而速度方向与这三者方向不一定相同,故C 项错误,D 项正确.] 3.AD4.BD [所谓导出单位,是利用物理公式和基本单位推导出来的,力学中的基本单位只有三个,即kg 、m 、s ,其他单位都是由这三个基本单位衍生(推导)出来的,如“牛顿”(N)是导出单位,即1 N =1 kg·m/s 2(F =ma ),所以题中A 项错误,B 项正确.在国际单位制中,质量的单位只能是kg ,C 错误.在牛顿第二定律的表达式中,F =ma (k =1)只有在所有物理量都采用国际单位制时才能成立,D 项正确.]5.C [将物体1、2看做一个整体,其所受合力为:F 合=F 1-F 2,设质量均为m ,由第二定律得F 1-F 2=2ma ,所以a =F 1-F 22m以物体2为研究对象,受力情况如右图所示..由牛顿第二定律得F 12-F 2=ma ,所以F 12=F 2+ma =F 1+F 22.] 6.D [两物体在光滑的水平面上一起以加速度a 向右匀速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ;对B 物体,取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以只有D 项正确.]思维提升1.牛顿第二定律是一个实验定律,其公式也就不能像数学公式那样随意变换成不同的表达式.2.a =Δv Δt 是a 的定义式,a =Fm 是a 的决定式,a 虽可由a =Δv Δt进行计算,但a 决定于合外力F 与质量m .3.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法. 4.对于弹簧弹力和细绳弹力要区别开.5.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法,其常用的一种思路是:利用整体法求出物体的加速度,再利用隔离法求出物体间的相互作用力. 【核心考点突破】例1 A [最高点速度为零,物体受重力,合力不可能为零,加速度不为零,故B 项错.上升时做匀减速运动,h =12a 1t 21,下落时做匀加速运动,h =12a 2t 22,又因为a 1=mg +f m ,a 2=mg -f m,所以t 1<t 2,故C 、D 错误.根据能量守恒,开始时只有动能,因此开始时动能最大,速度最大,故A 项正确.][规范思维] 物体的加速度与合外力存在瞬时对应关系;加速度由合外力决定,合外力变化,加速度就变化. 例2 BC [由题意可知,当撤去外力,物块与木板都有向右的速度,但物块速度小于木板的速度,因此,木板给物块的动摩擦力向右,使物块向右加速,反过来,物块给木板的动摩擦力向左,使木板向右减速运动,直到它们速度相等,没有了动摩擦力,二者以共同速度做匀速运动,综上所述,选项B 、C 正确.][规范思维] 正确建立两物体的运动情景,明确物体的受力情况,进而确定加速度的大小方向,再进行运动状态分析.例3 (1) 2(F -μmg )x m (2)(Fμmg-1)x解析 (1)设撤去F 时物块的速度大小为v ,根据牛顿第二定律,物块的加速度 a =F -μmg m又由运动学公式v 2=2ax ,解得v = 2(F -μmg )xm(2)撤去F 后物块只受摩擦力,做匀减速运动至停止,根据牛顿第二定律,物块的加速度a ′=-μmg m =-μg 由运动学公式v ′2-v 2=2a ′x ′,且v ′=0解得x ′=(Fμmg-1)x[规范思维] 本题是已知物体的受力情况,求解运动情况,受力分析是求解的关键.如果物体的加速度或受力情况发生变化,则要分段处理,受力情况改变时的瞬时速度即是前后过程的联系量.多过程问题画出草图有助于解题.例4 (1)0.2 (2)6 N (3)46 m解析 (1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20、末速度为v 2t 、加速度为a 2,则a 2=v 2t -v 20Δt 2=-2 m/s 2①设物体所受的摩擦力为F f ,根据牛顿第二定律,有 F f =ma 2② F f =-μmg ③联立②③得μ=-a 2g=0.2④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v 1t 、加速度为a 1,则a 1=v 1t -v 10Δt 1=1 m/s 2⑤根据牛顿第二定律,有F +F f =ma 1⑥ 联立③⑥得F =μmg +ma 1=6 N(3)解法一 由匀变速直线运动位移公式,得x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 22=46 m 解法二 根据v -t 图象围成的面积,得x =(v 10+v 1t 2×Δt 1+12×v 20×Δt 2)=46 m[规范思维] 本题是牛顿第二定律和运动图象的综合应用.本题是已知运动情况(由v -t 图象告知运动信息)求受力情况.在求解两类动力学问题时,加速度是联系力和运动的桥梁,受力分析和运动过程分析是两大关键,一般需列两类方程(牛顿第二定律,运动学公式)联立求解. [针对训练]1.B 2.(1)4 N (2)42 m (3)322s(或2.1 s)【课时效果检测】1.C 2.B 3.BC 4.B 5.D [m 刚放上时,mg sin θ+μmg cos θ=ma 1.当m 与带同速后,因带足够长,且μ<tan θ,故m 要继续匀加速.此时,mg sin θ-μmg cos θ=ma 2,a 2<a 1,故D 正确.]6.C [以箱子和里面所有苹果作为整体来研究,受力分析得,Mg sin θ=Ma ,则a =g sin θ,方向沿斜面向下;再以质量为m 的苹果为研究对象,受力分析得,合外力F =ma =mg sin θ,与苹果重力沿斜面的分力相同,由此可知,其他苹果给它的力的合力应与重力垂直于斜面的分力相等,即mg cos θ,故C 正确.]7.(1)80 N (2)315(3)100 3 m8.16 N解析 由下图中的受力分析,根据牛顿第二定律有F -F f =ma 物① F f ′=Ma 车②其中F f =F f ′=μmg ③由分析图结合运动学公式有x 1=12a 车t 2④x 2=12a 物t 2⑤x 2-x 1=x ⑥由②③解得a 车=1 m/s 2⑦ 由④⑤⑥⑦解得a 物=1.5 m/s 2所以F =F f +ma 物=m (μg +a 物)=4×(0.25×10+1.5) N =16 N. 9.0.25 16.25 m解析 设力F 作用时物体沿斜面上升的加速度大小为a 1撤去力F 后其加速度大小变为a 2,则: a 1t 1=a 2t 2①有力F 作用时,物体受力为:重力mg 、推力F 、支持力F N1、摩擦力F f1,如图所示.在沿斜面方向上,由牛顿第二定律可得: F cos θ-mg sin θ-F f1=ma 1②F f1=μF N1′=μ(mg cos θ+F sin θ)③撤去力F 后,物体受重力mg 、支持力F N2、摩擦力F f2,在沿斜面方向上,由牛顿第二定律得: mg sin θ+F f2=ma 2④F f2=μF N2′=μmg cos θ⑤联立①②③④⑤式,代入数据得:a 2=8 m/s 2 a 1=5 m/s 2 μ=0.25物体运动的总位移x =12a 1t 21+12a 2t 22=⎝⎛⎭⎫12×5×22+12×8×1.252 m =16.25 m 10.6μmg解析 设小木块离开薄木板之前的过程,所用时间为t ,小木块的加速度大小为a 1,移动的距离为x 1,薄木板被抽出后,小木块在桌面上做匀减速直线运动,所用时间为t ′,设其加速度大小为a 2,移动的距离为x 2,有 μmg =ma 1① μmg =ma 2②即有a 1=a 2=μg ③根据运动学规律有x 1=x 2,t =t ′④所以x 1=12μgt 2⑤x 2=12μgt 2⑥根据题意有x 1+x 2=12L ⑦解得t 2=L2μg⑧设小木块没有离开薄木板的过程中,薄木板的加速度为a ,移动的距离为x ,有 x =12at 2⑨ 根据题意有x =x 1+12L ⑩联立⑤⑧⑨⑩得a =3μg ⑪对薄木板,根据牛顿第二定律得F -3μmg =ma , 解得F =6μmg . 易错点评1.应用牛顿第二定律时,要注重对定律“四性”的理解.特别是“瞬时性”是常考要点之一;此外“独立性”也是解题中经常用到的.2.解决动力学两类基本问题的关键是找到加速度这一桥梁,除此之外,还应注意受力分析和运动过程分析,最好能画出受力分析图和运动过程草图.。
牛顿第二定律的应用牛顿第二定律是物理学中的一个重要定律,描述了物体受力时加速度的变化。
它的数学表达式为F = ma,其中F是物体所受合力,m是物体的质量,a是物体的加速度。
牛顿第二定律在物理学中的应用非常广泛,下面我将详细介绍几个常见的应用。
1. 车辆运动牛顿第二定律在车辆运动中有着广泛的应用。
例如,当一个汽车加速时,发动机产生的力会使汽车产生加速度,加速度的大小取决于发动机产生的力和汽车的质量。
根据牛顿第二定律,F = ma,汽车受到的合力等于汽车的质量乘以加速度,从而可以推导出汽车的加速度。
同样地,当汽车刹车时,刹车产生的力会减小汽车的速度,根据牛顿第二定律,我们可以计算出刹车产生的力和汽车的减速度。
2. 自由落体运动自由落体是指物体在没有受到其他力的影响下自由下落的运动。
根据牛顿第二定律,自由落体运动的加速度只受到地球的引力影响,可以通过F = mg公式计算出来,其中m是物体的质量,g是地球的重力加速度。
由于在自由落体运动中物体所受的合力仅仅是重力,所以根据牛顿第二定律我们可以得到加速度的表达式。
在实际应用中,我们可以通过测量自由落体物体的位移和时间来计算出加速度。
3. 简谐振动简谐振动是指物体在受到恢复力作用下以一定频率在平衡位置附近来回振动的运动。
典型的例子是弹簧振子。
牛顿第二定律在描述简谐振动时也得到了应用。
对于一个弹簧振子,如果以平衡位置为参考点,把弹簧的伸长量或压缩量记为x,则弹簧的恢复力F与伸长量或压缩量x之间满足一个比例关系F = -kx,其中k是弹簧的劲度系数。
根据牛顿第二定律F = ma,我们可以得到描述弹簧振子运动的微分方程。
解这个微分方程可以得到弹簧振子的运动规律。
4. 力学分析牛顿第二定律在力学分析中也经常被应用。
通过将物体受力情况和质量代入牛顿第二定律的公式,我们可以计算物体的加速度。
在分析复杂力作用下的物体运动时,可以将物体受到的各个力分解为它们在不同方向上的分量,然后分别计算每个方向上的合力和加速度。
牛顿第二定律的应用应用一:瞬时加速度问题(《阳光课堂》P61-P62)1.分别求出下列两种情景中,烧断BO绳瞬间,小球的加速度的大小和方向。
应用二:动力学的两类基本问题2.一个木箱沿着一个粗糙的斜面匀加速下滑,初速度是零,经过5.0 s的时间, 滑下的路程是10m, 斜面的夹角是300,求木箱和粗糙斜面间的动摩擦因数。
(g取10 m/s2)3.楼梯口一倾斜的天花板与水平地面成θ=37°,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10 N,刷子的质量为m=0.5 kg,刷子可视为质点,刷子与板间的动摩擦因数μ为0.5,天花板长为L=4 m,取sin 37°=0.6,试求:(1)刷子沿天花板向上的加速度.(2)工人把刷子从天花板底端推到顶端所用的时间.应用三:多过程问题4.静止在水平面上的物体的质量为2 kg,在水平恒力F推动下开始运动,4 s末它的速度达到4 m/s,此时将力撤去,又经6 s物体停下来,若物体与地面的动摩擦因数不变,求F的大小.5.质量为m=2 kg的物体静止在水平面上,物体与水平面之间的动摩擦因数μ=0.5,现在对物体施加如图所示的力F,F=10 N,θ=37°(sin 37°=0.6),经t1=10 s后撤去力F,再经一段时间,物体又静止.(g取10 m/s2)则:(1)物体运动过程中最大速度是多少?(2)物体运动的总位移是多少?6.物体以12 m/s的初速度从斜面底端冲上倾角为37°的斜坡,已知物体与斜面间的动摩擦因数为0.25(g 取10 m/s2,sin 37°=0.6,cos 37°=0.8).求:(1)物体沿斜面上滑的最大位移;(2)物体再滑到斜面底端时的速度大小.7.冬奥会四金得主王濛于2014年1月13日亮相全国短道速滑联赛总决赛.她领衔的中国女队在混合3 000米接力比赛中表现抢眼.如图所示,ACD是一滑雪场示意图,其中AC是长L=0.8 m、倾角θ=37°的斜坡,CD段是与斜坡平滑连接的水平面.人从A点由静止下滑,经过C点时速度大小不变,又在水平面上滑行一段距离后停下.人与接触面间的动摩擦因数均为μ=0.25,不计空气阻力.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)人从斜坡顶端A滑至底端C所用的时间;(2)人在离C点多远处停下?应用四:正交分解法在牛顿第二定律中的应用8.如图,火车厢中有一倾角为θ=30°的斜面,斜面上放置一物体m=1kg。