13-2数组的运算
- 格式:pptx
- 大小:499.22 KB
- 文档页数:7
Excel中进行模拟运算表的操作方法一旦我们在工作表中输入公式后,就可进行假设分析,查看当改变公式中的某些值时怎样影响其结果,模拟运算表提供了一个操作所有变化的捷径。
今天,店铺就教大家在Excel中进行模拟运算表的操作方法。
希望对你有帮助!Excel中进行模拟运算表的操作步骤Excel中进行模拟运算表的操作步骤1:单输入模拟运算表。
当对公式中的一个变量以不同值替换时,这一过程将生成一个显示其结果的数据表格。
我们既可使用面向列的模拟运算表,也可使用面向行的模拟运算表。
面向列的模拟运算表例如我们对图13-3中的模型进行模拟运算,假设可变成本分别为固定成本的10%、15%、20%、25%和30%,而其他条件不改变时整个公司的利润会怎样变动?其操作步骤如下:(1)在单一列的输入单元格内,输入要Excel替换的值的序列,我们在“A6”单元格中向下输入上述的序列。
在第一个值的上面一行和值列右边的单元格中,键入引用输入单元格的公式,输入单元格可以是工作表上的任一空单元格,我们指定“A5”单元格为输入单元格。
输入附加的公式到同一行中第一个公式的右边,即输入“=A2+A3-B2*A5-B2”。
如图13-4所示。
(2)选定包含公式和替换值序列的矩形区域,如图13-5所示。
(3)执行“数据”--“假设分析”—“数据表”(即模拟运算表)命令,出现如图13-6的对话框。
(4)在“输入引用列的单元格”框中,输入可变单元格地址,在这里我们输入“A5”单元格。
按下“确定”按钮。
之后,Excel就会替换输入单元格中的所有值,且把结果显示在每一个输入值的右侧,如图13-7所示。
还可以提供新值来替换工作表上原来输入的值,这样Excel将使用新值重新进行计算。
使用基于行的模拟运算表的过程和列类似,读者可以自己练习一下。
如果要观察一个输入值的变化对多个公式的影响,可以在已存在的单输入数据表格中增加一个或多个公式。
其操作步骤是在包含已存在公式的行或列中输入新公式,然后选定包含公式和输入值的区域,最后执行“模拟运算表”命令。
2017年文化素质课 MATLAB实验实验一、MATLAB基本操与运算基础【实验目的】〔1〕熟悉MATLAB基本环境,掌握MATLAB变量的使用〔2〕掌握MATLAB数组的创建〔3〕掌握MA TLAB数组和矩阵的运算【实验内容及步骤】熟悉建立数组的方法:逐个元素输入法、冒号法、特殊方法〔使用函数linspace建立〕1、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与A.*B?(3)设a=10,b=20;求i=a/b=?与j=a\b= ?(4)设a=[1 -2 3;4 5 -4;5 -6 7](5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?(6)请写出完成以下计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X( : ) %转化为列向量(8)写出以下指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A>> D = A.^B2、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 2223 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11]1)求它们的乘积C2)将矩阵C的右下角3x2子矩阵赋给D3、完成以下操作1〕求[100,999]之间能被61整除的数及其个数〔提示:先利用冒号表达式,再利用find和length 函数。
python的算术运算Python是一种功能强大的编程语言,它提供了丰富的算术运算功能,可以进行各种数学计算。
本文将介绍Python的算术运算功能,并以实例展示其用法。
一、基本算术运算1. 加法运算:使用加号(+)进行两个数的相加操作。
例如,计算2和3的和,可以使用如下代码:```pythonresult = 2 + 3print(result)```2. 减法运算:使用减号(-)进行两个数的相减操作。
例如,计算5减去3的结果,可以使用如下代码:```pythonresult = 5 - 3print(result)```3. 乘法运算:使用乘号(*)进行两个数的相乘操作。
例如,计算4乘以6的结果,可以使用如下代码:```pythonresult = 4 * 6print(result)```4. 除法运算:使用斜杠(/)进行两个数的相除操作。
例如,计算10除以2的结果,可以使用如下代码:```pythonresult = 10 / 2print(result)```5. 整除运算:使用两个斜杠(//)进行两个数的整除操作,返回结果的整数部分。
例如,计算13除以5的整数部分,可以使用如下代码:```pythonresult = 13 // 5print(result)```6. 取余运算:使用百分号(%)进行两个数的取余操作。
例如,计算13除以5的余数,可以使用如下代码:```pythonresult = 13 % 5print(result)```二、数学函数的使用除了基本的算术运算,Python还提供了许多数学函数,可以方便地进行各种复杂的数学计算。
1. 幂运算:使用两个星号(**)进行幂运算,将一个数的值提高到另一个数的幂。
例如,计算2的3次方,可以使用如下代码:```pythonresult = 2 ** 3print(result)```2. 开方运算:使用math模块中的sqrt函数进行开方运算。
十进制与二进制一句话,二进制与十进制本质上是一样的。
表示方法各个位置上的数字称为“系数”十进制:1234=1*103+2*102+3*101+4*100=1234(十进制数)二进制:1011=1*23+0*22+1*21+1*20=11(十进制数)七进制:1011=1*73+0*72+1*71+1*70=351(十进制数)运算法则十进制:0~9,逢十进一;二进制:0~1,逢二进一。
十进制加法,举例:8+9=17(十进制数)二进制加法,举例:1+1=10(二进制数)11+11=110(二进制数)如何获得各个位置上的数字?短除法十进制:不断地除以10,求余数,再倒过来书写。
见课本(第一册)第4页举例:798÷10=79余879÷10=7余97÷10=0余7十进制转二进制,不断地除以2,求余数,再倒过来书写。
举例:13(十进制数)转为二进制数13÷2=6余16÷2=3余03÷2=1余11÷2=0余1倒过来书写,即1101十进制转其它进制?方法完全一样试一试,把13转成7进制?1、计算机内部信息的表示及存储往往采用二进制形式,采用这种形式的最主要原因是D。
A.计算方式简便B.表示形式单一C.避免和十进制相混淆D.与逻辑硬件相适应2、计算机是用二进制来处理信息的。
二进制数(1000)2和(10)2的关系(A)前者是后者的4倍(B)前者是后者的100倍(C)前者是后者的2倍(D)前者是后者的10倍3、人们通常用的十进制有0到9十个数字,进位规则为“逢10进1”;类似的,三进制有0、1、2这三个数字,进位规则为“逢3进1”。
则将十进制的数字39转化为三进制数是()(A)1021(B)1201(C)1110(D)2101方法:不断的除以3求余数4、将十进制数63转换成二进制数为A.10001B.111111C.1111111D.1000001方法:64=2^6=1000000(1后面6个零)类似的,2=2^1=10,16=2^4=10000,32=2^5=100000,……所以63=64-1=1000000-1=111111其它选项:(A)、10001=2^4+1(C)、1111111=2^7-1(D)、1000001=2^6+1 5、当依次输入1,0,1,1后,输出的结果。
EXCEL 函数常用技巧浅析(四)技巧四:数组--随心所欲数组的变化可以说是函数的精髓部分,对于数组的解析太多前辈高人做过很多的讲解过了,我这里只不过把前辈高人本技巧介绍的都是以CTRL+SHIFT+回车键结束的内存数组公式,所谓内存数组,简单的讲就是在内存中保存的或一:数组的基本原理1:一个纵向一维数组与单个元素的运算;单个元素:我这里为什么要把他叫做单个元素,因为无论是一个单元格也好,一个常量数值或文本也好,在数组的运算中成一个横向数组,因为常常在与一维或二维的运算中,这个元素是具有扩展性的,如果与他运算的数组+公式:=B13:B17+12:一个横向一维数组与单个元素的运算;同理,如果这个与其运算的数组是一个一行五列的横向数组,那这个元素也会自动扩展为一个一行五列的数组与之运可以用F9键查看结果的公式形成的是内存数组{2,3,4,53:一个二维数组与单个元素的运算;其结果与与其运+4:一个横向数组与纵向数组运算;一个横向数组与一个纵向数组进行运算,纵向数组扩展成为与其进行运算的横向数组的列数,形成一个行数与原数组纵向数组F9键查看结果的公式5:一维同向数组运算两个一维同向数组运算,其中有一个条件就是这两个数组的行数或列数必须是相等的,其结果行或列数与原数组相同数组一数组二结果145数组对称2+57369公式:=B76:B78+D76:D78数组不对称+6:一维数组与二维数组运算一维数组与二维数组的运算与一维同向数组原理相同,那就是一维数组的行数或列数必须与二维数组的行数或列数相+公式:=B92:B94+D92:E94+纵向数组7:二维数组与二维数组的运算.++二:一维转二维A B C D 转换成A B C E D E F F G H IG H I思维一:LOOKUP 函数(此题出一位前辈高人贴子,具体贴子没查到)LOOKUP 函数一般利用第一参数来驱动数组的结果,我们来想像一下,我们需要构造一个什么样第一步:首先利用ROW 函数构造LOOKUP 函数的第二参数与第三参数(向量法)1A 2B 3C 4D 5E 6F 7G 8H 9ILOOKUP(现在不考虑第一参数,ROW(1:9),A9:A17)第二步:需要得到的结果为三行三列,我们的第一参数也必然是一个三行三列数组来驱动函数的结果想像一个如果要得到正确的结果,我们的第一参数就必须为以下数组:123456789第三步:在我们要得到正确结果中的第一参数中寻找规律,这个规律是很好找的,我们会发现这个数组123公式:=(ROW(1:3)-1)*3+COLUMN(A:C)112324563789公式解析:首先用ROW(1:3)-1产生一个一列三行纵向数组,其结果为{0;1;2},再用这个数组乘以3,其结果依然为001乘以33其原理为纵向数组的第一个元素乘以单个数字,其结26=ROW(1:3)-1=(ROW(1:3)-1)*3再用COLUMN(A:J)产生一个一行三列的横向数组,其结果为{1,2,3}123=COLUMN(A:C)最后用纵向的一维数组(ROW(1:3)-1)*3加上横向的一维数组COLUMN(A:C),其结果为一个三列三1230123此数组运算的原理可以理解为:每一个纵向数组与每3456或者也可以这样理解:每一个横向数组与每一个纵向6789=C60:C62+D59:F59第四步:利用LOOKUP 的向量法进行每一个第一参数的查找,得到结果的数组方向与第一参数一致A B C D E F G H I=LOOKUP((ROW(1:3)-1)*3+COLUMN(A:C),ROW(1:9),B9:B17)思维二:INDIRECT 函数利用INDIRECT 函数对单元格引用的特性也可以实现以上结果,利用INDIRECT 函数的第一参数来驱到数组的方向,第一步:我们设想一下我们我们应该如果构造INDIRECT 函数的第一参数,现我们的原数据在B9:B17区域,那INDIRECT 函数的第一参数就应该如下表:B9B10B11略去B 91011B12B13B14121314B15B16B17151617第二步:如何实现以上效果,其实规律同思维一是一样的,只是数字不一样而已91011191011公式:=(ROW(1:3)-1)*3+COLUMN(I:K)21213143151617公式解析:同思维一,只是增大了列号第三步:根椐INDIRECT 函数的特性,加上列号,就形成了第一步的第一表列号行号列号行号B9B10B11B12B13B14B15B16B17第四步:用INDIRECT函数引用上面得出的单元格地址,但得到的结果为一个三维结果,用F9与单元格无法显示,在本示就需要用N函数来转换,注意:T与N函数转换三维后得到的结果只是每一个三维平面中第一个单元格的结果,平面中不#VALUE!#VALUE!一列的数组与之运算,其结果也必然是五行一列的结果;单个元素:我这里为什么要把他叫做单个元素,因为无论是一个单元格也好,一个常量数值或文本也好,在数组的运算中成一个横向数,因为常常在与一维或二维的运算中,这个元素是具有扩展性的,如果与他运算的数组纵向一维数组如果不加T的结果为#VALUE!#VALUE!#VALUE!#VALUE!最后公式:=T(INDIRECT("b"&(ROW(1:3)-1)*3+COLUMN(I:K)))思维三:OFFSET函数利用OFFSET函数的第二参数对行的偏移,也可以实现以上效果,第二参数的数组构造与思维一一致,因为OFFSET函A B CD E FG H I公式:=T(OFFSET(B8,(ROW(1:3)-1)*3+COLUMN(A:C),))思维四:VLOOKUP函数因为PINY版主的N(IF({1},)的发现,用VLOOKUP函数实现上面的内存数组不再是难事情,虽然实现的公式看起来有点第一步:用N(IF{1},)可以实现第一参数的数组化,构造方法如思维一的第三步;123456789=IF({1},(ROW(1:3)-1)*3+COLUMN(A:C))第二步:构造VLOOKUP函数第二参数,这里可以用IF函数构造一个9行二列的数组1A=IF({1,0},ROW(1:9),B9:B17)2B3C4D5E6F7G8H9I第三步:进行组装,VLOOKUP函数结果的方向由第一参数驱动,A B CD E FG H I公式:=VLOOKUP(N(IF({1},(ROW(1:3)-1)*3+COLUMN(A:C))),IF({1,0},ROW(1:9),B9:B17),2,0)思维五:INDEX函数同理,用N(IF({1},)也可以实现INDEX函数第二参数的数组化,而且INDEX函数结果的方向也是由第二参数来驱动.A B CD E FG H I=INDEX(B9:B17,N(IF({1},(ROW(1:3)-1)*3+COLUMN(A:C))))三:二维转一维二维转一维的显示原数据内存数组的办法不是很多,而且如果待转区域数值与文本相混合的话会变得很繁琐ABCA B C D转换成DE F G H EI J K L FGHIJKL思维一:OFFSET函数基原理利用OFFSET函数第二参数与第三参数相对应产生的偏移来形成一个一维数组.第一步:首先我们应该考虑应该怎样来构造第二参数与第三参数,想像一下,我们是否应该构造成以下对应数组,这里我第二参数(行偏移)第三参数(列偏移)测试00A01B02C03现在我们来证明一下如此D10构造第二与第三参数是否E11正确F12G13H20I21J22K23L公式:=T(OFFSET(B257,B271:B282,C271:C282))结果证明这种思路是正确的,那剩下的事情就简单了,我们只要找出构造这种数组的办法就行了第二步:构造第二参数与第三参数,从上面的猜想我们可以看到第二参数与第三参数是有明显的规律的,第二参数的规律是重复我们原数据的列数的数据,可以用INT加除法实现,第二参数重复从0到原数据的列数减1,直接第二参数(行偏移)第三参数(列偏移)000102031011121320212223公式:=INT(ROW(4:15)/4-1)公式:=MOD(ROW(4:15),4)第三步:组装再把构造出的参数代入OFFSET函数,因为OFFSET函数取出的数据是三维平面,而这里又是文本,所有要用T函数取出ABCDEFGHIJKL公式:=T(OFFSET(B257,INT(ROW(4:15)/4-1),MOD(ROW(4:15),4)))思维二:INDIRECT函数INDIRECT函数的原理与OFFSET函数差不多,利用INDIRECT函数的R1C1模式也可以构造出同样的数组,所谓的R1第一步:根据INDIRCT特性分别设想R1部分与C1部分,现数据区域在R257C2:R259C5中R1C1测试2572A2573B2574再来测试一下我们的设想C结果证明我2575是否正确D们的设想是正确的2582E2583F2584G2585H2592I2593J2594K2595L第二步:构造R1与C1其实我们只要仔细观察一下,上面的数组与OFFSET函数的第二与第三参数基本上雷同,只是把数字的大小放大了而R1C1257225732574257525822583258425852592259325942595公式:=INT(ROW(4:15)/4+256)公式:=MOD(ROW(4:15),4)+2第三步:组装原理与OFFSET函数第三步一样ABCDEFGHIJKL公式:=T(INDIRECT("R"&INT(ROW(4:15)/4+256)&"C"&MOD(ROW(4:15),4)+2,0))思维三:INDEX函数INDEX函数的原理与OFFSET函数一样,也是通过构造第二参数与第三参数来实现二维转一维,不过如果要形成内存多单元格数组公式,而不是内存数组第一步:根据INDEX函数设想第二参数与第三参数索引值区域索引测试11A12B13C14现在我们来证明一下如此D21构造第二与第三参数是否E22正确F23G24H31I32J33K34L=INDEX(B257:E259,N(IF({1},B374:B385)),N(IF({1第二步:构造索引值与区域索引通过观察,发现上面构造出来的数组与OFFSET雷同索引值区域索引111213142122232431323334=INT(ROW(4:15)/4)=MOD(ROW(4:15),4)+1第三步:组装这一步要给两个参数加上N(IF({1},)结构,否则不会形成内存数组,A AB请通过F9键查看前后两个公式的区别,BC CD DE EF FG GH HI IJ JK KL L=INDEX(B257:E259,N(IF({1},INT(ROW(4:15)/4))),N(IF({1},MOD(ROW(4:15),4)+1)))=INDEX(B257思维四:数字文本混合二维数组转一维上面演示的是纯文本的转换,用T函数就可以转化成结果,那我们也可以举一反三,如果源数据是数字那可以用N函数转这里我介绍三种方法,不做解析,思路还是使用上面三个函数,但都不完美,这里只是起一个抛砖引玉的做用,第一种方法欢迎各位前辈高人提供更佳思路.A12DE F3HI J K L方法一:结果结果#VALUE!结果是出来了,但用F9查看只显示一个单元格的结果,#VALUE!套T也无效,只是更为糟糕,不#VALUE!不会形成内存数组,#VALUE!反而把数字也转成文本型了#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!=IF({1},OFFSET(B373,INT(ROW(4:15)/4-1),MOD(ROW(4:15),4)))=T(IF({1},OFFSET(B373,INT(ROW(4:1方法二:A1这里是完美转换了,而且形成内存数组,2但问题是公式过长,嵌套也多了DEF3HIJKL=IF(T(OFFSET(B373,INT(ROW(4:15)/4-1),MOD(ROW(4:15),4)))="",N(OFFSET(B373,INT(ROW(4:15)/4-1),MOD(ROW(4:1方法三:A12DEF3HIJKL=INDEX(B427:E429,N(IF({1},INT(ROW(4:15)/4))),N(IF({1},MOD(ROW(4:15),4)+1)))此种方法较佳,但是嵌套还是太多,我们后续处理就不能套太多函数了此贴为chenhh803原创,转贴请注明技巧浅析(四)过了,我这里只不过把前辈高人讲过的东西再重新解读一下,数组高手可以飘过。
NumPy学习⼼得(⼆)基本运算数组的算术运算是按元素逐个运算。
数组运算后将创建包含运算结果的新数组。
[python]1. >>> a= np.array([20,30,40,50])2. >>> b= np.arange( 4)3. >>> b4. array([0, 1, 2, 3])5. >>> c= a-b6. >>> c7. array([20, 29, 38, 47])8. >>> b**29. array([0, 1, 4, 9])10. >>> 10*np.sin(a)11. array([ 9.12945251,-9.88031624, 7.4511316, -2.62374854])12. >>> a<3513. array([True, True, False, False], dtype=bool)与其他矩阵语⾔不同,NumPy中的乘法运算符*按元素逐个计算,矩阵乘法可以使⽤dot函数或创建矩阵对象实现(后续章节会介绍)[python]1. >>> A= np.array([[1,1],2. ...[0,1]])3. >>> B= np.array([[2,0],4. ...[3,4]])5. >>> A*B # 逐个元素相乘6. array([[2, 0],7. [0, 4]])8. >>> np.dot(A,B) # 矩阵相乘9. array([[5, 4],10. [3, 4]]) 有些操作符如+=和*=⽤来更改已存在数组⽽不创建⼀个新的数组。
[python]1. >>> a= np.ones((2,3), dtype=int)2. >>> b= np.random.random((2,3))3. >>> a*= 34. >>> a5. array([[3, 3, 3],6. [3, 3, 3]])7. >>> b+= a8. >>> b9. array([[ 3.69092703, 3.8324276, 3.0114541],10. [ 3.18679111, 3.3039349, 3.37600289]])11. >>> a+= b # b转换为整数类型12. >>> a13. array([[6, 6, 6],14. [6, 6, 6]])当数组中存储的是不同类型的元素时,数组将使⽤占⽤更多位(bit)的数据类型作为其本⾝的数据类型,也就是偏向更精确的数据类型(这种⾏为叫做upcast)。
题型六 新定义题针对演练1. (2016某某)设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a ⊕b =⎩⎪⎨⎪⎧b a (a >0)a -b (a ≤0).例如:1⊕(-3)=-31=-3,(-3)⊕ 2=(-3)-2=-5,(x 2+1)⊕(x -1)=x -1x 2+1.(因为x 2+1>0) 参照上面材料,解答下列问题:(1)2⊕ 4=________,(-2)⊕ 4=________;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x ),求x 的值.2. 对于正整数n ,定义F (n )=⎩⎪⎨⎪⎧n 2,n <10f (n ),n ≥10,其中f (n )表示n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=f (123)=12+02=1, .规定F 1(n )=F (n ),F k +1(n )=F (F k (n )).例如:F 1(123)=F (123)=10,F 2(123)=F (F 1(123))=F (10)=1.(1)求:F 2(4)和F 2015(4);(2)若F3m(4)=89,求正整数m的最小值.3. 如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13-(-1)3,26=33-13,所以2、26均为“麻辣数”.【立方差公式:a3-b3=(a-b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)求在不超过2016的自然数中,所有的“麻辣数”之和为多少?4. (2015某某A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数1232+22=131,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此1232+22=131是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.5. (2016某某一中三模)当一个多位数为偶数位时,在其中间位插入一位数k(0≤k≤9)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足此条件的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.6. (2016某某外国语学校二诊)定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6)整除;又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除….(1)我们发现,3和6,4和12,5和20,6和30,…,都是两个数的祖冲之数组;由此猜测n和n(n-1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想;(2)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.____________________ __________ __________ __________ _______________ _____7. (2016某某南开阶段测试三)进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n (n ≤10)进制表示的数,通常使用n 个阿拉伯数字0~(n -1)进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76,记作(136)7=76.(1)请将以下两个数转化为十进制:(331)5=________,(46)7=________;(2)若一个正数可以用七进制表示为(abc )7,也可以用五进制表示为(cba )5,请求出这个数并用十进制表示.8. (2016某某实验外国语学校一诊)有一个n 位自然数abcd …gh 能被x 0整除,依次轮换个位数字得到的新数bcd …gha 能被(x 0+1)整除,再依次轮换个位数字得到的新数cd …ghab 能被(x 0+2)整除,按此规律轮换后,d …ghabc 能被(x 0+3)整除,…,habc …g 能被(x 0+n_____ _____-1)整除,则称这个n 位数abcd …gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:32+22=134能被2整除,243能被3整除,432+22=13能被4整除,则称三位数32+22=134是2的一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”; (2)若三位自然数abc 是3的一个“轮换数”,其中a =2,求这个三位自然数abc .9. 把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…,如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如: 32+22=13→32+22=13→12+02=1, →12+02=1, 72+02=→72+02=42+92=97→42+92=97→92+72=130→12+32+02=10→12+02=1, 所以32+22=13和72+02=都是“快乐数”._____ _____ _____ __________ (1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.10. 定义一种对于三位数abc (a 、b 、c 不完全相同)的“F 运算”:重排abc 的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc =213时,则 213――→F 198(32+22=131-123=198)――→F792(981-189=792). (1)579经过三次“F 运算”得________;(2)假设abc 中a >b >c ,则abc 经过一次“F 运算”得______(用代数式表示);(3)猜想:任意一个三位数经过若干次“F 运算”都会得到一个定值,请证明你的猜想.11. (2016大渡口区诊断性检测)若一个整数能表示成a 2+b 2(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为5=22+12.再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x ,y 是整数),所以M 也是“完美数”. (1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知S =x 2+4y 2+4x -12y +k (x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由;(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.12. (2016某某西大附中第九次月考)对于实数x ,y 我们定义一种新运算L (x ,y )=ax +by (其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L (x ,y ),其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若L (x ,y )=x +3y ,则L (2,1)=________,L (32,12)=________; (2)已知L (1,-2)=-1,L (13,12)=2. ①a =________,b =________;②若正格线性数L (m ,m -2),求满足50<L (m ,m -2)<100的正格数对有多少个;③若正格线性数L (x ,y )=76,求满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗?若有,请找出;若没有,请说明理由.13. (2016某某巴蜀二诊)古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥拉斯所创立,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,如他们研究各种多边形数:记第n 个k 边形数N (n ,k )=k -22n 2+4-k 2n (n ≥1,k ≥3,k 、n 都为整数), 如第1个三角形数N (1,3)=3-22×12+4-32×1=1; 第2个三角形数N (2,3)=3-22×22+4-32×2=3; 第3个四边形数N (3,4)=4-22×32+4-42×3=9; 第4个四边形数N (4,4)=4-22×42+4-42×4=16. (1)N (5,3)=________,N (6,5)=________;(2)若N (m ,6)比N (m +2,4)大10,求m 的值;(3)若记y =N (6,t )-N (t ,5),试求出y 的最大值.题型六 新定义题针对演练1. 解:(1)2,-6.【解法提示】2⊕ 4=42=2,(-2)⊕ 4=-2-4=-6. (2)∵x >12, ∴2x -1>0,∴(2x -1)⊕(4x 2-1)=12142--x x =-4-(1-4x ), 即2x +1=-5+4x ,解得x =3.∴x 的值为3.2. 解:(1)F 2(4)=F (F 1(4))=F (F (4))=F (16)=12+62=37; F 1(4)=F (4)=16,F 2(4)=37,F 3(4)=58,F 4(4)=89,F 5(4)=145,F 6(4)=26,F 7(4)=40,F 8(4)=16,通过观察发现,每进行7步运算是一个循环,2015÷7=287……6,因此F 2015(4)=F 6(4)=26.(2)由(1)可知,每进行7步运算是一个循环,F 4(4)=89=F 11(4)=F 18(4)=F 4+7i (4),其中i =0,1,2,3,…,要求m 的最小值,则(4+7i )为3的最小公倍数,因为3m >4,所以3m =18,所以m =6.3. 解:(1)98是麻辣数,169不是麻辣数,理由如下:设k 为整数,则2k +1,2k -1为两个连续奇数,设M 为麻辣数,则M =(2k +1)3-(2k -1)3=24k 2+2, ∵98=53-33,故98是麻辣数;M =24k 2+2为偶数,故169不是麻辣数. (2)同(1)令M ≤2016,则24k 2+2≤2016, 解得k 2≤100712<84, 故k 2=0,1,4,9,16,25,36,49,64,81, 故M 的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.所以,在不超过2016的自然数中,所有的“麻辣数”之和为6860.4. 解:(1)1331,2442,1001.猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为:1000x +100y +10y +x =1001x +110y =11(91x +10y ),∵x 、y 是0~9之间的整数,∴11(91x +10y )能被11整除.∴任意一个四位“和谐数”能被11整除.(2)设这个三位“和谐数”为xyx ,用十进制表示为:100x +10y +x =101x +10y ,∵它是11的倍数, ∴1110101y x +为整数. 将这个式子变形:1110101y x +=11291121199y x y x y x y x -++=-++, ∵x 、y 是0~9之间的整数, ∴112y x -应为整数. 又∵1≤x ≤4,0≤y ≤9,∴2≤2x ≤8,-9≤-y ≤0,∴-7≤2x -y ≤8, ∵要使112y x 是整数,则2x -y 只能是0, ∴2x -y =0,即y =2x ,∴y 与x 的函数关系式是y =2x (1≤x ≤4,x 为自然数).5. (1)解:如:135,225,315,405.【解法提示】设原来的两位数为xy ,插入的数字为k .由题意得:9(10x +y )=100x +10k +y ,化简得:4y -5x =5k ,当k =0时,4y -5x =0,则x =4,y =5;当k =1时,4y -5x =5,则x =3,y =5;当k =2时,4y -5x =10,则x =2时,y =5;_____ __________ ___ 当k =3时,4y -5x =15,则x =1,y =5.(2)证明:设一个位数为2n 位的多位数为ab ,中间插入数字m ,得其关联数(0≤m ≤9,且m 为3的倍数)为amb ,由题意得,amb -10ab =a ×10n +1+m ×10n +b -10(a ×10n +b )=m ×10n-9b , ∵m 是3的倍数,∴m ×10n能被3整除, 又∵9b 能被3整除,∴m ×10n-9b 能被3整除, 故对于任何一个位数为偶数的多位数,中间插入数字m (0≤m ≤9,且m 为3的倍数),所得的关联数与原数10倍的差一定能被3整除.6. (1)证明:∵n +n (n -1)=n +n 2-n =n 2, ∴n ·n (n -1)÷[n +n (n -1)]=n -1,∵n ≥2,n 为整数,∴n -1是整数,∴n 和n (n -1)(n ≥2,n 为整数)组成的数组是两个数的祖冲之数组.(2)解:∵(4a ,5a ,6a )是三个数的祖冲之数组,∴可设⎪⎩⎪⎨⎧+=⋅+=⋅+=⋅pa a a a n a a a a ma a a a )65(65)64(64)54(54,即⎪⎩⎪⎨⎧===pa n a ma 1130512920,∴920m =512n =1130p ,化简得:22p =25n =27m ;∵m 、n 、p 均为整数,∴m =22×25×i (i 为整数),∴a =920×22×25i =25119i⨯⨯,∵a 是整数,∴i 为偶数,当i =2时,a =495,当i =4时,a =990,__________ _____ _____ __________ 当i =6时,a =1485,不是三位数,舍去,综上所述,满足条件的所有三位正整数a 为495和990.7. 解:(1)(331)5=3×52+3×5+1=91; (46)7=4×7+6=34.(2)∵(abc )7=a ×72+b ×7+c ,(cba)5=c ×52+b ×5+a , ∴25c +5b +a =49a +7b +c ,即24a +b =12c ,∵a 、b 、c 是0~6的整数,∴b =0,c =2a ,当a =1时,c =2,这个十进制的数为51;当a =2时,c =4,这个十进制的数为102;当a =3时,c =6,这个十进制的数为153.8. (1)证明:设此两位数为a 2a ,∵a 2a =10a +2a =12a 为6的倍数,轮换后2aa =20a +a =21a 为7的倍数,_____ _____ _____ _____∴a 2a 为6的一个轮换数.故这个两位自然数一定是“轮换数”.(2)解:∵此三位数为2bc =200+10b +c =198+9b +(2+b +c ),为3的倍数, ∴(2+b +c )为3的倍数,第一次轮换后:bc 2=100b +10c +2=100b +8c +(2c +2),为4的倍数,∴(c +1)为2的倍数,即c 为奇数,第二次轮换后:c 2b =100c +20+b ,为5的倍数,则b 为0或者5.当b =0时,2+b +c =2+c ,为3的倍数且c 为奇数,则c =1,或7,即三位数为201 或207;当b =5时,2+b +c =7+c 为3的倍数且c 为奇数,则c =5,即三位数为255.综上所述,这个三位自然数abc 为201,207或255.9. 解:(1)最小的两位“快乐数”是10; 19是“快乐数”. 证明:由题意可知,用反证法证明数字4经过若干次运算后都不会出现数字1即可. ∵4→16→37→58→89→145→42→20→4→16…→4出现两次,∴后面将重复出现,永远不会出现1,∴任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设这个三位“快乐数”为abc,由题意知,经过两次运算后结果为1,所以第一次运算后结果一定是10或100,所以a2+b2+c2=10或100,又因为a、b、c为整数,且a≠0,所以a2+b2+c2=12+32+02=10或a2+b2+c2=0+62+82=100.(i)当a=1,b=3或0,c=0或3时,这个三位“快乐数”为130,103;(ii)当a=2时,b、c无解;(iii)当a=3时,b=1或0,c=0或1时,这个三位“快乐数”为310,301;同理当a2+b2+c2=100时,因为62+82=100, 所以这个三位“快乐数”的所有可能为680,608,806,860.综上所述,一共有130,103,310,301,680,608,806,860八个.又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,经计算知只有310和860满足条件.10.解:(1)495.【解法提示】①975-579=396;②963-369=594;③954-459=495.(2)99(a-c).【解法提示】(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c).(3)证明:设这个三位数中三个数字为a,b,c,且a≥b≥c,a≥c+1,则经过“F运算”_____ _____有abc-cba=99(a-c)=100(a-c-1)+10×9+(10+c-a),因此所得的三位数中必有一个9,而另外两个数字之和为9,共有990,981,972,963,954五种情况;以990为例得,990-099=891,981-189=792,972-279=693,963-369=594,954-459=495,…,由此可知最后得到495时就会循环.∴任意一个三位数经过若干次“F运算”都会得到一个定值,这个定值为495.11.解:(1)0,1,2,4,8,9均可.∵29=52+22,∴29是“完美数”.(2)根据题意S=x2+4y2+4x-12y+k=(x2+4x)+(4y2-12y)+k=(x+2)2-4+(2y-3)2-9+k=(x+2)2+(2y-3)2+(k-13).要使S为“完美数”,则k-13=0,即k=13.(3)设m=a2+b2,n=c2+d2(a,b,c,d都是整数),则mn=(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=a2c2+2abcd+b2d2+b2c2-2abcd+a2d2=(ac +bd )2+(bc -ad )2, ∴mn 也是“完美数”.12. 解:(1)5;3.【解法提示】由新定义得,L(2,1)=2+3×1=2+3=5;L(32,12)=32+3×12=3. (2)①3;2. 【解法提示】由定义得,⎪⎩⎪⎨⎧=+-=-2213112b a b a ,解得⎩⎨⎧==23b a . ②由新定义,得L (m ,m -2)=3m +2(m -2)=5m -4,∵50<L (m ,m -2)<100,∴⎩⎨⎧<->-100455045m m ,解得545<m <1045, ∵m 和m -2均为正整数,∴经计算可知满足50<L (m ,m -2)<100的正格数对共有10个. ③由L (x ,y )=3x +2y =76,得y =2376x -, ∵x >0,y >0,即2376x ->0,解得x <763,又∵x ,y 均为正整数,∴x 为偶数,∴经计算可知共有12个满足条件的正格数对,若x ,y 满足问题②,则x -y =2,即x -2376x -=2, 解得x =16,∴y =x -2=14,∴在这些正格数对中,有满足问题②的数对,为⎩⎨⎧==1416y x .13. 解:(1)15;51.【解法提示】根据题意得,N (5,3)=3-22×52+4-32×5=252+52=15; N (6,5)=5-22×62+4-52×6=54-3=51. (2)由题意得,6-22m 2+4-62m =4-22(m +2)2+4-42(m +2)+10, 化简得m 2-5m -14=0, 解方程得,m =7或m =-2(不合题意,舍去),故m =7.(3)由题意得,y =22-t ×62+24t -×6-5-22t 2-4-52t =-32t 2+312t -24, 整理得y =-32(t -316)2+38524, ∵a =-32<0,且t 是整数,∴当t =5时,y 有最大值,其最大值为16.。
C语⾔位运算符:与、或、异或、取反、左移与右移 位运算是指按⼆进制进⾏的运算。
在系统软件中,常常需要处理⼆进制位的问题。
C语⾔提供了6个位操作运算符,这些运算只能⽤于整型操作数,即只能⽤于带符号或⽆符号的char、short、int与long类型。
浮点数因为浮点型和整型在计算机内的存储⽅式⼤相径庭,同样是32位。
但是浮点数是1位表⽰符号位,23位表⽰数值部分,8位其他表⽰指数部分。
⽽整型只是单纯32位补码形式存放的,这就是位运算不能⽤于浮点数的原因。
1、“按位与”运算符(&) 按位与是指:参加运算的两个数据,按⼆进制进⾏“与”运算。
如果两个相应的⼆进制位都位1,则该位的结果为1;否则为0。
这⾥的1的可以理解为逻辑中的true,0可以理解为逻辑的false。
按位与其实与逻辑上“与”的运算规则⼀致。
逻辑上的“与”,要求运算数全真,结果才为真。
若A=true, B=true,则A∩B=true 例如:3&5, 3的⼆进制编码是11(2)。
(为了区分⼗进制和其他进制,本⽂规定,凡是⾮⼗进制的数据均在数据后⾯加上括号,括号中注明其进制,⼆进制则标记为2,内存储存数据的基本单位是字节(Byte),⼀个字节由8个位(bit)所组成。
位是⽤以描述电脑数据量的最⼩单位。
⼆进制系统中,每个0或1就是⼀个位。
将11(2)补⾜成⼀个字节,则是00000011(2)。
5的⼆进制编码是101(2),将其补⾜称⼀个字节,则00000101(2)。
按位与运算:0000 0011(2) & 000000101(2) = 00000001(2)由此可知3&5 = 1。
C语⾔代码:1 #include <stdio.h>23int main(void) {4int a = 3, b = 5;5 printf("a and b: %d\n", a & b); //0011 & 01016return0;7 }CPU处理位运算的速度是最快的,所以很多操作我们都可以转换为位运算,以下是⽤按位与替换取模运算进⾏奇偶数判断。
十几减几的计算方法
十几减几的计算方法是我们在日常生活中经常会用到的一种数学运算。
下面我们来详细介绍一下十几减几的计算方法。
首先,我们来看一个简单的例子,13减2等于多少?要计算13减2,我们可以先将13画成10和3两部分,然后从10中减去2,剩下8,再加上3,最终得到11。
所以13减2等于11。
接下来,我们来看一个稍微复杂一点的例子,18减5等于多少?同样地,我们可以将18分成10和8两部分,然后从10中减去5,剩下5,再加上8,最终得到13。
所以18减5等于13。
再来看一个更复杂的例子,15减9等于多少?同样地,我们可以将15分成10和5两部分,然后从10中减去9,剩下1,再加上5,最终得到6。
所以15减9等于6。
通过以上例子,我们可以总结出十几减几的计算方法:
1. 将十几拆分成10和个位数两部分;
2. 从10中减去个位数;
3. 将得到的差再加上个位数,即可得到最终的结果。
需要注意的是,如果个位数大于10中的数,则需要借位。
例如,17减9,我们可以先从10中减去9得到1,然后再从7中减去0,最终得到8。
当然,这只是一种简单的计算方法,对于更复杂的数学运算,我们可能需要借助其他的计算技巧。
但是对于十几减几这样的简单运算,以上的方法已经可以很好地帮助我们得到正确的答案。
总的来说,十几减几的计算方法并不复杂,只要我们掌握了拆分数字、借位和加法运算的基本技巧,就能够轻松应对各种十几减几的计算题目。
希望这篇文档能够帮助大家更好地理解和掌握这一计算方法。
一、解答题1.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.2.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯-=4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦=2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.3.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来; (3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为: ()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.4.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45 +3×|1﹣(﹣2)2| =﹣12﹣(﹣8)×54+3×|1﹣4| =﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.5.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 7.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3)=16×(-8)×(-3) =4.【点睛】 本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.9.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.10.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-,)(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 11.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.12.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.13.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m=88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.解析:(1)﹣8;(2)13.【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.=-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算(1)(-1)2019+0.25×(-2)3+4÷23(2)21233()12323-÷+-⨯+ 解析:(1)3;(2)-2 【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.18.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=;在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x>3和x<−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x和3的两点之间的距离为:|x−3|;数轴上表示数x和−2的两点之间的距离表示为:|x+2|;故答案为:3,|x−3|,x,-2;(2)①当x在-2和3之间移动时,|x+2|+|x−3|=x+2+3−x=5;②当x>3时,x−3+x+2=7,解得:x=4,当x<−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.19.计算:(﹣1)2014+15×(﹣5)+8解析:8【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8.【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.20.将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.21.计算:(1)6÷(-3)×(-32)(2)-32×29-+(-1)2019-5÷(-54)解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.(1)371(24)812⎛⎫-+⨯-⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24) 812⎛⎫-+⨯-⎪⎝⎭37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.23.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.24.计算:2202013(1)(2)4(1)2-÷-⨯---+-.解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.28.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c+++++的值. 解析:(1)2或2-或0;(2)-1.【分析】 (1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.。
二年级数学知识点大全以下是二年级数学的知识点大全:1. 数字的认识:认识0-100之间的数字,并能正确地念出它们。
2. 数字的顺序:学会将数字按照顺序排列,并能正确地念出它们。
3. 数字的位置:认识个位数、十位数和百位数的概念,理解它们在数字中的位置。
4. 数字的比较:学会使用大于、小于和等于的符号,比较两个数字的大小。
5. 加法:学会进行简单的加法运算,如1+1、2+3等。
6. 减法:学会进行简单的减法运算,如2-1、4-2等。
7. 数组的认识:认识和理解数组中的概念,能够正确地数出数组中的对象数量。
8. 平方数:认识和理解平方数的概念,如1、4、9等。
9. 偶数和奇数:能够正确地区分偶数和奇数,并能够对给定的数字判断它们是偶数还是奇数。
10. 逆运算:学会进行数学逆运算,如对给定的加法式或减法式求解未知数。
11. 时间的认识:认识和理解钟、分钟和秒的概念,能够读懂简单的时钟和计时器。
12. 长度的认识:认识和理解厘米、米和千米的概念,能够使用适当的单位测量长度。
13. 重量的认识:认识和理解克、千克和吨的概念,能够使用适当的单位测量重量。
14. 金钱的认识:认识和理解分、角和元的概念,能够正确地计算简单的金钱问题。
15. 几何图形:认识和理解正方形、长方形、圆形和三角形的概念,能够正确地辨别和绘制这些图形。
16. 分数的认识:认识和理解分数的概念,如1/2、1/4等。
17. 图表的理解:能够读懂简单的图表,并从中获取有关数量和比较的信息。
这些是二年级数学的基本知识点,学生在掌握了这些知识后,可以进一步学习更高级的数学内容。
继续写相关内容:18. 数学符号的认识:认识和理解加号、减号、乘号和除号的概念,能够正确地应用这些符号进行简单的计算。
19. 位置和方向:认识和理解前、后、左、右、上、下等位置和方向概念,能够正确地描述和指示物体的位置和方向。
20. 尺寸的比较:能够比较并判断物体的大小和长度,如长短、高低、宽窄等。
一、解答题1.计算(1)(-1)2019+0.25×(-2)3+4÷2 3(2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12 931212323-÷+⨯-⨯+=-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.2.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 3.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.4.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯--=213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.5.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.6.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+=142-=132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.7.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5-- 如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.8.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭,()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.9.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.10.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 11.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.12.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.13.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.14.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.15.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ; (3)若脐橙按4.5元/kg 出售,且小明需为买家支付运费(平均0.5元/kg ),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案; (3)先计算出本周的总销量,再乘以每千克的利润即可. 【详解】(1)4-3-5+300=296(kg ),故答案为:296;(2)(+21)-(-8)=29(kg ),故答案为:29;(3)4-3-5+14-8+21-6=17(kg ),17+100×7=717(kg ),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=;在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x>3和x<−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x和3的两点之间的距离为:|x−3|;数轴上表示数x和−2的两点之间的距离表示为:|x+2|;故答案为:3,|x−3|,x,-2;(2)①当x在-2和3之间移动时,|x+2|+|x−3|=x+2+3−x=5;②当x>3时,x−3+x+2=7,解得:x=4,当x<−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.18.将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.19.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷4解析:(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.21.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.计算:(1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷ (3)1125100466()46311-⨯-⨯-⨯ 解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷ =893--⨯=827--=35- (3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+--- =392-【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.计算:|﹣2|﹣32+(﹣4)×(12-)3 解析:162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.27.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.28.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭.解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】 解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.29.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.30.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。
十进制转二进制函数
十进制转二进制函数是一种将十进制数字转化为二进制数字的
函数。
该函数通常被计算机程序员用来转换数字,以便在计算机中进行操作。
该函数的实现方法通常是将十进制数字除以二,然后将余数存储在一个数组中,直到商为0为止。
然后从最后一个余数开始,依次将数组中的数字拼接起来,即为该数字的二进制表示。
例如,将十进制数字13转换为二进制数字的过程如下:
- 13 / 2 = 6 (1)
- 6 / 2 = 3 0
- 3 / 2 = 1 (1)
- 1 / 2 = 0 (1)
因此,13的二进制表示为1101。
在编写程序时,可以使用一个循环结构来实现该函数。
该循环将数字除以二,并将余数存储在一个数组中。
一旦商为0,循环结束,并从数组中拼接数字以生成二进制表示。
该函数可以用于计算机程序中的二进制转换,以便进行位运算等操作。
- 1 -。