2014-2015学年浙江省杭州市八年级(下)开学数学试卷解析
- 格式:doc
- 大小:329.54 KB
- 文档页数:34
大江东产业集聚区2014学年第二学期学习能力检测卷八年级数学试题卷 (6.28)(满分为120分,考试时间90分钟.)友情提示: Hi ,亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1.设n 为正整数,且n <65<n +1,则n 的值为( )A. 7B. 8C. 9D. 102.小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装 销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、 平均数B 、众数C 、加权平均数D 、中位数3.一个多边形的外角中,钝角的个数不可能是( )A 、1个B 、2个C 、3个D 、4个4.若平行四边形的一边长为5,则它的两条对角线长可以是( )A .12和2B .3和4C .4和6D .4和85.顺次连接四边形ABCD 各边中点所得到的图形是矩形,则四边形ABCD 是( )A 、菱形B 、矩形C .对角线相等的四边形D .对角线互相垂直的四边形6. 已知一元二次方程01282=+-x x 的两个解恰好是等腰△ABC 的底边长和腰长,则△ABC 的周长为 ( )A .14B .10C .11D .14或107.已知5个正数54321,,,,a a a a a 且54321a a a a a ,则数据54321,,,,a a a a a 的平均数和中位数是( )A 、 2,3a a B 、2,43a a a + C 、2,6543a a a + D 、2,653a a ;8. 给出下列命题:①要了解一批灯泡的使用寿命,应采用普查的方式; ②我们知道若关于x 的一元二次方程)0(02≠=++a c bx ax 有一根是x=1,则0=++c b a ,那么如果b c a 39=+,则方程02=++c bx ax 有一根为X=-3 ; ③对角线相等且互相垂直的四边形是正方形。
2014-2015学年浙江省杭州市下城区八年级(下)期末数学试卷一、选择题1、将化简,正确的结果是()A.3B.±3C.6D.±32、下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.3、假设命题“a≤0”不成立,那么a与0的大小关系只能是()A.a≥0B.a>0C.a≠0D.a=04、已知y是关于x的反比例函数,点P(x1,y1),Q(x2,y2)是反比例函数图象上的点,则下列结论正确的是()A.x1+y1=x2+y2B.x1y2=x2y1C.=D.=5、已知数据x1,x2,…,xn的平均数是2,方差是3,则一组新数据x1+8,x 2+8,…,xn+8的平均数和方差分别是()A.10,3B.10,11C.2,3D.2,116、在四边形ABCD中,若∠A与∠C之和等于四边形外角和的一半,∠B比∠D大15°,则∠B的度数等于()A.150°B.97.5°C.82.5°D.67.5°7、函数≤x≤2时,≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=8、如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为()A.(-1,B.(-1,1)C.(1,+1)D.(-1,2)+1)9、已知关于x的方程(x-1)[(k-1)x+(k-3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根10、如图,在平面直角坐标系中,函数y=x和函数y=的图象在第一象限交于点D(4,m),与平行于y轴的直线x=t(0<t<4)分别交于点A和点B,平面上有点P(0,6).若以点O,P,A,B为顶点的四边形为平行四边形,则这个平行四边形被直线PD 所分割成的两部分图形的面积之比为( )A .1:1B .1:2C .1:3D .1:4二、填空题11、二次根式中字母x 的取值范围是 __________ .12、如图是某地2月18日到23日空气质量指数AQI 的统计图,则这六天AQI 的中位数是 __________ .13、已知直角三角形的两条边长分别是方程x 2-3x+2=0的两个根,则此直角三角形的斜边长是__________.14、已知x 2+2(n+1)x+4n 是一个关于x 的完全平方式,则常数n= __________ . 15、在平面直角坐标系中,O 为坐标原点,设点P (1,t )在反比例函数y=-的图象上,过点P 作直线l 与y 轴平行,点Q 在直线l 上,满足QP=OP .若反比例函数y=的图象经过点Q ,则k= __________ .16、如图,在反比例函数y=(x >0)的图象上有点P 1,P 2,P 3,…,它们的横坐标依次为1,2,3,…,分别过这些点作x 轴的垂线,垂足依次为A 1,A 2,A 3,…,分别以P 1A 1,P 3A 3,P 5A 5…为对角线作平行四边形,另两顶点分别落在P 2n-2A 2n-2与P 2n A 2n 上(n=1,2,3,…,P 0A 0为y 轴),所构成的阴影部分的面积从左到右依次为S1,S2,S3,…,记P1=,P2=+,P3=++,…,则P2= __________ ;P n -Pn-1= __________ .三、解答题17、(1)计算:()2-(2)解方程:2x2-2x=3.18、如图,在▱ABCD中,E、F分别是AB,CD上的点,且AE=CF.求证:DE=BF.19、在学校组织的知识竞赛中,每班参加比赛的人数相同,成绩分为A、B、C、D 四个等级,其中相应等级的得分依次记为:100分,90分,80分,70分,学校将八年级一班和二班的成绩分别整理并绘制成如下的统计图.(1)二班C级的人数占百分之几?(2)此次竞赛中,一班和二班成绩在C级以上(包括C级)的人数分别是多少?(3)一班和二班得分的众数分别是多少分?20、已知平面直角坐标系中,O是坐标原点,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(m,2),B(-1,n).(1)求m,n的值;(2)求一次函数的表达式;(3)求△OAB的面积.21、在如图所示的方格中,点A,B,C,D都在格点上,且AB=BC=2CD=4,P是线段BC上的动点,连结AP,DP.(1)设BP=x,用含字母x的代数式分别表示线段AP,DP的长,并求当x=2的时候,AP+DP的值;(2)AP+DP是否存在最小值?若存在,求出其最小值.22、某一农家计划利用已有的一堵长为7.9m的墙,用篱笆围成一个面积为12m2的矩形园子.现有可用的篱笆总长为11m(1)若取园子的长、宽都为整数(单位:m),一共有几种围法?(2)若要使11m长的篱笆恰好用完,应怎样围?23、已知:如图,四边形ABCD为正方形,E为CD边上的一点,连接AE,并以AE为对称轴,作与△ADE成轴对称的图形△AFE,延长EF(或FE)交直线BC于G.(1)求证:DE+BG=EG;∠EAG=45°;(2)设AB=1,GF=m,FE=n,求m+n+mn的值;(3)若将条件中的“E为CD边上的一点”改为“E为射线CD上的一点”,则(1)中的结论还成立吗?请说明理由.2014-2015学年浙江省杭州市下城区八年级(下)期末数学试卷的答案和解析一、选择题1、答案:C试题分析:首先把8分成22×2,然后根据化简二次根式的步骤,把被开方数中能开得尽方的因数(或因式)都开出来,求出将化简,正确的结果是多少即可.试题解析:==3×=.故选:C.2、答案:C试题分析:根据轴对称图形与中心对称图形的概念求解.试题解析:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,部是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.3、答案:B试题分析:由于a≤0的反面为a>0,则假设命题“a≤0”不成立,则有a>0.试题解析:假设命题“a≤0”不成立,则a>0.故选B.4、答案:D试题分析:根据反比例函数图象上点的坐标的特征:图象上的点(x,y)的横纵坐标的积是定值,可得x1y1=x2y2,然后根据反比例函数与坐标轴没有交点,可得x1,y1,x2,y2都不等于0,所以=,据此解答即可.试题解析:∵y是关于x的反比例函数,点P(x1,y1),Q(x2,y2)是反比例函数图象上的点,∴x1y1=x2y2.又∵x1,y1,x2,y2都不等于0,∴=.故选:D.5、答案:A试题分析:根据平均数的变化规律可得出数据x1+3,x2+3,x3+3,…,xn+3的平均数是3;根据数据x1,x2,x3,…,xn的方差为3,即可求出x1+3,x2+3,x3+3,…,xn+3的方差是3.试题解析:∵x1,x2,x3,…,xn的平均数是2,∴x1+8,x2+8,…,xn+8的平均数是2+8=10;∵x1,x2,x3,…,xn的方差是3,∴x1+8,x2+8,…,xn+8的方差是3:故选A.6、答案:B试题分析:根据∠A与∠C之和等于四边形外角和的一半,四边形的外角和为360°,得到∠A+∠C=180°,根据四边形的内角和为360°∠B+∠D=360°-(∠A+∠C)=180°①,根据∠B比∠D大15°,得到∠B-∠D=15°②,所以①+②得:2∠B=195°,所以∠B=97.5°试题解析:∵∠A与∠C之和等于四边形外角和的一半,四边形的外角和为360°,∴∠A+∠C=180°,∴∠B+∠D=360°-(∠A+∠C)=180°①,∵∠B比∠D大15°,∴∠B-∠D=15°②,①+②得:2∠B=195°,∴∠B=97.5°.故选:B.7、答案:A试题分析:把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.试题解析:A、把x=代入y=可得y=1,把x=2代入y=可得y=,故A正确;B、把x=代入y=可得y=4,把x=2代入y=可得y=1,故B错误;C、把x=代入y=可得y=,把x=2代入y=可得y=,故C错误;D、把x=代入y=可得y=16,把x=2代入y=可得y=4,故D错误.故选:A.8、答案:A试题分析:作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;由AAS证明△BCH≌△COE,得出对应边相等BH=CE=1,CH=OE=,求出BG、HE即可.试题解析:作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;如图所示:则∠BHC=∠CEO=90°,∴∠HBC+∠BCH=90°,∵C点坐标为(,1),∴OE=,CE=1,∵四边形ABCO是正方形,∴BC=OC,∠BCO=90°,∴∠BCH+∠OCE=90°,∴∠HBC=∠OCE,在△BCH和△COE中,,∴△BCH≌△COE(AAS),∴BH=CE=1,CH=OE=,∴BG=-1,HE=+1,∴点B的坐标为:(-1,+1);故选:A.9、答案:D试题分析:当k=1时方程为一元一次方程,只有一个实数根,利用△判定方程根的情况即可.试题解析:化简方程(x-1)[(k-1)x+(k-3)]=0,得(k-1)x2-2x-k+3=0,当k=1时方程为一元一次方程,只有一个实数根,∵b2-4ac=4-4×(4k-k2-3)=4-4×[-(k-2)2+1]≥0,∴方程一定有实数根.故选:D.10、答案:C试题分析:如图,先确定D(4,4),再利用直线x=t平行y轴,则A(t,),B(t,t),则根据平行四边形的性质得-t=6,解得t1=2,t2=-8(舍去),所以A(2,8),B(2,2),接着判断BQ为△DOP的中位线,则BQ=OP=3,AQ=3,然后根据三角形面积公式和平行四边形的面积公式计算的值即可.试题解析:如图,把D(4,m)代入y=x得m=4,则D(4,4),∵直线x=t(0<t<4)分别交函数y=的图象和直线y=x于点A和点B,∴A(t,),B(t,t),∵四边形OBAP为平行四边形,∴AB=OP=6,∴-t=6,整理得t2+6t-16=0,解得t1=2,t2=-8(舍去),∴A(2,8),B(2,2),∴点B为OD的中点,∴BQ为△DOP的中位线,∴BQ=OP=3,∴AQ=6-3=3,∴==,即这个平行四边形被直线PD所分割成的两部分图形的面积之比为1:3.故选C.二、填空题11、答案:试题分析:二次根式有意义的条件就是被开方数是非负数,即可求解.试题解析:根据题意得:1-x≥0,解得x≤1.故答案为:x≤112、答案:试题分析:根据中位数的定义先把这些数从小到大排列,再找出最中间两个数的平均数,即可得出答案.试题解析:把这些数从小到大排列为:15,47.5,49,68.3,108.3,120,最中间两个数的平均数是:(49+68.3)÷2=58.65,则这六天AQI的中位数是:58.65;故答案为58.65.13、答案:试题分析:解方程x2-3x+2=0求出直角三角形的两边是1,2,这两边可能是两条直角边,根据勾股定理即可求得斜边,也可能是一条直角边和一条斜边,则斜边一定是2.试题解析:∵x2-3x+2=0,∴x=1或2,当1、2是原方程的两边的是两条直角边时,根据勾股定理得其斜边为=,当是原方程的两边的是一条直角边,和斜边时斜边一定是2.∴直角三角形的斜边长是2或.故答案为:2或.14、答案:试题分析:利用x2+2(n+1)x+4n是一个关于x的完全平方式,则x2+2(n+1)x+4n=0的判别式等于0,据此即可求得n的值.试题解析:根据题意得:[2(n+1)]2-4×4n=0,解得:n=1.故答案为:1.15、答案:试题分析:把P点代入y=-求得P的坐标,进而求得OP的长,即可求得Q的坐标,从而求得k的值.试题解析:∵点P(1,t)在反比例函数y=-的图象上,∴t=-=-3,∴P(1,-3),∴OP==,∵过点P作直线l与y轴平行,点Q在直线l上,满足QP=OP.∴Q(1,-3)或(1,--3)∵反比例函数y=的图象经过点Q,∴-3=或--3=,解得k=-3或--3,故答案为-3或--3.16、答案:试题分析:根据反比例函数图象上点的坐标特征得到P1(1,2),P3(3,),P5(5,),…,P2n-1(2n-1,),再根据平行四边形的性质和三角形面积公式可计算出S 1=2,S2=,S3=,Sn=,所以P1=,P2=+=2,由于Pn-Pn-1=,然后把Sn=代入计算即可.试题解析:∵反比例函数y=(x>0)的图象上有点P1,P2,P3,…,它们的横坐标依次为1,2,3,…,∴P1(1,2),P3(3,),P5(5,),…,P2n-1(2n-1,),∴S1=2××1×2=2,S2=2××1×=,S3=2××1×=,Sn=2××1×=,∴P1==,P2=+=+=2,P n -Pn-1==.故答案为2,.三、解答题17、答案:试题分析:(1)先根据二次根式的性质化简,然后进行减法运算;(2)先把方程化为一般式,然后利用求根公式解方程.试题解析:(1)原式=3-1=2;(2)2x2-2x-3=0,△=(-2)2-4×2×(-3)=28,x==,所以x1=,x2=.18、答案:试题分析:要证DE=BF,只需证四边形DEBF是平行四边形,而很快证出BE=DF,BE∥DF,根据一组对边平行且相等的四边形是平行四边形即可证出.试题解析:证明:在平行四边形ABCD中,AB∥CD,AB=CD,∵AE=CF,∴BE=DF,BE∥DF.∴四边形DEBF是平行四边形.∴DE=BF.19、答案:试题分析:(1)从扇形统计图中可直接得出二班C级的人数扫所占百分比;(2)一班的可直接相加得出,二班的要先求出一班总人数,再求二班成绩在C级以上(包括C级)的人数;(3)由众数的定义分别进行解答即可;试题解析:(1)二班C级的人数占36%;(2)此次竞赛一班成绩在C级以上(包括C级)的人数是:6+12+2=20(人),此次竞赛二班成绩在C级以上(包括C级)的人数是:(6+12+2+5)×(36%+4%+44%)=21(人);(3)一班和二班得分的众数分别是90分和100分.20、答案:试题分析:(1)把A(m,2),B(-1,n)代入反比例函数y=,即可得到结果;(2)由一次函数y=kx+b的图象过A(2,2),B(-1,-4),把A,B两点的坐标代入即可得到结论;(3)根据三角形的面积公式即可求得.试题解析:(1)∵A(m,2),B(-1,n)在反比例函数y=的图象上,∴2=,n=,∴m=2,n=-4;(2)∵一次函数y=kx+b的图象过A(2,2),B(-1,-4),∴,∴,∴一次函数的表达式为:y=2x-2;=×2×2+=3.(3)S△AOB21、答案:试题分析:(1)分别用x表示出BP、CD的长度,再根据勾股定理求出AP、DP的长即可;(2)作点A关于BC的对称点A′,连接A′D,再由对称的性质及勾股定理即可求解.试题解析:(1)由题意结合图形知:AB=4,BP=x,CP=4-x,CD=2,∴AP==,DP===;当x=2时,AP+DP=+=2+2;(2)存在.如图,作点A关于BC的对称点A′,连接A′D,∴A′E=4,DE=6,则A′D====,∴最小值为2.22、答案:试题分析:(1)设园子的长为ym,宽为xm,根据墙长7.9m,围成矩形的园子面积为12m2,列出方程和不等式,求出x,y的值,即可得出答案;(2)根据(1)得出的结果,选取宽为4m时,长为3m的篱笆正好使11m长的篱笆恰好用完.试题解析:(1)设园子的长为ym,宽为xm,根据题意得:,∵园子的长、宽都是整数米,∴x=6,y=2或x=4,y=3或x=3,y=4,∴一共有3种围法:宽为2m时,长为6m,宽为3m时,长为4m,宽为4m时,长为3m;(2)∵要使11m长的篱笆恰好用完,则2x+y=11,∴x=4,y=3,∴要使11m长的篱笆恰好用完,应使宽为4m,长为3m.23、答案:试题分析:(1)根据折叠的性质,△ADE≌△AGE,得到AD=AF=AB,DE=FE,∠DAE=∠FAE,∠D=∠AFE=∠AFG=90°=∠B,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE=∠BAD=45°;GE=GF+EF=BG+DE;(2)AB=1,GF=m,FE=n,则EF、CF、CE可以用m、n表示,由于∠C=90°,根据勾股定理列方程即可解答;(3)不成立,此时,EF=BF-DE,∠EAF=45°成立,证明方法与(1)类似.试题解析:如图1,∵把△ADE沿AE折叠使△AD E落在△AFE的位置,∴△ADE≌△AGE∴AD=AF=AB,DE=FE,∠DAE=∠FAE,∠D=∠AFE=∠AFG=90°=∠B,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG=∠BAD=45°,∴GE=GF+EF=BG+DE;(2)如图1,设AB=1,GF=m,FE=n,则EF=m+n,CE=1-m,CF=1-n,∵∠C=90°,∴(1-m)2+(1-n)2=(m+n)2,整理得:m+n+mn=1;(3)EF=BF+DE不成立,理由:如图2,此时,EF=BF-DE,∠EAF=45°成立.同(1)有△ADE≌△AGE,Rt△ABG≌Rt△AFG,∴DE=FE,GB=GF,∠DAE=∠FAE,∠BAG=∠FAG,∴GE=GF-EF=BG-DE,∠GAE=∠FAG-∠FAE=∠BAD=45°.。
浙江省杭州市开发区2014-2015学年八年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1. (2015•武汉模拟)函数y=中,自变量x 的取值范围( )A . x >4B . x <4C . x ≥4D . x ≤4考点: 函数自变量的取值范围.分析: 根据被开方数大于等于0列式计算即可得解.解答: 解:根据题意得,4﹣x ≥0,解得x ≤4.故选D .点评: 本题考查的知识点为:二次根式的被开方数是非负数.2. (2014•烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .考点: 中心对称图形;轴对称图形.分析: 根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答: 解:A 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A 选项错误;B 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B 选项错误;C 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C 选项错误;D 、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故D 选项正确.故选:D .点评: 此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3. (2015春•杭州期末)用反证法证明命题:若整数系数一元二次方程ax 2+bx+c=0(a ≠0)有有理根,那么a 、b 、c 中至少有一个是偶数时,下列假设中正确的是( )A . 假设a 、b 、c 都是偶数B . 假设a 、b 、c 至多有一个是偶数C . 假设a 、b 、c 都不是偶数D . 假设a 、b 、c 至多有两个是偶数考点: 反证法.分析: 利用反证法证明的步骤,从问题的结论的反面出发否定即可.解答:解:∵用反证法证明:若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a、b、c中至少有一个是偶数,∴假设a、b、c都不是偶数.故选:C.点评:此题主要考查了反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.4.(2012•杭州)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18° B.36° C.72°D. 144°考点:平行四边形的性质;平行线的性质.专题:计算题.分析:关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.解答:解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.点评:本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.5.(2002•盐城)若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是()A.k<1 B.k≤1 C.k<1且k≠0 D.k≤1且k≠0考点:根的判别式;一元二次方程的定义.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.关于x的一元二次方程kx2﹣2x+1=0有实数根,则△=b2﹣4ac≥0.解答:解:∵a=k,b=﹣2,c=1,∴△=b2﹣4ac=(﹣2)2﹣4×k×1=4﹣4k≥0,k≤1,∵k是二次项系数不能为0,k≠0,即k≤1且k≠0.故选D.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6.(2015春•杭州期末)已知A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系的是()A.y2>y1>y3B.y1>y2>y3C.y3>y2>y1D. y1>y3>y2考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征分别计算出y1、y2、y3的值,然后比较大小即可.解答:解:∵A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,∴y1=2,y2=1,y3=﹣,∴y1>y2>y3.故选B.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.(2011•兰州)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9考点:解一元二次方程-配方法.专题:方程思想.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.(2015春•杭州期末)下列命题:①在函数:y=﹣2x﹣1;y=3x;y=;y=﹣;y=(x<0)中,y随x增大而减小的有3个函数;②对角线互相垂直平分且相等的四边形是正方形;③反比例函数图象是两条无限接近坐标轴的曲线,它只是中心对称图形;④已知数据x1、x2、x3的方差为s2,则数据x1+2,x3+2,x3+2的方差为s3+2.其中是真命题的个数是()A.1个B.2个C.3个D. 4个考点:命题与定理.分析:根据一次函数与反比例函数的性质对①进行判断;根据正方形的判定方法对②进行判断;根据反比例函数图象的对称性对③进行判断;根据方差的意义对④进行判断.解答:解:在函数:y=﹣2x﹣1;y=3x;y=;y=﹣;y=(x<0)中,y随x增大而减小的有2个函数,所以①错误;对角线互相垂直平分且相等的四边形是正方形,所以②正确;反比例函数图象是两条无限接近坐标轴的曲线,它是中心对称图形,也是轴对称图形,所以③错误;已知数据x1、x2、x3的方差为s2,则数据x1+2,x3+2,x3+2的方差也为s2,所以④错误.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.(2015春•杭州期末)如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A. 2 B.2C.4D. 2+2考点:轴对称-最短路线问题;菱形的性质.分析:根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时,PK+QK 的最小值,然后求解即可.解答:解:作点P关于BD的对称点P′,作P′Q⊥CD交BD于K,交CD于Q,∵AB=4,∠A=120°,∴点P′到CD的距离为4×=2,∴PK+QK的最小值为2,故选:B.点评:本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.10.(2015•滕州市校级二模)如图,矩形纸片ABCD,AB=3,AD=5,折叠纸片,使点A落在BC 边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E在BC边上可移动的最大距离为()A. 1 B. 2 C. 4 D. 5考点:翻折变换(折叠问题).分析:根据翻折变换,当点Q与点D重合时,点A′到达最左边,当点P与点B重合时,点A′到达最右边,所以点A′就在这两个点之间移动,分别求出这两个位置时A′B的长度,然后两数相减就是最大距离.解答:解:如图1,当点D与点Q重合时,根据翻折对称性可得ED=AD=5,在Rt△ECD中,ED2=EC2+CD2,即52=(5﹣EB)2+32,解得EB=1,如图2,当点P与点B重合时,根据翻折对称性可得EB=AB=3,∵3﹣1=2,∴点E在BC边上可移动的最大距离为2.故选B.点评:本题考查的是翻折变换及勾股定理,熟知图形翻折不变性的性质是解答此题的关键.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)(2012•厦门)五边形的内角和的度数是540°.考点:多边形内角与外角.分析:根据n边形的内角和公式:180°(n﹣2),将n=5代入即可求得答案.解答:解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.点评:此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.12.(4分)(2014•杭州)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数.分析:根据中位数的定义解答.将这组数据从小到大重新排列,求出最中间两个数的平均数即可.解答:解:把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.故答案为:15.6.点评:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.13.(4分)(2015春•杭州期末)如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则▱ABCD的周长为18.考点:平行四边形的性质.分析:利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出▱ABCD的周长.解答:解:∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,∵在平行四边形ABCD中,AD∥BC,AB=CD,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=DC,∵AD=2AB,∴AD=2CD,∴AE=DE=AB=3,∴▱ABCD的周长为:2×(3+6)=18.故答案为:18.点评:此题主要考查了平行四边形的性质,得出∠DEC=∠DCE是解题关键.14.(4分)(2015春•杭州期末)如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为1米.考点:一元二次方程的应用.专题:几何图形问题.分析:设小道进出口的宽度为x米,然后利用其种植花草的面积为532平方米列出方程求解即可.解答:解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532,整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.故答案为:1.点评:本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为532m2找到正确的等量关系并列出方程.15.(4分)(2015春•杭州期末)如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=8,满足条件的P点坐标是(0,﹣4)或(﹣4,﹣4)或(4,4).考点:反比例函数综合题.分析:先求出B、O、E的坐标,再根据平行四边形的性质画出图形,即可求出P点的坐标.解答:解:如图∵△AOE的面积为4,函数y=的图象过一、三象限,∴S△AOE=•OE•AE=4,∴OE•AE=8,∴xy=8,∴k=8,∵函数y=2x和函数y=的图象交于A、B两点,∴2x=,∴x=±2,当x=2时,y=4,当x=﹣2时,y=﹣4,∴A、B两点的坐标是:(2,4)(﹣2,﹣4),∵以点B、O、E、P为顶点的平行四边形共有3个,∴满足条件的P点有3个,分别为:P1(0,﹣4),P2(﹣4,﹣4),P3(4,4).故答案为:(0,﹣4)或(﹣4,﹣4)或(4,4).点评:此题考查了反比例函数综合,用到的知识点是反比例函数的性质、平行四边形的性质,关键是画图形把P点的所有情况都画出来.16.(4分)(2015春•杭州期末)如图,在菱形ABCD中,边长为10,∠A=60°,顺次连接菱形ABCD 各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是20;四边形A2015B2015C2015D2015的周长.考点:中点四边形;菱形的性质.专题:规律型.分析:根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.解答:解:∵菱形ABCD中,边长为10,∠A=60°,顺次连结菱形ABCD各边中点,∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,∴A1D1=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=5,∴四边形A2B2C2D2的周长是:5×4=20,同理可得出:A3D3=5×,C3D3=C1D1=×5,A5D5=5×()2,C5D5=C3D3=()2×5,…∴四边形A2015B2015C2015D2015的周长是:故答案为:20;.点评:此题主要考查了菱形的性质,矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.三、全面答一答(本题共7个小题,共66分)17.(6分)(2015春•杭州期末)计算:(1)(﹣)2﹣+(2)﹣×.考点:二次根式的混合运算.专题:计算题.分析:(1)先根据二次根式的性质化简,然后合并即可;(2)先根据二次根式的乘除法则运算,然后合并即可.解答:解:(1)原式=6﹣5+3=4;(2)原式=﹣2=2﹣6=﹣4.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(8分)(2015春•杭州期末)解方程:(1)x2﹣3x+1=0;(2)x(x+3)﹣(2x+6)=0.考点:解一元二次方程-因式分解法;解一元二次方程-公式法.专题:计算题.分析:(1)直接利用公式法求出x的值即可;(2)先把原方程进行因式分解,再求出x的值即可.解答:解:(1)∵一元二次方程x2﹣3x+1=0中,a=1,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×1×1=5.∴x===.即x1=,x2=;(2)∵因式分解得(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,解得x1=﹣3,x2=2.点评:本题考查的是用因式分解法和公式法解一元二次方程,熟知解一元二次方程的式分解法和公式法是解答此题的关键.19.(8分)(2007•娄底)某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写下表;(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.姓名平均数众数方差王亮7李刚7 2.8考点:算术平均数;中位数;方差.专题:图表型.分析:(1)根据平均数的定义,计算5次投篮成绩之和与5的商即为王亮每次投篮平均数;根据众数定义,王亮投篮出现次数最多的成绩即为其众数;(2)先算出王亮的成绩的平均数,再根据方差公式计算王亮的投篮次数的方差.(3)从平均数、众数、方差等不同角度分析,可得不同结果,关键是看参赛的需要.解答:解:(1)王亮5次投篮,有3次投中7个,故7为众数;方差为:S2=[(6﹣7)2+(7﹣7)2+…+(7﹣7)2]=0.4个.李刚投篮的平均数为:(4+7+7+8+9)÷5=7个,(2)两人的平均数、众数相同,从方差上看,王亮投篮成绩的方差小于李刚投篮成绩的方差.王亮的成绩较稳定.(3)选王亮的理由是成绩较稳定,选李刚的理由是他具有发展潜力,李刚越到后面投中数越多.点评:此题是一道实际问题,将统计学知识与实际生活相联系,有利于培养学生学数学、用数学的意识,同时体现了数学来源于生活、应用于生活的本质.20.(10分)(2015春•杭州期末)已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.考点:矩形的判定;平行四边形的判定.分析:(1)根据平行四边形的判定定理得出即可;(2)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.解答:(1)证明:∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形;(2)解:当AB=AC时,四边形ADCF为矩形,理由是:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.∵AB=AC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形,即当AB=AC时,四边形ADCF为矩形.点评:此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用,熟记特殊平行四边形的判定方法是解题的关键21.(10分)(2015春•杭州期末)物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场巨鼎采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?考点:一元二次方程的应用.专题:增长率问题;销售问题.分析:(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x);三月份的销售量为:256(1+x)(1+x),又知三月份的销售量为:400元,由此等量关系列出方程求出x的值,即求出了平均增长率;(2)利用销量×每件商品的利润=4250求出即可.解答:解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当商品降价5元时,商品获利4250元.点评:此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.22.(12分)(2015春•杭州期末)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC 于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8﹣4,求正方形ABCD的面积?考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)首先证明△BDG≌△BGF,从而得到OG是△DBF的中位线,即可得出答案;(3)设BC=x,则DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(﹣1)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面积是2.解答:解:(1)证明:在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)OG∥BF且OG=BF,理由:如图,∵BE平分∠DBC,∴∠2=∠3,在△BGD和△BGF中,,∴△BGD≌△BGF(ASA),∴DG=GF,∵O为正方形ABCD的中心,∴DO=OB,∴OG是△DBF的中位线,∴OG∥BF且OG=BF;(3)设BC=x,则DC=x,BD=x,由(2)知△BGD≌△BGF,∴BF=BD,∴CF=(﹣1)x,∵DF2=DC2+CF2,∴x2+[(﹣1)x]2=8﹣4,解得x2=2,∴正方形ABCD的面积是2.点评:本题主要考查了正方形的性质,涉及全等三角形的判定与性质及正方形的性质,解题的关键是灵活运用三角形全等的判定及性质.23.(12分)(2015春•杭州期末)反比例函数y1=(x>0,k≠0)的图象进过点(1,3),P点是直线y2=﹣x+6上一个动点,如图所示,设P点的横坐标为m,且满足﹣m+6,过P点分别作PB⊥x轴、PA⊥y轴,垂足分别为B、A,与双曲线分别交于D、C两点,连接OC、OD、CD.(1)求k的值并结合图象求出m的取值范围;(2)在P点运动过程中,求线段OC最短时P点的坐标;(3)将三角形OCD沿着CD翻折,点O的对应点为O′,得到四边形O′COD,问:四边形O′COD 能否为菱形?若能,求出P点坐标;若不能,说明理由.考点:反比例函数综合题.专题:综合题.分析:(1)先把(1,3)代入y1=求出k的值,再由两函数有交点求出m的值,根据函数图象即可得出结论;(2)根据线段OC最短可知OC为∠AOB的平分线,对于y1=,令x=y1,即可得出C点坐标,把y=代入y=﹣x+6中求出x的值即可得出P点坐标;(3)当OC=OD时,四边形O′COD为菱形,由对称性得到△AOC≌△BOD,即OA=OB,由此时P 横纵坐标相等且在直线y=﹣x+6上即可得出结论.解答:解:(1)∴反比例函数y1=(x>0,k≠0)的图象进过点(1,3),∴把(1,3)代入y1=,解得k=3,∵=﹣m+6,∴m=3±,∴由图象得:3﹣<m<3+;(2)∵线段OC最短时,∴OC为∠AOB的平分线,∵对于y1=,令x=y1,∴x=,即C(,),∴把y=代入y=﹣x+6中,得:x=6﹣,即P(6﹣,);(3)四边形O′COD能为菱形,∵当OC=OD时,四边形O′COD为菱形,∴由对称性得到△AOC≌△BOD,即OA=OB,∴此时P横纵坐标相等且在直线y=﹣x+6上,即x=﹣x+6,解得:x=3,即P(3,3).点评:本题考查的是反比例函数综合题,涉及到菱形的判定与性质、全等三角形的判定与性质等知识,在解答此题时要注意利用数形结合求解.。
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1 )A. B .2.方程2(1)4(1)x x -=-的根是( )A .5B .-5C .5或-5D .5或13.在五边形ABCDE 中,已知∠A 与∠C 互补,∠B+∠D=2700,则∠E 的度数为( ) A .800 B .900 C .1000 D .11004有意义,则x 的取值范围是( ) A .x ≤5 B .x ≥5 C .x >5且 x ≠6 D .x ≥5且x ≠6 5.下列四个命题中真命题是( )A.对角线互相垂直平分的四边形是正方形;B.对角线垂直且相等的四边形是菱形;C.对角线相等且互相平分的四边形是矩形;D.四边都相等的四边形是正方形.6.某市2013年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x ,从2013年到2015年共投入教育经费9.5亿元,则下列方程正确的是( )A.5.922=x B .5.9)1(2=+x C .5.9)1(22=+x D .5.9)1(2)1(222=++++x x 7.如图,在平面直角坐标系中,菱形ABCD 的顶点C 的坐标为(-1,0),点B 的坐标为(0,2),点A 在第二象限.直线521+-=x y 与x 轴、y 轴分别交于点N 、M .将菱形ABCD 沿x 轴向右平移m 个单位,当点D 落在△MON 的内部时(不包括三角形的边),则m 的值可能是( ) A.1 B.2 C.4 D.8 8.对于反比例函数ky x=,如果当2-≤x ≤1-时有最大值4=y ,则当x ≥8时,有( ) A .最小值y =21-B .最小值1-=yC .最大值y =21-D .最大值1-=y9.已知关于x 的一元二次方程02)(2=-+++c a bx x c a ,其中a 、b 、c 分别为△ABC 三边的长.下列关于这个方程的解和△ABC 形状判断的结论错误的是( ) A .如果x =-1是方程的根,则△ABC 是等腰三角形; B .如果方程有两个相等的实数根,则△ABC 是直角三角形; C .如果△ABC 是等边三角形,方程的解是x =0或 x =-1; D .如果方程无实数解,则△ABC 是锐角三角形. 10.有下列四个命题: ① 函数xky =,当0,0<>x k 时,y 随着x 的增大而减小. ② 点P )(y x ,的坐标满足054222=+-++y x y x ,若点P 也在反比例函数xk y =的图像上,则2-=k . ③ 如果一个样本123,,,n x x x x 的方差a ,那么这个样本1233,3,33,n x x x x 的方差为3a.. ④关于x 的方程0)(2=++b m x a 的解是21-=x ,12=x ,(a,m,b 均为常数,a ≠0),则方程0)2(2=+++b m x a 的解是14x =-,21x =-其中真命题的序号是 ( ) A .1个 B .2个 C .3个 D .4个 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.在一次演讲比赛中,某班派出的5名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了3号同学的成绩,但得知5名同学的平均成绩是21分,那么5名同学成绩的方差是 .12.用反证法证明“在三角形中,至少有一个角不大于60°”时,应先假设 .13. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .14.如图,点A 在反比例函数ky x=(x>0)的图象上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使AD =DC ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E .若△ABC 的面积为4,则k 的值为 .15.如图,△ABC 是一张等腰直角三角形彩色纸,AC =BC =40cm .(1)将斜边上的高CD 五等分,然后裁出4张纸条的面积和是 cm 2.(2)若将斜边上的高CD 分成n 等分,然后裁出(n -1)张宽度相等的长方形纸条,则这(n -1)张纸条的面积和是 cm 2.16. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,则∠BCD=三. 全面答一答 (本题有7个小题, 共66分) 解答应写出文字说明, 证明过程或推演步骤.17.(本题6分)(1)64)7()3(22--+- (2)2)32()31)(31(+--+18.(本题8分)(1)162=-x x (2)2x 2+5x-5=019.(本题8分)某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等。
2014-2015 学年浙江省杭州市西湖区八年级(下)期末数学试卷一、仔细选一选(本题有10 个小题,每小题 3 分,共 30 分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卡中相应方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.(3 分)下列各式计算正确的是()A.=± 4B.=a C.﹣= D.()2=32.(3 分)下列四边形:①平行四边形、②矩形、③菱形、④正方形,对角线一定相等的是()A.①②B.①③C.②④D.①②③④3.(3 分)下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.(3 分)方程x2+x﹣1=0 的根是()A.1﹣B.C.﹣ 1+ D .5.(3 分)已知矩形的面积为6,则下面给出的四个图象中,能大致呈现矩形相邻边长 y 与 x 的函数关系的是()A.B.C.D.6.(3 分)一个多边形的每个内角都是144°,这个多边形是()A.八边形B.十边形C.十二边形D.十四边形7.(3 分)关于 x 的方程 ax2+bx+c=2 与方程( x+1)(x﹣3)=0 的解相同,则a ﹣ b+c=()A.﹣ 2 B .0 C.1 D.28.(3 分)如图,将平行四边形纸片 ABCD折叠,使顶点 C恰好落在 AB边上的点M 处,折痕为 BN,则关于结论:①MN∥ AD;②MNCB是菱形.说法正确的是()A.①②都错B.①对②错C.①错②对D.①②都对9.( 3 分)已知 5 个正数 a1,a2,a3,a4,a5的平均数是 a,且 a1>a2> a3>a4>a5,则数据: a1,a2,a3,0,a4, a5的平均数和中位数是()B.a,C. a,D.,A.a,a310.(3 分)若 t 是一元二次方程ax2+bx+c=0( a≠ 0)的根,则判别式△ =b2﹣ 4ac和完全平方式M=(2at+b )2的关系是()A.△ =M B.△> MC.△< M D.大小关系不能确定二、认真填一填(本题有 6 小题,每小题 4 分,共 24 分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.( 4 分)+×=;﹣4=.12.(4 分)一组数据:1,3,4,4,x,5,5,8,10,其平均数是 5,则众数是.13.( 4 分)已知 m是方程 2x2+4x﹣1=0 的根,则 m(m+2)的值为.14.( 4 分)下列命题:①三个角对应相等的两个三角形全等;②如果 ab=0,那么 a+b=0;③同位角相等,两直线平行;④相等的角是对顶角.其中逆命题是真命题的序号是.15.( 4 分)若整数 m满足条件=m+1且 m<,则m的值为.16.(4 分)一个 Rt△ABC,∠A=90°,∠B=60°, AB=2,将它放在直角坐标系中,使斜边 BC在 x 轴上,直角顶点 A 在反比例函数 y=的图象上,则点B的坐标为.三、全面答一答(本题有7 个小题,共 66 分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.( 6 分)解方程:(1) 3( x﹣ 2)2=12(2) 2x2﹣ x﹣6=0.18.( 8 分)已知关于 x 的一元二次方程kx 2+(2k+1) x+k+1=0( k≠ 0).(1)求证:无论 k 取何值,方程总有两个不相等实数根;(2)当 k>1 时,判断方程两根是否都在﹣ 2 与 0 之间.19.( 8 分)八( 3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,对两组学生进行四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)请计算第三次模拟竞赛成绩的优秀率是多少?并将条形统计图与折线统计图补充完整;(2)已求得甲组四次成绩优秀的平均人数为 7,甲组四次成绩优秀人数的方差为,请通过计算乙组的相关数据,判断哪一组成绩优秀的人数较稳定?20.( 10 分)如图 1 是一张等腰直角三角形纸,AC=BC=40cm,将斜边上的高CD 四等分,然后裁出 3 张宽度相等的长方形纸条.(1)分别求出 3 张长方形纸条的长度;(2)若用这些纸条为一幅正方形美术品镶边(纸条不重叠),如图 2,正方形美2术品的面积最大不能超过多少cm.21.(10 分)在平面直角坐标系xOy 中,O是坐标原点;一次函数 y=kx+b( k≠ 0)图象与反比例函数y=的图象交于A(a,2a﹣1)、B(3a,a).(1)求一次函数与反比例函数的表达式;(2)求△ ABO的面积.22.( 12 分)如图,矩形 ABCD中, BC=2 ,∠ CAB=30°, E,F 分别是 AB,CD上的点,且 BE=DF=2,连结 AF、CE.点 P 是线段 AE 上的点,过点 P 作 PH∥CE交AC于点 H,设 AP=x.(1)请判断四边形 AECF的形状并证明;(2)用含 x 的代数式表示 AH的长;(3)请连结 HE,则当 x 为何值时 AH=HE成立?23.( 12 分)如图 1,点 O为正方形 ABCD的中心.( 1)将线段 OE绕点 O逆时针方向旋转 90°,点 E 的对应点为点 F,连结 EF,AE,BF,请依题意补全图 1(用尺规作图,保留作图痕迹,不要求写作法);( 2)根据图 1 中补全的图形,猜想并证明 AE与 BF 的关系;( 3)如图 2,点 G是 OA中点,△EGF是等腰直角三角形, H是 EF的中点,∠EGF=90°,AB=8,GE=4,△ EGF绕 G点逆时针方向旋转α 角度,请直接写出旋转过程中BH的最大值.2014-2015 学年浙江省杭州市西湖区八年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10 个小题,每小题 3 分,共 30 分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卡中相应方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.(3 分)(2015 春?杭州期末)下列各式计算正确的是()A.=± 4B.=a C.﹣= D.() 2=3【分析】根据算术平方根的定义对 A 进行判断;根据二次根式的性质对B、D 进行判断;根据二次根式的加减法对 C 进行判断.【解答】解: A、原式 =4,所以 A 选项错误;B、原式 =|a| ,所以 B 选项错误;C、原式 =2﹣=,所以C选项错误;D、原式 =3,所以 D 选项正确.故选 D.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.(3 分)(2010?鼓楼区校级模拟)下列四边形:①平行四边形、②矩形、③菱形、④正方形,对角线一定相等的是()A.①②B.①③C.②④D.①②③④【分析】根据平行四边形、矩形、菱形、正方形的性质对各小题分析判断后即可得解.【解答】解:①平行四边形的对角线不一定相等,②矩形的对角线一定相等,③菱形的对角线不一定相等,④正方形的对角线一定相等,所以,对角线一定相等的是②④.故选 C.【点评】本题考查了正方形,平行四边形,菱形,矩形的对角线的性质,熟记各性质是解题的关键.3.(3 分)(2010?湛江)下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:A:是轴对称图形,而不是中心对称图形;B、C:两者都不是;D:既是中心对称图形,又是轴对称图形.故选 D.【点评】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,折叠后对称轴两旁的部分可重合;中心对称图形是要寻找对称中心,旋转180°后会与原图重合.4.(3 分)(2010?杭州)方程x2+x﹣1=0 的根是()A.1﹣B.C.﹣ 1+ D .【分析】观察原方程,可用公式法求解.【解答】解: a=1,b=1, c=﹣1,b2﹣ 4ac=1+4=5> 0,x=;故选 D.【点评】本题考查了一元二次方程的解法.正确理解运用一元二次方程的求根公式是解题的关键.5.( 3 分)(2015 春 ?杭州期末)已知矩形的面积为6,则下面给出的四个图象中,能大致呈现矩形相邻边长y 与 x 的函数关系的是()A.B.C.D.【分析】根据题意有: xy=6,故 y 与 x 之间的函数图象为反比例函数,且根据 x、y 实际意义 x、y 应大于 0;即可得出答案.【解答】解:∵ xy=6,∴y= (x>0,y>0).故选: A.【点评】本题主要考查反比例函数的实际应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.(3 分)(2015 春?杭州期末)一个多边形的每个内角都是144°,这个多边形是()A.八边形B.十边形C.十二边形D.十四边形【分析】先利用多边形的每个外角与相邻的内角互补得到这个多边形的每个外角都是(180°﹣ 144°)=36°,然后根据 n 边的外角和为 360°即可得到其边数.【解答】解:∵一个多边形的每个内角都是 144°,∴这个多边形的每个外角都是( 180°﹣ 144°) =36°,∴这个多边形的边数 360°÷ 36°=10.故选 B.【点评】本题考查了多边形的内角和和外角和定理: n 边形的内角和为( n﹣2)×180°; n 边的外角和为 360°.7.( 3 分)( 2015 春?杭州期末)关于 x 的方程 ax2+bx+c=2 与方程(x+1)( x﹣ 3)=0 的解相同,则 a﹣b+c=()A.﹣ 2 B .0C.1D.2【分析】首先利用因式分解法求出方程(x+1)(x﹣3) =02【解答】解:∵方程( x+1)(x﹣3)=0,的解,再把x 的值代∴此方程的解为x1 =﹣ 1, x2=3,2∵关于 x 的方程 ax +bx+c=2 与方程( x+1)( x﹣3)=0 的解相同,故选 D.【点评】本题主要考查了一元二次方程的知识,解答本题的关键是求出方程(x+1)( x﹣ 3) =0 的两根,此题难度不大.8.(3 分)(2015 春 ?杭州期末)如图,将平行四边形纸片ABCD折叠,使顶点 C 恰好落在 AB边上的点 M处,折痕为 BN,则关于结论:①MN∥AD;② MNCB是菱形.说法正确的是()A.①②都错B.①对②错C.①错②对D.①②都对【分析】根据题意,推出∠ C=∠ A=∠BMN,即可推出结论①,由形 MNCB为菱形,因此推出②.【解答】解:∵平行四边形ABCD,∴∠ A=∠ C=∠BMN,∴ MN∥AD,故①正确;∴ MN∥BC,∴四边形 MNCB是平行四边形,∵ CN=MN,∴四边形 MNCB为菱形,故②正确;故选 D.AM=DA推出四边【点评】本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形 MNCB为菱形.9.(3 分)(2008?大兴安岭)已知 5 个正数 a1,a2,a3,a4,a5的平均数是 a,且a > a >a >a > a ,则数据: a ,a ,a ,0,a ,a 的平均数和中位数是()1 2 3 4 5 1 2 3 4 5B.a,C. a,D.,A.a,a3【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.【解答】解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;将这组数据按从小到大排列为 0, a5,a4,a3, a2,a1;由于有偶数个数,取最中间两个数的平均数..∴其中位数为故选 D.【点评】本题考查了平均数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.10.( 3 分)(2005?杭州)若 t 是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△ =b2﹣4ac 和完全平方式 M=(2at+b )2的关系是()A.△ =M B.△> MC.△< M D.大小关系不能确定【分析】把 t 代入原方程得到 at 2+bt+c=0 两边同乘以 4a,移项,再两边同加上b2,就得到了( 2at+b )2=b2﹣4ac.【解答】解: t 是一元二次方程 ax2+bx+c=0(a≠0)的根则有 at 2+bt+c=04a2t 2+4abt+4ac=04a2t 2+4abt= ﹣4ac4a2t 2+b2+4abt=b2﹣4ac(2at )2+4abt+b 2=b2﹣4ac(2at+b )2=b2﹣ 4ac=△故选 A【点评】本题主要应用了对方程转化,配方的方法,向已知条件进行转化的思想.二、认真填一填(本题有 6 小题,每小题 4 分,共 24 分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.( 4 分)( 2015 春?杭州期末)+×= 5 ;﹣4 = 2 ﹣ 2.【分析】先把各二次根式化为最简二次根式,得到+×= 然后进行二次根式的乘法运算后合并即可;根据二次根式的性质化简4即可.【解答】解:+×= +2×2= +4 =5;﹣4=2﹣2.故答案为 5,2﹣2.+2 ×2 ,﹣【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.( 4 分)(2015 春?杭州期末)一组数据: 1,3,4,4,x,5,5, 8, 10,其平均数是 5,则众数是5.【分析】根据平均数为 5 求出 x 的值,再由众数的定义可得出答案.【解答】解:由题意得,(1+3+4+4+x+5+5+8+10)=5,解得: x=5,这组数据中 5 出现的次数最多,则这组数据的众数为5.故答案为: 5.【点评】本题考查了众数及平均数的知识,解答本题的关键是掌握众数及中位数的定义.13.( 4 分)(2015 春?杭州期末)已知m是方程 2x2+4x﹣ 1=0 的根,则 m(m+2)的值为.2的根,即可得到2,于是得到答案.【分析】根据 m是方程 2x +4x﹣ 1=0 m+2m=【解答】解:∵ m是方程 2x2+4x﹣ 1=0 的根,2∴ m+2m= ,2∴ m( m+2)=m+2m= ,故答案为.【点评】本题主要考查了一元二次方程的解的知识,解答本题的关键是求出2m+2m= ,此题难度不大.14.( 4 分)(2015 春?杭州期末)下列命题:①三个角对应相等的两个三角形全等;②如果 ab=0,那么 a+b=0;③同位角相等,两直线平行;④相等的角是对顶角.其中逆命题是真命题的序号是①③④.【分析】利用全等三角形的判定、实数的性质、平行线的定义及对顶角的定义分别判断后即可确定正确的答案.【解答】解:①两个三角形全等则三个角对应相等,故正确,是真命题;②如果 a+b=0,那么 ab=0,错误,是假命题;③两直线平行,同位角相等,正确,是真命题;④对顶角相等,正确,是真命题,故答案为①③④.【点评】本题考查了命题与定理的知识,解题的关键是能够了解全等三角形的判定、实数的性质、平行线的定义及对顶角的定义,难度不大.15.(4 分)( 2015 春?杭州期末)若整数 m满足条件=m+1且 m<,则m的值为﹣1,0,1,2.【分析】根据二次根式的性质可得m+1≥ 0,再根据 m<,即可解答.【解答】解:∵=m+1,∴m+1≥0,∴m≥﹣ 1,∵ m<,∴m=﹣1,0,1,2.故答案为:﹣ 1,0,1,2.【点评】本题考查了二次根式的性质与化简,解决本题的关键是熟记二次根式的性质.16.( 4 分)(2015 春?杭州期末)一个 Rt△ABC,∠ A=90°,∠ B=60°,AB=2,将它放在直角坐标系中,使斜边 BC在 x 轴上,直角顶点 A在反比例函数 y=的图象上,则点 B 的坐标为(﹣ 3,0)、(﹣ 1, 0)、( 1, 0)或( 3,0).【分析】设出 B 点坐标( a, 0),借助 Rt △ABC中的边角关系,用 a 表示出 A 点坐标,将 A 点坐标再代入反比例函数关系式,即能求出 a 值,从而得解.【解答】解:过点 A(点 A 在第一象限)做 x 轴的垂线,交 x 轴于 D点,图形如下,①当点 B 在 A 的右侧时,∵Rt△ABC,∠ A=90°,∠ B=60°, AB=2,∴ BD=AB×cos∠ B=2×=1,AD=AB×sin ∠B=2×=,设点 B 的坐标为( a, 0),则点 A 坐标为( a﹣ 1,),又∵直角顶点 A 在反比例函数 y=的图象上,∴有=,解得a=3,∴点 B 的坐标为( 3, 0).结合反比例函数的对称性可知:点 B 的坐标可以为(﹣ 3, 0).②当点 B 在 A 的左侧时,∵Rt△ABC,∠ A=90°,∠ B=60°, AB=2,∴ BD=AB×cos∠ B=2×=1,AD=AB×sin ∠B=2×=,设点 B 的坐标为( a, 0),则点 A 坐标为( a+1,),又∵直角顶点 A 在反比例函数 y=的图象上,∴有=,解得a=,∴点 B 的坐标为( 1, 0).结合反比例函数的对称性可知:点 B 的坐标可以为(﹣ 1, 0).综上可得:点 B 的坐标为(﹣ 3,0)、(﹣ 1,0)、(1,0)或( 3, 0).故答案为:(﹣ 3,0)、(﹣ 1,0)、( 1, 0)或( 3,0).【点评】本题考查了反比例函数的图象以及三角函数,解题的关键是设出 B 点坐标( a,0),借助 Rt △ABC中的边角关系,用 a 表示出 A 点坐标.三、全面答一答(本题有7 个小题,共 66 分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.( 6 分)(2015 春?杭州期末)解方程:(1) 3( x﹣ 2)2=12(2) 2x2﹣ x﹣6=0.【分析】(1)系数化成 1,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)3( x﹣ 2)2=12,(x﹣ 2)2=4,x﹣2=±2,x1=4,x2=0;(2) 2x2﹣ x﹣6=0,(2x+3)(x﹣2)=0,2x+3=0, x﹣ 2=0,x1=﹣,x2=2.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.18.(8 分)(2015 春?杭州期末)已知关于 x 的一元二次方程kx 2+(2k+1)x+k+1=0 (k≠ 0).(1)求证:无论 k 取何值,方程总有两个不相等实数根;(2)当 k>1 时,判断方程两根是否都在﹣ 2 与 0 之间.【分析】(1)计算判别式得到△ =(2k+1)2﹣4k×( k+1)=1>0,则可根据判别式的意义得到结论;( 2)利用因式分解法求出方程的两个根x1=﹣1,x1=﹣k﹣1,根据 k>1 得出﹣ k ﹣ 1<﹣ 2,进而得到结论.【解答】(1)证明:∵ a=k, b=2k+1,c=k+1,222 2∴△ =b ﹣4ac=( 2k+1)﹣4k×( k+1) =4k +4k+1﹣4k ﹣4k=1>0,(2)解: kx 2+( 2k+1) x+k+1=0,(x+1)( kx+k+1)=0,∴x1=﹣ 1, x1 =﹣﹣1,∵k> 1,∴﹣ k<﹣ 1,∴﹣﹣1>﹣ 2,∴当 k>1 时,方程的两根都在﹣ 2 与 0 之间.【点评】本题考查了一元二次方程 ax2+bx+c=0(a≠ 0)的根的判别式△ =b2﹣4ac:当△> 0,方程有两个不相等的实数根;当△ =0,方程有两个相等的实数根;当△< 0,方程没有实数根.也考查了因式分解法解一元二次方程.19.(8 分)(2015 春?杭州期末)八(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,对两组学生进行四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)请计算第三次模拟竞赛成绩的优秀率是多少?并将条形统计图与折线统计图补充完整;( 2)已求得甲组四次成绩优秀的平均人数为 7,甲组四次成绩优秀人数的方差为,请通过计算乙组的相关数据,判断哪一组成绩优秀的人数较稳定?【分析】(1)由第一次成绩的优秀人数为 5+6=11,优秀率为 55%求得总人数,再用第三次成绩的优秀人数除以总人数得到第三次成绩的优秀率,进而将条形统计图补充完整;(2)先根据方差的定义求得乙组的方差,再根据方差越小成绩越稳定,进行判断.【解答】解:(1)总人数:( 5+6)÷ 55%=20(人),第三次的优秀率:(8+5)÷ 20×100%=65%,第四次乙组的优秀人数为: 20× 85%﹣8=17﹣8=9(人).补全条形统计图,如图所示:( 2)=( 6+8+5+9)÷ 4=7,S2乙组 =× [(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=,S2甲组<S2乙组,所以甲组成绩优秀的人数较稳定.【点评】本题考查了条形统计图、折线统计图的意义和方差的概念,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.方差是一组数据中各数据与它们的平均数的差的平方的平均数,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.(10 分)( 2015 春?杭州期末)如图 1 是一张等腰直角三角形纸,AC=BC=40cm,将斜边上的高 CD四等分,然后裁出 3 张宽度相等的长方形纸条.( 1)分别求出 3 张长方形纸条的长度;( 2)若用这些纸条为一幅正方形美术品镶边(纸条不重叠)2术品的面积最大不能超过多少cm.,如图2,正方形美【分析】(1)利用相似三角形的性质求出每个纸条的长;(2)将(1)中相关数据相加,易得纸片的宽度,从而计算出正方形的边长,从而计算面积即可.【解答】解:( 1)如图 1,∵△ ABC是等腰直角三角形, AC=BC=40cm,CD是斜边AB上的高,∴AB=40 cm,CD是斜边上的中线,∴CD= AB=20 cm,于是纸条的宽度为:=5(cm),∵= ,∴EF= AB=10 cm.同理, GH=20cm,IJ=30 cm,∴ 3 张长方形纸条的长度分别为:10 cm,20 cn, 30cm;( 2)由( 1)知, 3 张长方形纸条的总长度为60cm.如图 2,图画的正方形的边长为:﹣5 =10 (cm),∴面积为( 10 )2=200(cm2)答:如图( b)正方形美术作品的面积最大不能超过2 200cm.【点评】此题考查了相似三角形的应用,不仅要计算出纸条的长度,还要计算出宽度,要仔细观察图形,寻找隐含条件.21.( 10 分)( 2015?石景山区二模)在平面直角坐标系一次函数 y=kx+b(k≠0)图象与反比例函数y= xOy 中,O是坐标原点;的图象交于A(a,2a﹣1)、B(3a, a).(1)求一次函数与反比例函数的表达式;(2)求△ ABO的面积.【分析】(1)根据反比例函数系数k=xy 得出 a(2a﹣ 1)=3a?a,解得 a=﹣1,求得A、B 的坐标,即可确定出反比例函数解析式;将 A 与 B 坐标代入一次函数解析式中求出 k 与 b 的值,即可确定出一次函数解析式;( 2)设 y=﹣x﹣4 与 x 轴交点为 C,对于一次函数解析式,令x=0 求出 y 的值,确定出 C 坐标,得到 OC的长,然后根据S△ABO=S△AOC﹣S△BOC即可求得.【解答】解:( 1)∵ A(a,2a﹣ 1)、B(3a,a)在反比例函数图象G 上,∴ a( 2a﹣1)=3a?a,∵ m≠ 0,∴ a=﹣1,∴ m=3,∴A(﹣ 1,﹣ 3)、B(﹣ 3,﹣ 1)∴所求反比例函数解析式为:;将A(﹣ 1,﹣ 3)、B(﹣ 3,﹣ 1)代入 y=kx+b(k≠0),∴所求直线解析式为: y=﹣x﹣4;( 2)设 y=﹣x﹣ 4 与 x 轴交点为 C令 y=0,∴ C(﹣ 4,0)∴ S△ABO=S△AOC﹣S△BOC===4.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.22.( 12 分)( 2015 春?杭州期末)如图,矩形 ABCD中, BC=2 ,∠CAB=30°,E,F 分别是 AB,CD上的点,且 BE=DF=2,连结 AF、CE.点 P 是线段 AE上的点,过点 P 作 PH∥CE交 AC于点 H,设 AP=x.(1)请判断四边形 AECF的形状并证明;(2)用含 x 的代数式表示 AH的长;(3)请连结 HE,则当 x 为何值时 AH=HE成立?【分析】(1)根据直角三角形的性质和勾股定理求出 CA、AB的长,根据菱形的判定定理证明即可;(2)根据相似三角形的判定定理证明△ APH∽△ AEC,根据相似三角形的性质得到 = ,计算求出 AH;(3)作 HG⊥ AB于 G,根据锐角三角函数的定义求出 AG、HG,根据勾股定理表示出 HE,根据题意列出方程,解方程即可.【解答】解:(1)四边形 AECF是菱形.∵四边形 ABCD为矩形,∴∠ B=90°,又 BC=2,∠ CAB=30°,∴CA=2BC=4 ,AB=6,∵ BE=2,∴ AE=AB﹣BE=4,CE==4,∵CF∥AE,CF=AE=2,∴四边形 AECF是平行四边形,又EA=EC=4,∴四边形 AECF是菱形;(2)∵ PH∥ CE,∴△ APH∽△ AEC,∴=,即=,解得, AH=x;(3)作 HG⊥AB于 G,∵ AH= x,∠ CAB=30°,∴ HG= x,AG= x,∴GE=AE﹣AG=4﹣ x,由勾股定理得, HE===,当 AH=HE时,x=,解得, x=,则当 x=时,AH=HE成立.【点评】本题考查的是矩形的性质、菱形的判定、相似三角形的判定和性质以及等腰三角形的判定,灵活运用相关的性质和定理、根据题意正确作出辅助线是解题的关键,注意方程思想在解题中的应用.23.( 12 分)(2015 春 ?杭州期末)如图1,点 O为正方形 ABCD的中心.( 1)将线段 OE绕点 O逆时针方向旋转 90°,点 E 的对应点为点 F,连结 EF,AE,BF,请依题意补全图 1(用尺规作图,保留作图痕迹,不要求写作法);(2)根据图 1 中补全的图形,猜想并证明 AE与 BF 的关系;(3)如图 2,点 G是 OA中点,△EGF是等腰直角三角形, H是 EF的中点,∠EGF=90°,AB=8,GE=4,△ EGF绕 G点逆时针方向旋转α 角度,请直接写出旋转过程中BH的最大值.【分析】(1)根据题意画出图形即可;(2)延长 EA交 OF于点 H,交 BF 于点 G,利用正方形的性质和旋转的性质证明△EOA≌△ FOB,得到 AE=BF.根据等边对等角得到∠ OEA=∠ OFB,由∠ OEA+∠OHA=90°,所以∠ OFB+∠FHG=90°,进而得到AE⊥BF.( 3)如图 3,当 B,G,H 三点在一条直线上时, BH的值最大,根据正方形的性质得到 AG=OG=AO=2,根据勾股定理得到BG==2,根据等腰直角三角形的性质得到GH=2,于是得到结论.【解答】解:(1)如图 1 所示:( 2)如图 2,延长 EA交 OF于点 H,交 BF 于点 G,∵O为正方形 ABCD的中心∴ OA=OB,∠ AOB=90°,∵OE绕点 O逆时针旋转 90 角得到 OF,∴ OE=OF∴∠ AOB=∠EOF=90°,∴∠ EOA=∠FOB,在△ EOA和△ FOB中,,∴△ EOA≌△ FOB,∴AE=BF.∴∠ OEA=∠OFB,∵∠ OEA+∠OHA=90°,∴∠ OFB+∠FHG=90°,∴AE⊥BF;( 3)如图 3,当 B,G,H三点在一条直线上时, BH的值最大,∵四边形 ABCD是正方形, AB=8,∴AO=BO=4 ,∵点 G是 OA中点,∴AG=OG=AO=2 ,∴ BG= =2 ,∵△ EGF是等腰直角三角形, H 是 EF的中点,∵EG=4,∴ EF=4 ,∴ GH EF=2 ,∴BH=BG+GH=2 +2 ,∴BH的最大值是 2+2 .【点评】本题考查了旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是正确画出图形,作出辅助线,利用旋转的性质、全等三角形的性质与判定、等腰三角形的性质解决问题.参与本试卷答题和审题的老师有:gsls ;星期八;心若在;郝老师; MMCH;三界无我;sjzx ;733599;王学峰; zhjh ;蓝月梦; sdwdmahongye;曹先生; zjx111 ;HJJ; 19;dbz1018;守拙;知足长乐(排名不分先后)菁优网2017 年 5 月 26 日。
一、选择题1、下列二次根式属于最简二次根式的是()D.A.B.C.2、在▱ABCD中,已知∠A:∠B=1:3,则∠B的度数是()A.135°B.120°C.90°D.45°3、已知当x=2时,反比例函数y=与正比例函数y=k2x的值相等,则k1:k2的值是()B.1 C.2 D.4A.4、关于x的方程ax2+bx+c=0,有下列说法:①若a≠0,则方程必是一元二次方程;②若a=0,则方程必是一元一次方程,那么上述说法()A.①②均正确B.①②均错C.①正确,②错误D.①错误,②正确5、已知5个正数,a,b,c,d,e的平均数是x,且a<b<c<d<e,则新一组数据a,b,0,c,d,e的平均数和中位数分别是()A.x,B.x,C.x,D.,6、一元二次方程-2x+=0的根的情况是()A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.无法判断方程实数根情况7、下列化简或计算正确的是()A.=-B.=1+=C.()2=9-2D.÷(-)=-48、已知点P是矩形ABCD内一点,连结AP、BP、CP、DP,若S△ABP+S△CDP=S△ADP+S△BCP,则关于点P的位置,正确的说法是()A.一定是对角线交点B.一定在对角线上C.一定在对边中点的连线上D.可以是任意位置9、如图,点A、B在一直线上,以AB、BC为边在同侧分别作正方形ABGF和正方形BCDE,点P是DF的中点,连结BP.已知AB=3cm,BC=9cm,则BP的值是()A.6cmC.4cm D.3cmB.cm10、已知点A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上两点,给出下列判断:①若x1+x2=0,则y1+y2=0;②若当x1<x2<0时,y1<y2,则k<0;③若x1=x2+2,=+,则k=4,其中正确的是()A.①②③B.①②C.②③D.①③二、填空题11、已知点(a,b)是反比例函数y=-图象上一点,则ab= __________ .12、如图是小明根据杭州市某天上午和下午各四个整点时的气温绘制成的折线统计图.根据该统计图可知:该天 __________ (填上午或下午)的气温更稳定,理由是 __________ .13、二次根式的最小值为 __________ .14、已知3x2+6(a+1)x+12a是一个关于x的完全平方式,则a的值是 __________ .15、如图,四边形ABCD沿直线EF对着,点A、B的对应点A′,B′落在四边形内部,若∠C+∠D=160°,则∠DEA′+∠CFB′的度数是 __________ .16、已知在平面直角坐标系中,点A、B、C、D的坐标依次为(-1,0),(m,n),(-1,10),(-7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是__________ .三、解答题17、计算:(1)(+1);(2)-.18、证明:在△ABC中,∠A,∠B,∠C中至少有一个角大于或等于60°.19、用合适方法解下列方程:(1)2x2-x-6=0;(2)x(x-1)=(x-2)2.20、为了了解八年级学生的课外阅读情况,学习随机调查了该年级25名学生,得到了他们上周双休日课外阅读时间(记为t,单位:时)的一组数据样本,其扇形统计图如图所示.(1)阅读时间为4小时的占百分之几?学生数为多少?(2)试确定这个样本的中位数和众数,并求出平均数.21、记面积为12cm2的平行四边形的一边长为x(cm),这条边上的高线长为h(cm).(1)写出h关于x的函数表达式;(2)求当h≥2时x的取值范围;(3)设平行四边形一组邻边夹角为α,则当x=6,α=60°时,直接写出平行四边形的周长.22、如图,菱形ABCD中,AB=6,∠A=60°,点E是线段AB上一点(不与A,B重合),作∠EDF交BC于点F,且∠EDF=60°.(1)直接写出菱形ABCD的面积;(2)当点E在边AB上运动时,①连结EF,求证:△DEF是等边三角形;②探究四边形DEBF的面积的变化规律,写出这个规律,并说明理由;③直接写出四边形DEBF周长的最小值.23、如图,正方形OABC的两顶点A,B恰好在反比例函数y=(k>0,x>0)图象上,已知点A坐标为(a,b).(1)试用含a,b的代数式表示点B坐标;(2)①若a=2,求k的值;②试求b关于a的函数表达式;(3)若k=4(),试求正方形OABC的面积.2014-2015学年浙江省杭州市萧山区八年级(下)期末数学试卷的答案和解析一、选择题1、答案:B试题分析:根据最简二次根式的定义判断即可.试题解析:A、把最简二次根式,错误;B、是最简二次根式,正确;C、把最简二次根式,错误;D、把最简二次根式,错误;故选B2、答案:A试题分析:根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得∠A、∠B是邻角,故∠B可求解.试题解析:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A:∠B=1:3,∴∠A=45°,∠B=135°故选A.3、答案:D试题分析:把x=2分别代入两函数解析式,可求得对应的y值,再由条件可得到k1和k2之间的关系可式,可求得其比值.试题解析:把x=2代入反比例函数解析式可得,y=,把x=2代入正比例函数解析式可得,y=2k2,∵当x=2时,反比例函数y=与正比例函数y=k2x的值相等,∴=2k2,∴k1:k2=4,故选D.4、答案:C试题分析:根据一元二次方程的定义判断即可.试题解析:关于x的方程ax2+bx+c=0,①若a≠0,则方程必是一元二次方程,正确;②若a=0,b ≠0,则方程是一元一次方程,错误;故选C5、答案:D试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;求平均数只要求出数据之和再除以总个数即可.试题解析:∵5个正数a,b,c,d,e的平均数为x,∴数据a,b,0,c,d,e的平均数是x;∵a<b<c<d<e,∴数据a,b,0,c,d,e从小到大排列是0,a,b,c,d,e,∴中位数是.故选:D.6、答案:A试题分析:先求出△的值,再判断出其符号即可.试题解析:∵△=(-2)2-4××=12-4<0,∴方程没有实数根.故选A.7、答案:D试题分析:根据二次根式的性质对A、B进行判断;根据完全平方公式对C进行判断;根据二次根式的除法法则对D进行判断.试题解析:A、原式=|-|=,所以A选项错误;B、原式==,所以B选项错误;C、原式=6-6+3=9-6,所以C选项错误;D、原式=-2=-4,所以D选项正确.故选D.8、答案:D试题分析:作PE⊥AD于E,延长EP交BC于F,则PF⊥BC,EF=AB,证出△ADP的面积+△BCP的面积=矩形ABCD的面积,同理得出△ABP的面积+△CDP的面积=矩形ABCD的面积,即可得出结论.试题解析:∵四边形ABCD是矩形,∴AD=BC,AB=CD,作PE⊥AD于E,延长EP交BC于F,如图所示:则PF⊥BC,EF=AB,∵△ADP的面积+△BCP的面积=AD•PE+BC•PF=BC(PE+PF)=BC•EF=BC•AB,∴△ADP的面积+△BCP的面积=矩形ABCD的面积,同理:△ABP的面积+△CDP的面积=矩形ABCD的面积,∴△ADP的面积+△BCP的面积=△ABP的面积+△CDP的面积;故选:D.9、答案:D试题分析:作PH∥CD交AC于H,根据梯形的中位线定理得到PH的值,根据正方形的性质得到BH 的值,根据勾股定理得到答案.试题解析:作PH∥CD交AC于H,∵CD∥AF,∴CD∥AF,又点P是DF的中点,∴点H是AC的中点,∴PH=(AF+CD)=6,AH=6,BH=AH-AB=3,∴BP==3,故选:D.10、答案:B试题分析:根据反比例函数图象上点的坐标特征得到y1=,y2=,则x1=-x2,则y1+y2=0,于是可对①进行判断;当x1<x2<0时,y1<y2,则k<0,则可对②进行判断;由x1=x2+2,=+得到=+=+,可解出k=-4,则可对③进行判断.试题解析:∵点A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上两点,∴y1=,y2=,∴y1+y2=+,∴x1+x2=0,则y1+y2=0,所以①正确;当x1<x2<0时,y1<y2,则k<0,所以②正确;∵x1=x2+2,=+,∴=+=+,∴k=-4,所以③错误.故选B.二、填空题11、答案:试题分析:直接根据反比例函数图象上点的坐标特征求解.试题解析:根据题意得ab=-4.故答案为-4.12、答案:试题分析:方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.试题解析:上=(18+19+21+22)÷4=20,=(22.5+20+19+18.5)÷4=20,下S上2=[(18-20)2+(19-20)2+(21-20)2+(22-20)2]÷4=2.5,S下2=[(22.5-20)2+(20-20)2+(19-20)2+(18.5-20)2]÷4=2.375,∵S上2>S下2,∴下午的气温更稳定.故答案为:下午;因为上午的方差大于下午的方差;13、答案:试题分析:根据偶次方的性质得出a-2=0时,原式=化简求出即可.试题解析:二次根式的最小值为:a-2=0时,原式==2.故答案为:2.14、答案:试题分析:利用3x2+6(a+1)x+12a是一个关于x的完全平方式,则3x2+6(a+1)x+12a=0的判别式等于0,据此即可求得a的值.试题解析:根据题意得:[6(a+1)]2-4×3×12a=0,解得:a=1.故答案为:1.15、答案:试题分析:在四边形ABCD中可知:∠A+∠B=200°,由翻折的性质可知:∠A′+∠B′=200°,在四边形EA′B′F中,∠A′EF+∠B′FE=160°,在四边形DEFC中,∠DEF+∠EFC=200°,根据∠DEA′+∠CFB′=∠DEF+∠EFC-(∠A′EF+∠B′FE)即可求得答案.试题解析:在四边形ABCD中,∠C+∠D=160°,∴∠A+∠B=200°,由翻折的性质可知:∠A′+∠B′=200°,在四边形EA′B′F中,∠A′EF+∠B′FE=360°-200°=160°,在四边形DEFC中,∠DEF+∠EFC=360°-160°=200°,∴∠DEA′+∠CFB′=∠DEF+∠EFC-(∠A′EF+∠B′FE)=200°-160°=40°.故答案为:40°.16、答案:试题分析:利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.试题解析:如图所示:当C(-7,2),C′(-7,5)时,都可以得到以A、B、C、D四个点为顶点的四边形是菱形,同理可得:当D(-7,8)则对应点C的坐标为;(-7,18)可以得到以A、B、C、D四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.三、解答题17、答案:试题分析:(1)把后面括号内提,然后根据平方差公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可.试题解析:(1)原式=(+1)•(-1)=•(2-1)=;(2)原式=-=-.18、答案:试题分析:利用反证法的步骤,首先假设原命题错误,进而得出与三角形内角和定理矛盾,从而证明原命题正确.试题解析:证明:假设△ABC中每个内角都小于60°,则∠A+∠B+∠C<180°,这与三角形内角和定理矛盾,故假设错误,即原结论成立,在△ABC中,∠A,∠B,∠C中至少有一个角大于或等于60°.19、答案:试题分析:(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.试题解析:(1)2x2-x-6=0,(2x+3)(x-2)=0,2x+3=0,x-2=0,x1=-,x2=2;(2)x(x-1)=(x-2)2,x2-x=x2-4x+4,x2-6x+8=0,(x-2)(x-4)=0,x-2=0,x-4=0,x1=2,x=4.20、答案:试题分析:(1)根据百分比之和为1求出阅读时间为4小时的占百分比,根据总数×百分比=频数得到学生数;(2)根据中位数和众数的概念求出中位数和众数,根据平均数的计算公式求出平均数.试题解析:(1)1-12%-8%-12%-16%-24%=28%,28%×25=7(人);(2)中位数是3,众数是4,平均数:1×12%+2×16%+3×24%+4×28%+5×12%+6×8%=3.36.21、答案:试题分析:(1)平行四边形的面积=底×高;(2)根据h≥2列出不等式,然后求解即可;(3)根据题意画出图形,利用特殊锐角三角函数值,求得邻边长即可.试题解析:(1)由平行四边形的面积公式得:h=;(2)∵h≥2,∴.解得:x;(3)如图所示:BE⊥AD,AD=6,∠A=60°.BE=h==2.∵,∴AB=4.∴平行四边形的周长=(4+6)×2=20.22、答案:试题分析:(1)先求得菱形的两条对角线的长度,然后根据菱形的面积等于两对角线乘积的一半求解即可;(2)①连接BD,证明△ADE≌△BDF,从而可得到ED=DF,由因为∠EDF=60°,所以三角形DEF为等边三角形;②由△ADE≌△BDF可知:S△ADE=S△BDF,所以四边形的面积=△EDB的面积+△DBF的面积=△EDB的面积+△DAE的面积=菱形面积的一半;③由△ADE≌△BDF可知:BF=AE,所以BF+BE=AE+BE=6,所以当ED和DF最短时,四边形的周长最小,然后由垂线段最短可知当DE⊥AB时,DE最短,然后在Rt△ADE中即可求得DE的长,从而可求得四边形周长的最小值.试题解析:(1)连接BD、AC.∵四边形ABCD是菱形,∴AD=AB,AC⊥BD,∠DAO=∠A=30°.∵AD=AB,∠A=60°,∴△ABD为等边三角形.∴BD=AD=AB=6.∵在Rt△ADO中,∠DAO=30°,∴OD=AD=3,AO==3.∴AC=6.∴菱形ABCD的面积===18.(2)①由(1)可知:△ABD为等边三角形.∴AD=BD,∠ADB=60°.∵∠ADE+∠EDB=60°,∠FBD+∠EDB=60°,∴∠AED=∠FDB.∵四边形ABCD是菱形,∠A=60°,∴∠DBF=∠ABC=.∴∠DAE=∠DBF.在△DAE和△DBF中,,∴△DAE≌△DBF.∴DE=DF.又∵∠EDF=60°∴△EDF为等边三角形.②四边形DEBF的面积=9.理由:∵△DAE≌△DBF.∴S△ADE=S△BDF,∴四边形DEBF的面积=△EDB的面积+△DBF的面积=△EDB的面积+△DAE的面积=×菱形ABCD的面积=.③∵△DAE≌△DBF.∴BF=AE.∴BF+BE=AE+BE=AB=6.∴当ED、DF有最小值时,四边形的周长最短.由垂线最短,可知当DE⊥AB时,ED、DF最短.在Et△ADE中,∠DAE=60°,∴sin60°=.∴DE==3.∴四边形DEBF的周长的最小值=DE+DF+BE+BF=DE+DF+AB=3+3+6=6+6.23、答案:试题分析:(1)过A作DE∥x轴,作BE∥y轴,如图所示,利用同角的余角相等得到一对角相等,再由一对直角相等,正方形边长相等,利用AAS得到三角形OAD与三角形ABE全等,利用全等三角形对应边相等得到AD=BE=a,OD=AE=b,表示出B坐标即可;(2)①根据A与B都在反比例函数图象上,利用反比例函数性质列出关系式,把a=2代入求出b的值,即可确定出k的值;②根据得出关系式整理表示出b即可;(3)根据k的值求出ab的值,与(2)中结论结合求出a与b的值,利用勾股定理表示出正方形OABC的边长,即可求出面积.试题解析:(1)过A作DE∥x轴,作BE∥y轴,如图所示,∵∠1+∠2=∠3+∠2=90°,∴∠1=∠3,在△OAD和△ABE中,,∴△OAD≌△ABE(AAS),∴BE=AD=a,AE=OD=b,∴B(a+b,b-a);(2)①∵A(a,b),B(a+b,b-a),且A,B在反比例函数图象上,∴ab=(b+a)(b-a),把a=2代入得:2b=b2-4,解得:b=1±,∵k>0,∴k=ab=2(+1);②由ab=(b+a)(b-a)=b2-a2,整理得:b2-ab-a2=0,解得:b==,∵b>0,∴b=;(3)根据题意得:k=ab=4(+1),联立得:,解得:,则S正方形OABC=a2+b2=8+2(6+2)=20+4.。
八年级数学综合练习一、仔细选一选1.下列二次根式属于最简二次根式的是()A.B.C.D.2.在▱ABCD中,已知∠A:∠B=1:3,则∠B的度数是()A.135°B.120°C.90°D.45°3.已知当x=2时,反比例函数y=与正比例函数y=k2x的值相等,则k1:k2的值是()A.B.1C.2D.44.关于x的方程ax2+bx+c=0,有下列说法:①若a≠0,则方程必是一元二次方程;②若a=0,则方程必是一元一次方程,那么上述说法()A.①②均正确B.①②均错C.①正确,②错误D.①错误,②正确5.已知5个正数,a,b,c,d,e的平均数是x,且a<b<c<d<e,则新一组数据a,b,0,c,d,e的平均数和中位数分别是()A.x,B.x,C.x,D.,6.一元二次方程﹣2x+=0的根的情况是()A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.无法判断方程实数根情况7.下列化简或计算正确的是()A.=﹣ B.=1+=C.()2=9﹣2D.÷(﹣)=﹣48.已知点P是矩形ABCD内一点,连结AP、BP、CP、DP,若S△ABP+S△CDP=S△ADP+S△BCP,则关于点P的位置,正确的说法是()A.一定是对角线交点B.一定在对角线上C.一定在对边中点的连线上D.可以是任意位置9.如图,点A、B在一直线上,以AB、BC为边在同侧分别作正方形ABGF和正方形BCDE,点P是DF的中点,连结BP.已知AB=3cm,BC=9cm,则BP的值是()A.6cm B.cm C.4cm D.3cm10.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上两点,给出下列判断:①若x1+x2=0,则y1+y2=0;②若当x1<x2<0时,y1<y2,则k<0;③若x1=x2+2,=+,则k=4,其中正确的是()A.①②③B.①②C.②③D.①③二、认真填一填。
2014-2015学年浙江省杭州市滨江区八年级(下)期末数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把代表正确选项的字母涂黑.1.(3分)在实数范围内有意义,则x应满意的条件是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣12.(3分)下列方程是一元二次方程的是()A.x2﹣2x=7 B.3x﹣y=1 C.xy﹣4=0 D.x+=13.(3分)下列等式成立的是()A.﹣= B.×= C.=5 D.﹣=54.(3分)下列各点在反比例函数y=﹣图象上的是()A.(5,1)B.(1,5)C.(﹣1,5)D.(﹣5,﹣5)5.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.一次函数图象D.反比例函数图象6.(3分)下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形③顺次连接矩形四边中点得到的四边形是菱形④假如一个菱形的对角线相等,那么它肯定是正方形其中真命题个数是()A.4个 B.3个 C.2个 D.1个7.(3分)小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是5小时、8小时、10小时、4小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是()A.5小时B.8小时C.5或8小时D.5或8或10小时8.(3分)在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类探讨C.方程思想D.数形结合思想9.(3分)已知一次函数y1=kx+b(k>0)与反比例函数y2=(m≠0)的图象相交于A(﹣1,a),B(3,b)两点,当y1>y2时,实数x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3 D.0<x<310.(3分)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF >S△ABF;④由点A、B、D、E构成的四边形是菱形.其中正确的是()A.①④B.①③④C.①②③D.②③④二、填空题(共6小题,每小题4分,共24分)11.(4分)当a=﹣3,则=.12.(4分)已知方程2x2﹣kx﹣7=0的一个根为x=2,则常数k=.13.(4分)一组数据2,﹣3,0,3,6,4的方差是.14.(4分)如图,矩形ABCD的面积为36,BE平分∠ABD,交AD于E,沿BE 将△ABE折叠,点A的对应点刚好落在矩形两条对角线的交点F处,则△ABE的面积为.15.(4分)已知:一组邻边分别为6cm和10cm的平行四边形ABCD,∠DAB 和∠ABC的平分线分别交CD所在直线于点E、F,则线段EF的长为cm.16.(4分)如图,在y轴的正半轴上,自O点开场依次间隔相等的间隔取点A1,A2,A3,A4,…,A n,分别过这些点作y轴的垂线,与反比例函数y=﹣(x <0)的图象相交于点P1,P2,P3,P4,…,P n,作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,P n B n﹣1⊥A n﹣1P n﹣1,垂足分别为B1,B2,B3,B4,…,B n﹣1,连接P1P2,P2P3,P3P4,…,P n﹣1P n,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△P n﹣1B n﹣1P n,它们的面积分别记为S1,S2,S3,…,S n﹣1,则S1+S2=,S1+S2+S3+…+S n﹣1=.三、全面答一答(本题有7个小题,共66分)17.(6分)计算:(1)3﹣(+)(2)(1﹣2)(1+2)﹣(﹣1)2.18.(8分)解方程:(1)3x2﹣x﹣1=0(2)(2x+3)2=(x﹣1)2.19.(8分)市教化局为理解本市中学生参与志愿者活动状况,随机抽查了某区局部八年级学生一学年来参与志愿者活动的次数,并用得到的数据绘制了如图两幅不完好的统计图.请依据图中供应的信息,答复下列问题:(1)求参与这次调查统计的学生总人数及这个区八年级学生平均每人一年来参与志愿者活动的次数;(2)在这次抽样调查中,众数和中位数分别是多少?(3)假如该区共有八年级学生3000人,请你估计“活动次数不少于4次”的学生人数大约多少人?20.(10分)已知:如图,在▱ABCD中,延长AB到E,使得BE=AB,连接BD、CE.(1)求证:BD∥CE;(2)请在所给的图中,用直尺和圆规作点F(不同于图中已给的任何点),使对F、B、E、C为顶点的四边形是平行四边形(只作一个,保存痕迹,不写作法).21.(10分)2014年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁效劳,它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到主动作用,据理解某租赁点用有“微公交”20辆,据统计,当每辆车的年租金为9千元时可全部租出,每辆车的年租金每增加0.5千元,未租出的车将增加1辆.(1)当每辆车的年租金定为10.5千元时,能租出多少辆?(2)当每辆车的年租金增加多少元时,租赁公司的年收益(不计车辆维护等其它费用)可到达176千元?22.(12分)如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停顿旋转,在旋转过程中OG交AB于点M,OE交AD于点N.(1)开场旋转前,即在图1中,连接NC.①求证:NC=NA(M);②若图1中NA(M)=4,DN=2,恳求出线段CD的长度.(2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.(3)摸索究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.23.(12分)如图,在直角坐标系中,点C在第一象限,CB⊥x轴于B,CA⊥y 轴于A,CB=3,CA=6,有一反比例函数图象刚好过点C.(1)分别求出过点C的反比例函数和过A、B两点的一次函数的函数表达式.(2)直线l⊥x轴,并从y轴动身,以每秒1个单位的速度向x轴正方向运动,交反比例函数图象于点D,交AC于点E,交直线AB于点F,当直线l运动到经过点B时,停顿运动,设运动时间t(秒)①问是否存在t的值,使四边形DFBC为平行四边形?若存在,求出t的值;若不存在,说明理由.②若直线l从y轴动身的同时,有一动点Q从点B动身,沿射线BC方向,以每秒3个单位的速度运动,是否存在t的值,使以点D、E、Q、C为顶点的四连带菜为平行四边形?若存在,求出t的值,并进一步探究此时的四边形是否为特别的平行四边形?若不存在,说明理由.2014-2015学年浙江省杭州市滨江区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把代表正确选项的字母涂黑.1.(3分)(2015春•滨江区期末)在实数范围内有意义,则x应满意的条件是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣1【分析】依据二次根式有意义,被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故选D.【点评】本题考察了二次根式有意义的条件,二次根式中的被开方数必需是非负数,否则二次根式无意义.2.(3分)(2015春•滨江区期末)下列方程是一元二次方程的是()A.x2﹣2x=7 B.3x﹣y=1 C.xy﹣4=0 D.x+=1【分析】依据一元二次方程的定义解答.【解答】解:A、符合一元二次方程的定义,故本选项正确;B、含有两个未知数,不是一元二次方程,故本选项错误;C、含有两个未知数且最高次数是二次,故本选项错误;D、是分式方程,故本选项错误;故选A.【点评】本题考察了一元二次方程的定义,推断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.(3分)(2015春•滨江区期末)下列等式成立的是()A.﹣= B.×= C.=5 D.﹣=5【分析】依据二次根式的加减法对A进展推断;依据二次根式的乘法法则对B 进展推断;依据二次根式的性质对C、D进展推断.【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式==,所以C选项错误;D、原式=﹣|﹣5|=﹣5,所以D选项错误.故选B.【点评】本题考察了二次根式的计算:先把各二次根式化为最简二次根式,再进展二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,敏捷运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.(3分)(2015春•滨江区期末)下列各点在反比例函数y=﹣图象上的是()A.(5,1)B.(1,5)C.(﹣1,5)D.(﹣5,﹣5)【分析】干脆把各点代入反比例函数的解析式进展检验即可.【解答】解:A、∵当x=5时,y=﹣=﹣1≠1,∴此点不在反比例函数的图象上,故本选项错误;B、∵当x=1时,y=﹣5≠5,∴此点不在反比例函数的图象上,故本选项错误;C、∵当x=﹣1时,y=5,∴此点在反比例函数的图象上,故本选项正确;D、∵当x=﹣5时,y=﹣=﹣1≠﹣5,∴此点不在反比例函数的图象上,故本选项错误.故选C.【点评】本题考察的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标肯定合适此函数的解析式是解答此题的关键.5.(3分)(2015春•滨江区期末)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.平行四边形C.一次函数图象D.反比例函数图象【分析】依据轴对称图形与中心对称图形的概念求解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形.故错误;B、平行四边形不是轴对称图形,是中心对称图形.故正确;C、一次函数图象是轴对称图形,也是中心对称图形.故错误;D、反比例函数图象是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考察了中心对称图形与轴对称图形的概念:轴对称图形的关键是找寻对称轴,图形两局部沿对称轴折叠后可重合;中心对称图形是要找寻对称中心,旋转180度后与原图重合.6.(3分)(2015春•滨江区期末)下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形③顺次连接矩形四边中点得到的四边形是菱形④假如一个菱形的对角线相等,那么它肯定是正方形其中真命题个数是()A.4个 B.3个 C.2个 D.1个【分析】依据平行四边形的断定方法对①进展推断;依据平行四边形的性质和矩形的断定方法对②进展推断;依据三角形中位线性质和菱形的断定方法对③进展推断;依据正方形的断定方法对④进展推断.【解答】解:一组对边平行且这组对边相等的四边形是平行四边形,所以①错误;一组邻角相等的平行四边形是矩形,所以②正确;顺次连接矩形四边中点得到的四边形是菱形,所以③正确;假如一个菱形的对角线相等,那么它肯定是正方形,所以④正确.故选B.【点评】本题考察了命题与定理:推断一件事情的语句,叫做命题.很多命题都是由题设和结论两局部组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“假如…那么…”形式.有些命题的正确性是用推理证明的,这样的真命题叫做定理.7.(3分)(2015春•滨江区期末)小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是5小时、8小时、10小时、4小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是()A.5小时B.8小时C.5或8小时D.5或8或10小时【分析】利用众数及中位数的定义解答即可.【解答】解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;综上,第五位同学的每周课外阅读时间为5或8小时.故选C.【点评】本题考察了众数及中位数的学问,解题的关键是依据题意进展分析,并结合题意确定正确的选项.8.(3分)(2015春•滨江区期末)在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类探讨C.方程思想D.数形结合思想【分析】多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数)此公式推导的根本方法是从n边形的一个顶点动身引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的全部内角之和正好是n边形的内角和,表达了化归思想.【解答】解:因为多边形内角和公式推导的根本方法是从n边形的一个顶点动身引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的全部内角之和正好是n边形的内角和,表达了化归思想.故选A.【点评】本题主要考察了在数学的学习过程,主要表达的数学思想有哪些,弄清推导过程是解答此题的关键.9.(3分)(2015春•滨江区期末)已知一次函数y1=kx+b(k>0)与反比例函数y2=(m≠0)的图象相交于A(﹣1,a),B(3,b)两点,当y1>y2时,实数x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3 D.0<x<3【分析】当y1>y2时,一次函数图象在反比例函数图象的上方,结合图象可求得答案.【解答】解:∵A(﹣1,a),B(3,b),∴当﹣1<x<0或x>3时,一次函数图象在反比例函数图象的上方,∴y1>y2时,实数x的取值范围是﹣1<x<0或x>3,故选C.【点评】本题主要考察函数图象的交点,把不等式转化为函数图象的凹凸是解题的关键,留意数形结合思想的应用.10.(3分)(2015春•滨江区期末)如图,菱形ABCD中,∠BAD=60°,AC与BD 交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF >S△ABF;④由点A、B、D、E构成的四边形是菱形.其中正确的是()A.①④B.①③④C.①②③D.②③④【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相像三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF =S△ABF;③不正确;正确的是①④.故选:A.【点评】本题考察了菱形的断定与性质、全等三角形的断定与性质、等边三角形的断定与性质、三角形中位线定理、相像三角形的断定与性质等学问;本题综合性强,难度较大.二、填空题(共6小题,每小题4分,共24分)11.(4分)(2015春•滨江区期末)当a=﹣3,则=3.【分析】干脆把a=﹣3代入即可得出结论.【解答】解:∵a=﹣3,∴原式==3.故答案为:3.【点评】本题考察的是二次根式的定义,熟知一般地,我们把形如a(a≥0)的式子叫做二次根式是解答此题的关键.12.(4分)(2015春•滨江区期末)已知方程2x2﹣kx﹣7=0的一个根为x=2,则常数k=.【分析】将x=2代入方程得到有关k的方程求得k值即可.【解答】解:∵x=2是方程的根,∴由一元二次方程的根的定义,可得2×22﹣2k﹣7=0,解此方程得到k=.故答案为:.【点评】考察了一元二次方程的解的学问,可以正确的代入并正确的计算是解答本题的关键,难度不大.13.(4分)(2015春•滨江区期末)一组数据2,﹣3,0,3,6,4的方差是.【分析】首先求得数据的平均数,然后代入方差的计算公式计算即可.【解答】解:数据的平均数=(2﹣3+3+6+4)=2,方差s2=[(2﹣2)2+(﹣3﹣2)2+(0﹣2)2+(3﹣2)2+(6﹣2)2+(4﹣2)2]=.故答案为:.【点评】本题考察方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(4分)(2015春•滨江区期末)如图,矩形ABCD的面积为36,BE平分∠ABD,交AD于E,沿BE将△ABE折叠,点A的对应点刚好落在矩形两条对角线的交点F处,则△ABE的面积为6.【分析】首先证明△AEB≌△FEB≌△DEF,从而可知△ABE的面积=,从而可求得△ABE的面积.【解答】解:由翻折的性质可知:△AEB≌△FEB.∴∠EFB=∠EAB=90°.∵ABC为矩形,∴DF=FB.∴EF垂直平分DB.∴ED=EB.在△DEF和△BEF中,,∴△DEF≌△BEF.∴△AEB≌△FEB≌△DEF.∴△ABE的面积==6.故答案为:6.【点评】本题主要考察的是翻折的性质、矩形的性质、线段垂直平分线的性质和断定、全等三角形的断定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.15.(4分)(2015春•滨江区期末)已知:一组邻边分别为6cm和10cm的平行四边形ABCD,∠DAB和∠ABC的平分线分别交CD所在直线于点E、F,则线段EF的长为2或14cm.【分析】利用当AB=10cm,AD=6cm,由于平行四边形的两组对边相互平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE﹣DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长.【解答】解:如图1,当AB=10cm,AD=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE,又∵AD∥CB,∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm;同理可得,CF=CB=6cm.∴EF=DE+CF﹣DC=6+6﹣10=2(cm).如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE,又∵AD∥CB,∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=10cm;同理可得,CF=CB=10cm.∴EF=DE+CF﹣DC=10+10﹣6=14(cm).故答案为:2或14.【点评】此题主要考察了角平分线的定义、平行四边形的性质、平行线的性质等学问,关键留意找出线段之间的关系:EF=DE+CF﹣DC.16.(4分)(2015春•滨江区期末)如图,在y轴的正半轴上,自O点开场依次间隔相等的间隔取点A1,A2,A3,A4,…,A n,分别过这些点作y轴的垂线,与反比例函数y=﹣(x<0)的图象相交于点P1,P2,P3,P4,…,P n,作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,P n B n﹣1⊥A n﹣1P n﹣1,垂足分别为B1,B2,B3,B4,…,B n﹣1,连接P1P2,P2P3,P3P4,…,P n﹣1P n,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△P n﹣1B n﹣1P n,它们的面积分别记为S1,S2,S3,…,S n﹣1,则S1+S2=,S1+S2+S3+…+S n﹣1=.【分析】设OA1=A1A2=A2A3=…=A n﹣2A n﹣1=a,依据反比例函数图象上点的坐标特征和三角形面积公式得到S1=×a×(﹣),S2=×a×(﹣),S3=×a=×a×[﹣],再代入计算即可.×(﹣),由此得出S n﹣1【解答】解:设OA1=A1A2=A2A3=…=A n﹣2A n﹣1=a,∵y=a时,x=﹣,∴P1的坐标为(﹣,a),∵y=2a时,x=﹣,∴P2的坐标为(﹣,2a),∴Rt△P1B1P2的面积=×a×(﹣),Rt△P2B2P3的面积=×a×(﹣),Rt△P3B3P4的面积=×a×(﹣),…,B n﹣1P n的面积=×a×[﹣],∴△P n﹣1∴S1+S2=×a×(﹣)+×a×(﹣)=×a×(﹣)=,S1+S2+S3+…+S n﹣1=×a×(﹣)+×a×(﹣)+×a×(﹣)+…+×a×[﹣]=×a×(﹣)=.故答案为,.【点评】本题考察了反比例函数图象上点的坐标特征和三角形面积公式,有肯定的表达式是解题的关键.难度.求出S n﹣1三、全面答一答(本题有7个小题,共66分)17.(6分)(2015春•滨江区期末)计算:(1)3﹣(+)(2)(1﹣2)(1+2)﹣(﹣1)2.【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)利用平方差公式和完全平方公式进展计算.【解答】解:(1)原式=3﹣2﹣=;(2)原式=1﹣12﹣(3﹣2+1)=﹣11﹣4+2=﹣15+2.【点评】本题考察了二次根式的计算:先把各二次根式化为最简二次根式,再进展二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,敏捷运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(2015春•滨江区期末)解方程:(1)3x2﹣x﹣1=0(2)(2x+3)2=(x﹣1)2.【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可.(2)方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:(1)3x2﹣x﹣1=0,∵a=3,b=﹣1,c=﹣1,∴b2﹣4ac=(﹣1)2﹣4×3×(﹣1)=13,∴x==,∴x1=,x2=.(2)(2x+3)2=(x﹣1)2.方程变形得:(2x+3)2﹣(x﹣1)2=0,分解因式得:(2x+3+x﹣1)(2x+3﹣x+1)=0,∴2x+3+x﹣1=0,2x+3﹣x+1=0,∴x1=﹣,x2=﹣4.【点评】本题考察理解一元二方程的应用,主要考察学生能否正确运用公式法和因式分解法解一元二次方程.19.(8分)(2015春•滨江区期末)市教化局为理解本市中学生参与志愿者活动状况,随机抽查了某区局部八年级学生一学年来参与志愿者活动的次数,并用得到的数据绘制了如图两幅不完好的统计图.请依据图中供应的信息,答复下列问题:(1)求参与这次调查统计的学生总人数及这个区八年级学生平均每人一年来参与志愿者活动的次数;(2)在这次抽样调查中,众数和中位数分别是多少?(3)假如该区共有八年级学生3000人,请你估计“活动次数不少于4次”的学生人数大约多少人?【分析】(1)用350÷35%即可求出参与这次调查统计的学生总人数,再利用平均数求这个区八年级学生平均每人一年来参与志愿者活动的次数;(2)依据中位数、众数的定义,即可解答;(3)依据样本估计总体,即可解答.【解答】解:(1)参与这次调查统计的学生总人数:350÷35%=1000(人),一学年来参与志愿者活动的次数为5次的学生人数为:1000﹣350﹣300﹣100﹣50=200(人),这个区八年级学生平均每人一年来参与志愿者活动的次数:(350×3+300×4+200×5+100×6+50×7)÷1000=4.2(次).(2)众数为3,中位数为4;(3)3000×=1950(人).答:估计“活动次数不少于4次”的学生人数大约1950人.【点评】本题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清晰地表示出每个工程的数据;扇形统计图干脆反映局部占总体的百分比大小.除此之外,本题也考察了中位数、众数的定义以及用样本估计总体的思想.20.(10分)(2015春•滨江区期末)已知:如图,在▱ABCD中,延长AB到E,使得BE=AB,连接BD、CE.(1)求证:BD∥CE;(2)请在所给的图中,用直尺和圆规作点F(不同于图中已给的任何点),使对F、B、E、C为顶点的四边形是平行四边形(只作一个,保存痕迹,不写作法).【分析】(1)由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,于是得到BE∥CD,由于BE=AB,得到BE=CD,推出四边形BECD是平行四边形,即可得到结论.(2)分别以C,E为圆心,以BE,BC的长为半径画弧,两弧交于一点F,则点F 即为所求.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴BE∥CD,∵BE=AB,∴BE=CD,∴四边形BECD是平行四边形,∴BD∥CE,(2)如图所示,点F即为所求;【点评】本题考察了平行四边形的断定和性质,作图﹣困难作图,娴熟驾驭平行四边形的断定和性质定理是解题的关键.21.(10分)(2015春•滨江区期末)2014年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁效劳,它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到主动作用,据理解某租赁点用有“微公交”20辆,据统计,当每辆车的年租金为9千元时可全部租出,每辆车的年租金每增加0.5千元,未租出的车将增加1辆.(1)当每辆车的年租金定为10.5千元时,能租出多少辆?(2)当每辆车的年租金增加多少元时,租赁公司的年收益(不计车辆维护等其它费用)可到达176千元?【分析】(1)10.5﹣9=1.5,由题意得,当租金为10.5千元时有3辆没有租出;(2)设每辆车的年租金增加x千元时,干脆依据收益=176千元作为等量关系列方程求解即可.【解答】解:(1)由题意:当每辆车的年租金每增加0.5千元时,未租出的车将增加一辆,则当每辆车的年租金定为10.5千元时,10.5﹣9=1.5(元),所以1.5÷0.5=3(辆).所以该公司有3辆没有租出,即共租出17辆.(2)设每辆车的年租金增加x千元时,租赁公司年收益为176千元,由题意,得(9+x)×(20﹣2x)=176,整理,得(x﹣2)(x+1)=0,解得x=2或x=﹣1(舍去).答:当每辆车的年租金增加2000元时,租赁公司的年收益(不计车辆维护等其它费用)可到达176千元.【点评】本题考察了一元二次方程的应用,解题关键是要读懂题目的意思,依据题目给出的条件,找出适宜的等量关系是解题关键.22.(12分)(2015春•滨江区期末)如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停顿旋转,在旋转过程中OG交AB于点M,OE交AD于点N.(1)开场旋转前,即在图1中,连接NC.①求证:NC=NA(M);②若图1中NA(M)=4,DN=2,恳求出线段CD的长度.(2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.(3)摸索究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.【分析】(1)①由矩形的对角线相互平分和正方形的内角都是直角,用线段垂直平分线上的点到两端点的间隔相等,②用勾股定理计算即可;(2)和(1)一样得到NB=ND,在用勾股定理即可;(3)先推断出BM=DH,再和前两个一样,得出MN=NH,再用勾股定理即可.【解答】解:(1)①∵四边形ABCD是矩形,∴OA=OC,∵四边形EFGO为正方形,∴∠EOG=90°,∴NC=NA;②由①得,NA=NC=4,DN=2,依据勾股定理得CD2=NC2﹣ND2,∴CD==2;(2)结论:NB2=NA2+CD2,如图1,连接NB,∵四边形ABCD是矩形,∴OB=OD,AB=CD,∵四边形EFGO为正方形,∴∠EOG=90°,∴ND=NB;依据勾股定理得,NB2=NA2+AB2=NA2+CD2,(3)结论AN2+AM2=DN2+BM2,如图2,延长GO交CD于H,连接MN,HN,∵四边形ABCD是矩形,∴OB=OD,∠OBM=∠ODH,∵∠BOM=∠DOH,∴△BOM≌△DOH,∴BM=DH,OM=OH∵四边形EFGO是正方形,∴∠EOG=90°,∴MN=MH,在Rt△NDH中,NH2=DN2+DH2=DN2+BM2,在Rt△AMN中,MN2=AM2+AN2,∴DN2+BM2=AM2+AN2.【点评】此题是四边形综合题,主要考察了正方形和矩形的性质,勾股定理,线段垂直平分线的性质,解本题的关键是线段垂直平分线的性质定理得应用.23.(12分)(2015春•滨江区期末)如图,在直角坐标系中,点C在第一象限,CB⊥x轴于B,CA⊥y轴于A,CB=3,CA=6,有一反比例函数图象刚好过点C.(1)分别求出过点C的反比例函数和过A、B两点的一次函数的函数表达式.(2)直线l⊥x轴,并从y轴动身,以每秒1个单位的速度向x轴正方向运动,交反比例函数图象于点D,交AC于点E,交直线AB于点F,当直线l运动到经过点B时,停顿运动,设运动时间t(秒)①问是否存在t的值,使四边形DFBC为平行四边形?若存在,求出t的值;若不存在,说明理由.②若直线l从y轴动身的同时,有一动点Q从点B动身,沿射线BC方向,以每秒3个单位的速度运动,是否存在t的值,使以点D、E、Q、C为顶点的四连带菜为平行四边形?若存在,求出t的值,并进一步探究此时的四边形是否为特别的平行四边形?若不存在,说明理由.【分析】(1)依据条件可以得到点A、B、C的坐标,然后用待定系数法就可解决问题;(2)①可用t的代数式表示DF,然后依据DF=BC求出t的值,得到DF与CB重合,因此不存在t,使得四边形DFBC为平行四边形;②可分两种状况(点Q在线段BC和在线段BC的延长线上)探讨,由于DE∥QC,要使以点D、E、Q、C为顶点的四边形为平行四边形,只需DE=QC,只需将。
XXX 2014-2015学年八年级下学期期末数学试卷(含答案)XXX2014-2015学年度下学期期末质量监测八年级数学试卷一、选择题:本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列根式中,是最简二次根式的是()A。
$\frac{1}{2}$ $\sqrt{2}$ B。
3 $\sqrt{2}$ C。
8 D。
12 $\sqrt{2}$2.下列计算正确的是()A。
3+2=5 B。
3×2=6 C。
12-3=9 D。
8÷2=43.下列各点在函数y=2x的图象上的是()A。
(2,-1) B。
(-1,2) C。
(1,2) D。
(2,1)4.下列各数组中,能作为直角三角形三边长的是()A。
1,1,2 B。
2,3,4 C。
2,3,5 D。
3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知()A。
甲比乙的成绩稳定 B。
乙比甲的成绩稳定 C。
甲、乙两人的成绩一样稳定 D。
无法确定谁的成绩更稳定6.如图,矩形ABCD中,∠AOD=120,AB=3,则BD的长是()A。
$\sqrt{33}$ B。
6 C。
4 D。
$\sqrt{23}$7.若(-4,y1),(2,y2)两点都在直线y=-2x-4上,则y1与y2的大小关系是()A。
y1>y2 B。
y1=y2 C。
y1<y2 D。
无法确定8.如图,平行四边形ABCD中,对角线AC与BD交于点O,已知∠OAB=90,BD=10cm,AC=6cm,则AB的长为()A。
4cm B。
5cm C。
6cm D。
8cm9.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A。
4cm B。
5cm C。
6cm D。
8cm10.为了解某班学生每天使用零花钱的情况,XXX随机调查了该班15名同学,结果如下表:人数。
2014-2015学年浙江省杭州市下城区八年级(下)期末数学试卷考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题纸上写姓名和准考证号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.考试结束后,试题卷和答题纸一并上交.一、仔细选一选(本题有10小题,每小题3分,共30分)1.(3分)将化简,正确的结果是()A.3B.±3C.6D.±32.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A. B.C.D.3.(3分)假设命题“a≤0”不成立,那么a与0的大小关系只能是()A.a≥0 B.a>0 C.a≠0 D.a=04.(3分)已知y是关于x的反比例函数,点P(x1,y1),Q(x2,y2)是反比例函数图象上的点,则下列结论正确的是()A.x1+y1=x2+y2B.x1y2=x2y1C.= D.=5.(3分)已知数据x1,x2,…,x n的平均数是2,方差是3,则一组新数据x1+8,x2+8,…,x n+8的平均数和方差分别是()A.10,3 B.10,11 C.2,3 D.2,116.(3分)在四边形ABCD中,若∠A与∠C之和等于四边形外角和的一半,∠B比∠D大15°,则∠B的度数等于()A.150°B.97.5°C.82.5°D.67.5°7.(3分)函数≤x≤2时,≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=8.(3分)如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为()A.(﹣1,+1)B.(﹣1,1)C.(1,+1)D.(﹣1,2)9.(3分)已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根10.(3分)如图,在平面直角坐标系中,函数y=x和函数y=的图象在第一象限交于点D(4,m),与平行于y轴的直线x=t(0<t<4)分别交于点A和点B,平面上有点P(0,6).若以点O,P,A,B为顶点的四边形为平行四边形,则这个平行四边形被直线PD所分割成的两部分图形的面积之比为()A.1:1 B.1:2 C.1:3 D.1:4二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是.12.(4分)如图是某地2月18日到23日空气质量指数AQI的统计图,则这六天AQI的中位数是.13.(4分)已知直角三角形的两条边长分别是方程x2﹣3x+2=0的两个根,则此直角三角形的斜边长是.14.(4分)已知x2+2(n+1)x+4n是一个关于x的完全平方式,则常数n=.15.(4分)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=﹣的图象上,过点P作直线l与y轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=.16.(4分)如图,在反比例函数y=(x>0)的图象上有点P1,P2,P3,…,它们的横坐标依次为1,2,3,…,分别过这些点作x轴的垂线,垂足依次为A1,A2,A3,…,分别以P1A1,P3A3,P5A5…为对角线作平行四边形,另两顶A2n﹣2与P2n A2n上(n=1,2,3,…,P0A0为y轴),所构成的阴点分别落在P2n﹣2影部分的面积从左到右依次为S1,S2,S3,…,记P1=,P2=+,P3=++,…,则P2=;P n﹣P n﹣1=.三、全面答一答(本题有7个小题,共66分)17.(6分)(1)计算:()2﹣(2)解方程:2x2﹣2x=3.18.(8分)如图,在▱ABCD中,E、F分别是AB,CD上的点,且AE=CF.求证:DE=BF.19.(8分)在学校组织的知识竞赛中,每班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为:100分,90分,80分,70分,学校将八年级一班和二班的成绩分别整理并绘制成如下的统计图.(1)二班C级的人数占百分之几?(2)此次竞赛中,一班和二班成绩在C级以上(包括C级)的人数分别是多少?(3)一班和二班得分的众数分别是多少分?20.(10分)已知平面直角坐标系中,O是坐标原点,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(m,2),B(﹣1,n).(1)求m,n的值;(2)求一次函数的表达式;(3)求△OAB的面积.21.(10分)在如图所示的方格中,点A,B,C,D都在格点上,且AB=BC=2CD=4,P是线段BC上的动点,连结AP,DP.(1)设BP=x,用含字母x的代数式分别表示线段AP,DP的长,并求当x=2的时候,AP+DP的值;(2)AP+DP是否存在最小值?若存在,求出其最小值.22.(12分)某一农家计划利用已有的一堵长为7.9m的墙,用篱笆围成一个面积为12m2的矩形园子.现有可用的篱笆总长为11m(1)若取园子的长、宽都为整数(单位:m),一共有几种围法?(2)若要使11m长的篱笆恰好用完,应怎样围?23.(12分)已知:如图,四边形ABCD为正方形,E为CD边上的一点,连接AE,并以AE为对称轴,作与△ADE成轴对称的图形△AFE,延长EF(或FE)交直线BC于G.(1)求证:DE+BG=EG;∠EAG=45°;(2)设AB=1,GF=m,FE=n,求m+n+mn的值;(3)若将条件中的“E为CD边上的一点”改为“E为射线CD上的一点”,则(1)中的结论还成立吗?请说明理由.2014-2015学年浙江省杭州市下城区八年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10小题,每小题3分,共30分)1.(3分)(2015春•上虞区期末)将化简,正确的结果是()A.3B.±3C.6D.±3【解答】解:==3×=.故选:C.2.(3分)(2015春•下城区期末)下列图形既是轴对称图形,又是中心对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,部是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.3.(3分)(2015春•下城区期末)假设命题“a≤0”不成立,那么a与0的大小关系只能是()A.a≥0 B.a>0 C.a≠0 D.a=0【解答】解:假设命题“a≤0”不成立,则a>0.故选B.4.(3分)(2015春•下城区期末)已知y是关于x的反比例函数,点P(x1,y1),Q(x2,y2)是反比例函数图象上的点,则下列结论正确的是()A.x1+y1=x2+y2B.x1y2=x2y1C.= D.=【解答】解:∵y是关于x的反比例函数,点P(x1,y1),Q(x2,y2)是反比例函数图象上的点,∴x1y1=x2y2.又∵x1,y1,x2,y2都不等于0,∴=.故选:D.5.(3分)(2015春•下城区期末)已知数据x1,x2,…,x n的平均数是2,方差是3,则一组新数据x1+8,x2+8,…,x n+8的平均数和方差分别是()A.10,3 B.10,11 C.2,3 D.2,11【解答】解:∵x1,x2,x3,…,x n的平均数是2,∴x1+8,x2+8,…,x n+8的平均数是2+8=10;∵x1,x2,x3,…,x n的方差是3,∴x1+8,x2+8,…,x n+8的方差是3:故选A.6.(3分)(2015春•下城区期末)在四边形ABCD中,若∠A与∠C之和等于四边形外角和的一半,∠B比∠D大15°,则∠B的度数等于()A.150°B.97.5°C.82.5°D.67.5°【解答】解:∵∠A与∠C之和等于四边形外角和的一半,四边形的外角和为360°,∴∠A+∠C=180°,∴∠B+∠D=360°﹣(∠A+∠C)=180°①,∵∠B比∠D大15°,∴∠B﹣∠D=15°②,①+②得:2∠B=195°,∴∠B=97.5°.故选:B.7.(3分)(2015春•下城区期末)函数≤x≤2时,≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=【解答】解:A、把x=代入y=可得y=1,把x=2代入y=可得y=,故A 正确;B、把x=代入y=可得y=4,把x=2代入y=可得y=1,故B错误;C、把x=代入y=可得y=,把x=2代入y=可得y=,故C错误;D、把x=代入y=可得y=16,把x=2代入y=可得y=4,故D错误.故选:A.8.(3分)(2015春•下城区期末)如图,在平面直角坐标系中,四边形ABCO 是正方形,已知点C的坐标为(,1),则点B的坐标为()A.(﹣1,+1)B.(﹣1,1)C.(1,+1)D.(﹣1,2)【解答】解:作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;如图所示:则∠BHC=∠CEO=90°,∴∠HBC+∠BCH=90°,∵C点坐标为(,1),∴OE=,CE=1,∵四边形ABCO是正方形,∴BC=OC,∠BCO=90°,∴∠BCH+∠OCE=90°,∴∠HBC=∠OCE,在△BCH和△COE中,,∴△BCH≌△COE(AAS),∴BH=CE=1,CH=OE=,∴BG=﹣1,HE=+1,∴点B的坐标为:(﹣1,+1);故选:A.9.(3分)(2015春•下城区期末)已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根【解答】解:化简方程(x﹣1)[(k﹣1)x+(k﹣3)]=0,得(k﹣1)x2﹣2x ﹣k+3=0,当k=1时方程为一元一次方程,只有一个实数根,∵b2﹣4ac=4﹣4×(4k﹣k2﹣3)=4﹣4×[﹣(k﹣2)2+1]≥0,∴方程一定有实数根.故选:D.10.(3分)(2015春•下城区期末)如图,在平面直角坐标系中,函数y=x和函数y=的图象在第一象限交于点D(4,m),与平行于y轴的直线x=t(0<t <4)分别交于点A和点B,平面上有点P(0,6).若以点O,P,A,B为顶点的四边形为平行四边形,则这个平行四边形被直线PD所分割成的两部分图形的面积之比为()A.1:1 B.1:2 C.1:3 D.1:4【解答】解:如图,把D(4,m)代入y=x得m=4,则D(4,4),∵直线x=t(0<t<4)分别交函数y=的图象和直线y=x于点A和点B,∴A(t,),B(t,t),∵四边形OBAP为平行四边形,∴AB=OP=6,∴﹣t=6,整理得t2+6t﹣16=0,解得t1=2,t2=﹣8(舍去),∴A(2,8),B(2,2),∴点B为OD的中点,∴BQ为△DOP的中位线,∴BQ=OP=3,∴AQ=6﹣3=3,∴==,即这个平行四边形被直线PD所分割成的两部分图形的面积之比为1:3.故选C.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)(2015春•下城区期末)二次根式中字母x的取值范围是x≤1.【解答】解:根据题意得:1﹣x≥0,解得x≤1.故答案为:x≤112.(4分)(2015春•下城区期末)如图是某地2月18日到23日空气质量指数AQI的统计图,则这六天AQI的中位数是58.65.【解答】解:把这些数从小到大排列为:15,47.5,49,68.3,108.3,120,最中间两个数的平均数是:(49+68.3)÷2=58.65,则这六天AQI的中位数是:58.65;故答案为58.65.13.(4分)(2015春•下城区期末)已知直角三角形的两条边长分别是方程x2﹣3x+2=0的两个根,则此直角三角形的斜边长是2或.【解答】解:∵x2﹣3x+2=0,∴x=1或2,当1、2是原方程的两边的是两条直角边时,根据勾股定理得其斜边为=,当是原方程的两边的是一条直角边,和斜边时斜边一定是2.∴直角三角形的斜边长是2或.故答案为:2或.14.(4分)(2015春•下城区期末)已知x2+2(n+1)x+4n是一个关于x的完全平方式,则常数n=1.【解答】解:根据题意得:[2(n+1)]2﹣4×4n=0,解得:n=1.故答案为:1.15.(4分)(2015春•下城区期末)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=﹣的图象上,过点P作直线l与y轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=﹣3或﹣﹣3.【解答】解:∵点P(1,t)在反比例函数y=﹣的图象上,∴t=﹣=﹣3,∴P(1,﹣3),∴OP==,∵过点P作直线l与y轴平行,点Q在直线l上,满足QP=OP.∴Q(1,﹣3)或(1,﹣﹣3)∵反比例函数y=的图象经过点Q,∴﹣3=或﹣﹣3=,解得k=﹣3或﹣﹣3,故答案为﹣3或﹣﹣3.16.(4分)(2015春•下城区期末)如图,在反比例函数y=(x>0)的图象上有点P1,P2,P3,…,它们的横坐标依次为1,2,3,…,分别过这些点作x轴的垂线,垂足依次为A1,A2,A3,…,分别以P1A1,P3A3,P5A5…为对角线作A2n﹣2与P2n A2n上(n=1,2,3,…,P0A0平行四边形,另两顶点分别落在P2n﹣2为y轴),所构成的阴影部分的面积从左到右依次为S1,S2,S3,…,记P1=,P2=+,P3=++,…,则P2=2;P n﹣P n﹣1=.【解答】解:∵反比例函数y=(x>0)的图象上有点P1,P2,P3,…,它们的横坐标依次为1,2,3,…,(2n﹣1,),∴P1(1,2),P3(3,),P5(5,),…,P2n﹣1∴S1=2××1×2=2,S2=2××1×=,S3=2××1×=,S n=2××1×=,∴P1==,P2=+=+=2,P n﹣P n﹣1==.故答案为2,.三、全面答一答(本题有7个小题,共66分)17.(6分)(2015春•下城区期末)(1)计算:()2﹣(2)解方程:2x2﹣2x=3.【解答】解:(1)原式=3﹣1=2;(2)2x2﹣2x﹣3=0,△=(﹣2)2﹣4×2×(﹣3)=28,x==,所以x1=,x2=.18.(8分)(2002•嘉兴)如图,在▱ABCD中,E、F分别是AB,CD上的点,且AE=CF.求证:DE=BF.【解答】证明:在平行四边形ABCD中,AB∥CD,AB=CD,∵AE=CF,∴BE=DF,BE∥DF.∴四边形DEBF是平行四边形.∴DE=BF.19.(8分)(2015春•下城区期末)在学校组织的知识竞赛中,每班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为:100分,90分,80分,70分,学校将八年级一班和二班的成绩分别整理并绘制成如下的统计图.(1)二班C级的人数占百分之几?(2)此次竞赛中,一班和二班成绩在C级以上(包括C级)的人数分别是多少?(3)一班和二班得分的众数分别是多少分?【解答】解:(1)二班C级的人数占36%;(2)此次竞赛一班成绩在C级以上(包括C级)的人数是:6+12+2=20(人),此次竞赛二班成绩在C级以上(包括C级)的人数是:(6+12+2+5)×(36%+4%+44%)=21(人);(3)一班和二班得分的众数分别是90分和100分.20.(10分)(2015春•下城区期末)已知平面直角坐标系中,O是坐标原点,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(m,2),B(﹣1,n).(1)求m,n的值;(2)求一次函数的表达式;(3)求△OAB的面积.【解答】解:(1)∵A(m,2),B(﹣1,n)在反比例函数y=的图象上,∴2=,n=,∴m=2,n=﹣4;(2)∵一次函数y=kx+b的图象过A(2,2),B(﹣1,﹣4),∴,∴,∴一次函数的表达式为:y=2x﹣2;=×2×2+=3.(3)S△AOB21.(10分)(2015春•下城区期末)在如图所示的方格中,点A,B,C,D都在格点上,且AB=BC=2CD=4,P是线段BC上的动点,连结AP,DP.(1)设BP=x,用含字母x的代数式分别表示线段AP,DP的长,并求当x=2的时候,AP+DP的值;(2)AP+DP是否存在最小值?若存在,求出其最小值.【解答】解:(1)由题意结合图形知:AB=4,BP=x,CP=4﹣x,CD=2,∴AP==,DP===;当x=2时,AP+DP=+=2+2;(2)存在.如图,作点A关于BC的对称点A′,连接A′D,∴A′E=4,DE=6,则A′D====,∴最小值为2.22.(12分)(2015春•下城区期末)某一农家计划利用已有的一堵长为7.9m的墙,用篱笆围成一个面积为12m2的矩形园子.现有可用的篱笆总长为11m (1)若取园子的长、宽都为整数(单位:m),一共有几种围法?(2)若要使11m长的篱笆恰好用完,应怎样围?【解答】解:(1)设园子的长为ym,宽为xm,根据题意得:,∵园子的长、宽都是整数米,∴x=6,y=2或x=4,y=3或x=3,y=4,∴一共有3种围法:宽为2m时,长为6m,宽为3m时,长为4m,宽为4m时,长为3m;(2)∵要使11m长的篱笆恰好用完,则2x+y=11,∴x=4,y=3,∴要使11m长的篱笆恰好用完,应使宽为4m,长为3m.23.(12分)(2015春•下城区期末)已知:如图,四边形ABCD为正方形,E为CD边上的一点,连接AE,并以AE为对称轴,作与△ADE成轴对称的图形△AFE,延长EF(或FE)交直线BC于G.(1)求证:DE+BG=EG;∠EAG=45°;(2)设AB=1,GF=m,FE=n,求m+n+mn的值;(3)若将条件中的“E为CD边上的一点”改为“E为射线CD上的一点”,则(1)中的结论还成立吗?请说明理由.【解答】解:如图1,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴△ADE≌△AGE∴AD=AF=AB,DE=FE,∠DAE=∠FAE,∠D=∠AFE=∠AFG=90°=∠B,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG=∠BAD=45°,∴GE=GF+EF=BG+DE;(2)如图1,设AB=1,GF=m,FE=n,则EF=m+n,CE=1﹣m,CF=1﹣n,∵∠C=90°,∴(1﹣m)2+(1﹣n)2=(m+n)2,整理得:m+n+mn=1;(3)EF=BF+DE不成立,理由:如图2,此时,EF=BF﹣DE,∠EAF=45°成立.同(1)有△ADE≌△AGE,Rt△ABG≌Rt△AFG,∴DE=FE,GB=GF,∠DAE=∠FAE,∠BAG=∠FAG,∴GE=GF﹣EF=BG﹣DE,∠GAE=∠FAG﹣∠FAE=∠BAD=45°.。
2014-2015学年浙江省杭州市上城区八年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分.每题只有一个是正确答案)1.(3分)代数式在实数范围内有意义,则x的取值范围为()A.x≥1 B.x≥﹣1 C.x≥D.x≥﹣2.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90° B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°3.(3分)已知反比例函数y=(k>0)的图象上有两点A(1,m),B(2,n),则m与n的大小关系是()A.m>n B.m<n C.m=n D.不能确定4.(3分)某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程正确的是()A.5.4(1+x)2=6.3 B.5.4(1﹣x)2=6.3 C.6.3(1+x)2=5.4 D.6.3(1﹣x)25.(3分)小张参加招考公务员考试,本次参加招考的总人数是1600名,规定:按考试成绩从高到低排列,前800名通过笔试,小张想知道自己是否通过笔试,他最应该了解的考试成绩统计量是()A.平均数B.中位数C.众数D.标准差6.(3分)已知a是实数,则一元二次方程x2+ax﹣4=0的根的情况是()A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根D.根据a的值来确定7.(3分)如果=﹣1,则a与b的大小关系为()A.a>b B.b>a C.a≥b D.b≥a8.(3分)如图,在平面直角坐标系中,点A是x轴正半轴上的一定点,点P是反比例函数y=(x>0)图象上的一个动点,PB⊥y轴于点B,当点P的横坐标的值逐渐减小时,四边形OAPB的面积将会()A.逐渐减小B.逐渐增大C.不变D.先减小后增大9.(3分)一艘快艇的航线如图所示,从O港出发,1小时后回到O港,若行驶中快艇的速度保持不变,AB∥x轴,则快艇驶完AB这段路程所用的时间为()(取的值为1.4)A.26分B.25分C.24分D.23分10.(3分)如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P 是GH上的动点,连接AP,BP,则AP+BP的最小值为()A.4 B.+2 C.+1 D.2二、完整填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)一个多边形的内角和为900°,则这个多边形的边数为.12.(4分)在直角坐标系中,点A(3,4)和点B(a,b)关于原点成中心对称,则a﹣b 的值为.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为.14.(4分)如图,一张矩形纸片ABCD,沿AF折叠,点B恰好落在CD边上的点E处,已知CD为10cm,DE:EC=3:2,则FC的长度为cm.15.(4分)已知点P是反比例函数y=图象上的一个动点,在y轴上取点Q,使得△OPQ 为等腰直角三角形,则符合条件的Q点的坐标为.16.(4分)如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.三、全面答一答(本题有8个小题,共66分)解答需要用文字或符号说明演算过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)计算.(1)3﹣(﹣6)(2)(2+3)2.18.(6分)解方程.(1)3x2﹣x﹣4=0(2)(x﹣1)2=4(x﹣5)2.19.(8分)小明、小华参加了学校射击队训练,下表是他们在最近一次选拔赛上的成绩(环):选手第1次第2次第3次第4次第5次第6次第7次第8次小明57610710109小华879106978(1)根据提供的数据填写下表:平均数(环)众数(环)中位数(环)小明10小华88(2)若学校欲从两人中选发挥比较稳定的一人参加市中学生运动会,你认为选谁去比较合适?请说明理由.20.(8分)如图,在Rt△ABC中,CE是斜边AB上的中线,CD∥AB,且CD=CE,求证:(1)四边形CDEB是平行四边形;(2)四边形AECD是菱形.21.(8分)如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A出发,以1cm/s 的速度沿AB边向点B移动,以此同时,点Q从点C出发,以2cm/s的速度沿CB边向点B移动,如果P,Q同时出发,经过几秒,△PBQ的面积等于8cm2?22.(8分)如图,在直角坐标系中,一次函数y=﹣x+b与反比例函数y=的图象交于A,B两点,已知A(﹣1,a).(1)求一次函数的解析式;(2)求B点的坐标;(3)结合图象,直接写出当﹣x+b>时,x的取值范围.23.(10分)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.24.(12分)在直角坐标系中,已知反比例函数y=(k≠0)图象经过点D(5,1),且BD⊥y轴,垂足为B,点C是第三象限图象上的动点,过C作CA⊥x轴,垂足为A,连接AB,BC.(1)求k的值;(2)若△BCD的面积是10,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.2014-2015学年浙江省杭州市上城区八年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分.每题只有一个是正确答案)1.(3分)(2015春•上城区期末)代数式在实数范围内有意义,则x的取值范围为()A.x≥1 B.x≥﹣1 C.x≥D.x≥﹣【分析】二次根式有意义的条件就是被开方数是非负数,即可求解.【解答】解:根据题意得:x﹣1≥0,解得x≥1.故选A【点评】主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3分)(2015春•上城区期末)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90° B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°【分析】至少有一个角不小于90°的反面是每个角都小于90°,据此即可假设.【解答】解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3.(3分)(2015春•上城区期末)已知反比例函数y=(k>0)的图象上有两点A(1,m),B(2,n),则m与n的大小关系是()A.m>n B.m<n C.m=n D.不能确定【分析】将点A、B的坐标分别代入已知反比例函数解析式,分别求得m、n的值,然后再来比较它们的大小即可.【解答】解:∵反比例函数y=,且k>0,它的图象经过A(1,m),B(2,n)两点,∴m=k>0,n=>0,∴m>n.故选A.【点评】本题考查了反比例函数图象上点的坐标特征.经过函数的某点一定在函数的图象上.4.(3分)(2015春•上城区期末)某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程正确的是()A.5.4(1+x)2=6.3 B.5.4(1﹣x)2=6.3 C.6.3(1+x)2=5.4 D.6.3(1﹣x)2【分析】根据题意可得出5月份的利润为:6.3(1﹣x),6月份的利润为:6.3(1﹣x)(1﹣x),再由两个月内将利润降到5.4万元,可得出方程.【解答】解:由题意得,5月份的利润为:6.3(1﹣x),6月份的利润为:6.3(1﹣x)(1﹣x),故可得方程:6.3(1﹣x)2=5.4.故选D.【点评】此题考查了由实际问题抽象一元二次方程的知识,关键是根据题意的降低百分率表示出每个月的开支,难度一般.5.(3分)(2015春•上城区期末)小张参加招考公务员考试,本次参加招考的总人数是1600名,规定:按考试成绩从高到低排列,前800名通过笔试,小张想知道自己是否通过笔试,他最应该了解的考试成绩统计量是()A.平均数B.中位数C.众数D.标准差【分析】根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数.参赛选手要想知道自己是否能通过考试,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于前一半的人可通过考试,要判断是否通过考试,故应知道中位数.故选B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6.(3分)(2015•平定县一模)已知a是实数,则一元二次方程x2+ax﹣4=0的根的情况是()A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根D.根据a的值来确定【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:△=a2﹣4×1×(﹣4)=a2+16>0,∴方程有两个不相等的实数根.故选C.【点评】本题考查了一元二次方程根的判别式的应用.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2015春•上城区期末)如果=﹣1,则a与b的大小关系为()A.a>b B.b>a C.a≥b D.b≥a【分析】根据=﹣1,推得=b﹣a,所以b﹣a>0,据此推得b>a 即可.【解答】解:∵=﹣1,∴=﹣1,∴=b﹣a,∵b﹣a>0,∴b>a,则a与b的大小关系为:b>a.故选:B.【点评】此题主要考查了二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.8.(3分)(2015春•上城区期末)如图,在平面直角坐标系中,点A是x轴正半轴上的一定点,点P是反比例函数y=(x>0)图象上的一个动点,PB⊥y轴于点B,当点P的横坐标的值逐渐减小时,四边形OAPB的面积将会()A.逐渐减小B.逐渐增大C.不变D.先减小后增大【分析】由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.【解答】解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=2+=2+2AO•,∵AO是定值,∴四边形OAPB的面积是个增函数,即点P的横坐标逐渐减小时四边形OAPB的面积逐渐增大.故选:B.【点评】本题主要考查了反比例函数系数k的几何意义,解题的关键是运用点的坐标求出四边形OAPB的面积的函数关系式.9.(3分)(2015春•上城区期末)一艘快艇的航线如图所示,从O港出发,1小时后回到O港,若行驶中快艇的速度保持不变,AB∥x轴,则快艇驶完AB这段路程所用的时间为()(取的值为1.4)A.26分B.25分C.24分D.23分【分析】根据∠AOD=45°,∠BOD=45°,AB∥x轴,△AOB为等腰直角三角形,OA=OB,根据AB=,设行驶OA所用的时间为a分钟,则行驶OB所用的时间为a分钟,行驶AB所用的时间为a分钟,根据从O港出发,1小时后回到O港,得到a+a+a=60,求出a的值即可解答.【解答】解:如图,∵∠AOD=45°,∠BOD=45°,∴∠AOD=90°,∵AB∥x轴,∴∠BAO=∠AOC=45°,∠ABO=∠BOD=45°,∴△AOB为等腰直角三角形,OA=OB,∴AB=,设行驶OA所用的时间为a分钟,则行驶OB所用的时间为a分钟,行驶AB所用的时间为a分钟,∵从O港出发,1小时后回到O港,∴a+a+a=60,解得:a=,a=24,故选:C.【点评】本题考查了等腰直角三角形,解决本题的关键是熟悉等腰直角三角形的性质.10.(3分)(2015春•上城区期末)如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的最小值为()A.4 B.+2 C.+1 D.2【分析】易知点B关于GH的对称点为点E,连接AE交GH于点P,那么有PB=PE,AP+BP=AE最小.又易知△AEF为等腰三角形,∠AFE=120°,则作FM⊥AE于点M,易求得AM=EM=,从而AE=2.【解答】解:利用正多边形的性质可得点B关于GH的对称点为点E,连接AE交GH于点P,那么有PB=PE,AP+BP=AE最小.又易知△AEF为等腰三角形,∠AFE=120°,则作FM⊥AE于点M,∵∠AFE=120°,AF=EF,∴∠FAE=∠FEA=30°,AM=EM,在RT△AFM中,AF=2,∴AM=AF=,∴AM=EM=,从而AE=2,故AP+BP的最小值为2.故选D.【点评】此题主要考查了正多边形的以性质及轴对称最短路线问题,作出辅助线构建直角三角形是解题的关键.二、完整填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2009•巴中)一个多边形的内角和为900°,则这个多边形的边数为7.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.12.(4分)(2015春•上城区期末)在直角坐标系中,点A(3,4)和点B(a,b)关于原点成中心对称,则a﹣b的值为1.【分析】首先根据点A(3,4)和点B(a,b)关于原点成中心对称,可得a=﹣3,b=﹣4,然后把a、b的值代入,求出a﹣b的值为多少即可.【解答】解:∵点A(3,4)和点B(a,b)关于原点成中心对称,∴a=﹣3,b=﹣4,∴a﹣b=﹣3﹣(﹣4)=1.故答案为:1.【点评】此题主要考查了关于原点对称的点的坐标,要熟练掌握,解答此题的关键是要明确:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).13.(4分)(2015春•上城区期末)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为1.【分析】先设x2+y2=t,则方程即可变形为t2+5t﹣6=0,解方程即可求得t即x2+y2的值.【解答】解:设x2+y2=t,则原方程可化为:t2+5t﹣6=0即(t+6)(t﹣1)=0∴t=﹣6(舍去)或t=1,即x2+y2=1.故答案是:1.【点评】本题主要考查了换元法解一元二次方程,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.14.(4分)(2015春•上城区期末)如图,一张矩形纸片ABCD,沿AF折叠,点B恰好落在CD边上的点E处,已知CD为10cm,DE:EC=3:2,则FC的长度为3cm.【分析】由矩形的性质和折叠的性质得出∠C=∠D=90°AE=AB=10cm,EF=BF,由勾股定理求出AD,得出BC,设FC=xcm,则EF=BF=(8﹣x)cm,根据勾股定理得出方程,解方程即可.【解答】解:,∵四边形ABCD是矩形,∴∠C=∠D=90°,AB=CD=10cm,BC=AD,根据折叠的性质得:AE=AB=10cm,EF=BF,∵DE:EC=3:2,∴DE=6cm,EC=4cm,∴AD===8(cm),∴BC=8cm,设FC=xcm,则EF=BF=(8﹣x)cm,根据勾股定理得:FC2+EC2=EF2,即x2+42=(8﹣x)2,解得:x=3,∴FC=3cm.故答案为:3.【点评】本题考查了矩形的性质、翻折变换的性质、勾股定理;熟练掌握矩形的性质和翻折变换的性质,并能进行推理计算是解决问题的关键.15.(4分)(2015春•上城区期末)已知点P是反比例函数y=图象上的一个动点,在y 轴上取点Q,使得△OPQ为等腰直角三角形,则符合条件的Q点的坐标为(0,2)、(0,﹣2)、(0,4)或(0,﹣4).【分析】根据题意,分两种情况:(1)当∠AQP=90°时;(2)当∠APQ=90°时;根据△OPQ 为等腰直角三角形,判断出符合条件的所有Q点的坐标有哪些即可.【解答】解:(1)当∠AQP=90°时,∵△OPQ为等腰直角三角形,∴OQ=PQ,∴点P(a,b)的横坐标、纵坐标相等,∴a=b,ab=4,解得或∴Q点的坐标为(0,2)或(0,﹣2).(2)当∠APQ=90°时,∵△OPQ为等腰直角三角形,∴OP=PQ,∴点P(a,b)的横坐标、纵坐标相等,∴a=b,ab=4,解得或∴OP=,PQ=2,∵△OPQ为等腰直角三角形,∴OQ=2=4,∴Q点的坐标为(0,4)或(0,﹣4).综上,可得符合条件的Q点的坐标为:(0,2)、(0,﹣2)、(0,4)或(0,﹣4).故答案为:(0,2)、(0,﹣2)、(0,4)或(0,﹣4).【点评】(1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.(2)此题还考查了等腰直角三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R ,而高又为内切圆的直径.16.(4分)(2012•深圳二模)如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 ①③⑤ .【分析】①首先利用已知条件根据边角边可以证明△APD ≌△AEB ;②由①可得∠BEP=90°,故BE 不垂直于AE 过点B 作BF ⊥AE 延长线于F ,由①得∠AEB=135°所以∠EFB=45°,所以△EFB 是等腰Rt △,故B 到直线AE 距离为BF=,故②是错误的;③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD ≌△AEB ,可知S △APD +S △APB =S △AEB +S △APB ,然后利用已知条件计算即可判定; ⑤连接BD ,根据三角形的面积公式得到S △BPD =PD ×BE=,所以S △ABD =S △APD +S △APB +S△BPD=2+,由此即可判定.【解答】解:由边角边定理易知△APD ≌△AEB ,故①正确;由△APD ≌△AEB 得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°, 所以∠BEP=90°,过B 作BF ⊥AE ,交AE 的延长线于F ,则BF 的长是点B 到直线AE 的距离, 在△AEP 中,由勾股定理得PE=,在△BEP 中,PB=,PE=,由勾股定理得:BE=,∵∠PAE=∠PEB=∠EFB=90°,AE=AP , ∴∠AEP=45°,∴∠BEF=180°﹣45°﹣90°=45°, ∴∠EBF=45°, ∴EF=BF ,在△EFB 中,由勾股定理得:EF=BF=,故②是错误的;因为△APD ≌△AEB ,所以∠ADP=∠ABE ,而对顶角相等,所以③是正确的; 由△APD ≌△AEB , ∴PD=BE=,可知S △APD +S △APB =S △AEB +S △APB =S △AEP +S △BEP =+,因此④是错误的;连接BD ,则S △BPD =PD ×BE=, 所以S △ABD =S △APD +S △APB +S △BPD =2+,所以S 正方形ABCD =2S △ABD =4+.综上可知,正确的有①③⑤.【点评】此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.三、全面答一答(本题有8个小题,共66分)解答需要用文字或符号说明演算过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(6分)(2015春•上城区期末)计算.(1)3﹣(﹣6)(2)(2+3)2.【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=3﹣2+2=3;(2)原式=12+12+45=57+12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(6分)(2015春•上城区期末)解方程.(1)3x2﹣x﹣4=0(2)(x﹣1)2=4(x﹣5)2.【分析】(1)方程利用因式分解法求出解即可;(2)方程利用直接开平方法求出解即可.【解答】解:(1)分解因式得:(3x﹣4)(x+1)=0,解得:x1=,x2=﹣1;(2)开方得:x﹣1=2(x﹣5)或x﹣1=﹣2(x﹣5),解得:x1=9,x2=.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.19.(8分)(2015春•上城区期末)小明、小华参加了学校射击队训练,下表是他们在最近一次选拔赛上的成绩(环):选手第1次第2次第3次第4次第5次第6次第7次第8次小明57610710109小华879106978(1)根据提供的数据填写下表:平均数(环)众数(环)中位数(环)小明10小华88(2)若学校欲从两人中选发挥比较稳定的一人参加市中学生运动会,你认为选谁去比较合适?请说明理由.【分析】(1)小明的平均数=分;将小明的成绩由小到大排列为5、6、7、7、9、10、10、10则中位数为=8;小华的众数为7,8,9;(2)首先求出小明的方差=3.5,小华的方差=1.5,小明和小华成绩的平均数均为8分,但小华的方差比小明的小,且大于等于8分的次数小华比小明的多,所以让小华去;或小明成绩总体上呈现上升趋势,且后几次的成绩均高于8分,所以让小明去较合适.【解答】解:(1)平均数(环)众数(环)中位数(环)小明8108小华87,8,98(2)小明的方差=3.5,小华的方差=1.5,小明和小华成绩的平均数均为8分,但小华的方差比小明的小,且大于等于8分的次数小华比小明的多,所以让小华去;或小明成绩总体上呈现上升趋势,且后几次的成绩均高于8分,所以让小明去较合适.【点评】本题考查了平均数,中位数、众数及方差的概念,理解它们的概念是解决本题的关键.20.(8分)(2015春•上城区期末)如图,在Rt△ABC中,CE是斜边AB上的中线,CD ∥AB,且CD=CE,求证:(1)四边形CDEB是平行四边形;(2)四边形AECD是菱形.【分析】(1)首先根据直角三角形斜边上的中线等于斜边的一半得到AE=CE=BE,从而得到CD=BE,利用一组对边平行且相等证得四边形CDEB是平行四边形;(2)首先判定四边形AECD是平行四边形,然后根据邻边相等得到四边形AECD是菱形.【解答】证明:(1)∵Rt△ABC中,CE是斜边AB上的中线,∴AE=CE=BE,∵CD=CE,∴CD=BE,∵CD∥AB,∴四边形CDEB是平行四边形;(2)∵CD=AE,∴四边形AECD是平行四边形,∵AE=CE,∴四边形AECD为菱形.【点评】本题考查了平行四边形的判定、菱形的判定,解题的关键是能够熟练掌握菱形及平行四边形的判定定理,难度不大.21.(8分)(2015春•上城区期末)如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A出发,以1cm/s的速度沿AB边向点B移动,以此同时,点Q从点C出发,以2cm/s的速度沿CB边向点B移动,如果P,Q同时出发,经过几秒,△PBQ的面积等于8cm2?【分析】设P、Q同时出发,x秒钟后,AP=xcm,PB=(6﹣x)cm,BQ=(8﹣2x)cm,此时△PCQ的面积为:×(8﹣2x)(6﹣x),令该式=8,由此等量关系列出方程求出符合题意的值.【解答】解:设xs后,可使△PCQ的面积为8cm2.由题意得,AP=xcm,PB=(6﹣x)cm,BQ=(8﹣2x)cm,则(6﹣x)•(8﹣2x)=8,整理,得x2﹣10x+16=0,解得x1=2,x2=8(不合题意舍去).所以P、Q同时出发,2s后可使△PBQ的面积为8cm2.【点评】本题主要考查一元二次方程的应用,关键在于根据三角形面积公式找出等量关系列出方程求解.22.(8分)(2015春•上城区期末)如图,在直角坐标系中,一次函数y=﹣x+b与反比例函数y=的图象交于A,B两点,已知A(﹣1,a).(1)求一次函数的解析式;(2)求B点的坐标;(3)结合图象,直接写出当﹣x+b>时,x的取值范围.【分析】(1)把A(﹣1,a)代入y=求出a,得到点A的坐标,把点A的坐标代入y=﹣x+b求出b,得到一次函数的解析式;(2)把解出的一次函数y=﹣x+b与反比例函数y=组成方程组,解方程组得到答案;(3)根据函数图象确定当﹣x+b>时,x的取值范围.【解答】解:(1)∵A(﹣1,a)在y=的图象上,∴a=4,则A(﹣1,4),又A(﹣1,4)在一次函数y=﹣x+b图象上,∴1+b=4,解得,b=3,∴一次函数的解析式为:y=﹣x+3;(2)由题意得,,解得,,,∴B点的坐标为:(4,﹣1);(3)从图象可以看出,当x<﹣1或0<x<4时,﹣x+b>.【点评】本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式,先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.23.(10分)(2015春•上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.【分析】(1)通过证明Rt△DHG≌△AEH,得到∠DHG=∠AEH,从而得到∠GHE=90°,然后根据有一个角为直角的菱形为正方形得到四边形EFGH为正方形;(2)作FQ⊥CD于Q,连结GE,如图,利用AB∥CD得到∠AEG=∠QGE,再根据菱形的性质得HE=GF,HE∥GF,则∠HEG=∠FGE,所以∠AEH=∠QGF,于是可证明△AEH ≌△QGF,得到AH=QF=2,然后根据三角形面积公式求解.【解答】(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AHE,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG的面积=CG•FQ=×2×2=2.【点评】本题考查了正方形的判定与性质:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定;正方形具有平行四边形、矩形、菱形的所有性质.也考查了菱形和矩形的性质.24.(12分)(2015春•上城区期末)在直角坐标系中,已知反比例函数y=(k≠0)图象经过点D(5,1),且BD⊥y轴,垂足为B,点C是第三象限图象上的动点,过C作CA ⊥x轴,垂足为A,连接AB,BC.(1)求k的值;(2)若△BCD的面积是10,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.【解答】解:(1)∵比例函数y=(k≠0)图象经过点D(5,1),∴k=5×1=5;(2)设点C到BD的距离为h,∵点D的坐标为(5,1),DB⊥y轴,∴BD=5,=×5•h=10,∴S△BCD解得h=4,∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1﹣4=﹣3,∴=﹣3,解得x=﹣,∴点C的坐标为(﹣,﹣3),设直线CD的解析式为y=kx+b,则,解得,所以,直线CD的解析式为y=x﹣2;(3)AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,),点D的坐标为(5,1),∴点A、B的坐标分别为A(c,0),B(0,1),设直线AB的解析式为y=mx+n,则,解得,所以,直线AB的解析式为y=﹣x+1,设直线CD的解析式为y=ex+f,则,解得,∴直线CD的解析式为y=﹣x+,∵AB、CD的解析式k都等于﹣,∴AB与CD的位置关系是AB∥CD.【点评】本题是对反比例函数的综合考查,主要利用了待定系数法求函数解析式,三角形的面积的求解,待定系数法是求函数解析式最常用的方法,一定要熟练掌握并灵活运用.参与本试卷答题和审题的老师有:1987483819;gbl210;守拙;sjzx;放飞梦想;王学峰;sdwdmahongye;HLing;dbz1018;家有儿女;Liuzhx;gsls;sks;sd2011;知足长乐(排名不分先后)菁优网2017年5月26日。
杭州市下城区2014-2015学年一学期期末考试八年级数学试卷考生须知:1.本试卷分试题卷和答题卡两部分.满分120分,考试时间100分钟; 2.答题前,必须在答题卡上填写校名、班级、姓名,正确涂写考试号;3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π.一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列各点中,在第二象限的是( )A .()1,2B .()1,2-C .()0,2D .()1,2- 2.下列各组数不可能是一个三角形边长的是( )A .5,12,13B .5,7,7C .5,7,12D .101,102,103 3.已知a 为非负数,比较2a 与a 的大小关系,正确的是( )A .2a a ≥B .2a a ≤C .2a a <D .2a a > 4.下列命题中,真命题的是( )A .若21>-x ,则2>-xB .在同一平面内,垂直于同一条直线的两条直线互相平行C .一个锐角与一个钝角的和等于一个平角D .任何一个角都比它的补角小5.如图,等边△ABC 在平面直角坐标系中的位置如图所示, 其中顶点()1,1A --,()3,1B -,则顶点C 的坐标为( ) A .(B . (C . ()1- D . ()2-6.如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD , 则∠B 的度数为( )CBAyx o(第5题)DCAD为CA 延长线上一点,DE ⊥BC 于E ,交AB 边于点G ,则图中与 ∠D 相等的角的个数为( )A .3个B .4个C .5个D .6个8.如图,点B ,C ,D 在同一条直线上,∠ACB =∠ECD =060, ∠E =∠D =040,EC =D C .连结BE ,AD ,分别交AC ,CE 于 点M ,N ,下列结论中,错误的是( ) A .∠A =∠B B .△CME ≌△CND C .CM =CN D .∠BMC =∠DNC9.如图,在△ABC 中,AB =AC ,BD =12BC ,等边△BEF 的顶点F 在BC 上,边EF 交AD 于点P ,若BE =10,BC =14,则PE 的长为( ) A .1 B .2 C .3 D .410.如图(1),一架长为20米云梯AB 斜靠在竖直的墙ON 上,这时云梯下端B 到墙底端O 的距离BO =12米,在下列结论中,正确的是( ) A .当消防员爬到距离地面457米时,他到墙面与地面的距离相等 B .如图(2),当梯子顶端A 沿墙下滑3米时,底端B 向外移动3米 C .如图(2),在梯子下滑过程中,梯子AB 与墙 ON ,地面OM 构成的三角形面积存在最大值, 最大值为1002米D .若在射线ON 上存在一点G ,使得△ABG 为 等腰三角形,则AG =252米 二、 认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.直线1=-+y x 不经过第 象限.12.命题“对顶角相等”的条件部分是_ ,结论部分是 . 13.如图,在△ABC 中,AB =AC =17,BC =16,AD 为中线,BE ⊥AC ,垂足为E ,则AD = ,BE = .CEBDANMEDBA14.把点(),3A a -向左移动3个单位得点B ,点B 关于x 轴的对称点为点C ;若点A ,C 到原点的距离相等,则a = . 15.若不等式组13,x x a<≤⎧⎨≤⎩ 有解,则a 的取值范围是 .16.在△ABC 中,AB =AC ,点D 在BC 边上,连接AD ,若AD =BD ,且△ADC 为等腰三角形,则∠BAC 的度数为 .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题满分6分) 解下列不等式(组):(1)3124x x -<+ (2)()5231131722x x x x->+⎧⎪⎨-≤-⎪⎩18.(本小题满分8分)已知,如图,四边形ABCD ,∠A =∠B =Rt ∠(1)用直尺和圆规,在线段AB 上找一点E ,使得EC =ED ,连接EC ,ED (不写作法,保留作图痕迹);(2)在(1)的图形中,若∠ADE =∠BEC ,且CE =3,BC ,求AD 的长. 19.(本小题满分8分)某业主贷款2.2万元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是 每个8元,应付的税款和其他费用的和是售价的10%.若每个月能生产并销售2000个产品. (1)问每个月所获得利润为多少元? (2)问至少几个月后能赚回这台机器的贷款?20.(本小题满分10分)如图,已知△ABC 为等腰直角三角形,∠BAC =090,BE 是∠ABC 的平分线, DE ⊥BC ,垂足为D .(1)写出图中所有的等腰三角形,不需证明; (2)请你判断AD 与BE 是否垂直,并说明理由; (3)如果BC =12,求AB +AE 的长.21.(本小题满分10分)在一条笔直的道路上有相距9千米的A ,B 两地,甲以3km /h 的速度从A 地走向B 地,出发 0.5h 后,乙从B 地以4.5km /h 的速度走向A 地,甲、乙两人走到各自终点停止.设甲行走的时间为t (h ). (1)分别写出甲、乙两人与A 地的距离s 与时间t 的函数表达式,并写出相应的t 的取值范围; (2)在同一直角坐标系中画出(1)中的两个函数的图象;(3)当t 为何值时,甲、乙两人相距不大于3.75km .22.(本小题满分12分)在△ABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线,DG ⊥CE 于G ,CD =AE . (1)写出CG 与EG 的数量关系,并说明理由. (2)若AD =12,AB =20,求CE 的长. 23.(本小题满分12分)如图,在正方形ABCD 中,AB =4,点P 为线段DC 上的一个动点.设DP =x ,由点A ,B ,C ,P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M 、N ,且P 为第一象限内位于直线MN 右侧的一个动点,若△MNP 正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过()1,0-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQ NMP S S ∆∆=,请直接写出符合条件的点Q 的坐标.B(第23题)(第21题备用)。
2014-2015学年杭州市萧山区八下期末数学试卷一、选择题(共10小题;共50分)1. 下列二次根式属于最简二次根式的是A. B. C. D.2. 在平行四边形中,已知,则的度数是A. B. C. D.3. 已知当时,反比例函数与正比例函数的值相等,则的值是A. B. C. D.4. 关于的方程,有下列说法:①若,则方程必是一元二次方程;②若,则方程必是一元一次方程,那么上述说法A. ①②均正确B. ①②均错C. ①正确,②错误D. ①错误,②正确5. 已知个正数,,,,,的平均数是,且,则新一组数据,,,,,的平均数和中位数分别是A. ,B. ,C. ,D. ,6. 一元二次方程的根的情况是A. 方程没有实数根B. 方程有两个相等的实数根C. 方程有两个不相等的实数根D. 无法判断方程实数根情况7. 下列化简或计算正确的是A. B.C. D.8. 已知点是矩形内一点,连接,,,,若,则关于点的位置,正确的说法是A. 一定是对角线交点B. 一定在对角线上C. 一定在对边中点的连线上D. 可以是任意位置9. 如图,点,,在一条直线上,以,为边在同侧分别作正方形和正方形,点是的中点,连接.已知,,则的值是A. B. C. D.10. 已知点,是反比例函数图象上两点,给出下列判断:①若,则;②若当时,,则;③若,,则,其中正确的是A. ①②③B. ①②C. ②③D. ①③二、填空题(共6小题;共30分)11. 已知点是反比例函数图象上一点,则.12. 如图是小明根据杭州市某天上午和下午各四个整点时的气温绘制成的折线统计图.根据该统计图可知:该天(填上午或下午)的气温更稳定,理由是.13. 二次根式的最小值为.14. 已知是一个关于的完全平方式,则的值是.15. 如图,四边形沿直线对折,点,的对应点,落在四边形内部,若,则的度数是.16. 已知在平面直角坐标系中,点,,,的坐标依次为,,,,且.若以,,,四个点为顶点的四边形是菱形,则的值是.三、解答题(共7小题;共91分)17. 计算:(1);(2).18. 证明:在中,,,中至少有一个角大于或等于.19. 用合适方法解下列方程:(1);(2).20. 为了了解八年级学生的课外阅读情况,随机调查了该年级名学生,得到了他们上周双休日课外阅读时间(记为,单位:时)的一组数据样本,其扇形统计图如图所示.(1)阅读时间为小时的占百分之几?学生数为多少?(2)试确定这个样本的中位数和众数,并求出平均数.21. 记面积为的平行四边形的一边长为,这条边上的高线长为.(1)写出关于的函数表达式;(2)求当时的取值范围;(3)设平行四边形一组邻边夹角为,则当,时,直接写出平行四边形的周长.22. 如图,菱形中,,,点是线段上一点(不与,重合),作交于点,且.(1)直接写出菱形的面积;(2)当点在边上运动时,①连接,求证:是等边三角形;②探究四边形的面积的变化规律,写出这个规律,并说明理由;③直接写出四边形周长的最小值.23. 如图,正方形的两顶点,恰好在反比例函数图象上,已知点坐标为.(1)试用含,的代数式表示点坐标;(2)①若,求的值;②试求关于的函数表达式;(3)若,试求正方形的面积.答案第一部分1. B2. A3. D4. C5. D6. A7. D8. D9. D 10. B第二部分11.12. 下午;因为上午的方差大于下午的方差13.14.15.16. ,,第三部分原式17. (1)原式(2)18. 假设中每个内角都小于,则,这与三角形内角和定理矛盾,故假设错误,即原结论成立,在中,,,中至少有一个角大于或等于.19. (1)(2)20. (1),(人).(2)中位数是,众数是,平均数:.21. (1)由平行四边形的面积公式得:;(2)因为,所以.解得,因为,所以取值范围为.(3)平行四边形的周长.22. (1)菱形的面积为.(2)①连接,易证:为等边三角形.所以,.因为,,所以.因为四边形是菱形,,所以,所以.在和中,所以,所以,又因为,所以为等边三角形.②四边形的面积.理由:因为,所以,所以四边形菱形③.23. (1)过作轴,作轴,如图所示,,,在和中,,,,.(2)①,,且,在反比例函数图象上,,把代入得:,解得:,,;②由,整理得:,解得:,,.(3)根据题意得:,联立得:解得:.则正方形。
2014-2015学年浙江省杭州市富阳市富春中学八年级(下)开学数学试卷一、选择题(30分)1.(3分)(2014•淮安)若式子在实数范围内有意义,则x的取值范围是()A .x<2 B.x>2 C.x≤2 D.x≥22.(3分)(2015春•慈溪市校级月考)下列方程是一元二次方程的是()A .x+2y=1 B.x=2x3﹣3 C.x2﹣2=0 D.3x+=43.(3分)(2015春•瓯海区期中)化简的结果是()A .﹣3 B.3 C.±3 D.4.(3分)(2015春•慈溪市校级月考)下列等式成立的是()A .﹣=B.=C.=7D.﹣=35.(3分)(2010•梅州模拟)把方程x2﹣4x﹣6=0配方,化为(x+m)2=n的形式应为()A .(x﹣4)2=6 B.(x﹣2)2=4 C.(x﹣2)2=10 D.(x﹣2)2=06.(3分)(2015春•慈溪市校级月考)若一元二次方程2x2+2x+m=0有一个实数解x=1,则m的取值是()A .m=﹣4 B.m=1 C.m=4 D.m=7.(3分)(2015•潍坊模拟)如果,那么x取值范围是()A .x≤2 B.x<2 C.x≥2 D.x>28.(3分)(2015春•慈溪市校级月考)六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送1035份小礼品,如果全班有x名同学,根据题意列出方程为()A .x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=10359.(3分)(2009秋•滁州校级期末)根据下面表格中的取值,方程x2+x﹣3=0的一个根的近似值(精确到0.1)是()x 1.2 1.3 1.4 1.5x2+x﹣3 ﹣0.36 ﹣0.01 0.36 0.75A .1.1 B.1.2 C.1.3 D.1.410.(3分)(2015春•富阳市校级月考)如图,A、B分别为x轴,和y轴正半轴上的点.OA、OB的长分别是x2﹣14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向向终点C移动,设△APB 和△OPB的面积为S1,S2,则等于()A .B.C.D.二、填空题(24分)11.(4分)(2015春•富阳市校级月考)写出一个根为3的一元二次方程..12.(4分)(2015春•富阳市校级月考)化简﹣3的结果为.13.(4分)(2015春•富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是.14.(4分)(2015春•富阳市校级月考)已知(x2+y2﹣2)(x2+y2﹣1)=0,则x2+y2=.15.(4分)(2013•兰州)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.16.(4分)(2014秋•嘉峪关校级期中)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第个图形有94个小圆.三、解答题(66分17.(8分)(2015春•慈溪市校级月考)计算:(1)﹣×2;(2)(﹣2)(2+).18.(8分)(2015春•富阳市校级月考)解方程:(1)(2x﹣3)2﹣9=0;(2)x2+4x﹣1=0.19.(10分)(2015春•富阳市校级月考)某学校校园内有如图的一块矩形ABCD空地,已知BC=20m,AB=10m,学校准备在这块空地的中间一块四边形EFGH内种花,其余部分铺设草坪,并要求AE=AH=CF=CG,四边形EFGH的种花面积为112m2,求AE的长.20.(10分)(2015春•富阳市校级月考)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.若E、F分别是AB、AC上的点,且AE=CF.求:三角形DEF是什么三角形.21.(8分)(2014•亳州一模)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出只粽子,利润为元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?22.(10分)(2015春•富阳市校级月考)如图,在△ABC中,AD平分∠BAC,AB+BD=AC,试讨论:∠B与∠C有什么样的等量关系?23.(12分)(2015春•汕头校级期中)如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t=以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)2014-2015学年浙江省杭州市富阳市富春中学八年级(下)开学数学试卷参考答案与试题解析一、选择题(30分)1.(3分)(2014•淮安)若式子在实数范围内有意义,则x的取值范围是()A .x<2 B.x>2 C.x≤2 D.x≥2考点:二次根式有意义的条件.分析:根据二次根式中的被开方数必须是非负数,即可求解.解答:解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.(3分)(2015春•慈溪市校级月考)下列方程是一元二次方程的是()A .x+2y=1 B.x=2x3﹣3 C.x2﹣2=0 D.3x+=4考点:一元二次方程的定义.分析:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.解答:解:A、x+2y=1是二元一次方程,故错误;B、x=2x3﹣3是一元三次方程,故错误;C、x2﹣2=0,符合一元二次方程的形式,正确;D、3x+=4是分式方程,故错误,故选:C.点评:本题考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.3.(3分)(2015春•瓯海区期中)化简的结果是()A .﹣3 B.3 C.±3 D.考点:二次根式的性质与化简.分析:根据二次根式的性质求出即可.解答:解:=3,故选B.点评:本题考查了二次根式的性质的应用,主要考查学生的计算能力,题目比较好,难度不大.4.(3分)(2015春•慈溪市校级月考)下列等式成立的是()A .﹣=B.=C.=7D.﹣=3考点:二次根式的混合运算.分析:根据二次根式的化简和运算的方法,逐一化简计算比较得出答案即可.解答:解:A、﹣=3﹣2=1,此选项计算错误;B、×=,此选项计算正确;C、==5,此选项计算错误;D、﹣=﹣3,此选项计算错误.故选:B.点评:此题考查二次根式的混合运算,掌握运算的方法和二次根式的运算性质是解决问题的根本.5.(3分)(2010•梅州模拟)把方程x2﹣4x﹣6=0配方,化为(x+m)2=n的形式应为()A .(x﹣4)2=6 B.(x﹣2)2=4 C.(x﹣2)2=10 D.(x﹣2)2=0考点:解一元二次方程-配方法.专题:配方法.分析:此题考查了配方法解一元二次方程,在把6移项后,左边应该加上一次项系数﹣4的一半的平方.解答:解:∵x2﹣4x﹣6=0,∴x2﹣4x=6,∴x2﹣4x+4=6+4,∴(x﹣2)2=10.故选C.点评:配方法的一(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.(3分)(2015春•慈溪市校级月考)若一元二次方程2x2+2x+m=0有一个实数解x=1,则m的取值是()A .m=﹣4 B.m=1 C.m=4 D.m=考点:一元二次方程的解.分析:把x=1代入已知方程列出关于m的新方程,通过解新方程可以求得m的值.解答:解:∵一元二次方程2x2+2x+m=0有一个实数解x=1,∴22+2×1+m=0,解得m=﹣4.故选:A.点评:本题考查了程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.7.(3分)(2015•潍坊模拟)如果,那么x取值范围是()A .x≤2 B.x<2 C.x≥2 D.x>2考点:二次根式的性质与化简.专题:计算题.分析:根据二次根式的被开方数是一个≥0的数,可得不等式,解即可.解答:解:∵=2﹣x,∴x﹣2≤0,解得x≤2.故选A.点评:本题考查了二次根式的化简与性质.解题的关键是要注意被开方数的取值范围.8.(3分)(2015春•慈溪市校级月考)六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送1035份小礼品,如果全班有x名同学,根据题意列出方程为()A .x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=1035考点:由实际问题抽象出一元二次方程.分析:如果全班有x名同学,那么每名同学要送出(x﹣1)份小礼品,共有x名学生,那么总共送的份数应该是x(x﹣1)份,即可列出方程.解答:解:设全班有x名同学,由题意得x(x﹣1)=1035.故选C.点评:本题考查由实际问题抽象出一元二次方程.计算全班共送多少份,首先确定一个人送出多少份是解题关键.9.(3分)(2009秋•滁州校级期末)根据下面表格中的取值,方程x2+x﹣3=0的一个根的近似值(精确到0.1)是()x 1.2 1.3 1.4 1.5x2+x﹣3 ﹣0.36 ﹣0.01 0.36 0.75A .1.1 B.1.2 C.1.3 D.1.4考点:抛物线与x轴的交点.分析:根据函数y=x2+x﹣3的图象与x轴的交点的横坐标就是方程x2+x﹣3=0的根来解决此题.解答:解:方程x2+x﹣3=0的一个根就是函数y=x2+x﹣3c的图象与x轴的一个交点,即关于函数y=x2+x﹣3,y=0时x的值,由表格可得:当x的值是1.3时,函数值y与0最接近.因而方程的解是1.3.故选C.点评:掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.10.(3分)(2015春•富阳市校级月考)如图,A、B分别为x轴,和y轴正半轴上的点.OA、OB的长分别是x2﹣14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向向终点C移动,设△APB 和△OPB的面积为S1,S2,则等于()A .B.C.D.考点:勾股定理;解一元二次方程-因式分解法;角平分线的性质.专题:动点型.分析:过P点作PD⊥BO,PH⊥AB,垂足分别为D、H,由BC为∠ABO的平分线,可得PH=PD,则可得S1:S2=AB:OB,又因为OA、OB的长是方程x2﹣14x+48=0的两根(OA>OB),解方程即可求得OA,OB的长,则可得的值.解答:解:如图,过P点作PD⊥BO,PH⊥AB,垂足分别为D、H,∵BC为∠ABO∴PH=PD,∴S1:S2=AB:OB,又∵OA、OB的长是方程x2﹣14x+48=0的两根(OA>OB),解方程得:x1=8,x2=6,∴OA=8,OB=6,∴AB=10,∴==.点评:本题考查的是勾股定理,涉及到一元二次方程的应用、角平分线的性质等知识,难度适中.二、填空题(24分)11.(4分)(2015春•富阳市校级月考)写出一个根为3的一元二次方程.x(x﹣3)=0.考点:一元二次方程的解.专题:开放型.分析:有一个根是3的一元二次方程有无数个,只要含有的一元二次方程都有一个根是3.解答:解:形如(x﹣3)(ax+b)=0(a≠0)的一元二次方程都有一个根是3,当a=1,b=0时,可以写出一个一元二次方程:x(x﹣3)=0.故答案可以是:x(x﹣3)=0.点评:本题考查的是一元二次方程的解,有一个根是3的一元二次方程有无数个,写出一个方程就行.12.(4分)(2015春•富阳市校级月考)化简﹣3的结果为.考点:二次根式的加减法.分析:先把各根式化为最简二次根式,再合并同类项即可.解答:解:原式=2﹣=.故答案为:.点评:本题考查的是二次根式的加减法,熟知二次根式的加减实质上是合并同类项是解答此题的关键.13.(4分)(2015春•富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是20%.考点:一元二次方程的应用.专题:增长率问题.分析:设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可.解答:解设平均每次下调的百分率是x.由题意,得5(1﹣x)2=3.2.解得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.故答案为:20%.点评:本题考查了程的应用,在解决有关增长率的问题时,注意其固定的等量关系.14.(4分)(2015春•富阳市校级月考)已知(x2+y2﹣2)(x2+y2﹣1)=0,则x2+y2=1或2.考点:解一元二次方程-因式分解法.分析:根据已知得出x2+y2﹣2=0,x2+y2﹣1=0,求出即可.解答:解:(x2+y2﹣2)(x2+y2﹣1)=0,x2+y2﹣2=0,x2+y2﹣1=0,x2+y2=2,x2+y2=1故答案为:1或2.点评:本题考查了一元二次方程的应用,解此题的关键是能得出x2+y2﹣2=0,x2+y2﹣1=0,题目比较好,难度适中.15.(4分)(2013•兰州)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.考点:根的判别式;非负数的性非负数的性质:算术平方根.专题:计算题.分析:首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.解答:解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.点评:本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.16.(4分)(2014秋•嘉峪关校级期中)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第9个图形有94个小圆.考点:一元二次方程的应用;规律型:图形的变化类.分析:分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4.依此列出方程即可求得答案.解答:解:设第n个图形有94个小圆,依题意有n2+n+4=94即n2+n=90(n+10)(n﹣9)=0解得n1=9,n2=﹣10(不合题意舍去).故第9个图形有94个小圆.故答案为:9.点评:考查了一元二次方程的应用和规律型:图形的变化类,本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(66分17.(8分)(2015春•慈溪市校级月考)计算:(1)﹣×2;(2)(﹣2)(2+).考点:二次根式的混合运算.分析:(1)先化简和计算乘法,再算减法;(2)利用平方差公式计算.解答:解:(1)原式=﹣2=﹣;(2)原式=()2﹣22=3﹣4=﹣1.点评:此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式计算.18.(8分)(2015春•富阳市校级月考)解方程:(1)(2x﹣3)2﹣9=0;(2)x2+4x﹣1=0.考点:解一元二次方程-配方法;解一元二次方程-直接开平方法.分析:(1)移项后开方,即可得出两个一元一次方程,求出方程的解即可;(2)移项,配方,再开方,即可得出两个一元一次方程,求出方程的解即可.解答:解:(1)移项得:(2x﹣3)2=9,两边开方得:2x﹣3=±3,解得:x1=3x2=0;(2)x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,(x+2)2=5,x+2=±,x1=﹣2x2=﹣﹣2.点评:本题考查了解一元二次方程的应用,主要考查学生的计算能力,题目比较好,难度适中.19.(10分)(2015春•富阳市校级月考)某学校校园内有如图的一块矩形ABCD空地,已知BC=20m,AB=10m,学校准备在这块空地的中间一块四边形EFGH内种花,其余部分铺设草坪,并要求AE=AH=CF=CG,四边形EFGH的种花面积为112m2,求AE的长.考点:一元二次方程的应用.专题:几何图形问题.分析:可设AE长为L米,然后表示出ED,DF的长,由图可知,四边形EFGH的种花面积等于矩形减去两个小三角形和两个大三角形的面积,由此列方程求解即可.解答:解:设AE长为x米,EB为(10﹣x)米,DH为(20﹣x)米.依题意有:(20×10)﹣x2﹣(20﹣x)(10﹣x)=112,解得x=7或8.所以AE的长为7或8m.点评:考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.另外,整体面积=各部分面积之和;剩余面积=原面积﹣截去的面积.20.(10分)(2015春•富阳市校级月考)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.若E、F分别是AB、AC上的点,且AE=CF.求:三角形DEF是什么三角形.考点:全等三角形的判定与性质;等腰直角三角形.分析:首先可判断△ABC是等腰直角三角形,根据全等三角形的判定易得到△ADE≌△CDF,继而可得出结论.解答:证明:∵∠BAC=90°,AB=AC=6,∴△ABC是等腰直角三角形,∵D为BC中点,∴BD=CD,AD平分∠BAC,AD⊥CB.∴AD=CD,∠C=∠DAE=45°,在△ADE与△CFD中,,∴△ADE≌△CFD,∴DE=DF,∠ADE=∠CDF,∵∠ADF+∠FDC=90°,∴∠ADF+∠ADE=90°,∴∠EDF=90°,∴△EDF是等腰直角三角形.点评:本题考查了全等三角形的判定与性质,解答本题的关键是利用等腰直角三角形的性质得出证明全等需要的条件,难度一般.21.(8分)(2014•亳州一模)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出300+100×只粽子,利润为(1﹣m)(300+100×)元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?考点:一元二次方程的应用.专题:销售问题;压轴题.分析:(1)每天的销售量等于原有销售量加上增加的销售量即可;利润等于销售量乘以单价即可得到;(2)利用总利润等于销售量乘以每件的利润即可得到方程求解.解答:解:(1)300+100×,(1﹣m)(300+100×).(2)令(1﹣m)(300+100×)=420.化简得,100m2﹣70m+12=0.即,m2﹣0.7m+0.12=0.解得m=0.4或m=0.3.可得,当m=0.4时卖出的粽子更多.答:当m定为0.4时,才能使商店每天销售该粽子获取的利润是420元并且卖出的粽子更多.点评:本题考查了一元二次方程的应用,解题的关键是了解总利润的计算方法,并用相关的量表示出来.22.(10分)(2015春•富阳市校级月考)如图,在△ABC中,AD平分∠BAC,AB+BD=AC,试讨论:∠B与∠C有什么样的等量关系?考点:全等三角形的判定与性质.分析:在AC上取一点E,使AE=AB,连接DE,则有EC=BD,证△ABD≌△AED,可以得出∠B=∠AED,BD=DE,则有DE=EC,∠EDC=∠C,∠AED=2∠C,得出结论.解答:解:在AC上取一点E,使AE=AB,连接DE.∵AB+BD=AC,∴BD=AC﹣AB,即BD=CE.∵AD平分∠BAC,∴∠BAD=∠EAD,在△ABD和△AED中,,∴△ABD≌△AED,∴BD=DE,∠B=∠AED,∴DE=EC,∴∠C=∠EDC,∵∠AED=∠C+∠EDC=2∠C,∴∠B=2∠C.点评:本题考查了截取法作辅助线的方法的运用,等腰三角形的性质,全等三角形的判定及性质,三角形的外角与内角的关系.23.(12分)(2015春•汕头校级期中)如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t=,,,.以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)考点:一元二次方程的应用.专题:几何动点问题.分析:(1)如图1,当t=1时,就可以得出CQ=1cm,AP=2cm,就有PB=6﹣2=4cm,由梯形的面积就可以得出四边形BCQP的面积;(2)如图1,作QE⊥AB于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可,如图2,作PE⊥CD于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可;讨论,如图3,当PQ=DQ时,如图4,当PD=PQ时,如图5,当PD=QD时,由等腰三角形的性质及勾股定理建立方程就可以得出结论.解答:解:(1)如图1,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=1cm,AP=2cm,∴AB=6﹣2=4cm.∴S==5cm2.答:四边形BCQP面积是5cm2;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∴PE=6﹣2t﹣t=6﹣3t.在Rt△PQE 中,由勾股定理,得(6﹣3t)2+4=9,解得:t=.如图2,作PE⊥CD于E,∴∠PEQ=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2c m,BP=CE=6﹣2t.∵CQ=t,∴QE=t﹣(6﹣2t)=3t﹣6 在Rt△PEQ 中,由勾股定理,得(3t﹣6)2+4=9,解得:t=.综上所述:t=或;(3)如图3,当PQ=DQ 时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,BCQE是矩形,∴QE=BC=2c m,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.∵PQ=DQ,∴PQ=6﹣t.在Rt△PQE 中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t=.如图4,当PD=PQ时,作PE⊥DQ于E,∴DE=QE=DQ,∠PED=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2c m.∵DQ=6﹣t,∴DE=.∴2t=,解得:t=;如图5,当PD=QD时,∵AP=2t,∴DQ=6﹣t,∴PD=6﹣t.在Rt△APD 中,由勾股定理,得4+4t2=(6﹣t)2,解得t1=,t2=(舍去).综上所述:t=,,,.故答案为:,,,.点评:本题考查了矩形的性质的运用,勾股定理的运用,等腰三角形的性质的运用,梯形的面积公式的运用,一元二次方程的解法的运用.解答时灵活运用动点问题的求解方法是关键.参与本试卷答题和审题的老师有:zhjh;wdzyzlhx;zjx111;73zzx;lanyan;zcx;dbz1018;王岑;HJJ;bjf;张长洪;CJX;ZJX;HLing;nhx600;王学峰;sjzx;hdq123(排名不分先后)菁优网2015年7月10日。