Isospin odd pi K scattering length
- 格式:pdf
- 大小:138.70 KB
- 文档页数:11
通过注射玻璃纤维增强型塑料来提高模具的耐磨性纤维增强塑料注塑成型过程中的磨损对于模具的磨损性能而言无疑又是种挑战。
在过去的几十年中,为了最大限度地减少磨损问题大量开发PVD和CVD涂层模具。
在这项工作中,为了增加用于玻璃纤维增强塑料模具的表面耐磨损性,对TiAlSiN和氮化铬/ CRCN / DLC这两种不同的涂层进行试验TiAlSiN沉积作为分级单层涂层,而CrN / CRCN / DLC是一个由三个不同层纳米结构涂层组成的。
这两种涂层都由PVD非平衡磁控溅射产生,并且被用于由能量色散光谱(EDS)提供的扫描电子显微镜(SEM),原子力显微镜(AFM),显微硬度(MH )和划痕试验分析的表征。
探究涂层形貌,厚度,粗糙度,化学成分和结构,基质的硬度和粘性(对模具的影响)。
耐磨性通过将涂层样本和未加涂层的参考样本插入含30wt%的玻璃纤维增强型聚丙烯注塑模具的管道来测试表征。
结果表明,经过45,000周期,相比无涂层模具钢,表面有TiAlSiN和氮化铬/ CRCN / DLC涂层的模具的耐磨性分别提高了25倍和58倍。
1 。
前言汽车零部件产业用注射玻璃纤维增强型塑料来生产许多汽车零部件。
这些材料对于模具型腔而言非常粗糙,这是在注塑行业出现的主要问题之一:由于在成型的表面磨损,模具寿命短。
在注射过程中玻璃纤维的运动使他们的端部在模具表面产生划痕,使表面足够粗糙以减少注塑产品的表面亮度。
这问题导致需要额外的修复操作成本和非生产性时间与随之而来的缺乏生产效率。
为了解决这种不便,已经采纳了一些解决方案,如涂层和表面处理,从镀铬到高速氧燃料(HVOF )的WC / Co [1]和金属涂层,如通过电沉积或无电沉积产生的硬铬或镍- 磷[2]。
还有钛,铝层和通过物理气相沉积(PVD)或化学气相沉积(CVD)产生的其他的碳化物或氮化物层[3]已被用于具有相同的目的。
这项工作目的是表征TiAlSiN和CrN / CRCN / DLC PVD的溅射涂层在使用玻璃注塑工艺纤维强化型过程中的性能,以确定一个耐磨性更好的产品。
《无损检测术语射线照相检测》1范围本标准界定了工业射线照相检测的术语。
2术语和定义2.1吸收absorption2.2活度activity2.3老化灰雾ageing fog2.4阳极anode2.5阳极电流anode current2.6伪像(假显示)artefact ( false indication )2.7衰减attenuation2.8衰减系数attenuation coefficientμ2.9平均梯度average gradient2.10背散射back scatter背散射线back scattered radiation2.11射束角beam angle2.12电子回旋加速器betatron2.13遮挡介质blocking medium2.14累积因子build-up factor2.15暗盒cassette暗袋2.16阴极cathode2.17已校验的阶梯密度片calibrated density step wedge2.18(胶片的)特性曲线characteristic curve ( of a film )2.19清澈时间clearing time2.20准直collimation2.21准直器collimator2.22康普顿散射Compton scatter2.23计算机层析成像computerized tomography ( CT )2.24恒电势电路constant potential circuit2.25连续谱continuous spectrum2.26对比度contrast2.27反衬介质contrast medium2.28对比灵敏度(厚度灵敏度)contrast sensitivity ( thickness sensitivity )2.29衰减曲线decay curve2.30密度计densitometer2.31(胶片或相纸的)显影development ( of a film or paper )2.32衍射斑纹diffraction mottle2.33剂量计dosemeter ( dosimeter )2.34剂量率计dose rate meter2.35双焦点管dual focus tube2.36双线像质计duplex wire image quality indicator双丝像质计双线图像质量指示器2.37边缘遮挡材料edge-blocking material2.38均值过滤器(射线束致平器)equalizing filter ( beam flattener ) 2.39等效X射线电压equivalent X-ray voltage2.40曝光exposure2.41曝光计算器exposure calculator2.42曝光曲线exposure chart2.43曝光宽容度exposure latitude2.44曝光时间exposure time2.45片基film base2.46胶片梯度film gradientG2.47观片灯(观察屏)film illuminator ( viewing screen )2.48胶片处理film processing2.49胶片系统速度film system speed2.50滤光板filter2.51定影fixing2.52探伤灵敏度flaw sensitivity2.53荧光增感屏fluorescent intensifying screen2.54金属荧光增感屏fluorometallic intensifying screen2.55荧光透视fluoroscopy2.56焦点focal spot2.57焦点尺寸focal spot size2.58焦距focus-to-film-distanceffd2.59灰雾度fog density2.60伽玛射线照相gamma radiography2.61伽玛射线gamma raysγ射线2.62伽玛射线源gamma-ray source2.63伽玛射线源容器gamma-ray source container2.64几何不清晰度geometric unsharpness2.65颗粒性graininess2.66颗粒度granularity2.67半衰期half life2.68半价层half value thicknessHVT2.69光源illuminator观片灯2.70图像对比度image contrast2.71图像清晰度image definition2.72图像增强image enhancement2.73图像增强器image intensifier2.74像质image quality图像质量2.75像质计image quality indicator图像质量指示器IQI2.76像质值image quality value图像质量值IQI灵敏度IQI sensitivity2.77入射射线束轴线incident beam axis2.78工业放射学industrial radiology2.79固有过滤inherent filtration2.80固有不清晰度inherent unsharpness2.81增感因子intensifying factor2.82增感屏intensifying screen2.83潜影latent image2.84直线电子加速器linear electron accelerator ( LINAC ) 2.85屏蔽masking2.86金属屏metal screen2.87微焦点射线照相microfocus radiography2.88调制传递函数modulation transfer functionMTF2.89运动不清晰度movement unsharpness2.90工件对比度object contrast2.91工件至胶片距离object-to-film distance2.92周向曝光panoramic exposure2.93透度计penetrameter2.94压痕pressure mark2.95初始射线primary radiation2.96投影放大率projective magnification2.97投影放大技术projective magnification technique 2.98(射线束)质量quality ( of a beam of radiation ) 2.99照射对比度radiation contrast2.100辐射源radiation source2.101射线照相底片/照片radiograph2.102射线照相胶片radiographic film2.103射线照相radiography2.104放射性同位素radioisotope2.105射线透视radioscopy2.106棒阳极管rod anode tube2.107散射线scattered radiation2.108增感型胶片screen type film2.109源固定器source holder2.110源尺寸source size2.111源至胶片距离(sfd)source-to-film distance ( sfd ) 2.112空间分辨力spatial resolution2.113比活度specific activity2.114阶梯楔块step wedge2.115立体射线照相stereo radiography2.116靶target2.117管子光阑tube diaphragm2.118管头tube head2.119管罩tube shield2.120管子遮光器tube shutter2.121管子窗口tube window2.122管电压tube voltage2.123未密封源unsealed source2.124不清晰度unsharpness2.125有效密度范围useful density range2.126真空暗盒vacuum cassette2.127观察屏蔽viewing mask2.128可视对比度visual contrast2.129X射线X-rays2.130X射线胶片X-ray film2.131X射线管X-ray tube。
Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eVJ. A. Zapien, R. W. Collins, and R. MessierCitation: Rev. Sci. Instrum. 71, 3451 (2000); doi: 10.1063/1.1288260View online: /10.1063/1.1288260View Table of Contents: /resource/1/RSINAK/v71/i9Published by the American Institute of Physics.Related ArticlesMulti-channel far-infrared HL-2A interferometer-polarimeterRev. Sci. Instrum. 83, 10E336 (2012)Collinearity alignment of probe beams in a laser-based Faraday effect diagnosticRev. Sci. Instrum. 83, 10E320 (2012)Spatial heterodyne Stokes vector imaging of the motional Stark-Zeeman multipletRev. Sci. Instrum. 83, 10D510 (2012)Far-infrared polarimetry diagnostic for measurement of internal magnetic field dynamics and fluctuations in the C-MOD Tokamak (invited)Rev. Sci. Instrum. 83, 10E316 (2012)First results from the J-TEXT high-resolution three-wave polarimeter-interferometerRev. Sci. Instrum. 83, 10E306 (2012)Additional information on Rev. Sci. Instrum.Journal Homepage: Journal Information: /about/about_the_journalTop downloads: /features/most_downloadedInformation for Authors: /authorsMultichannel ellipsometer for real time spectroscopy of thinfilm deposition from1.5to6.5eVJ.A.Zapien,R.W.Collins,a)and R.MessierDepartment of Engineering Science and Mechanics and the Materials Research Laboratory,The Pennsylvania State University,University Park,Pennsylvania16802͑Received9March2000;accepted for publication9June2000͒A rotating polarizer multichannel ellipsometer has been optimized for operation well into theultraviolet͑UV͒spectral range.With this instrument,132spectral points in the ellipsometricparameters͑,⌬͒over the photon energy range from1.5eV͑827nm͒to6.5eV͑191nm͒can becollected in a minimum acquisition time of24.5ms,corresponding to one optical cycle of therotating polarizer.Averages over two and80optical cycles͑obtained in49ms and1.96s,respectively͒give standard deviations in͑,⌬͒of less than͑0.04°,0.08°͒and͑0.007°,0.015°͒,respectively,for the energy range from3.5to6.0eV,as determined from successive measurementsof a stable thermally oxidized silicon wafer.Key modifications to previous instrument designsinclude:͑i͒a tandem in-line Xe/D2source configuration for usable spectral output from1.5to6.5eV;͑ii͒MgF2Rochon polarizers for high transmission in the UV without the need for opticalactivity corrections;͑iii͒a spectrograph with a grating blazed at250nm and two stages of internallymounted order-sortingfilters;and͑iv͒nonuniform grouping of the pixels of the photodiode arraydetector for a more uniform spectral resolution versus photon energy,with energy spreads per pixelgroup ranging from0.02eV at1.6eV to0.05eV at5.1eV.As an example of the application of thisinstrument,results of real time spectroscopic ellipsometry studies are reported for the deposition ofan amorphous silicon nitride thinfilm by radio-frequency magnetron sputtering onto a silicon wafersubstrate.©2000American Institute of Physics.͓S0034-6748͑00͒04909-1͔I.INTRODUCTIONReal time spectroscopic ellipsometry͑RTSE͒has beenapplied widely in thinfilm studies to characterize the evolu-tion offilm thicknesses,optical properties,and micro-structure.1In the instrument designfirst applied by Kimet al.,2the basic components of the rotating polarizer multi-channel ellipsometer include:͑i͒a Xe lamp as a broadbandsource,͑ii͒collimating optics,͑iii͒a continuously rotatingpolarizer,͑iv͒a reflecting sample,͑v͒afixed analyzer,͑vi͒focusing optics,͑vii͒a prism spectrograph,and͑viii͒a pho-todiode array͑PDA͒detection system.Such an instrumentis capable of collecting spectra in the ellipsometry angles ͑,⌬͒and the polarized reflectance R simultaneously with a minimum acquisition time of/ϳ15ms,whereis the polarizer angular rotation frequency.3,4The spectra obtainedby current state-of-the-art multichannel ellipsometers typi-cally range from1.5to4.5eV with the upper limit depend-ing sensitively on the instrument design and sample reflec-tance.This spectral range of operation severely limits theanalysis capabilities in studies of wide band gap materials,examples being nitrides and oxides which are useful in avariety of applications extending from microelectronics tooptical and wear-resistant coatings.Although ellipsometerswith single channel detection have been applied for manyyears covering the spectral range from1.5to5.5eV,5andmore recently to an upper spectral limit of6.5eV,6,7they do so with the use of scanning double monochromators and long collection times.As a result,such instrument designs are unsuitable for adaptation to real time spectroscopy of thin film growth.With the increasing demands in wide band gap materials performance and reliability,there is a compelling need to extend the upper limit of RTSE deeper into the ultraviolet ͑UV͒above5.0eV.In this way one can take full advantage of the capabilities of the technique,as has been demonstrated for Si-based thinfilms studied over the1.5–4.5eV spectral range.8The primary spectral limitation in the UV for current multichannel ellipsometer designs results from a sharp re-duction in the irradiance output of the light source,a high-pressure Xe lamp,for photon energies above3.5eV.This effect is often compounded by a reduction in the spectral throughput of the ellipsometer.For example,the reflection efficiency of the spectrograph grating may fall rapidly in the UV unless the grating is chosen with a blaze approaching the lowest accessible wavelengths.In addition,the low light lev-els at the UV-detecting pixels of the PDA must compete with the stray light originating from the stronger visible light that enters the spectrograph in parallel.Stray light can have a number of sources ranging from defects in the optical com-ponents of the spectrograph to multiple reflections between the protective window of the PDA and the array surface.9 In this article,we describe in detail the design enhance-ments to the rotating-polarizer multichannel ellipsometer that result in a useful spectral range in͕(,⌬),R͖from1.5eV ͑827nm͒to6.5eV͑191nm͒,while maintaining high speed data acquisition necessary for RTSE.10In addition to thea͒Author to whom correspondence should be addressed;electronic mail:rwc6@REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME71,NUMBER9SEPTEMBER200034510034-6748/2000/71(9)/3451/10/$17.00©2000American Institute of Physicsinstrument design details,we provide an illustrative example of the application of the instrument for thin film growth analysis.In this example,the deposition of an amorphous silicon nitride (a -SiN x )thin film on a crystalline Si (c -Si)wafer by reactive radio-frequency ͑rf ͒magnetron sputtering is characterized using a two-layer model that simulates the separate processes of interface formation and bulk film growth.II.INSTRUMENT DEVELOPMENTFigure 1shows a schematic of the components of the UV-extended multichannel ellipsometer designed to span the photon energy range from 1.5to 6.5eV.In this instrument design,the broadband source incorporates a see-through deu-terium (D 2)lamp 11with the conventional high-pressure Xe lamp mounted behind it.The combined emission from this tandem Xe–D 2source configuration can be tailored by ad-justing an iris between the two lamps and,thus,controlling the irradiance from the Xe lamp that is allowed to pass through the center of the discharge of the D 2lamp.An UV achromatic objective 12is used to collimate the combined source output.The achromatic objective was preferred over an off-axis parabolic mirror for the following two reasons.First,the mirror was found to provide less collimating power for a weak,extended source such as the D 2lamp,and sec-ond,the mirror also made it more difficult to eliminate un-desirable source polarization effects which lead to errors in the data for the rotating polarizer configuration.In the instrument design of Fig.1,the rotating polarizer and fixed analyzer are constructed from MgF 2Rochon elements.13The advantages of MgF 2over quartz elements used in earlier ellipsometer designs 14include lower reflection losses,the absence of optical activity effects,and most im-portantly,greater transmittance above 5.7eV.The rotating polarizer element is specified by the manufacturer as gener-ating a displacement of Ͻ1arc min ͑or Ͻ0.02°͒in the trans-mitted beam over the rotational period.13This narrow speci-fication minimizes the possibility of periodic beam misalignment as the polarizer rotates.In fact,irradiance mea-surements performed over half rotations of the polarizer agree to better than 0.05%,indicating that such spatial dis-placements are experimentally insignificant.A second UV achromatic objective is mounted after the fixed analyzer to focus the collimated beam onto the entrance slit of the spectrograph.The detection stage consists of a grating spectrograph 15and a silicon PDA detector with 1024pixels.16The spectrograph uses an aberration-corrected holo-graphic grating with 285grooves/mm blazed at 250nm.A nonuniform pixel-grouping mode ͑26pixels @16ϫ;40pix-els @8ϫ;and 66pixels @4ϫ͒has been used to improve the photon energy resolution at high energy which would other-wise degrade due to the linear dispersion of the diffraction grating versus wavelength.In this nonuniform grouping mode,a photon energy spread per pixel group has been ob-tained that closely matches the spectrograph resolution for the 0.1mm slit used here ͑see Table I ͒.Figure 2presents the unprocessed PDA output ͑in arbi-trary units ͒for the Xe lamp alone and for the tandem Xe–D 2source,both measured in the straight-through configuration.Also shown are the positions of two thin ͑0.07and 0.19mm ͒plastic color filters 17mounted directly on top of the silicon PDA that serve to reject higher order diffractions from the grating.The inset of Fig.2shows the transmittance of both filters as measured by the PDA.For the UV-extended multi-channel ellipsometer,two filters have been preferred over a previous single filter design 18for two reasons.First,with the extended UV range there is a need to reject the second order diffraction for wavelengths as short as 380nm ͑3.26eV ͒.Second,when relying on a single filter,it is necessary for its cutoff wavelength to be sharp and as close as possible to theTABLE I.͑a ͒Photon energy spread ⌬E per pixel group for the 1024pixel PDA of the UV-extended multichannel ellipsometer,using uniform and nonuniform pixel grouping modes;͑b ͒the full width at half-maximum ͑FWHM ͒of spectral lines from a low pressure mercury lamp using a fully ungrouped mode with 0.05and 0.1mm spectrograph entrance slits.͑a ͒Energy spread per pixel group Uniform grouping Nonuniform grouping Energy ͑eV ͒Group size ⌬E ͑eV ͒Group size ⌬E ͑eV ͒1.6080.01160.022.2480.02160.042.3180.0280.023.5080.0580.053.5480.0540.035.0780.1040.056.3980.1640.08͑b ͒Spectrograph resolution FWHM of the emission lines ofa low pressure Hg lamp Energy ͑eV ͒0.05mm slit0.10mm slit2.270.010.022.850.020.033.070.020.033.400.030.043.970.040.054.190.040.064.900.060.08FIG.1.Schematic of the rotating polarizer multichannel ellipsometer ca-pable of covering the 1.5–6.5eV spectral range.The maximum polarizer rotation frequency is 20.4Hz.3452Rev.Sci.Instrum.,Vol.71,No.9,September 2000Zapien,Collins,and Messierhighest photon energy where second order diffraction is present.As a result,a loss in the detected intensity in favor of a gain in rejection efficiency is unavoidable.Figure 2and its inset shows that with the two filters selected here,second order rejection has been achieved with minimum irradiance losses.With the use of the tandem Xe–D 2source and this two filter scheme,a remarkably flat spectral output over the energy range from 2.0to 5.5eV has been achieved ͑see Fig.2͒.In the present configuration,the PDA outputs drop from their peak values by a factor of 20at 4.1eV when the Xe lamp alone is used and at 6.6eV when the tandem Xe–D 2source is used.Above these photon energies,stray light cor-rections are essential to maintain accuracy.9The new instrument is well suited for real time charac-terization of wide band gap materials.For the first applica-tions of this new instrument,a magnetron sputtering system is mounted at the vertical goniometer axis of the ellipsometer as shown in Fig.1.Optical access is provided by two vitre-ous silica windows mounted on ultrahigh vacuum ͑UHV ͒compatible flanges.The substrate holder is attached to a pre-cision x –y –z -tilt manipulator that allows precise alignment of the sample using controls external to the vacuum system.The substrate holder can be heated to 400°C and biased using either pulsed direct current or rf.Materials of interest that can be deposited in the present configuration include boron nitride ͑BN ͒,silicon nitrides (SiN x ),silicon oxyni-trides (SiO y N x ),and tantalum oxide (Ta 2O 5),among others.For the application presented here,an a -SiN x thin film was deposited using rf plasma excitation.Further details of the specific deposition process studied here are given in Sec.IV.III.INSTRUMENT THEORY AND OPERATIONA comprehensive review of the calibration,error correc-tion,and data reduction for rotating polarizer multichannelellipsometers in general can be found in the literature.19Here,we emphasize detection system error correction,in-strument calibration,and data reduction as it relates to the performance of the instrument at high energy.In addition,we highlight various improvements in error correction estab-lished since the previous reports.9,19First,in Sec.III A the basic mode of data collection will be reviewed for an ideal ͑error-free ͒system.Characterization and correction of themain error sources for the UV-extended multichannel ellip-someter will be discussed in Sec.III B.Finally,Sec.III C outlines the determination of the polarizer and analyzer cali-bration angles and summarizes data reduction.A.Data collection principlesFor an error-free system with a polarizer mechanical ro-tation frequency of ,the irradiance at any pixel k of the detector exhibits the wave formI k Ј͑t ͒ϭI 0k Ј͑1ϩ␣k Јcos 2t ϩk Јsin 2t ͒.͑1͒Here ␣kЈand k Јare the normalized 2Fourier coefficients of the irradiance wave form,uncorrected for the absolute phase of polarizer rotation.Because the PDA is an integrating de-tector,these coefficients can be determined from the follow-ing equations:␣kЈϭͩ2ͪ͑S 1k ϪS 2k ϪS 3k ϩS 4k ͒/͑S 1k ϩS 2k ϩS 3k ϩS 4k ͒,͑2a ͒kЈϭͩ2ͪ͑S 1k ϩS 2k ϪS 3k ϪS 4k ͒/͑S 1k ϩS 2k ϩS 3k ϩS 4k ͒.͑2b ͒Here the ͕S jk ,j ϭ1,...,4͖values represent the raw data;each value is an integration of the irradiance wave form over the time interval between two successive readouts ͑i.e.,the exposure time ͒.Readouts are triggered four times per optical cycle ͑one-half mechanical cycle ͒synchronously with the polarizer rotation using the output of an optical encoder.As a result,the exposure time is /4.For an error-free ellip-someter aligned in the straight-through configuration with the sample removed,the light entering the fixed analyzer should be linearly polarized.Under these conditions,the re-sidual function should vanish for all pixels k .This function is defined byR k ϭ1Ϫ͑␣k Ј2ϩk Ј2͒1/2.͑3͒Deviations in R k from zero can be traced to various errors including source polarization,ellipsometer misalignment,polarizer imperfections,and detection system errors such as nonlinearity and image persistence.The residual function will be studied in detail when image persistence errors are considered in Sec.III B.Ellipsometer calibration also employs the residual func-tion as discussed in Sec.III C.Calibration procedures deter-mine the absolute phase of the wave form of Eq.͑1͒in terms of the true angle of the polarizer transmission axis P Ј,mea-sured with respect to the plane of incidence.Specifically,such procedures identify the value of P Јat the onset of the S 1k integration.This value denoted ϪP Sk is a linear function of pixel group number k ͑for uniform grouping ͒with a slope equal to the polarizer rotation during the elapsed time be-tween the readout of two successive pixel groups.B.Systematic errorsThe principles described in Sec.III A assume instrument ideality.In practice,several systematic errors specifictoFIG.2.Unprocessed output of the photodiode array ͑in arbitrary units ͒plotted vs photon energy obtained in the straight-through configuration for a Xe lamp alone ͑light line ͒and for a tandem Xe–D 2source ͑bold line ͒.The inset shows the measured transmittance for filters 1͑line ͒and 2͑points ͒.3453Rev.Sci.Instrum.,Vol.71,No.9,September 2000Multichannel ellipsometerPDA detection systems have been identified and accounted for,including:͑i͒detector nonlinearity,͑ii͒detector image persistence,and͑iii͒spectrograph stray light.Previous stud-ies have shown that the nonlinearity effect varies signifi-cantly depending on the commercial supplier of the PDA. For the UV-extended multichannel ellipsometer,the detector nonlinearity has been characterized by measuring the inte-grated irradiance over increasingly long exposure times and by repeating this measurement using different spectrograph slit widths in order to vary the count rate at each detector pixel.With this procedure,count rates ranging from10to 1200counts/ms for integration times ranging from5to600 ms have been analyzed.͑The saturation level for this PDA system is214counts.͒Analyses of the observed counts ver-sus exposure time at the different pixels give linear regres-sion coefficients between0.99995and0.99999for the dif-ferent count rates used here.Such results are considered sufficient to rule out detector nonlinearity as a significant source of error for the purposes of ellipsometric measurements.9Stray light refers to the small fraction of light that reaches the detector after following a path different than the designed one.Sources of stray light include:͑i͒scattered background light within the spectrograph-detector enclosure;͑ii͒multiply reflected light between the detector element and its window;and͑iii͒leakage between detector pixel groups. To avoid stray light source͑ii͒,the detector window has been removed for the instrument developed here.Although a cor-rection procedure for source͑i͒has been developed,19it has yet to be implemented for the UV-extended ellipsometer. Because of the rapid falloff in the Xe lamp output,stray light corrections for photon energies aboveϳ4.1eV are required for previous multichannel ellipsometer designs.Owing to the remarkablyflat output of the tandem Xe–D2source,such corrections for the present design are not required in most applications even at energies as high as6.5eV.It is clear that for samples in which the reflected irradiance is strongly modulated,however,the͑,⌬͒data can be quite sensitive to stray light errors over the spectral ranges of low reflectance. As a result,stray light corrections are to be implemented in the future for highest accuracy.For the discussion to follow, it is important to remark that stray light may not contribute to errors in the residual function measured in the straight-through configuration because the linear polarization pro-duced is independent of photon energy,and hence,the stray and true light may be indistinguishable.As noted above,the experimental errors that contribute to a nonzero residual function include:͑i͒source polariza-tion,͑ii͒misalignment and imperfection of the optical com-ponents,and͑iii͒PDA image persistence.Figure3shows the residual function versus energy for the optimally aligned in-strument.The characteristic features observed here have been found to be reproducible throughout the system devel-opment and optimization,which included modification or re-placement of the Xe lamp,collimating optics,polarizer and analyzer elements,and spectrograph diffraction grating,as well as incorporation of the D2lamp.More definitive in-sights into the nature of the nonzero residual function were obtained by rotating the detector180°with respect to the diffraction grating.Upon rotation,the relationship between the pixel number and photon energy is reversed;however, the measured residual function deviations from zero were found to be precisely reversed as well.Thus,the measured errors are specific to the pixels of the detector.From more detailed studies to be described next,it was determined that a pixel-dependent image persistence factor was needed to cor-rect the errors in the residual function across the spectrum.The image persistence correction factor as a function of pixel number is estimated using two independent measure-ments.In thefirst,more direct approach,repetitive measure-ments versus time are performed as a fast shutter is being closed͑5ms open-to-close transfer time͒.For an image persistence-free detector,the integrated irradiance measured when the shutter is fully closed over the entire exposure time should be zero͑after background correction͒.In reality,how-ever,some counts are detected that persist from the previous nonzero detector readout͑when the shutter is at least par-tially open͒.The image persistence correction factor͑IPCF͒is then defined as the ratio of the persisting counts divided by the counts detected during the previous readout.This mea-surement must be done at the same high speed and grouping mode as the RTSE measurements.As a result,the determi-nation of the IPCF by this method has relatively poor signal to noise ratio.For this reason,a second method for determin-ing the IPCF is adopted.In this method,it is assumed that the entire error in the measured residual function is due to image persistence.The corresponding IPCF for each pixel group is then determined from a numerical inversion of the measured residual function at that group.The correct IPCF is given by the value that leads to a zero residual function.The good agreement between the IPCF measured by both tech-niques,as shown in Fig.4,supports the assumption that the contributions to the nonzero residual function from other sources of error are negligible.A measure of the residual function after implementation of an average IPCF obtained in multiple error analyses is shown in Fig.5͑a͒.The effect of the IPCF on measurements of a c-Si wafer substrate with a 20Ånative oxide is presented in Fig.5͑b͒.A considerable improvement in the⌬spectra at low energies can be ob-served.The effect of the IPCF in this region is more notice-able because the image persistence and the instrument sensi-tivity to systematic errors are both greaterhere.FIG.3.Residual function measured in the straight-through configuration for the well aligned UV-extended multichannel ellipsometer.The characteristic features shown here have been found to be reproducible throughout the ellipsometer optimization.3454Rev.Sci.Instrum.,Vol.71,No.9,September2000Zapien,Collins,and MessierC.Ellipsometer calibration and data reductionThe calibration procedures as they relate to the UV-extended operational range of the multichannel ellipsometer are described in this section.The general case has been treated extensively by Nguyen et al.19and includes incorpo-ration of the effects of source polarization as well as optical activity in both polarizer and analyzer elements.For the par-ticular case of the UV-extended multichannel ellipsometer,the use of MgF 2Rochon elements for the rotating polarizer and fixed analyzer eliminates the need for optical activity corrections.Further simplification of the description of Ref.19results because source polarization has been found to be negligible in the present instrument.Under these conditions,the theoretical irradiance at pixel group k of the detector is I k ͑t ͒ϭI 0k ͓1ϩ␣k cos 2͑t ϪP Sk ͒ϩk sin 2͑t ϪP Sk ͔͒,͑4͒where the Fourier coefficients ␣k and k are related to thecoefficients ␣k Јand k Јof Eq.͑1͒through a 2P Sk rotationtransformation,i.e.,R (2P Sk )͕(␣Ј,Ј)͖→(␣,).The residual function calibration procedure relies on the fact that for a strongly absorbing isotropic sample measured at oblique incidence,the light beam reflected from thesample is linearly polarized only if the incident beam is lin-early polarized along the parallel (p)or perpendicular (s)directions with respect to the plane of incidence.14As the incident linear polarization is rotated away from these direc-tions,the reflected beam gradually acquires nonzero elliptic-ity.In the rotating polarizer configuration,a plot of the re-sidual function ͓see Eq.͑3͔͒versus the analyzer reading A yields minima in R (A )for A ϭA S ͑corresponding to the reading when the analyzer transmission axis lies in the p direction ͒and for A ϭA S ϩ/2͑corresponding to the reading when the analyzer transmission axis lies in the s direction ͒.The phase angle spectrum of the polarizer P Sk is obtained from the phase function which is defined by⌰͑A ͒ϭ͓tan Ϫ1͑Ј/␣Ј͔͒/2͑5a ͒ϭP Sk ϩ͕͓tan Ϫ1͑/␣͔͒/2͖͑5b ͒and evaluated at A ϭA S or A ϭA S ϩ/2to obtain the spectra in P Sk .In practice for higher accuracy,a second order poly-nomial fit to R (A )in the neighborhood of A ϭA S or A ϭA S ϩ/2is used ͑rather than the raw data ͒to determine the value of A ϭA S at which R (A )is a minimum.Similarly,a linear fit to ⌰(A )in the neighborhood of A ϭA S or A ϭA S ϩ/2is evaluated at A S to determine the spectrum in P Sk .For weakly absorbing materials,the residual function ap-proach fails and an alternative calibration method is pre-ferred.An effective alternative is based on the zone-difference phase function,defined by 20⌽͑A ͒ϵ⌰͑A ͒Ϫ⌰͑A ϩ/2͒.͑6͒The A -axis intercept of a linear fit to the experimental zone-difference phase function ⌽in the neighborhood of A ϭA S provides the value of A S .The P Sk spectrum can be obtained,as before,by evaluating the linear fit to the phase function Eqs.͑5͒at A S .The zone-difference phase function calibra-tion is most accurate for ͉⌬͉Ͻ30°or ͉⌬͉Ͼ150°,conditions found for weakly absorbing materials.An example of the zone-difference phase function method is presented in Fig.6for an optically polished glassy carbon sample.The results for A S and ␦P S are shown,where ␦P S represents the devia-tion of the experimental P Sk values from the best linearfitFIG.4.Image persistence correction factor ͑IPCF ͒measured independently from the ratio of the integrated irradiances between two successive readouts as a fast shutter is being closed ͑solid line ͒and from the residual function under the assumption that the departure from zero in the straight-through configuration is due solely to image persistence ͑points ͒.FIG.5.͑a ͒Residual function measurement after incorporation of the IPCF shown in Fig.4;͑b ͒measurement of a c -Si wafer with a 20Ånative oxide before ͑lines ͒and after ͑squares ͒incorporation of the IPCF in the data reduction.A uniform ͑8ϫ͒grouping mode wasused.FIG.6.Results of a zone-difference phase function calibration procedure for a bulk glassy carbon sample yielding the analyzer offset angle A S ͑i.e.,the analyzer scale reading when the transmission axis is aligned along the p direction ͒͑solid points ͒,and ͑ii ͒the deviation ␦P S in the polarizer phase angle from the best fitting linear function vs pixel number ͑open points ͒.3455Rev.Sci.Instrum.,Vol.71,No.9,September 2000Multichannel ellipsometerversus pixel number.Maximum deviations of 0.05°from the average values are obtained for both A S and ␦P S over the photon energy range from 2.0to 6.0eV.In summary,complete data analysis is performed as fol-lows.Once the ͕S jk ,j ϭ1,...,4͖values have been cor-rected using the IPCF as described in Sec.III B,the experi-mental values of the 2Fourier coefficients ␣k Јand k Јare obtained from Eqs.͑2͒.A rotation transformation by 2P Sk ,determined in the calibration,is used to calculate the phase corrected Fourier coefficients ␣k and k in Eq.͑4͒.Finally,spectra in the ellipsometric angles k and ⌬k are determined according totan k ϭ͓͑1ϩ␣k ͒/͑1Ϫ␣k ͔͒1/2͉tan ͑A ϪA S ͉͒,͑7a ͒cos ⌬k ϭk /͑1Ϫ␣k 2͒1/2,͑7b ͒where tan k exp(i ⌬k )ϭr pk /r sk ,with r pk and r sk denotingthe spectra in the complex amplitude reflection coefficients in the p and s directions.The indeterminate sign of ⌬k in Eq.7͑b ͒is inherent in rotating polarizer systems;a positive sign is chosen here for a bare substrate (⌬k Ͼ0).IV.RESULTS AND DISCUSSIONA.Multichannel ellipsometer performancePerformance characterization of the UV-extended multi-channel ellipsometer has been undertaken by assessing in-strument precision and accuracy.To obtain information on the instrument precision,100consecutive spectral measure-ments were collected separately for three different thermally oxidized Si wafers with stable oxide thicknesses of 121,991,and 1608Å.These thicknesses were chosen to provide com-posite spectra in the precision that avoid the regions ⌬ϳ0°or 180°and ϳ0°or 90°,where the precision is the poorest for the rotating-polarizer configuration.Figure 7shows a com-posite of the standard deviations in ͑,⌬͒,plotted as a func-tion of the photon energy using results from the three samples.The data in Fig.7are obtained as averages of 1and40polarizer rotations per consecutive spectral measurement,requiring 49ms ͑open symbols ͒and 1.96s ͑filled symbols ͒,respectively.It has been found that for the 40-rotation aver-ages the precision in ͑,⌬͒from 2.2to 6.2eV is near or below ͑0.01°,0.02°͒,corresponding to a sensitivity better than ϳ0.01monolayer.The highest precision of ͑0.004°,0.007°͒is obtained at the PDA output maximum at 5.2eV ͑see Fig.2͒.Even when the averaging is set at one polarizer rotation,which allows monolayer resolution at deposition rates as high as 50Å/s,the precision in ͑,⌬͒from 2.5to 6eV is near or below ͑0.05°,0.1°͒,i.e.,a sensitivity better than ϳ0.05monolayer.The first indication of accuracy is given by the residual function R measured in the straight-through configuration and presented in Fig.5͑a ͒.As described in Sec.III B,these results for R have been obtained using a pixel dependent image persistence correction factor.The maxi-mum R values of 6ϫ10Ϫ4after the correction correspond to maximum systematic errors in cos ⌬of 3ϫ10Ϫ3.This can lead to maximum inaccuracies in ⌬ranging from 0.17°for ⌬ϭ90°to ϳ3.5°for ⌬ϭ0°or 180°,where the rotating po-larizer configuration shows the highest and lowest accura-cies,respectively.The most significant random and uncorrected systematic errors were incorporated into the RTSE data analysis proce-dure through the biased estimator,given by2ϭ͓1/͑n Ϫm Ϫ1͔͚͒k ϭ1n͑k ,exp Ϫk ,cal ͒2/͑␦k ͒2,͑8͒where n ,m ,and k ,exp ͑cal ͒represent the number of data points,the number of parameters in the optical model of the sample,and the experimental ͑calculated ͒spectra,respec-tively.The quantity ␦k represents the estimated errors in the measurement of for pixel group k .The need of a biased estimator to weight more strongly the higher accuracy re-gions of the spectra in ex situ spectroscopic ellipsometry has been discussed in the literature.21Here we have propagated a number of errors through to k for the rotating polarizer configuration,including:͑i ͒the uncertainty in determining the analyzer offset A S and polarizer phase P Sk angles;͑ii ͒the fluctuations in the measured ͕S jk ,j ϭ1,...,4͖arising from fluctuations in the polarizer rotation frequency;and ͑iii ͒the noise in the detector dark current which is assumed to limit the precision of the measured S jk values.As discussed pre-viously,the remaining systematic errors are deemed to be of lesser significance once the image persistence has been taken into account.The uncertainties in A S and P Sk ͓i.e.,␦A S and ␦P S used to compute ␦k in Eq.͑8͔͒can be estimated from the ellipsometer calibration to be ϳ0.07°͑see Fig.6͒.Error ͑ii ͒is assumed to be proportional to the measured irradiance,and a proportionality constant of 0.005has been determined from measurements of the variations in the polarizer motor frequency.To estimate the error contribution from dark cur-rent noise,20consecutive spectra with the shutter closed are collected.Ideally,when the first spectrum is used to establish a background correction,all subsequent corrected spectra should be zero.However,a few counts are still detected due to thermally generated electron–hole pairs in thedepletionFIG.7.Standard deviation in 100consecutive measurements of the ͑,⌬͒spectra obtained as a composite of measurements on three c -Si wafers with different stable oxide thicknesses ͑121,991,and 1608Å͒.Each measure-ment is taken as an average over one polarizer rotation requiring 49ms ͑open symbols ͒and 40polarizer rotations requiring 1.96s ͑filled symbols ͒.3456Rev.Sci.Instrum.,Vol.71,No.9,September 2000Zapien,Collins,and Messier。
常用半导体中英对照表离子注入机ion implanterLSS理论Lindhand Scharff and Schiott theory,又称“林汉德-斯卡夫-斯高特理论”。
沟道效应channeling effect射程分布range distribution深度分布depth distribution投影射程projected range阻止距离stopping distance阻止本领stopping power标准阻止截面standard stopping cross section 退火annealing激活能activation energy等温退火isothermal annealing激光退火laser annealing应力感生缺陷stress-induced defect 择优取向preferred orientation制版工艺mask-making technology 图形畸变pattern distortion初缩first minification精缩final minification母版master mask铬版chromium plate干版dry plate乳胶版emulsion plate透明版see-through plate高分辨率版high resolution plate, HRP超微粒干版plate for ultra-microminiaturization 掩模mask掩模对准mask alignment对准精度alignment precision光刻胶photoresist,又称“光致抗蚀剂”。
负性光刻胶negative photoresist正性光刻胶positive photoresist无机光刻胶inorganic resist多层光刻胶multilevel resist电子束光刻胶electron beam resist X射线光刻胶X-ray resist刷洗scrubbing甩胶spinning涂胶photoresist coating后烘postbaking光刻photolithographyX射线光刻X-ray lithography电子束光刻electron beam lithography 离子束光刻ion beam lithography深紫外光刻deep-UV lithography光刻机mask aligner投影光刻机projection mask aligner 曝光exposure接触式曝光法contact exposure method接近式曝光法proximity exposure method光学投影曝光法optical projection exposure method 电子束曝光系统electron beam exposure system分步重复系统step-and-repeat system显影development线宽linewidth去胶stripping of photoresist氧化去胶removing of photoresist by oxidation等离子[体]去胶removing of photoresist by plasma 刻蚀etching干法刻蚀dry etching反应离子刻蚀reactive ion etching, RIE各向同性刻蚀isotropic etching各向异性刻蚀anisotropic etching反应溅射刻蚀reactive sputter etching离子铣ion beam milling,又称“离子磨削”。
超声波探伤和分层特性在薄复合板中使用的信号处理技术摘要为了在多层薄复合板中的分层探测,两种不同的技术产生了,这种技术是基于窄带超声波回波从样品中反射的过程。
第一种方法利用无裂缝和分层区信号之间的差异,利用修改出现重复的将规范反褶积。
被过滤的A型显示器和二维C型显示器以不同的方式被制造。
第二种技术是基于一个光谱分析的微小信号样本,从被减少的参考信号中获得,被一个无裂缝区域反射,脉冲在不同的频率接收到任意点描述的二维的图像。
实验结果表明,这两种技术都是由层面板发生分层所决定的。
1997年爱斯维尔科技出版社。
关键词复合材料,超声波无损检测,超声波信号处理,超声波光谱学。
1、引言由于高可靠性和低成本,多层复合材料正交异性层合板广泛应用于许多先进的工业领域。
最重要的问题之一,仍然是有效的检测和在多层薄复合材料正交异性层合板发生的分层。
为了这个目的,各种超声波技术被开发。
他们中的大多数是基于所谓的直达传送器或脉冲回波技术,样品在试验中被超声波脉冲和透射波所辐射,对此进行了分析。
然而,在薄层合板的情况下,遇到了厚度低于超声波脉冲空间的长度的严重问题。
由于有限的带宽和非线性相位响应的常用的超声波检测设备,超声波脉冲在复合材料试件的反射情况的失真,导致了一个操作员彻底失败的掌握了分层信息。
这将通过两个仿真试验来证明。
一个可能的解决方案是使用宽带系统,例如,基于超声波传感器与非均匀特性或逆滤波,在纳秒范围内使其产生和检测脉冲短波。
这些拥有高空间的分辨率保证了薄复合层材料的探测。
然而,这些系统还不够普及,因此一个方法基于商业开发现有的设备和特殊的信号处理程序变得更具吸引力。
本文的目的是介绍信号处理算法能够有效的检测和表征薄膜多层复合材料的分层及获得中频超声信号常用的超声波仪器。
特别是,算法会利用改进的LI规范反褶积和频域成像进行分析。
算法被模拟信号和真正的信号所测试。
为了这个目的,基于一个矩阵的一维数学模型通过了实验的证实,并且被开发。
外文翻译-使用高光谱成像系统评估猪肉的质量和细脂肪纹路的水2使用高光谱成像系统评估猪肉的质量和大理石花纹的水平原文来源:Qiao Jun, Ngadi M O, Wang Ning, Gariepy C, Prasher S O. Pork quality and marbling level assessment using a hyperspectral imaging system. J Food Eng, 2007, 83: 10–16摘要评价猪肉品质通常主观地建立在颜色、大理石花纹和分泌特点的基础之上。
在这项研究中,,为了快速、准确并且客观地评估猪肉的质量,我们对一个基于高光谱成像的方法进行了评价。
此外,大理石花纹水平也被自动确定。
该系统提取出了猪肉样本的光谱特性,获得了猪肉的大理石花纹分布的适当的空间特征,对现有的大理石花纹标准进行了扫描,并且大理石花纹分数指标由共生矩阵来表达。
应用主成分分析(PCA)方法,压缩整个光谱波长的光(430nm–1000nm)到5、10、20主成分(pc),然后将其归属到质量组。
用人工神经网络对这些组进行分类。
结果表明,带红色、坚硬和无渗出物(RFN)的样本与带红色、柔软和有渗出物(RSE)的样本被成功地分组;总准确率为75%-80%。
由前馈神经网络模型归结了修正的类别;其中,5主成分为69%,10主成分为85%。
除了在10主成分里面,二阶矩角(ASM)被成功地用于决定猪肉的大理石花纹分数。
对40个样本加以分类,结果表明样品的大理石花纹分数从3.0到5.0不等。
2007年教育部博士点基金有限公司版权所有。
关键词:高光谱图像;猪肉质量;大理石花纹;主成分分析;聚类分析;神经网络1.前言加拿大是世界上最大的猪肉出口国之一。
随着市场的扩张与分割,为了保持领先地位,加拿大的加工行业需要用来评价猪肉品质的高效技术。
鲜猪肉质量变化极大。
传统上,猪肉质量过去常常根据颜色、纹理(坚实度)和分泌物(滴水损失)分为三个级别。
非均匀塞曼展宽英语Inhomogeneous Zeeman Broadening in Spectral AnalysisSpectral analysis plays a crucial role in variousscientific fields, including astrophysics, chemistry, and material science. One of the phenomena that can significantly affect the interpretation of spectral lines is Zeeman broadening, which arises due to the interaction between the magnetic field and the magnetic moment of the particles emitting the light. Inhomogeneous Zeeman broadening is a specific case where the broadening effect is not uniform across the entire spectral line.The inhomogeneous broadening occurs when there is aspatial variation in the magnetic field strength across the region of the emitting source. This can lead to a spread inthe energy levels of the emitting particles, which in turn causes a broadening of the spectral lines that is not uniform. The effect is particularly noticeable in stars, where the magnetic field can vary significantly from the surface to the core.To analyze the inhomogeneous Zeeman broadening, one must consider the distribution of the magnetic field within the emitting region. This can be complex, as it may involve turbulent fields, localized magnetic spots, or other non-uniformities. The spectral lines will be broadened todifferent extents depending on the local magnetic fieldstrength, leading to a complex profile that can be challenging to interpret.In the context of stellar atmospheres, the inhomogeneous broadening can be modeled using various techniques. One common approach is to use a magneto-optical model that takes into account the Hanle and Zeeman effects. These models can help in disentangling the effects of the magnetic field from other broadening mechanisms, such as thermal broadening or pressure broadening.The study of inhomogeneous Zeeman broadening is not only important for understanding the magnetic properties of celestial objects but also for diagnosing physical conditions such as temperature, density, and velocity fields within the emitting medium. Accurate measurements and analysis of this broadening can provide insights into the dynamics of stellar interiors and the behavior of plasmas in various astrophysical environments.In conclusion, inhomogeneous Zeeman broadening is a complex but important aspect of spectral analysis that can reveal valuable information about the magnetic fields and physical conditions of the sources under study. Advanced modeling and careful interpretation of the spectral data are essential for extracting meaningful physical parameters from the observed spectra.。
横模(transvers mode)
激光是沿着激光器光轴方向传播的,其电场很接近于和轴向垂直,所以称为TEMmn模(是英文横向电磁的缩写),也称横向电磁模式,脚标m、n是光束截面x、y方向上的波节数。
横模很容易观察,只需把光束截面积放大就可以观察到。
其起因较复杂,如稍偏离轴向走Z形的光经多次反射仍未偏出腔外能符合干涉加强的条件,结果就产生各种复杂图样。
其中TEM00模也称基模或单相模是用得最多的,因为⑴其光束截面上的光通量密度是理想的高斯型;⑵光束截面上各点的电场没有相位移动,因此是完全空间相干的;⑶光束的发散角最小,这种模式可以聚焦成最小的光点。
参数中英文对照
产品主要技术参数:。
透镜系列术语中英文对照单透镜Simple (Single) Lenses球透镜Ball Lenses歪像透镜Anamorphic Lenses圆锥透镜Conical Lenses柱状透镜,环形透镜Cylindrical & Toroidal Lenses非球面透镜Aspheric Lenses反射折射透镜Catadioptric Lenses绕射极限透镜Diffraction-Limited LensesGRIN透镜GRIN Lenses (Graduated Refractive Index Rod)微小透镜阵列Micro Lens Arrays准直透镜Collimator Lenses聚光透镜Condenser Lenses多影像透镜Multiple Image Lenses傅利叶透镜Fourier Lenses菲涅尔透镜Fresnel Lenses替续透镜Relay Lenses大口径透镜(直径150mm以上) Large Aperture Lenses (150mm) 复合透镜Complex Lenses红外线透镜Infrared Lenses紫外线透镜Ultraviolet Lenses激光透镜Laser Lenses望远镜对物镜Telescope Objectives Lenses显微镜对物镜Microscope Objectives Lenses接目镜Eyepieces Lenses向场透镜Field Lenses望远镜头Telephoto Lenses广角镜头Wide Angle Lenses可变焦伸缩镜头Variable Focal Length Zoom LensesCCTV镜头CCTV Lenses影印机镜头Copy Machine Lenses传真机镜头Facsimile Lenses条码扫描器镜头Bar Code Scanner Lenses影像扫描器镜头Image Scanner Lenses光碟机读取头透镜Pick-up Head LensesAPS相机镜头APS Camera Lenses数位相机镜头Digital Still Camera Lenses液晶投影机镜头Liquid Crystal Projector Lenses镜面系列术语中英文对照平面镜Flat Mirrors球面凹面镜,球面凸面镜Spherical Concave and Convex Mirrors 抛物面镜,椭圆面镜Off-Axis Paraboloids and Ellipsoids Mirrors 非球面镜Aspheric Mirrors多面镜Polygonal Mirrors热镜Hot Mirrors冷镜Cold Mirrors玻璃,玻璃/瓷面镜Glass and Glass-Ceramic Mirrors双色向面镜Dichroic Mirror金属面镜Metal Mirrors多层面镜Multilayer Mirrors半涂银面镜Half-Silvered Mirrors激光面镜Laser Mirrors天文用面镜Astronomical Mirrors棱镜系列术语中英文对照Nicol棱镜Nicol PrismsGlan-Thomson棱镜Glan-Thomson PrismsWollaston棱镜Wollaston PrismsRochon棱镜Rochon Prisms直角棱镜Right-Angle; Rectangular Prisms五面棱镜Pentagonal Prisms脊角棱镜Roof Prisms双棱镜Biprisms直视棱镜Direct Vision Prisms微小棱镜Micro Prisms滤光镜系列术语中英文对照尖锐滤光镜Sharp Cut (off) Filters色温变换滤光镜,日光滤光镜Colour Conversion/Daylight Filters 干涉滤光镜Interference Filters中性密度滤光镜Neutral Density Filters空间/光学匹配滤光镜Spatial/Optical Matched Filters双色向滤光镜Dichroic Filters偏光滤光镜Polarizing Filters排除频带滤光镜Rejection Band Filters可调式滤光镜Turnable Filter超窄频滤光镜Ultra Narrowband Filters色吸收滤光镜Absorption Filters红外吸收/反射滤光镜Infrared Absorbing/Reflecting Filters红外透过滤光镜Infrared Transmitting Filters紫外吸收滤光镜Ultraviolet Absorbing Filters紫外透过滤光镜Ultraviolet Transmitting Filters针孔滤光镜Pinhole Filters有色玻璃滤光镜Colored-Glass Filters塑胶滤光镜Plastic Filters 照像用滤光镜Photographic Filters全像滤光镜Holographic Filters微小干涉滤光镜Micro Interference Filters光学词汇Iris – aperture stop虹膜孔径光珊retina视网膜Color Blind 色盲weak color 色弱Myopia – near-sighted 近视Sensitivity to Light感光灵敏度boost推进lag behind落后于Hyperopic – far-sighted 远视Dynamic Range 动态围critical fusion frequency 临界融合频率CFF临界闪变频率visual sensation视觉Chromaticity Diagram色度图Color Temperature色温HSV Model色彩模型(hue色度saturation饱和度value纯度CIE Model 相干红外能量模式Complementary Colors补色Bar Pattern条状图形Heat body 热稠化approximate近似violet紫罗兰Body Curve人体曲线Color Gamut色阶adjacent邻近的normal illumination法线照明Primary colors红黄蓝三原色Color saturation色饱和度Color Triangle颜色三角Color Notation颜色数标法Color Difference色差TV Signal Processing电视信号处理Gamma Correction图像灰度校正Conversion Tables换算表out of balance失衡wobble摇晃back and forth前后clear (white) panel白光板vibrant震动fuzzy失真quantum leap量子越迁SVGA (800x600)derive from起源自culprit犯人render呈递inhibit抑制,约束stride大幅前进blemish污点obstruction障碍物scratch刮伤substance物质实质主旨residue杂质criteria标准parameter参数adjacent邻近的接近的asynchrony异步cluster串群mutually互助得algorithm运算法则Chromatic Aberrations色差Fovea小凹Visual Acuity视觉灵敏度Contrast Sensitivity对比灵敏度Temporal (time) Response反应时间rendition表演,翻译animation活泼又生气ghost重影Parallax视差deficient缺乏的不足的Display panel显示板NG.( Narrow Gauge)窄轨距dichroic mirror二色性的双色性的Brewster Angle布鲁斯特角Polarized Light极化光Internal reflection反射Birefringence 双折射Extinction Ratio 消光系数Misalignment 未对准Quarter Waveplates四分之一波片blemish污点瑕疵Geometric几何学的ripple波纹capacitor电容器parallel平行的他tantalum钽(金属元素) exsiccate使干燥exsiccate油管,软膏furnace炉子镕炉electrolytic电解的,由电解产生的module模数analog类似物out of the way不恰当pincushion针垫拉lateral侧面得rectangle长方形fixture固定设备control kit工具箱DVI connector DVI数局线Vertical垂直的horizontal 水平的interlace隔行扫描mullion竖框直楞sawtooth锯齿toggle套索钉keypad数字按键键盘tangential切线diagnostic tool诊断工具sagittal direction径向的cursor position光标位置ray aberration光线相差weighting factor权种因子variables变量for now暂时,目前.眼下check box复选框Airy disk艾里斑exit pupil出[射光]瞳optical path difference光称差with respect to关于diffraction limited衍射极限wavefront aberration波阵面相差spherical aberration球面象差paraxial focus傍轴焦点chromatic aberration象差local coordinate system局部坐标系统coordinate system坐标系orthogonal直角得,正交的conic sections圆锥截面account for解决,得分parabolic reflector拋物面反射镜radius of curvature曲率半径spherical mirror球面镜geometrical aberration几何相差incident radiation入射辐射global coordinate总体坐标in terms of根据按照reflected beam反射束FYI=for your information供参考Constructive interference相长干涉phase difference相差achromatic singlet消色差透镜Interferometer干涉仪boundary constraint边界约束,池壁效应radii半径Zoom lenses变焦透镜Beam splitters分束器discrete不连续的,分离的objective/eye lens物镜/目镜mainframe主机rudimentary根本的,未发展的photographic照相得摄影得taxing繁重的,费力得algebra代数学trigonometry三角学geometry几何学calculus微积分学philosophy哲学lagrange invariant拉格朗日不变量spherical球的field information场信息Standard Lens标准透镜Refracting Surface折射面astigmatism散光HDTV高清晰度电视DLV ( Digital Light Valve)数码光路真空管,简称数字光阀diffraction grating衍射光珊field angle角paraxial ray trace equations近轴光线轨迹方称back focal length后焦距principal plane主平面vertex顶点,最高点astigmatism散光,因偏差而造成的曲解或错判medial中间的,平均的variance不一致conic圆锥的,二次曲线field of view视野collimator瞄准仪convolution回旋.盘旋,卷积fuzzy失真,模糊aberrated异常的asymmetry不对称得indicative可表示得parabolic拋物线得suffice足够,使满足specification规格,说明书straightforward易懂的,直接了当的solidify凝固,巩固.Constraints 约束,限制metrology度量衡field coverage视场,视野dictate口述, 口授, 使听写, 指令, 指示, 命令, 规定irradiance发光, 光辉,辐照度aerial空气得,空中得halide卤化物的monochromatic单色的,单频的polychromatic多色的aspherical非球面的spherical球面的alignment列队,结盟power(透镜)放大率equiconvergence 同等收敛EFL(effective focal length)有效焦距workhorse广为应用的设备biconvex两面凸的global optimization整体最优化concave凹得,凹面得cylindrical圆柱得solid model实体模型Modulation Transfer Function调制传递函数in the heat of在最激烈的时候protocol协议,规定triplet三重态sanity心智健全zinc锌,涂锌的selenide 硒化物,硒醚miscellaneous各色各样混在一起, 混杂的, 多才多艺的versus与...相对polynomial多项式的coefficient系数explicit function显函数distinct清楚的,截然不同的emanate散发, 发出, 发源rudimentary根本的,未发展的intersection角差点PRTE=paraxial ray trace equation旁轴光线轨迹方程achromats 消色差透镜cardinal points基本方位separations分色片dashed虚线blow up 放大overlay覆盖,覆盖图multiplayer 多层的humidity 湿度float glass 浮法玻璃square one 出发点,端点square up to 准备开打,坚决地面对reflecting telescope 反射式望远镜diagnostic tools诊断工具Layout plots规划图Modulation transfer function调制转换功能FFT快速傅里叶变换Point spread function点传播功能wavelength波长angle角度absorption吸收system aperture系统孔径lens units透镜单位wavelength range波长围singlet lens单业透镜spectrum光谱diffraction grating衍射光栅asphere半球的LDE=Lens data editor Surface radius of curvature表面曲率半径surface thickness表面厚度material type材料种类semi-diameter半径focal length焦距aperture type孔径类型aperture value孔径值field of view视场microns微米F, d, and C= blue hydrogen, yellow helium, red hydrogen lines, primary wavelength主波长sequential mode连续模式object surface物表面The front surface of the lens透镜的前表面stop光阑The back surface of the lens透镜的后表面The image surface像表面symmetric相对称的biconvex两面凸的The curvature is positive if the center of curvature of the surface is to the right of the vertex. It is negative if the center of curvature is to the left of the vertex.如果曲率中心在最高点的右边,曲率值为正,如果曲率中心在最高点的左边,则曲率为负image plane像平面Ray Aberration光线相差tangential direction切线方向sagittal direction径向paraxial focus旁轴的Marginal 边缘的spherical aberration球面像差Optimization Setup最优化调整variable变量mathematical sense数学角度MFE= Merit Function Editor, Adding constraints增加约束focal length焦矩长度operand操作数theeffective focal length有效焦矩primary wavelength主波长initiate开始spot diagram位图表Airy disk艾里斑axial chromatic aberration轴向色差with respect to关于至于exit pupil出射光瞳OPD=optical path difference 光学路径差diffraction limited衍射极限chromatic aberration色差chromatic focal shift色焦距变换paraxial focus傍轴焦点axial spherical aberration轴向球差(longitudinal spherical aberration 纵向球差:沿光轴方向度量的球差)lateral spherical aberration垂轴球差(在过近轴光线像点A‵的垂轴平面度量的球差)coma、comatic aberration彗差meridional coma子午彗差sagittal coma弧矢彗差astigmatism像散local coordinate system本地坐标系统meridional curvature of field子午场曲sagittal curvature of field弧矢场曲decentered lens偏轴透镜orthogonal直角的垂直的conic section圆锥截面account for说明,占有,得分stigmatic optical system无散光的光学系统Newtonian telescope牛顿望远镜parabolic reflector抛物面镜foci焦距chromatic aberration,色差superpose重迭parabola抛物线spherical mirror球面镜RMS=Root Mean Square均方根wavefront波阵面spot size光点直径Gaussian quadrature 高斯积分rectangular array矩阵列grid size磨粒度PSF=Point Spread Function点扩散函数FFT=Fast Fourier Transform Algorithm快速傅里叶变换Cross Section横截面Obscurations昏暗local coordinates局部坐标系统vignette把…印为虚光照Arrow key键盘上的箭头键refractive折射reflective反射in phase同相的协调的Ray tracing光线追迹diffraction principles衍射原理order effect式样提出的顺序效果energy distribution 能量分配Constructive interference相长干涉dispersive色散的Binary optics二元光学phase advance相位提前achromatic single消色差单透镜diffractive parameter衍射参数Zoom lenses变焦透镜Athermalized lenses绝热透镜Interferometers干涉计Beam splitter分束器Switchable component systems可开关组件系统common application通用symmetry 对称boundary constraint边界约束multi-configuration (MC) MC Editor (MCE) perturbation动乱,动摇index accuracy折射率准确性index homogeneity折射率同种性index distribution折射率分配abbe number 离差数Residual剩余的Establishing tolerances建立容差figure of merit 质量因子tolerance criteria公差标准Modulation Transfer Function (MTF)调制传递函数boresight视轴,瞄准线Monte Carlo蒙特卡洛Tolerance operands误差操作数conic constant ]MC1"{_qT .ueg g圆锥常数astigmatic aberration像散误差Mechanical tilt机械倾斜,机械倾角Tolerance Data Editor (TDE)公差资料编辑器compensator补偿棱镜estimated system performance预估了的系统性能iteratively反复的,重迭的statistical dependence统计相关性sequential ray trace model连续光线追迹模型imbed埋葬,埋入multiple多样的,多重的,若干的Non-Sequential Components不连续的组件Corner cube角隅棱镜,三面直角透镜Sensitivity Analysis灵敏度分析Faceted reflector有小面的反射镜emit发射,发出nest嵌套overlap交迭outer lens外透镜brute force 强力seidel像差系数aspect ratio长宽比MRA边缘光线角MRH边缘光线高度asynchronous不同时的,异步Apodization factor变迹因子hexapolar六角形dithered高频脉冲衍射调制传递函数(DMTF),衍射实部传递函数(DRTF),衍射虚部传递函数(DITF),衍射相位传递函数(DPTF),方波传递函数(DSWM)logarithmic对数的parity奇偶% Uc,I e ,17]3NnoClongitudinal aberrations 纵向像差赛得系数: 球差(SPHA,SI),彗差(COMA,S2),像散(ASTI,S3),场曲(FCUR,S4),畸变(DIST,S5),轴向色差(CLA,CL)和横向色差(CTR,CT).横向像差系数:横向球差(TSPH),横向弧矢彗差(TSCO),横向子午彗差(TTCO),横向弧矢场曲(TSFC),横向子午场曲(TTFC),横向畸变(TDIS)横向轴上色差(TLAC)。
光学加工英语Optic Manufacture Englishoptic tooling 光学加工用的靠体等工装夹具grinding 磨砂polishing 抛光fine polishing 精抛high polishing 高抛polishing machine 抛光机polishing tool 抛光工具polishing powder 抛光粉polishing solution 抛光液polishing cloth 抛光布polishing paper 抛光纸polishing mark 抛光痕polishing plant 磨光工厂, 磨光车间polishing section 抛光车间, 抛光工段polishing shop 抛光车间[工段]polishing treatment 抛光处理flatness 平面度,面形(如λ/4)surface figure 面形(如λ/4)aperture 光圈,孔径clear aperture 有效孔径centration 偏心specification n.详述, 规格, 说明书, 规范inspection n.检测criteria n.标准performance n.性能focal length 焦距plano 平的convex 凸的,表面凸起的concave 凹的,凹面plano lip 平台OD (outside diameter) 外径diameter n.直径diameter tolerance 直径公差reflection n.反射refraction n.折射reflective mirror 反射镜index of refraction 折射率CTE (coefficient of temperature expander) 热膨胀系数scratch n.道子dig n.点子contamination n.污染物chip n.崩边radius n.曲率surface quality 表面质量mark n.印记grease n.油脂wax n.蜡N.A (numeric aperture) 数值孔径I.L (insertion loss) 插入损耗loading 上盘(一般用于镀膜中,指产品上夹具)unloading 下盘(一般用于镀膜中,指产品下夹具)mounting 上盘(指上靠体等)demounting 下盘gelatinize 涂胶coating 镀膜cleaning 清洗manufacture 加工yield n.合格率,成品率use as is 特认cost n.成本paraxial focal length 焦距误差(百分比形式)plano-convex lenses 平凸透镜plano-concave 平凹透镜penta prisms 五角棱镜cemented 胶合(指使用粘合剂)cemented lenses 胶合透镜optic bonding 光胶(指深化光胶)optically contacted 光胶(指普通光胶)wavefront distortion 波前畸变polishing pad 抛光板(指高抛用聚氨酯板)pitch polishing 抛光板(指用沥青做的抛光板)pitch 沥青(指用于光学加工中做抛光板的沥青)asphalt 沥青(指用于光学加工中上盘等其它环节用沥青)grinding machine 磨床, 砂轮机, 研磨机, 磨针布机grinding aid 助磨剂, 磨料grinding compound 磨剂,金刚砂grinding allowance 磨削余量grinding capacity 磨削容量grinding contact 磨削接触grinding disc 砂轮grinding wheel 砂轮grinding face (磨机)碾磨面, 磨削面grinding machine operator 磨工grinding sand 研磨(用)砂grinding tool 磨削工具grinding wheel truing 砂轮整形truing of grinding wheel 修整砂轮。
Shot 冲击通电Side lobe 副瓣Side wall 侧面Sievert(Sv) 希(沃特)Signal 信号Signal gradient 信号梯度Signal over load point 信号过载点Signal overload level 信号过载电平Signal to noise ratio 信噪比Single crystal probe 单晶片探头Single probe technique 单探头法Single traverse technique 一次波法Sizing technique 定量法Skin depth 集肤深度Skin effect 集肤效应Skip distance 跨距Skip point 跨距点Sky shine(air scatter) 空中散射效应Sniffing probe 嗅吸探头Soft X-rays 软X 射线Soft-faced probe 软膜探头Solarization 负感作用Solenoid 螺线管Soluble developer 可溶显像剂Solvent remover 溶剂去除剂Solvent cleaners 溶剂清除剂Solvent developer 溶剂显像剂Solvent remover 溶剂洗净剂Solvent-removal penetrant 溶剂去除型渗透剂Sorption 吸着Sound diffraction 声绕射Sound insulating layer 隔声层Sound intensity 声强Sound intensity level 声强级Sound pressure 声压Sound scattering 声散射Sound transparent layer 透声层Sound velocity 声速Source 源Source data label 放射源数据标签Source location 源定位Source size 源尺寸Source-film distance 射线源-胶片距离Spacial frequency 空间频率Spark coil leak detector 电火花线圈检漏仪Specific activity 放射性比度Specified sensitivity 规定灵敏度Standard 标准Standard 标准试样Standard leak rate 标准泄漏率Standard leak 标准泄漏孔Standard tast block 标准试块Standardization instrument 设备标准化Standing wave; stationary wave 驻波Step wedge 阶梯楔块Step- wadge calibration film 阶梯楔块校准底片Step- wadge comparison film 阶梯楔块比较底片Step wedge 阶梯楔块Step-wedge calibration film 阶梯-楔块校准片Step-wedge comparison film 阶梯-楔块比较片Stereo-radiography 立体射线透照术Subject contrast 被检体对比度Subsurface discontinuity 近表面不连续性Suppression 抑制Surface echo 表面回波Surface field 表面磁场Surface noise 表面噪声Surface wave 表面波Surface wave probe 表面波探头Surface wave technique 表面波法Surge magnetization 脉动磁化Surplus sensitivity 灵敏度余量Suspension 磁悬液Sweep 扫描Sweep range 扫描范围Sweep speed 扫描速度Swept gain 扫描增益Swivel scan 环绕扫查System exanlillatien threshold 系统检验阈值System inclacel artifacts 系统感生物System noise 系统噪声Tackground,target 目标本底Tandem scan 串列扫查Target 耙Target 靶Television fluoroscopy 电视X 射线荧光检查Temperature envelope 温度范围Tenth-value-layer(TVL) 十分之一值层Test coil 检测线圈Test quality level 检测质量水平Test ring 试环Test block 试块Test frequency 试验频率Test piece 试片Test range 探测范围Test surface 探测面Testing,ulrasonic 超声检测Thermal neutrons 热中子Thermocouple gage 热电偶计Thermogram 热谱图Thermography,infrared 红外热成象Thermoluminescent dosemeter(TLD) 热释光剂量计Thickness sensitivity 厚度灵敏度Third critiical angle 第三临界角Thixotropic penetrant 摇溶渗透剂Thormal resolution 热分辨率Threading bar 穿棒Three way sort 三档分选Threshold setting 门限设置Threshold fog 阈值灰雾Threshold level 阀值Threshotd tcnet 门限电平Throttling 节流Through transmission technique 穿透技术Through penetration technique 贯穿渗透法Through transmission technique; transmission technique 穿透法Through-coil technique 穿过式线圈技术Throughput 通气量Tight 密封Total reflection 全反射Totel image unsharpness 总的图像不清晰度Tracer probe leak location 示踪探头泄漏定位Tracer gas 示踪气体Transducer 换能器/传感器Transition flow 过渡流Translucent base media 半透明载体介质Transmission 透射Transmission densitomefer 发射密度计Transmission coefficient 透射系数Transmission point 透射点Transmission technique 透射技术Transmittance,τ 透射率τTransmitted film density 检测底片黑度Transmitted pulse 发射脉冲Transverse resolution 横向分辨率Transverse wave 横波Traveling echo 游动回波Travering scan; depth scan 前后扫查Triangular array 正三角形阵列Trigger/alarm condition 触发/报警状态Trigger/alarm level 触发/报警标准Triple traverse technique 三次波法True continuous technique 准确连续法技术Trueattenuation 真实衰减Tube current 管电流Tube head 管头Tube shield 管罩Tube shutter 管子光闸Tube window 管窗Tube-shift radiography 管子移位射线透照术Two-way sort 两档分选Ultra- high vacuum 超高真空Ultrasonic leak detector 超声波检漏仪Ultrasonic noise level 超声噪声电平Ultrasonic cleaning 超声波清洗Ultrasonic field 超声场Ultrasonic flaw detection 超声探伤Ultrasonic flaw detector 超声探伤仪Ultrasonic microscope 超声显微镜Ultrasonic spectroscopy 超声频谱Ultrasonic testing system 超声检测系统Ultrasonic thickness gauge 超声测厚仪Ultraviolet radiation 紫外辐射Under development 显影不足Unsharpness 不清晰Useful density range 有效光学密度范围UV-A A 类紫外辐射UV-A filter A 类紫外辐射滤片V acuum 真空V acuum cassette 真空暗盒V acuum testing 真空检测V acuum cassette 真空暗合V an de Graaff generator 范德格喇夫起电机V apor pressure 蒸汽压V apour degreasing 蒸汽除油V ariable angle probe 可变角探头V ee path V 型行程V ehicle 载体V ertical linearity 垂直线性V ertical location 垂直定位Visible light 可见光Vitua limage 虚假图像V oltage threshold 电压阈值V oltage threshold 阈值电压Wash station 水洗工位Water break test 水膜破坏试验Water column coupling method 水柱耦合法Water column probe 水柱耦合探头Water path; water distance 水程Water tolerance 水容限Water-washable penetrant 可水洗型渗透剂Wave 波Wave guide acoustic emission 声发射波导杆Wave train 波列Wave from 波形Wave front 波前Wave length 波长Wave node 波节Wave train 波列Wedge 斜楔Wet slurry technique 湿软磁膏技术Wet technique 湿法技术Wet method 湿粉法Wetting action 润湿作用Wetting action 润湿作用Wetting agents 润湿剂Wheel type probe; wheel search unit 轮式探头White light 白光White X-rays 连续X 射线Wobble 摆动Wobble effect 抖动效应Working sensitivity 探伤灵敏度Wrap around 残响波干扰Xeroradiography 静电射线透照术X-radiation X 射线X-ray controller X 射线控制器X-ray detection apparatus X 射线探伤装置X-ray film 射线胶片X-ray paper X 射线感光纸X-ray tube X 射线管X-ray tube diaphragm X 射线管光阑Yoke 磁轭Yoke magnetization method 磁轭磁化法Zigzag scan 锯齿扫查Zone calibration location 时差区域校准定位Zone location 区域定位。
AAbsorption coefficient 吸收系数ac alternating current 交变电流交流Acoustic phonon 声学声子Active component 有源器件AM amplitude modulation 幅度调制AM,FM,PM:幅度/频率/相位调制AON all-optical network 全光网络AOTF acoustic optic tunable filter 声光调制器APD avalanche photodiode 雪崩二极管AR coatings antireflection coatings 抗反膜ASE amplified spontaneous emission 放大自发辐射ASK amplitude shift keying 幅移键控ASK/FSK/PSK 幅/频/相移键控ATM asynchronous transfer mode 异步转移模式Attenuation coefficient 衰减系数Attenuator 衰减器Auger recombination:俄歇复合AWG arrayed-waveguide grating 阵列波导光栅BBand gap:带隙Band pass filter 带通滤波器Beam divergence 光束发散BER bit error rate 误码率BER:误码率BH buried heterojunction 掩埋异质结Binary representation 二进制表示方法Binary 二进制Birefringence 双折射Birefringence双折射Bitrate-distance product 比特距离的乘积Block diagram 原理图Boltzman statistics:玻尔兹曼统计分布BPF band pass filter 带通滤波器Bragg condition 布拉格条件Bragg diffraction 布拉格衍射Brillouin scattering 布里渊散射Brillouin shift 布里渊频移Broad area 宽面Buried heterostructure 掩埋异质结CC3 cleaved-coupled cavity 解理耦合腔Carrier lifetime:载流子寿命CATV common antenna cable television 有线电视CDM code division multiplexing 码分复用Characteristics temperature 特征温度Chirp 啁啾Chirped Gaussian pulse 啁啾高斯脉冲Chromatic dispersion 色度色散Chromatic dispersion 色度色散Cladding layer:包层Cladding 包层CNR carrier to noise ratio 载噪比Conduction band:导带Confinement factor 限制因子Connector 连接头Core cladding interface 纤芯包层界面Core-cladding interface 芯层和包层界面Coupled cavity 耦合腔CPFSK continuous-phase frequency-shift keying 连续相位频移键控Cross-phase modulation 交叉相位调制Cross-talk 串音CSO Composite second order 复合二阶CSRZ:载波抑制归零码Cutoff condition 截止条件CVD chemical vapour deposition 化学汽相沉积CW continuous wave 连续波Cylindrical preform:预制棒DDBR distributed Bragg reflector 分布布拉格反射DBR: distributed Bragg reflector 分布式布拉格反射器dc direct current 直流DCF dispersion compensating fiber 色散补偿光纤Depressed-cladding fiber: 凹陷包层光纤DFB distributed feedback 分布反馈DFB: Distributed Feedback 分布式反馈Differential gain 微分增益Differential quantum efficiency 微分量子效率Differential-dispersion parameter:微分色散参数Diffusion 扩散Digital hierarchy 数字体系DIP dual in line package 双列直插Direct bandgap:直接带隙Directional coupler 定向耦合器Dispersion compensation fiber:色散补偿光纤Dispersion decreasing fiber:色散渐减光纤Dispersion parameter:色散参数Dispersion shifted fiber 色散位移光纤Dispersion slope 色散斜率Dispersion slope:色散斜率Dispersion-flatten fiber:色散平坦光纤Dispersion-shifted fiber:色散位移光纤Double heterojunction 双异质结Double heterostructure:双异质结Doubly clad:双包层DPSK differential phase-shift keying 差分相移键控Driving circuit 驱动电路Dry fiber 无水光纤DSF dispersion shift fiber 色散位移光纤DWDM dense wavelength divisionmultiplexing/multiplexer密集波分复用/器DWDM: dense wavelength division multiplexing密集波分复用E~GEDFA erbium doped fiber amplifier 掺铒光纤激光器Edge emitting LED 边发射LEDEdge-emitting 边发射Effective index 有效折射率Eigenvalue equation 本征值方程Elastic scattering 弹性散射Electron-hole pairs 电子空穴对Electron-hole recombination 电子空穴复合Electron-hole recombination:电子空穴复合Electrostriction 电致伸缩效应Ethernet 以太网External cavity 外腔External quantum efficiency 外量子效率Extinction ratio 消光比Eye diagram 眼图FBG fiber-bragg grating 光纤布拉格光栅FDDI fiber distributed data interface 光纤数据分配接口FDM frequency division multiplexing频分复用FDM:频分复用Fermi level 费米能级Fermi level:费米能级Fermi-Dirac distribution:费米狄拉克分布FET field effect transistor 场效应管Fiber Manufacturing:光纤制作Field radius 模场半径Filter 滤波器Flame hydrolysis 火焰裂解FM frequency modulation 频率调制Forward-biased :正向偏置FP Fabry Perot 法布里-珀落Free spectral range 自由光谱范围Free-space communication 自由空间光通信系统Fresnel transmissivity 菲涅耳透射率Front end 前端Furnace 熔炉FWHM full width at half maximum 半高全宽FWHM: 半高全宽FWM four-wave mixing 四波混频Gain coefficient 增益系数Gain coupled 增益耦合Gain-guided semiconductor laser 增益波导半导体激光器Germania 锗GIOF graded index optical fiber 渐变折射率分布Graded-index fiber 渐变折射率光纤Group index 群折射率GVD group-velocity dispersion 群速度色散GVD: 群速度色散H~LHBT heterojunction-bipolar transistor异质结双极晶体管HDTV high definition television 高清晰度电视Heavy doping:重掺杂Heavy-duty cable 重型光缆Heterodyne 外差Heterojunction:异质结HFC hybrid fiber-coaxial 混合光纤/电缆Higher-order dispersion 高阶色散Highpass filter 高通滤波器Homodyne 零差Homojunction:同质结IC integrated circuit 集成电路IM/DD intensity modulation with direct detection 强度调制直接探测IM/DD: 强度调制/直接探测IMD intermodulation distortion 交互调制失真Impulse 冲激Impurity 杂质Index-guided 折射率导引Indirect bandgap:非直接带隙Inelastic scattering 非弹性散射Inhomogeneous非均匀的Inline amplifier 在线放大器Intensity noise 强度噪声Intermodal dispersion:模间色散Intermode dispersion 模间色散Internal quantum efficiency:内量子效率Intramodal dispersion: 模内色散Intramode dispersion 模内色散Intrinsic absorption 本征吸收ISDN integrated services digital network 综合业务数字网ISI intersymbol interference 码间干扰Isotropic 各向同性Jacket 涂层Jitter 抖动Junction:结Kinetic energy:动能Lambertian source 朗伯光源LAN local-area network 局域网Large effective-area fiber 大有效面积发光Laser threshold 激光阈值Laser 激光器Lateral mode 侧模Lateral 侧向Lattice constant:晶格常数Launched power 发射功率LD laser diode 激光二极管LD:激光二极管LED light emitting diode 发光二极管LED: 发光二极管L-I light current 光电关系Light-duty cable 轻型光缆Linewidth enhancement factor 线宽加强因子Linewidth enhancement factor 线宽增强因子Linewidth 线宽Longitudinal mode 纵模Longitudinal model 纵模Lowpass filter 低通滤波器LPE liquid phase epitaxy 液相外延LPE:液相外延M~NMacrobending 宏弯MAN metropolitan-area network 城域网Material dispersion 材料色散Material dispersion:材料色散Maxwell’s equations 麦克斯韦方程组MBE molecular beam epitaxy 分子束外延MBE:分子束外延MCVD Modified chemical vapor deposition改进的化学汽相沉积MCVD:改进的化学汽相沉积Meridional rays 子午光线Microbending 微弯Mie scattering 米氏散射MOCVD metal-organic chemical vapor deposition金属有机物化学汽相沉积MOCVD:改进的化学汽相沉积Modal dispersion 模式色散Mode index 模式折射率Modulation format 调制格式Modulator 调制器MONET Multiwavelength optical network 多波长光网络MPEG motion-picture entertainment group视频动画专家小组MPN mode-partition noise 模式分配噪声MQW multiquantum well 多量子阱MQW: 多量子阱MSK minimum-shift keying 最小频偏键控MSR mode-suppression ratio 模式分配噪声MSR: Mode suppression ratio 模式抑制比Multimode fiber 多模光纤MZ mach-Zehnder 马赫泽德NA numerical aperture 数值孔径Near infrared 近红外NEP noise-equivalent power 等效噪声功率NF noise figure 噪声指数Nonradiative recombination 非辐射复合Nonradiative recombination:非辐射复合Normalized frequency 归一化频率NRZ non-return to zero 非归零NRZ:非归零码NSE nonlinear Schrodinger equation 非线性薛定额方程Numerical aperture 数值孔径Nyquist criterion 奈奎斯特准则O P QOC optical carrier 光载波OEIC opto-electronic integrated circuit 光电集成电路OOK on-off keying 开关键控OOK:通断键控OPC optical phase conjugation 光相位共轭Optical mode 光模式Optical phase conjugation 光相位共轭Optical soliton 光孤子Optical switch 光开关Optical transmitter 光发射机Optical transmitter:光发射机OTDM optical time-division multiplexing 光时分复用OVD outside-vapor deposition 轴外汽相沉积OVD:轴外汽相沉积OXC optical cross-connect 光交叉连接Packaging 封装Packet switch 分组交换Parabolic-index fiber 抛物线折射率分布光纤Passive component 无源器件PCM pulse-code modulation 脉冲编码调制PCM:脉冲编码调制PCVD:等离子体化学汽相沉积PDF probability density function 概率密度函数PDM polarization-division multiplexing 偏振复用PDM:脉冲宽度调制Phase-matching condition 相位匹配条件Phase-shifted DFB laser 相移DFB激光器Photon lifetime 光子寿命PMD 偏振模色散Polarization controller 偏振控制器Polarization mode dispersion:偏振模色散Polarization 偏振PON passive optical network 无源接入网Population inversion:粒子数反转Power amplifier 功率放大器Power-conversion efficiency 功率转换效率PPM:脉冲位置调制Preamplifer 前置放大器PSK phase-shift keying 相移键控Pulse broadening 脉冲展宽Quantization noise 量化噪声Quantum efficiency 量子效率Quantum limit 量子极限Quantum limited 量子极限Quantum noise 量子噪声RRA raman amplifier 喇曼放大器Raman scattering 喇曼散射Rate equation 速率方程Rayleigh scattering 瑞丽散射Rayleigh scattering 瑞利散射Receiver sensitivity 接收机灵敏度Receiver 接收机Refractive index 折射率Regenerator 再生器Repeater spacing 中继距离Resonant cavity 谐振腔Responsibility 响应度Responsivity 响应度Ridge waveguide laser 脊波导激光器Ridge waveguide 脊波导RIN relative intensity noise 相对强度噪声RMS root-mean-square 均方根RZ return-to-zero 归零RZ: 归零码SSAGCM separate absorption, grading, charge, and multiplication吸收渐变电荷倍增区分离APD的一种SAGM separate absorption and multiplication吸收渐变倍增区分离APD的一种SAM separate absorption and multiplication吸收倍增区分离APD的一种Sampling theorem 抽样定理SBS 受激布里渊散射SBS stimulated Brillouin scattering 受激布里渊散射SCM subcarrier multiplexing 副载波复用SDH synchronous digital hierarchy 同步数字体系SDH:同步数字体系Self-phase modulation 自相位调制Sellmeier equation:塞米尔方程Sensitivity degradation 灵敏度劣化Sensitivity 灵敏度Shot noise 散粒噪声Shot noise 散粒噪声Single-mode condition 单模条件Sintering :烧结SIOF step index optical fiber 阶跃折射率分布SLA/SOA semiconductor laser/optical amplifier 半导体光放大器SLM single longitudinal mode 单纵模SLM: Single Longitudinal mode单纵模Slope efficiency 斜率效率SNR signal-to-noise ratio 信噪比Soliton 孤子SONET synchronized optical network 同步光网络SONET:同步光网络Spectral density:光谱密度Spontaneous emission:自发辐射Spontaneous-emission factor 自发辐射因子SRS 受激喇曼散射SRS stimulated Raman scattering 受激喇曼散射Step-index fiber 阶跃折射率光纤Stimulated absorption:受激吸收Stimulated emission:受激发射STM synchronous transport module 同步转移模块STM:同步转移模块Stripe geometry semiconductor laser 条形激光器Stripe geometry 条形STS synchronous transport signal 同步转移信号Submarine transmission system 海底传输系统Substrate:衬底Superstructure grating 超结构光栅Surface emitting LED 表面发射LEDSurface recombination:表面复合Surface-emitting 表面发射TTCP/IP transmission control protocol/internet protocol传输控制协议/互联网协议TDM time-division multiplexing 时分复用TDM:时分复用TE transverse electric 横电模Ternary and quaternary compound:三元系和四元系化合物Thermal equilibrium:热平衡Thermal noise 热噪声Thermal noise 热噪声Threshold current 阈值电流Timing jitter 时间抖动TM transverse magnetic 横磁Total internal reflection 全内反射Transceiver module 收发模块Transmitter 发射机Transverse 横向Transverse mode 横模TW traveling wave 行波U ~ ZVAD vapor-axial epitaxy 轴向汽相沉积VAD:轴向沉积Valence band:价带VCSEL vertical-cavity surface-emitting laser垂直腔表面发射激光器VCSEL: vertical cavity surface-emitting lasers 垂直腔表面发射激光器VPE vapor-phase epitaxy 汽相沉积VPE:汽相外延VSB vestigial sideband 残留边带Wall-plug efficiency 电光转换效率WAN wide-area network 广域网Waveguide dispersion 波导色散Waveguide dispersion:波导色散Waveguide imperfection 波导不完善WDMA wavelength-division multiple access 波分复用接入系统WGA waveguide-grating router 波导光栅路由器White noise 白噪声XPM cross-phase modulation 交叉相位调制YIG yttrium iron garnet 钇铁石榴石晶体Zero-dispersion wavelength 零色散波长Zero-dispersion wavelength:零色散波长。
光学设计常用术语解释及英汉对照翻译汇总第一部分最基本的术语及英汉对照翻译1、时谱:time-spectrumIn this paper, the time-spectrum characteristics of temporal coherence on the double-modes He-Ne laser have been analyzed and studied mainly from the theory, and relative time-spectrum formulas and experimental results have been given. Finally, this article still discusses the possible application of TC time-spectrum on the double-mode He-Ne Iaser.本文重点从理论上分析研究了双纵模He-Ne激光时间相干度的时谱特性(以下简称TC 时谱特性),给出了相应的时谱公式与实验结果,并就双纵模He-Ne激光TC时谱特性的可能应用进行了初步的理论探讨。
2、光谱:SpectraStudy on the Applications of Resonance Rayleigh Scattering Spectra in Natural Medicine Analysis共振瑞利散射光谱在天然药物分析中的应用研究3、光谱仪:spectrometerStudy on Signal Processing and Analysing System of Micro Spectrometer微型光谱仪信号处理与分析系统的研究4、单帧:single frameComposition method of color stereo image based on single fram e image基于单帧图像的彩色立体图像的生成5、探测系统:Detection SystemResearch on Image Restoration Algorithms in Imaging Detection System成像探测系统图像复原算法研究6、超光谱:Hyper-SpectralResearch on Key Technology of Hyper-Spectral Remote Sensing Image Processing超光谱遥感图像处理关键技术研究7、多光谱:multispectral multi-spectral multi-spectrumSimple Method to Compose Multi spectral Remote Sensing Data Using BMP Image File用BMP 图像文件合成多光谱遥感图像的简单方法8、色散:dispersionResearches on Adaptive Technology of Compensation for Polarization Mode Dispersion偏振模色散动态补偿技术研究9、球差:spherical aberrationThe influence of thermal effects in a beam control system and spherical aberration on the laser beam quality光束控制系统热效应与球差对激光光束质量的影响10、慧差:comaThe maximum sensitivity of coma aberration evaluation is about λ/25;估值波面慧差的极限灵敏度为λ/25;11、焦距:focal distanceAbsolute errors of the measured output focal distance range from –120 to 120μm.利用轴向扫描法确定透镜出口焦距时的绝对误差在–120—120μm 之间。
物理光学专业英语名词总汇Coordinate Systems(笛卡尔系)Cartesian, cylindrical(polar), spherical(直角、柱、球)Vectors and Scalars(矢量、标量)magnitude(大小,量纲,量级)an order of magnitude, two orders of magnitude(两个数量级)productscalar product (dot product)(点积)vector product (cross product)(叉积)Newtonian Mechanics(牛顿力学)Object: s peed velocity mechanical energy(机械能): (scalar)(vector)potential energy(势能)Kinetic energy(动能)Acceleration gravitational force(万有引力)Mass(质量)Density(密度)Volume(体积)weight(gravity)(重力) Friction(摩擦)non-conservative force(非保守力)restoring force(回复力)Momentum(动量)moment(torque)(力矩)uniform motion(迅速运动)uniform dielectric(迅速直线)Oscillations and Waves(振荡和波)Vibration(振动) Damped(有阻尼的)periodic motion(周期运动):equilibrium position (平衡位置)displacement(位移)simple harmonic motion(简谐振动):spring (stretch, compress)(绳的伸长与压缩)Amplitude(振幅) Cycle(周期)frequency(megahertz)(频率)Wavelength(波长)(meter decimeter /分米centimeter /厘米millimeter /毫米nanometer/纳米 micron/微米)traveling wave(行波) standing wave(驻波)crest(波峰) trough(波谷)Light and Opticselectromagnetic wave(电磁波)electromagnetic radiation(电磁辐射)electromagnetic spectrum: (光谱):visible light(可见光) radio wave(无线电)Infrared(红外线) ultraviolet (UV)(紫外线)Gamma rays(r射线) X-rays(X线)Photon(光子):atom(原子) molecule(分子)Electron(电子)neutron(中子)Proton (质子) ion(离子)Nucleus (原子核) nuclei(复数形式)Light: Reflection(反射):(全反射):total internal reflectionRefraction(折射)Diffraction(衍射):central maximum/ minimum(中心最大/最小) secondary/ side maximum (次级大)Dispersion(散射)Interference(干涉):(相干光)coherent wave (光程差) optical path difference(相位差phase difference/ shift (同/不同相)in phase/ out of phase (奇/偶整数倍)odd/even integral multiple(叠加) superposition/ superpose (相长/相消)constructive/ destructive Newton's Rings(牛顿环):concentric ring pattern(同心圆环)Monochromatic light(单色光)Polychromatic(复色光)Diffraction Grating(衍射光栅):be ruled with......(被刻/画)Polarization (偏振):linear/ plane、 elliptical、 circular(线、椭圆、圆偏振)counterclockwise/ anticlockwise(逆时针)Birefringence(双折射):Double refraction(双折射) Isotropic/anisotropic(各项同/异性)Orientation(方向) Lattice(晶格) dielectric constant(介电常数)magnetic permeability(磁导率) Cleavage(解理)The Ordinary ray(寻常光) The extraordinary ray(非寻常光) Optical Activity(旋光性)Guided-Wave Optics / Integrated Optics(导波/集成光学):① component(分量、组成)integrate(集成)substrateChip (芯片、薄片) miniaturize(小型化)②propagate(传播)Collimate(校准、使平行)focus(聚焦)scan (扫描)broaden(扩展)Split(分离)combine(结合)isolation (隔离)couple(耦合)Switch(交换)detect(探测)modulate(调制)planar/ slab waveguide(平面波导):Infinite(无限的)Interface(表面)zig-zag waves(锯齿波)critical angle(临界角) guided mode(导摸)strip waveguide(条形波导):Confinement(限制)Dimension(维度)raised strip(凸起型波导)embedded strip(嵌入式波导)ridge/ rib guide(几型波导)strip-loaded guide(加载型波导)active/ passive device(有源/无源设备)fiber (光纤) :Core(芯)Cladding(包层)Diameter(直径)single mode/ fundamental mode(单/基模)Multimode (多模) input pulse(输入脉冲)incident angle(入射角) intermodal dispersion(模间散射)Temporal(暂时的)signal broadening(信号展宽)step-index/ abrupt transition(阶越传播)gradient-index/ graded transition(渐变传播)Others:directly/ inversely proportional to(成正/反比)Microscope(显微镜)current(电流) circuit(电路)Voltage(电压)Power resistance (抵消) positive/ negative charge(正/负电) attract/ repel (吸引/排斥) prism perpendicular/ vertical/ orthogonal/ normal(垂直的)Parallel lens/ convex/ concave(凸/凹) cross section()Curvature(曲率)Light Fantastic:solar wind(太阳风)aurora(极光)Transparent(透明的)Translucent(半透明的)filter(滤光片)crossing the filter The science of super cool(超导):absolute zero: minus 273.2 degrees celsius Liquid liquefy(液化)Hydrogen(氢) Helium(氦) Nitrogen(氮)Coolant(冷却剂)Superfluid(超流体) Viscosity(黏度)Superconductor(超导体)magnetic levitation(磁悬浮)levitating train/ Maglev(磁悬浮列车) Joseph Son Junction。
仪器分析专业名词英文及名词解释仪器分析专业名词英文及名词解释一、紫外-可见光分光光度法1、透光率(transmittance):透过样品的光强度与入射光强度之比。
2、吸收度(absorbance):透光率的负对数。
3、生色团(chromophore):含有π→π*或n→π*跃迁的基团。
4、助色团(auxochrome):含孤对电子(非键电子)的杂原子基团。
5、摩尔吸收系数(molar absorptivity):一定波长时,溶液浓度为1mol/L,光程为1cm时的吸收度。
6、比吸收系数(specific absorptivity):一定波长时,溶液浓度为1%(W/V),光程为1cm时的吸收度。
7、红移(red shift):化合物结构改变(共轭,引入助色团,溶剂改变等),使吸收峰向长波长移动的现象。
8、蓝移(blue shift):当化合物结构改变或受溶剂的影响等原因使吸收峰向短波长移动的现象。
也称短移(hypso chromic shift)。
9、增色效应(hyperchromic effect):由于化合物结构改变或其他原因使吸收强度增加的效应。
10、减色效应(hypochromic effect):由于化合物结构改变或其他原因使吸收强度减弱的效应。
11、末端吸收(end absorption):在短波长处(200nm左右)只呈现强吸收,而不成峰形的部分。
12、标准对照法:在相同条件下配制标准溶液和样品溶液,在选定的波长下分别测定吸光度,根据朗伯-比尔定律计算样品浓度的定量定性分析方法。
13、K带:共轭双键中π→π*跃迁所产生的吸收带,强吸收,ε>104。
14、R带:由n→π*引起的吸收带,弱吸收。
15、吸收带:吸收峰在紫外可见光谱中的波带位置(R、K、B和E带)。
16、B带和E带:芳香族(含芳香族)化合物的特征吸收带。
二、荧光分析法1、荧光(fluorescence):由第一激发单线态的最低振动能级回到基态任一振动能级时发射的光。
A.C magnetic saturation 交流磁饱和Absorbed dose 吸收剂量Absorbed dose rate 吸收剂量率Acceptanc limits 验收范围Acceptance level 验收水平Acceptance standard 验收标准Accumulation test 累积检测Acoustic emission count(emission count)声发射计数(发射计数)Acoustic emission transducer 声发射换能器(声发射传感器)Acoustic emission(AE) 声发射Acoustic holography 声全息术Acoustic impedance 声阻抗Acoustic impedance matching 声阻抗匹配Acoustic .[ə'ku:stik] impedance method 声阻法Acoustic wave 声波Acoustical lens 声透镜Acoustic—ultrasonic .[,ʌltrə'sɔnɪk] 声-超声(AU)Activation 活化Activity .[æk'tiviti] 活度Adequate shielding 安全屏蔽Ampere turns 安匝数Amplitude 幅度Angle beam method 斜射法Angle of incidence[t`nk`gQnk]入射角Angle of reflection[q`tipThXQn]反射角Angle of spread[kdqTg]指向角Angle of squint[khr`nf]偏向角Angle probe[dqQbe]斜探头Angstrom unit 埃(A)Area amplitude response curve 面积幅度曲线Area of interest 评定区Arliflcial disconlinuity 人工不连续性Artifact[tFBf`i@hf]假缺陷Artificial[uFBf`ti`XQp]defect [g`tiThf]人工缺陷Artificial discontinuity [ug`khOnf`tnsbB`f`]标准人工缺陷A-scan A型扫描A-scope; A-scan A型显示Attenuation coefficient 衰减系数Attenuator 衰减器Audible leak indicator 音响泄漏指示器Automatic testing 自动检测Autoradiography 自射线照片Avaluation 评定Barium concrete 钡混凝土Barn[bɑ:n] 靶Base fog[fɔɡ] 片基灰雾Bath 槽液Bayard- Alpert ionization gage B- A型电离计Beam [bi:m] 声束Beam angle.*'æŋɡl] 束张角Beam axis.['æksis] 声束轴线Beam index.['indeks] 声束入射点Beam path.[pɑ:θ] location.[ləu'keiʃən] 声程定位Beam path; path length 声程Beam spread .[spred] 声束扩散Betatron 电子感应加速器Bimetallic strip gage 双金属片计Bipolar field 双极磁场Black light filter 黑光滤波器Black light; ultraviolet radiation 黑光Blackbody 黑体Blackbody equivalent temperature 黑体等效温度Bleakney mass spectrometer 波利克尼质谱仪Bleedout 渗出Bottom echo['ekəu] 底面回波Bottom surface 底面Boundary echo(first) 边界一次回波Bremsstrahlung 轫致辐射Broad-beam condition 宽射束Brush application 刷涂B-scan presentation.[,prezən'teiʃən] B型扫描显示B-scope.[skəup]; B-scan B型显示C- scan C型扫描Calibration,instrument 设备校准Capillary action 毛细管作用Carrier fluid 载液Carry over of penetrate 渗透剂移转Cassette 暗合Cathode 阴极Central conductor 中心导体Central conductor method 中心导体法Characteristic .[,kæriktə'ristik] curve .[kə:'vet]特性曲线Characteristic curve of film 胶片特性曲线Characteristic radiation .[,reidi'eiʃən] 特征辐射Chemical fog 化学灰雾Cine-radiography 射线(活动)电影摄影术Cintact pads 接触垫Circumferential coils 圆环线圈Circumferential field 周向磁场Circumferential magnetization method 周向磁化法Clean 清理Clean- up 清除Clearing time 定透时间Coercive force 矫顽力Coherence 相干性Coherence length 相干长度(谐波列长度)Coi1,test 测试线圈Coil size 线圈大小Coil spacing 线圈间距Coil technique 线圈技术Coil method 线圈法Coilreference 线圈参考Coincidence discrimination 符合鉴别Cold-cathode ionization gage 冷阴极电离计Collimator 准直器Collimation 准直Collimator 准直器Combined colour comtrast and fluorescent penetrant 着色荧光渗透剂Compressed air drying 压缩空气干燥Compressional wave 压缩波Compton scatter 康普顿散射Continuous emission 连续发射Continuous linear array 连续线阵Continuous method 连续法Continuous spectrum 连续谱Continuous wave 连续波Contract stretch 对比度宽限Contrast 对比度Contrast agent 对比剂Contrast aid 反差剂Contrast sensitivity 对比灵敏度Control echo 监视回波Control echo 参考回波Couplant 耦合剂Coupling .['kʌpliŋ+耦合Coupling losses 耦合损失Cracking .*'krækiŋ+裂解Creeping .[kri:p] wave .[weiv] 爬波Critical .['kritikəl] angle 临界角Cross section 横截面Cross talk 串音Cross-drilled hole 横孔Crystal .['kristəl] 晶片C-scope; C-scan C型显示Curie point 居里点Curie temperature 居里温度Curie(Ci) 居里Current flow method 通电法Current induction method 电流感应法Current magnetization method 电流磁化法Cut-off level 截止电平Dead zone 盲区Decay curve 衰变曲线Decibel(dB) 分贝Defect 缺陷Defect resolution 缺陷分辨力Defect detection sensitivity 缺陷检出灵敏度Defect resolution 缺陷分辨力Definition 清晰度Definition,image definition 清晰度,图像清晰度Demagnetization 退磁Demagnetization factor 退磁因子Demagnetizer 退磁装置Densitometer 黑度计Density 黑度(底片)Density comparison strip 黑度比较片Detecting medium 检验介质Detergent remover 洗净液Developer 显像剂Developer station 显像工位Developer,agueons 水性显象剂Developer,dry 干显象剂Developer,liquid film 液膜显象剂Developer,nonaqueous (sus- pendible)非水(可悬浮)显象剂Developing time 显像时间Development 显影Diffraction mottle 衍射斑Diffuse indications 松散指示Diffusion 扩散Digital image acquisition system 数字图像识别系统Dilatational wave 膨胀波Dip and drain station 浸渍和流滴工位Direct contact magnetization 直接接触磁化Direct exposure imaging 直接曝光成像Direct contact method 直接接触法Directivity 指向性Discontinuity 不连续性Distance- gain- size-German AVG 距离- 增益- 尺寸(DGS德文为AVG)Distance marker; time marker 距离刻度Dose equivalent 剂量当量Dose rate meter 剂量率计Dosemeter 剂量计Double crystal probe 双晶片探头Double probe technique 双探头法Double transceiver technique 双发双收法Double traverse technique 二次波法Dragout 带出Drain time 滴落时间Drain time 流滴时间Drift 漂移Dry method 干法Dry powder 干粉Dry technique 干粉技术Dry developer 干显像剂Dry developing cabinet 干显像柜Dry method 干粉法Drying oven 干燥箱Drying station 干燥工位Drying time 干燥时间D-scope; D-scan D型显示Dual search unit 双探头Dual-focus tube 双焦点管Duplex-wire image quality indicator 双线像质指示器Duration 持续时间Dwell time 停留时间Dye penetrant 着色渗透剂Dynamic leak test 动态泄漏检测Dynamic leakage measurement 动态泄漏测量Dynamic range 动态范围Dynamic radiography 动态射线透照术Echo 回波Echo frequency 回波频率Echo height 回波高度Echo indication 回波指示Echo transmittance of sound pressure 往复透过率Echo width 回波宽度Eddy current 涡流Eddy current flaw detector 涡流探伤仪Eddy current testiog 涡流检测Edge 端面Edge effect 边缘效应Edge echo 棱边回波Edge effect 边缘效应Effective depth penetration (EDP)有效穿透深度Effective focus size 有效焦点尺寸Effective magnetic permeability 有效磁导率Effective permeability 有效磁导率Effective reflection surface of flaw 缺陷有效反射面Effective resistance 有效电阻Elastic medium 弹性介质Electric displacement 电位移Electrical center 电中心Electrode 电极Electromagnet 电磁铁Electro-magnetic acoustic transducer 电磁声换能器Electromagnetic induction 电磁感应Electromagnetic radiation 电磁辐射Electromagnetic testing 电磁检测Electro-mechanical coupling factor 机电耦合系数Electron radiography 电子辐射照相术Electron volt 电子伏恃Electronic noise 电子噪声Electrostatic spraying 静电喷涂Emulsification 乳化Emulsification time 乳化时间Emulsifier 乳化剂Encircling coils 环绕式线圈End effect 端部效应Energizing cycle 激励周期Equalizing filter 均衡滤波器Equivalent 当量Equivalent I.Q. I. Sensitivity 象质指示器当量灵敏度Equivalent nitrogen pressure 等效氮压Equivalent penetrameter sensifivty 透度计当量灵敏度Equivalent method 当量法Erasabl optical medium 可探光学介质Etching 浸蚀Evaluation 评定Evaluation threshold 评价阈值Event count 事件计数Event count rate 事件计数率Examination area 检测范围Examination region 检验区域Exhaust pressure/discharge pressure 排气压力Exhaust tubulation 排气管道Expanded time-base sweep 时基线展宽Exposure 曝光Exposure table 曝光表格Exposure chart 曝光曲线Exposure fog 曝光灰雾Exposure,radiographic exposure 曝光,射线照相曝光Extended source 扩展源Facility scattered neutrons 条件散射中子False indication 假指示Family 族Far field 远场Feed-through coil 穿过式线圈Field,resultant magnetic 复合磁场Fill factor 填充系数Film speed 胶片速度Film badge 胶片襟章剂量计Film base 片基Film contrast 胶片对比度Film gamma 胶片γ值Film processing 胶片冲洗加工Film speed 胶片感光度Film unsharpness 胶片不清晰度Film viewing screen 观察屏Filter 滤波器/滤光板Final test 复探Flat-bottomed hole 平底孔Flat-bottomed hole equivalent 平底孔当量Flaw 伤Flaw characterization 伤特性Flaw echo 缺陷回波Flexural wave 弯曲波Floating threshold 浮动阀值Fluorescence 荧光Fluorescent examination method 荧光检验法Fluorescent magnetic particle inspection 荧光磁粉检验Fluorescent dry deposit penetrant 干沉积荧光渗透剂Fluorescent light 荧光Fluorescent magnetic powder 荧光磁粉Fluorescent penetrant 荧光渗透剂Fluorescent screen 荧光屏Fluoroscopy 荧光检查法Flux leakage field 磁通泄漏场Flux lines 磁通线Focal spot 焦点Focal distance 焦距Focus length 焦点长度Focus size 焦点尺寸Focus width 焦点宽度Focus(electron) 电子焦点Focused beam 聚焦声束Focusing probe 聚焦探头Focus-to-film distance(f.f.d) 焦点-胶片距离(焦距)Fog 底片灰雾Fog density 灰雾密度Footcandle 英尺烛光Frequency 频率Frequency constant 频率常数Fringe 干涉带Front distance 前沿距离Front distance of flaw 缺陷前沿距离Full- wave direct current(FWDC)全波直流Fundamental frequency 基频Furring 毛状迹痕Gage pressure 表压Gain 增益Gamma radiography γ射线透照术Gamma ray source γ射线源Gamma ray source container γ射线源容器Gamma rays γ射线Gamma-ray radiographic equipment γ射线透照装置Gap scanning 间隙扫查Gas 气体Gate 闸门Gating technique 选通技术Gauss 高斯Geiger-Muller counter 盖革.弥勒计数器Geometric unsharpness 几何不清晰度Gray(Gy) 戈瑞Grazing incidence 掠入射Grazing angle 掠射角Group velocity 群速度Half life 半衰期Half- wave current (HW)半波电流Half-value layer(HVL) 半值层Half-value method 半波高度法Halogen 卤素Halogen leak detector 卤素检漏仪Hard X-rays 硬X射线Hard-faced probe 硬膜探头Harmonic analysis 谐波分析Harmonic distortion 谐波畸变Harmonics 谐频Head wave 头波Helium bombing 氦轰击法Helium drift 氦漂移Helium leak detector 氦检漏仪Hermetically tight seal 气密密封High vacuum 高真空High energy X-rays 高能X射线Holography (optical) 光全息照相Holography,acoustic 声全息Hydrophilic emulsifier 亲水性乳化剂Hydrophilic remover 亲水性洗净剂Hydrostatic text 流体静力检测Hysteresis 磁滞Hysteresis 磁滞IACS IACSID coil ID线圈Image definition 图像清晰度Image contrast 图像对比度Image enhancement 图像增强Image magnification 图像放大Image quality 图像质量Image quality indicator sensitivity 像质指示器灵敏度Image quality indicator(IQI)/image quality indication 像质指示器Imaging line scanner 图像线扫描器Immersion probe 液浸探头Immersion rinse 浸没清洗Immersion testing 液浸法Immersion time 浸没时间Impedance 阻抗Impedance plane diagram 阻抗平面图Imperfection 不完整性Impulse eddy current testing 脉冲涡流检测Incremental permeability 增量磁导率Indicated defect area 缺陷指示面积Indicated defect length 缺陷指示长度Indication 指示Indirect exposure 间接曝光Indirect magnetization 间接磁化Indirect magnetization method 间接磁化法Indirect scan 间接扫查Induced field 感应磁场Induced current method 感应电流法Infrared imaging system 红外成象系统Infrared sensing device 红外扫描器Inherent fluorescence 固有荧光Inherent filtration 固有滤波Initial permeability 起始磁导率Initial pulse 始脉冲Initial pulse width 始波宽度Inserted coil 插入式线圈Inside coil 内部线圈Inside- out testing 外泄检测Inspection 检查Inspection medium ['mi:djəm] 检查介质Inspection frequency/ test frequency 检测频率Intensifying factor 增感系数Intensifying screen 增感屏Interal,arrival time (Δtij)/arrival time interval(Δtij)到达时间差(Δtij) Interface boundary 界面Interface echo 界面回波Interface trigger 界面触发Interference 干涉Interpretation 解释Ion pump 离子泵Ion source 离子源Ionization chamber 电离室Ionization potential 电离电位Ionization vacuum gage 电离真空计Ionography 电离射线透照术Irradiance,E 辐射通量密度,E Isolation 隔离检测Isotope 同位素K value K值Kaiser effect 凯塞(Kaiser)效应Kilo volt kv 千伏特Kiloelectron volt keV千电子伏特Krypton 85 氪85L/D ratio L/D比Lamb wave 兰姆波Latent image 潜象Lateral scan 左右扫查Lateral scan with oblique angle 斜平行扫查Latitude (of an emulsion) 胶片宽容度Lead screen 铅屏Leak 泄漏孔Leak artifact 泄漏器Leak detector 检漏仪Leak testtion 泄漏检测Leakage field 泄漏磁场Leakage rate 泄漏率Leechs 磁吸盘Lift-off effect 提离效应Light intensity 光强度Limiting resolution 极限分辨率Line scanner 线扫描器Line focus 线焦点Line pair pattern 线对检测图Line pairs per millimetre 每毫米线对数Linear (electron) accelerator(LINAC) 电子直线加速器Linear attenuation coefficient 线衰减系数Linear scan 线扫查Linearity (time or distance)线性(时间或距离)Linearity,anplitude 幅度线性Lines of force 磁力线Lipophilic emulsifier 亲油性乳化剂Lipophilic remover 亲油性洗净剂Liquid penetrant examination 液体渗透检验Liquid film developer 液膜显像剂Local magnetization 局部磁化Local magnetization method 局部磁化法Local scan 局部扫查Localizing cone 定域喇叭筒Location 定位Location accuracy 定位精度Location computed 定位,计算Location marker 定位标记Location upon delta-T 时差定位Location,clusfer 定位,群集Location,continuous AE signal 定位,连续AE信号Longitudinal field 纵向磁场Longitudinal magnetization method 纵向磁化法Longitudinal resolution 纵向分辨率Longitudinal wave 纵波Longitudinal wave probe 纵波探头Longitudinal wave technique 纵波法Loss of back reflection 背面反射损失Loss of back reflection 底面反射损失Love wave 乐甫波Low energy gamma radiation 低能γ辐射Low-enerugy photon radiation 低能光子辐射Luminance 亮度Luminosity 流明Lusec 流西克Maga or million electron volts MeV兆电子伏特Magnetic history 磁化史Magnetic hysteresis 磁性滞后Magnetic particle field indication 磁粉磁场指示器Magnetic particle inspection flaw indications 磁粉检验的伤显示Magnetic circuit 磁路Magnetic domain 磁畴Magnetic field distribution 磁场分布Magnetic field indicator 磁场指示器Magnetic field meter 磁场计Magnetic field strength 磁场强度(H)Magnetic field/field,magnetic 磁场Magnetic flux 磁通Magnetic flux density 磁通密度Magnetic force 磁化力Magnetic leakage field 漏磁场Magnetic leakage flux 漏磁通Magnetic moment 磁矩Magnetic particle 磁粉Magnetic particle indication 磁痕Magnetic particle testing/magnetic particle examination 磁粉检测Magnetic permeability 磁导率Magnetic permeability 磁导率Magnetic pole 磁极Magnetic saturataion 磁饱和Magnetic saturation 磁饱和Magnetic slorage meclium 磁储介质Magnetic writing 磁写Magnetizing 磁化Magnetizing current 磁化电流Magnetizing coil 磁化线圈Magnetostrictive effect 磁致伸缩效应Magnetostrictive transducer 磁致伸缩换能器Main beam 主声束Manual testing 手动检测Markers 时标MA-scope; MA-scan MA型显示Masking 遮蔽Mass attcnuation coefficient 质量吸收系数Mass number 质量数Mass spectrometer (M.S.)质谱仪Mass spectrometer leak detector 质谱检漏仪Mass spectrum 质谱Master/slave discrimination 主从鉴别MDTD 最小可测温度差Mean free path 平均自由程Medium vacuum 中真空Mega or million volt MV兆伏特Micro focus X - ray tube 微焦点X 光管Microfocus radiography 微焦点射线透照术Micrometre 微米Micron of mercury 微米汞柱Microtron 电子回旋加速器Milliampere 毫安(mA)Millimetre of mercury 毫米汞柱Minifocus x- ray tube 小焦点调射线管Minimum detectable leakage rate 最小可探泄漏率Minimum resolvable temperature difference (MRTD)最小可分辨温度差(MRDT)Mode 波型Mode conversion 波型转换Mode transformation 波型转换Moderator 慢化器Modulation transfer function (MTF)调制转换功能(MTF)Modulation analysis 调制分析Molecular flow 分子流Molecular leak 分子泄漏Monitor 监控器Monochromatic 单色波Movement unsharpness 移动不清晰度Moving beam radiography 可动射束射线透照术Multiaspect magnetization method 多向磁化法Multidirectional magnetization 多向磁化Multifrequency eddy current testiog 多频涡流检测Multiple back reflections 多次背面反射Multiple reflections 多次反射Multiple back reflections 多次底面反射Multiple echo method 多次反射法Multiple probe technique 多探头法Multiple triangular array 多三角形阵列Narrow beam condition 窄射束NC NCNear field 近场Near field length 近场长度Near surface defect 近表面缺陷Net density 净黑度Net density 净(光学)密度Neutron 中子Neutron radiograhy 中子射线透照Neutron radiography 中子射线透照术Newton (N)牛顿Nier mass spectrometer 尼尔质谱仪Noise 噪声Noise 噪声Noise equivalent temperature difference (NETD)噪声当量温度差(NETD)Nominal angle 标称角度Nominal frequency 标称频率Non-aqueous liquid developer 非水性液体显像剂Noncondensable gas 非冷凝气体Nondcstructivc Examination(NDE)无损试验Nondestructive Evaluation(NDE)无损评价Nondestructive Inspection(NDI)无损检验Nondestructive Testing(NDT)无损检测Nonerasble optical data 可固定光学数据Nonferromugnetic material 非铁磁性材料Nonrelevant indication 非相关指示Non-screen-type film 非增感型胶片Normal incidence 垂直入射(亦见直射声束)Normal permeability 标准磁导率Normal beam method; straight beam method 垂直法Normal probe 直探头Normalized reactance 归一化电抗Normalized resistance 归一化电阻Nuclear activity 核活性Nuclide 核素Object plane resolution 物体平面分辨率Object scattered neutrons 物体散射中子Object beam 物体光束Object beam angle 物体光束角Object-film distance 被检体-胶片距离Object一film distance 物体- 胶片距离Over development 显影过度Over emulsfication 过乳化Overall magnetization 整体磁化Overload recovery time 过载恢复时间Overwashing 过洗Oxidation fog 氧化灰雾P PPair production 偶生成Pair production 电子对产生Pair production 电子偶的产生Palladium barrier leak detector 钯屏检漏仪Panoramic exposure 全景曝光Parallel scan 平行扫查Paramagnetic material 顺磁性材料Parasitic echo 干扰回波Partial pressure 分压Particle content 磁悬液浓度Particle velocity 质点(振动)速度Pascal (Pa)帕斯卡(帕)Pascal cubic metres per second 帕立方米每秒(Pa•m3/s )Path length 光程长Path length difference 光程长度差Pattern 探伤图形Peak current 峰值电流Penetrameter 透度计Penetrameter sensitivity 透度计灵敏度Penetrant 渗透剂Penetrant comparator 渗透对比试块Penetrant flaw detection 渗透探伤Penetrant removal 渗透剂去除Penetrant station 渗透工位Penetrant,water- washable 水洗型渗透剂Penetration 穿透深度Penetration time 渗透时间Permanent magnet 永久磁铁Permeability coefficient 透气系数Permeability,a-c 交流磁导率Permeability,d-c 直流磁导率Phantom echo 幻象回波Phase analysis 相位分析Phase angle 相位角Phase controlled circuit breaker 断电相位控制器Phase detection 相位检测Phase hologram 相位全息Phase sensitive detector 相敏检波器Phase shift 相位移Phase velocity 相速度Phase-sensitive system 相敏系统Phillips ionization gage 菲利浦电离计Phosphor 荧光物质Photo fluorography 荧光照相术Photoelectric absorption 光电吸收Photographic emulsion 照相乳剂Photographic fog 照相灰雾Photostimulable luminescence 光敏发光Piezoelectric effect 压电效应Piezoelectric material 压电材料Piezoelectric stiffness constant 压电劲度常数Piezoelectric stress constant 压电应力常数Piezoelectric transducer 压电换能器Piezoelectric voltage constant 压电电压常数Pirani gage 皮拉尼计Pirani gage 皮拉尼计Pitch and catch technique 一发一收法Pixel 象素Pixel size 象素尺寸Pixel,disply size 象素显示尺寸Planar array 平面阵(列)Plane wave 平面波Plate wave 板波Plate wave technique 板波法Point source 点源Post emulsification 后乳化Post emulsifiable penetrant 后乳化渗透剂Post-cleaning 后清除Post-cleaning 后清洗Powder 粉未Powder blower 喷粉器Powder blower 磁粉喷枪Pre-cleaning 预清理Pressure .['preʃə]difference 压力差Pressure dye test 压力着色检测Pressure probe [prəub] 压力探头Pressure testing 压力检测Pressure- evacuation test 压力抽空检测Pressure mark 压痕Pressure,design 设计压力Pre-test 初探Primary coil 一次线圈Primary radiation 初级辐射Probe gas 探头气体Probe test 探头检测Probe backing 探头背衬Probe coil 点式线圈Probe coil 探头式线圈Probe coil clearance 探头线圈间隙Probe index 探头入射点Probe to weld distance 探头-焊缝距离Probe/ search unit 探头Process control radiograph 工艺过程控制的射线照相Processing capacity 处理能力Processing speed 处理速度Prods 触头Projective radiography 投影射线透照术Proportioning probe 比例探头Protective material 防护材料Proton radiography 质子射线透照Pulse 脉冲波Pulse 脉冲Pulse echo method 脉冲回波法Pulse repetition rate 脉冲重复率Pulse amplitude 脉冲幅度Pulse echo method 脉冲反射法Pulse energy 脉冲能量Pulse envelope 脉冲包络Pulse length 脉冲长度Pulse repetition frequency 脉冲重复频率Pulse tuning 脉冲调谐Pump- out tubulation 抽气管道Pump-down time 抽气时间Q factor Q值Quadruple traverse technique 四次波法Quality (of a beam of radiation) 射线束的质Quality factor 品质因数Quenching 阻塞Quenching of fluorescence 荧光的猝灭Quick break 快速断间Rad(rad) 拉德Radiance,L 面辐射率,LRadiant existence,M 幅射照度MRadiant flux;radiant power,ψe辐射通量、辐射功率、ψe Radiation 辐射Radiation does 辐射剂量Radio frequency (r- f)display 射频显示Radio- frequency mass spectrometer 射频质谱仪Radio frequency(r-f) display 射频显示Radiograph 射线底片Radiographic contrast 射线照片对比度Radiographic equivalence factor 射线照相等效系数Radiographic exposure 射线照相曝光量Radiographic inspection 射线检测Radiographic inspection 射线照相检验Radiographic quality 射线照相质量Radiographic sensitivity 射线照相灵敏度Radiographic contrast 射线底片对比度Radiographic equivalence factor 射线透照等效因子Radiographic inspection 射线透照检查Radiographic quality 射线透照质量Radiographic sensitivity 射线透照灵敏度Radiography 射线照相术Radiological examination 射线检验Radiology 射线学Radiometer 辐射计Radiometry 辐射测量术Radioscopy 射线检查法Range 量程Rayleigh wave 瑞利波Rayleigh scattering 瑞利散射Real image 实时图像Real-time radioscopy 实时射线检查法Rearm delay time 重新准备延时时间Rearm delay time 重新进入工作状态延迟时间Reciprocity failure 倒易律失效Reciprocity law 倒易律Recording medium 记录介质Recovery time 恢复时间Rectified alternating current 脉动直流电Reference block 参考试块Reference beam 参考光束Reference block 对比试块Reference block method 对比试块法Reference coil 参考线圈Reference line method 基准线法Reference standard 参考标准Reflection 反射Reflection coefficient 反射系数Reflection density 反射密度Reflector 反射体Refraction 折射Refractive index 折射率Refrence beam angle 参考光束角Reicnlbation 网纹Reject.[ri'dʒekt]; suppression.[sə'preʃən] 抑制Rejection level 拒收水平Relative permeability 相对磁导率Relevant.['reləvənt] indication 相关指示Reluctance 磁阻Rem(rem) 雷姆Remote controlled testing 机械化检测Replenisers 补充剂Representative quality indicator 代表性质量指示器Residual magnetic field/field,residual magnetic 剩磁场Residual technique 剩磁技术Residual magnetic method 剩磁法Residual magnetism 剩磁Resistance (to flow)气阻Resolution 分辨力Resonance method 共振法Response factor 响应系数Response time 响应时间Resultant field 复合磁场Resultant magnetic field 合成磁场Resultant magnetization method 组合磁化法Retentivity 顽磁性Reversal 反转现象Ring-down count 振铃计数Ring-down count rate 振铃计数率Rinse 清洗Rise time 上升时间Rise-time discrimination 上升时间鉴别Rod-anode tube 棒阳极管Roentgen(R) 伦琴Roof angle 屋顶角Rotational magnetic field 旋转磁场Rotational magnetic field method 旋转磁场法Rotational scan 转动扫查Roughing 低真空Roughing line 低真空管道Roughing pump 低真空泵S SSafelight 安全灯Sampling probe 取样探头Saturation 饱和Saturation,magnetic 磁饱和Saturation level 饱和电平Scan on grid lines 格子线扫查Scan pitch 扫查间距Scanning 扫查Scanning index 扫查标记Scanning directly on the weld 焊缝上扫查Scanning path 扫查轨迹Scanning sensitivity 扫查灵敏度Scanning speed 扫查速度Scanning zone 扫查区域Scattared energy 散射能量Scatter unsharpness 散射不清晰度Scattered neutrons 散射中子Scattered radiation 散射辐射Scattering 散射.['skætə]Schlieren system 施利伦系统Scintillation counter 闪烁计数器Scintillator and scintillating crystals 闪烁器和闪烁晶体Screen 屏Screen unsharpness 荧光增感屏不清晰度Screen-type film 荧光增感型胶片SE probe SE探头Search-gas 探测气体Second critical angle 第二临界角Secondary radiation 二次射线Secondary coil 二次线圈Secondary radiation 次级辐射Selectivity 选择性Semi-conductor detector 半导体探测器Sensitirity va1ue 灵敏度值Sensitivity 灵敏度Sensitivity of leak test 泄漏检测灵敏度Sensitivity control 灵敏度控制Shear wave 切变波Shear wave probe 横波探头Shear wave technique 横波法Shim 薄垫片Shot 冲击通电Side lobe 副瓣Side wall 侧面Sievert(Sv) 希(沃特)Signal 信号Signal gradient 信号梯度Signal over load point 信号过载点Signal overload level 信号过载电平Signal to noise ratio 信噪比Single crystal probe 单晶片探头Single probe technique 单探头法Single traverse technique 一次波法Sizing technique 定量法Skin depth 集肤深度Skin effect 集肤效应Skip distance 跨距Skip point 跨距点Sky shine(air scatter) 空中散射效应Sniffing probe 嗅吸探头Soft X-rays 软X射线Soft-faced probe 软膜探头Solarization 负感作用Solenoid 螺线管Soluble developer 可溶显像剂Solvent remover 溶剂去除剂Solvent cleaners 溶剂清除剂Solvent developer 溶剂显像剂Solvent remover 溶剂洗净剂Solvent-removal penetrant 溶剂去除型渗透剂Sorption 吸着Sound diffraction 声绕射Sound insulating layer 隔声层Sound intensity 声强Sound intensity level 声强级Sound pressure 声压Sound scattering 声散射Sound transparent layer 透声层Sound velocity 声速Source 源Source data label 放射源数据标签Source location 源定位Source size 源尺寸Source-film distance 射线源-胶片距离Spacial frequency 空间频率Spark coil leak detector 电火花线圈检漏仪Specific activity 放射性比度Specified sensitivity 规定灵敏度Standard 标准Standard 标准试样Standard leak rate 标准泄漏率Standard leak 标准泄漏孔Standard tast block 标准试块Standardization instrument 设备标准化Standing wave; stationary wave 驻波Step wedge 阶梯楔块Step- wadge calibration film 阶梯楔块校准底片Step- wadge comparison film 阶梯楔块比较底片Step wedge 阶梯楔块Step-wedge calibration film 阶梯-楔块校准片Step-wedge comparison film 阶梯-楔块比较片Stereo-radiography 立体射线透照术Subject contrast 被检体对比度Subsurface discontinuity 近表面不连续性Suppression 抑制Surface echo 表面回波Surface field 表面磁场Surface noise 表面噪声Surface wave 表面波Surface wave probe 表面波探头Surface wave technique 表面波法Surge magnetization 脉动磁化Surplus sensitivity 灵敏度余量Suspension 磁悬液Sweep 扫描Sweep range 扫描范围Sweep speed 扫描速度Swept gain 扫描增益Swivel scan 环绕扫查System exanlillatien threshold 系统检验阈值System inclacel artifacts 系统感生物System noise 系统噪声Tackground,target 目标本底Tandem scan 串列扫查Target 耙Target 靶Television fluoroscopy 电视X射线荧光检查Temperature envelope 温度范围Tenth-value-layer(TVL) 十分之一值层Test coil 检测线圈Test quality level 检测质量水平Test ring 试环Test block 试块Test frequency 试验频率Test piece 试片Test range 探测范围Test surface 探测面Testing,ulrasonic 超声检测Thermal neutrons 热中子Thermocouple gage 热电偶计Thermogram 热谱图Thermography,infrared 红外热成象Thermoluminescent dosemeter(TLD) 热释光剂量计Thickness sensitivity 厚度灵敏度Third critiical angle 第三临界角Thixotropic penetrant 摇溶渗透剂Thormal resolution 热分辨率Threading bar 穿棒Three way sort 三档分选Threshold setting 门限设置Threshold fog 阈值灰雾Threshold level 阀值Threshotd tcnet 门限电平Throttling 节流Through transmission technique 穿透技术Through penetration technique 贯穿渗透法Through transmission technique; transmission technique 穿透法Through-coil technique 穿过式线圈技术Throughput 通气量Tight 密封Total reflection 全反射Totel image unsharpness 总的图像不清晰度Tracer probe leak location 示踪探头泄漏定位Tracer gas 示踪气体Transducer 换能器/传感器Transition flow 过渡流Translucent base media 半透明载体介质Transmission 透射Transmission densitomefer 发射密度计Transmission coefficient 透射系数Transmission point 透射点Transmission technique 透射技术Transmittance,τ透射率τTransmitted film density 检测底片黑度Transmitted pulse 发射脉冲Transverse resolution 横向分辨率Transverse wave 横波Traveling echo 游动回波Travering scan; depth scan 前后扫查Triangular array 正三角形阵列Trigger/alarm condition 触发/报警状态Trigger/alarm level 触发/报警标准Triple traverse technique 三次波法True continuous technique 准确连续法技术Trueattenuation 真实衰减Tube current 管电流Tube head 管头Tube shield 管罩Tube shutter 管子光闸Tube window 管窗Tube-shift radiography 管子移位射线透照术Two-way sort 两档分选Ultra- high vacuum 超高真空Ultrasonic leak detector 超声波检漏仪Ultrasonic noise level 超声噪声电平Ultrasonic cleaning 超声波清洗Ultrasonic field 超声场Ultrasonic flaw detection 超声探伤Ultrasonic flaw detector 超声探伤仪Ultrasonic microscope 超声显微镜Ultrasonic spectroscopy 超声频谱Ultrasonic testing system 超声检测系统Ultrasonic thickness gauge 超声测厚仪Ultraviolet radiation 紫外辐射Under development 显影不足Unsharpness 不清晰Useful density range 有效光学密度范围UV-A A类紫外辐射UV-A filter A类紫外辐射滤片Vacuum 真空Vacuum cassette 真空暗盒Vacuum testing 真空检测Vacuum cassette 真空暗合Van de Graaff generator 范德格喇夫起电机Vapor pressure 蒸汽压Vapour degreasing 蒸汽除油Variable angle probe 可变角探头Vee path V型行程Vehicle 载体Vertical linearity 垂直线性Vertical location 垂直定位Visible light 可见光Vitua limage 虚假图像Voltage threshold 电压阈值Voltage threshold 阈值电压Wash station 水洗工位Water break test 水膜破坏试验Water column coupling method 水柱耦合法Water column probe 水柱耦合探头Water path; water distance 水程Water tolerance 水容限Water-washable penetrant 可水洗型渗透剂Wave 波Wave guide acoustic emission 声发射波导杆Wave train 波列Wave from 波形Wave front 波前Wave length 波长Wave node 波节Wave train 波列Wedge 斜楔Wet slurry technique 湿软磁膏技术Wet technique 湿法技术Wet method 湿粉法Wetting action 润湿作用Wetting action 润湿作用Wetting agents 润湿剂Wheel type probe; wheel search unit 轮式探头。
a r X i v :h e p -p h /0401048v 2 31 M a r 2004Decay widths and energy shifts of ππand πKatomsJ.SchweizerInstitute for Theoretical Physics,University of Bern,Sidlerstrasse 5,CH-3012Bern,SwitzerlandE-mail:schweizer@itp.unibe.ch1IntroductionNearly fifty years ago,Deser et al.[1]derived the formulae for the decay width and strong energy shift of pionic hydrogen at leading order in isospin symme-try breaking.Similar relations also hold for π+π−[2]and π−K +atoms,which decay predominantly into 2π0and π0K 0,respectively.These Deser-type rela-tions allow to extract the scattering lengths from measurements of the decay width and the strong energy shift.The DIRAC collaboration [3]at CERN in-tends to measure the lifetime of pionium in its ground state at the 10%level,which will allow to extract the scattering length difference |a 00−a 20|at 5%accuracy.The experimental result can then be compared with theoretical pre-dictions for the S-wave scattering lengths [4–6]and with the results from other experiments [7].Particularly interesting is the fact that one may determine in this manner the nature of the SU(2)×SU(2)spontaneous chiral symmetry breaking experimentally [8].New experiments are proposed for CERN PS and J-PARC in Japan [9].In order to determine the scattering lengths from such experiments,the theoretical expressions for the decay width and the strong energy shift must be known to an accuracy that matches the experimentalprecision.For this reason,the ground state decay width of pionium has been evaluated at next-to-leading order[10–15]in the isospin symmetry breakingparameterδ,where both thefine-structure constantαand(m u−m d)2count as O(δ).The aim of the present article is to provide the corresponding for-mulae for the S-wave decay widths and strong energy shifts of pionium and theπ±K∓atom at next-to-leading order in isospin symmetry breaking.A detailed derivation of the results will be provided elsewhere[16].The strong energy shift of theπ±K∓atom is proportional to the sum of the isospin even and odd S-waveπK scattering lengths a+0+a−0.This sum[18–22]is sensitive to the combination of low-energy constants2L r6+L r8[23].The consequences of this observation for the SU(3)×SU(3)quark condensate[24]remain to be worked out.2Non-relativistic frameworkThe non-relativistic effective Lagrangian framework has proven to be a very efficient method to investigate bound state characteristics[12,15,25,26].The non-relativistic Lagrangian is exclusively determined by symmetries,which are rotational invariance,parity and time reversal.It provides a systematic expansion in powers of the isospin breaking parameterδ.What concerns the π−K+atom,we count bothαand m u−m d as orderδ.The different power counting for theπ+π−andπ−K+atoms are due to the fact that in QCD,thechiral expansion of the pion mass difference∆π=M2π+−M2π0is of second orderin m u−m d,while the kaon mass difference∆K=M2K+−M2K0starts atfirst order in m u−m d.In the sector with one or two mesons,the non-relativistic πK Lagrangian is L NR=L1+L2.Thefirst term contains the one-pion and one-kaon sectors,L1=12Mh0+∆22M h++D4and δ4,respectively,L 2=C ′1π†−K †+π−K ++C 2π†−K †+π0K 0+h.c+C 3π†0K †0π0K 0+···(2)The ellipsis stands for higher order terms 1.We work in the center of masssystem and thus omit terms proportional to the total 3-momentum.The total and reduced masses readΣi =M πi +M K i ,µi =M πi M K i6r 2π++ r 2K +,(4)where r 2π+ and r 2K + denote the charge radii of the charged pion and kaon,respectively.The low energy constants C 1,...,C 3may be determined through matching the πK amplitude at threshold for various channels,see section 3.To evaluate the energy shift and decay width of the π−K +atom at next-to-leading order in isospin symmetry breaking,we make use of resolvents.For a detailed discussion of the technique,we refer to Ref.[15].Here,we simply list the results.We use dimensional regularization,to treat both ultraviolet and infrared singularities.Up to and including order δ9/2,the decay into π0K 0is the only decay channel contributing,and we get for the total S-wave decay widthΓn =α3µ3+4π2−αµ2+C 1ξn8M 3π0+M 3K 0n +ln2µ+n,Λ(µ)=µ2(d −3)11The basis of operators containing two space derivatives can be chosen such thatnone of them contributes to the energy shift and decay width at next-to-leading order in isospin symmetry breaking [16].withψ(n)=Γ′(n)/Γ(n)and the running scaleµ.At orderδ4,the total energy shift may be split into a strong part and an electromagnetic part,according to∆E n=∆E h n+∆E em n.(7) For the discussion of the electromagnetic energy shift,we refer to section4. The strong S-wave energy shift reads∆E h n=−α3µ3+2πC21ξn−µ20k202T lm;ikNR(q;p),(9)withωi(p)=(M2i+p2)1/2.The3-momentum p denotes the center of mass momentum of the incoming particles,q the one of the outgoing particles. The effective Lagrangian in Eqs.(1)and(2),allows us to evaluate the non-relativisticπ−K+→π0K0andπ−K+→π−K+scattering amplitudes at threshold at orderδ.In the isospin symmetry limit,the effective couplings C1,C2and C3areC1=2π2πµ+a+0,(10)where the S-wave scattering lengths2a+0=1/3(a1/20+2a3/20)and a−0= 1/3(a1/20−a3/20)are defined in QCD,at m u=m d and Mπ.=Mπ+,M K.=M K+. By substituting these relations into the expression for the decay width(5) and the strong energy shift(8),one obtains the Deser-type formulae[1,2]. We demonstrate the matching at next-to-leading order inδby means of the π−K+→π−K+amplitude.In the presence of virtual photons,wefirst have to subtract the one-photon exchange diagram from the full amplitude,as dis-played in Fig.1.The coupling constant C1is determined by the truncated part¯T±;±NR,which contains an infrared singular Coulomb phaseθc as d→3,=+|p|µd−312[ln4π+Γ′(1)]+ln2|p||p|+B′2ln|p|4Mπ+M K+Re A±;±thr+O(p),(12) with B′1=C1απµ++o(δ),B′2=−C21αµ2+/π+o(δ)and12π 1−Λ(µ)−ln4µ2+2π2(Σ+−Σ0)+o(δ).(13)Here,the ultraviolet pole termΛ(µ)is removed by renormalizing the coupling C1.The renormalization of C1eliminates at the same time the ultraviolet divergence contained in the expression for the energy shift(8).The calcula-tion of the relativisticπ−K+→π−K+scattering amplitude was performed at O(p4,e2p2)in Refs.[20,21].Both the Coulomb phase and the logarithmic singularity in Eq.(12)are absent in the real part of the relativistic ampli-tude at this order of accuracy,theyfirst occur at order e2p4.The quantityRe A±;±thrdenotes the constant term occurring in the real part of the truncated relativistic threshold amplitude.The coupling constant C2may be determined analogously by matching the non-relativisticπ−K+→π0K0amplitude to the relativistic one at orderδ.4Results for theπ−K+atomThe result for the decay width and strong energy shift are valid at next-to-leading order in isospin symmetry breaking,and to all orders in the chiralexpansion.We get for the decay width at order δ9/2,in terms of the relativistic π−K +→π0K 0threshold amplitude,Γn =88√Σ+Re A 00;±thr +o (δ),(14)whereK n =M π+∆K +M K +∆πn+lnα2E nλE 2n ,M 2π0,M 2K 01/2,(16)with λ(x,y,z )=x 2+y 2+z 2−2xy −2xz −2yz ,is chosen such that the total final state energy corresponds to E n =Σ+−α2µ+/(2n 2).The quantityRe A 00;±thr is calculated as follows.One evaluates the relativistic π−K +→π0K 0amplitude near threshold and removes the divergent Coulomb phase.The real part contains singularities ∼1/|p |and ∼ln |p |/µ+.The constant term in thisexpansion corresponds to Re A 00;±thr .The normalization is chosen such thatA =a −0+ǫ.(17)The isospin breaking corrections ǫhave been evaluated at O (p 4,e 2p 2)in Refs.[21,27].See also the comments in section 6.We now discuss the various energy shift contributions.According to Eq.(7),the energy shift at order δ4is split into an electromagnetic part ∆E emnand the strong part ∆E hn in Eq.(8).The electromagnetic energy shift contains both pure QED corrections as well as finite size effects due to the charge radii of the pion and kaon,contained in λ.The pure electromagnetic corrections have been evaluated in Ref.[28]for arbitrary angular momentum l .We checked 3that the electromagnetic energy shift at order α4indeed amounts to∆E em nl=α4µ+Σ+32l +1+4α4µ3+λΣ+1n 4−33We thank A.Rusetsky for a very useful communication concerning technicalaspects of the calculation.Here,thefirst term is generated by the mass insertions,the second contains thefinite size effects and the last stems from the one-photon exchange contri-bution.The strong S-wave energy shift reads at orderδ4,∆E h n=−2α3µ2+8πΣ+Re A±;±thr+o(δ),(19)withK′n=−2αµ+(a+0+a−0) ψ(n)−ψ(1)−1n +o(δ).(20) In the isospin limit,the normalized relativistic amplitudeA′=a+0+a−0+ǫ′,(21)reduces to the sum of the isospin even and odd scattering lengths.The cor-rectionsǫ′have been obtained at O(p4,e2p2)in Refs.[20,21].See also the comments in section6.The result for∆E h1in Eq.(19)agrees with the one obtained for the strong energy shift of the ground state in pionic hydrogen[26],if we replaceµ+with the reduced mass of theπ−p atom and Re A±;±thr with the constant term in the threshold expansion for the real part of the truncatedπ−p→π−p amplitude.What remains to be added are the vacuum polarization contributions[14,29], which are formally of higher order inα,however numerically not negligible. The vacuum polarization leads to an energy level shift∆E vac nl as well as to a change in the Coulomb wave function of theπ−K+atom at the origin δψK,n(0).For thefirst two energy levels,∆E vac nl[14,29]is given numerically in table2,section6.Formally of orderα2l+5,this contribution is enhanced due to its large coefficient containing(µ+/m e)2l+2.The modified Coulomb wave function affects both,the decay width and the strong energy shift,see section 6.As discussed in section6,the electromagnetic contributions(18)are known to a high precision.Further,the strong shift in the n P state is very much sup-pressed(orderα5).A future measurement of the energy splitting between the n S and n P states will therefore allow to extract the strong S-wave energy shift in Eq.(19),and to determine the combination a+0+a−0of theπK scattering lengths.The energy splitting between the2S and2P states is given by∆E2s−2p=∆E h2+∆E em20−∆E em21+∆E vac20−∆E vac21=−1.4±0.1eV.(22)The uncertainty displayed is the one in∆E h2only.For the numerical values of the various energy shift contributions,see table2in section6.5Results for pioniumThe decay rate and strong energy shift of pionium can be obtained from the formulae in Eqs.(5)and (8)through the following substitutions of the masses M K +→M π+,M K 0→M π0and the coupling constants C 1→c 1,C 2→√9n 3α3p ∗π,n A 2π(1+K π,n ),A π=a 00−a 20+ǫπ,K π,n =κ32a 00+a 2ψ(n )−ψ(1)−1n+o (δ),p ∗π,n=∆π−α2n 3A ′π1+K ′π,n,A ′π=132a 00+a 20ψ(n )−ψ(1)−1n+o (δ),(24)where A ′πis defined analogously to the quantity A ′discussed in section 4.Theisospin symmetry breaking contributions ǫ′πhave been calculated at O (e 2p 2)in Refs.[31,32].For pionium the energy splitting between the 2S and 2P states reads∆E π,2s −2p =∆E h π,2+∆E em π,20−∆E em π,21+∆E vac π,20−∆E vacπ,21=−0.59±0.01eV .(25)Again the uncertainty displayed is the one in ∆E hπ,2only.The numerical values for the various energy shifts are listed in table 3,section 6.δ′h,1π+π−atom(6.2±1.2)·10−2(4.0±2.2)·10−2(1.5±2.2)·10−2 Table1Next-to-leading order corrections to the Deser-type formulae.6Numerical analysisFor the S-waveππscattering lengths,we use the chiral predictions a00=0.220±0.005and a20=−0.0444±0.0010[5,6].The correlation matrix for a00and a20 is given in Ref.[6].For the isospin symmetry breaking corrections to theππthreshold amplitudes(23)and(24),we useǫπ=(0.61±0.16)·10−2and ǫ′π=(0.37±0.08)·10−2as given in Ref.[15]and[32],respectively.For the πK scattering lengths,we use the values from the recent analysis of dataand Roy-Steiner equations[22],a+0=(0.045±0.012)M−1π+and a−0=(0.090±0.005)M−1π+.The correlation parameter for a+0and a−0is given in Ref.[22].The isospin breaking corrections to theπK threshold amplitudes(17)and (21)have been worked out in[20,21,27].Whereas the analytic expressions for ǫandǫ′obtained in[20,21,27]are not identical,the numerical values agree within the uncertainties quoted in[21].In the following,we use[21]ǫ=(0.1±0.1)·10−2M−1π+andǫ′=(0.1±0.3)·10−2M−1π+.For the charge radii of the pionand kaon,we take r2π+ =(0.452±0.013)fm2and r2K+=(0.363±0.072)fm2[33].We obtain for the decay width of the ground state,Γ1=8α3µ2+p∗1(a−0)2(1+δK,1),Γπ,1=2α3n3(a+0+a−0) 1+δ′K,n ,∆E hπ,n=−α3Mπ+π±K∓atom∆E vac[eV]τn[s]nl−0.095−9.0±1.1−0.019−1.1±0.1−0.006∆E emπ,nl[eV]∆E hπ,n[eV]n=1,l=0−0.942(2.9±0.1)·10−15 n=2,l=0−0.111n=2,l=1−0.004Table3Numerical values for the energy shift and the lifetime of theπ+π−atom. where2δψh,n(0)δvac h,n=7Summary and ConclusionsWe provided the formulae for the energy shifts and decay widths of theπ+π−andπ±K∓atoms at next-to-leading order in isospin symmetry breaking.To confront these predictions with data presents a challenge for future hadronic atom experiments.Should it turn out that these predictions are in conflict with experiment,one would have to revise our present understanding of the low-energy structure of QCD.AcknowledgmentsIt is a great pleasure to thank J.Gasser for many interesting discussions and suggestions.Further,I thank R.Kaiser,A.Rusetsky,H.Sazdjian and J.Schacher for useful discussions as well as for helpful comments on the manuscript.This work was supported in part by the Swiss National Sci-ence Foundation and by RTN,BBW-Contract N0.01.0357and EC-Contract HPRN–CT2002–00311(EURIDICE).References[1]S.Deser,M.L.Goldberger,K.Baumann and W.Thirring,Phys.Rev.96(1954)774;T.L.Trueman,Nucl.Phys.26(1961)57.[2]T.R.Palfrey and J.L.Uretsky,Phys.Rev.121(1961)1798;S.M.Bilenky,V.H.Nguyen,L.L.Nemenov and ebuchava,Yad.Fiz.10(1969)812.[3] B.Adeva et al.,CERN-SPSLC-95-1.[4]S.Weinberg,Phys.Rev.Lett.17(1966)616;J.Gasser and H.Leutwyler,Phys.Lett.B125(1983)321;J.Bijnens,G.Colangelo,G.Ecker,J.Gasser and M.E.Sainio,Phys.Lett.B374(1996)210[arXiv:hep-ph/9511397];J.Bijnens,G.Colangelo,G.Ecker,J.Gasser and M. E.Sainio,Nucl.Phys.B508(1997)263[Erratum-ibid.B517(1998)639][arXiv:hep-ph/9707291];J.Nieves and E.Ruiz Arriola,Eur.Phys.J.A8(2000)377[arXiv:hep-ph/9906437];G.Amoros,J.Bijnens and P.Talavera,Nucl.Phys.B585(2000)293[Erratum-ibid.B598(2001)665][arXiv:hep-ph/0003258].[5]G.Colangelo,J.Gasser and H.Leutwyler,Phys.Lett.B488(2000)261[arXiv:hep-ph/0007112].[6]G.Colangelo,J.Gasser and H.Leutwyler,Nucl.Phys.B603(2001)125[arXiv:hep-ph/0103088].[7]L.Rosselet et al.,Phys.Rev.D15(1977)574;C.D.Froggatt and J.L.Petersen,Nucl.Phys.B129,89(1977);M.M.Nagels et al.,Nucl.Phys.B147 (1979)189; A. A.Bolokhov,M.V.Polyakov and S.G.Sherman,Eur.Phys.J.A1(1998)317[arXiv:hep-ph/9707406]; D.Pocanic,arXiv:hep-ph/9809455;CHAOS Collaboration,J. nge et al.,Phys.Rev.Lett.80,1597(1998);J. nge et al.,Phys.Rev.C61(2000)025201;NA48Collaboration,R.Batley et al.,CERN-SPSC-2000-003;S.Pislak et al.[BNL-E865Collaboration],Phys.Rev.Lett.87(2001)221801[arXiv:hep-ex/0106071];S.Descotes-Genon,N.H.Fuchs,L.Girlanda and J.Stern,Eur.Phys.J.C24(2002)469[arXiv:hep-ph/0112088];S.Pislak et al.,Phys.Rev.D 67(2003)072004[arXiv:hep-ex/0301040];V.N.Maiorov and O.O.Patarakin, arXiv:hep-ph/0308162.[8]M.Knecht,B.Moussallam,J.Stern and N.H.Fuchs,Nucl.Phys.B457(1995)513[arXiv:hep-ph/9507319];M.Knecht,B.Moussallam,J.Stern and N.H.Fuchs,Nucl.Phys.B471(1996)445[arXiv:hep-ph/9512404];L.Girlanda, M.Knecht, B.Moussallam and J.Stern,Phys.Lett.B409(1997)461 [arXiv:hep-ph/9703448].[9] B.Adeva et al.,CERN-SPSC-2000-032;L.Afanasyev et al.,Lifetimemeasurement ofπ+π−andπ±K∓atoms to test low energy QCD(2002),letter of intent of the experiment at Japan Proton Accelerator Research Complex;available at http://dirac.web.cern.ch/DIRAC/future.html.[10]Z.K.Silagadze,JETP Lett.60(1994)689[arXiv:hep-ph/9411382];A.Gashi,G.Rasche,G.C.Oades and W.S.Woolcock,Nucl.Phys.A628(1998)101[arXiv:nucl-th/9704017];Z.K.Silagadze,arXiv:hep-ph/9803307;M.A.Ivanov, V.E.Lyubovitskij,E.Z.Lipartia and A.G.Rusetsky,Phys.Rev.D58 (1998)094024[arXiv:hep-ph/9805356];P.Minkowski,in:Proceedings of the International Workshop Hadronic Atoms and Positronium in the Standard Model,Dubna,26-31May1998,M.A.Ivanov at al.,Eds.,Dubna1998,p.74[arXiv:hep-ph/9808387];E.A.Kuraev,Phys.Atom.Nucl.61(1998)239;U.Jentschura,G.Soff,V.Ivanov and S.G.Karshenboim,Phys.Lett.A241 (1998)351;H.W.Hammer and J.N.Ng,Eur.Phys.J.A6(1999)115 [arXiv:hep-ph/9902284].[11]H.Jallouli and H.Sazdjian,Phys.Rev.D58(1998)014011[Erratum-ibid.D58(1998)099901][arXiv:hep-ph/9706450];H.Sazdjian,Phys.Lett.B490(2000) 203[arXiv:hep-ph/0004226].[12]belle and K.Buckley,arXiv:hep-ph/9804201;X.Kong and F.Ravndal,Phys.Rev.D59(1999)014031;Phys.Rev.D61(2000)077506[arXiv:hep-ph/9905539]; B.R.Holstein,Phys.Rev.D60(1999)114030[arXiv:nucl-th/9901041];A.Gall,J.Gasser,V.E.Lyubovitskij and A.Rusetsky,Phys.Lett.B462(1999)335[arXiv:hep-ph/9905309];D.Eiras and J.Soto,Phys.Rev.D 61(2000)114027[arXiv:hep-ph/9905543];V.Antonelli,A.Gall,J.Gasser andA.Rusetsky,Annals Phys.286(2001)108[arXiv:hep-ph/0003118].[13]J.Gasser,V.E.Lyubovitskij and A.Rusetsky,Phys.Lett.B471(1999)244[arXiv:hep-ph/9910438].[14]D.Eiras and J.Soto,Phys.Lett.B491(2000)101[arXiv:hep-ph/0005066].[15]J.Gasser,V.E.Lyubovitskij,A.Rusetsky and A.Gall,Phys.Rev.D64(2001)016008[arXiv:hep-ph/0103157].[16]J.Schweizer,in preparation.The calculation of the same quantities in theframework of constrained Bethe-Salpeter equation is in progress[17].[17]H.Sazdjian,private communication.[18]V.Bernard,N.Kaiser and U.G.Meissner,Phys.Rev.D43(1991)2757.[19]A.Roessl,Nucl.Phys.B555(1999)507[arXiv:hep-ph/9904230].[20]A.Nehme,Eur.Phys.J.C23(2002)707[arXiv:hep-ph/0111212];B.Kubisand U.G.Meissner,Phys.Lett.B529(2002)69[arXiv:hep-ph/0112154]. [21]B.Kubis,Dissertation Bonn Univ.(2002).Berichte des ForschungszentrumsJ¨u lich,4007ISSN0944-2952.[22]P.Buettiker,S.Descotes-Genon and B.Moussallam,arXiv:hep-ph/0310283.[23]J.Gasser and H.Leutwyler,Nucl.Phys.B250(1985)465.[24]S.Descotes-Genon,L.Girlanda and J.Stern,JHEP0001(2000)041[arXiv:hep-ph/9910537];B.Moussallam,JHEP0008(2000)005[arXiv:hep-ph/0005245];S.Descotes-Genon,L.Girlanda and J.Stern,Eur.Phys.J.C27(2003)115[arXiv:hep-ph/0207337];S.Descotes-Genon,N.H.Fuchs, L.Girlanda and J.Stern,arXiv:hep-ph/0311120.[25]W.E.Caswell and G.P.Lepage,Phys.Lett.B167(1986)437.[26]V.E.Lyubovitskij and A.Rusetsky,Phys.Lett.B494(2000)9[arXiv:hep-ph/0009206].[27]B.Kubis and U.G.Meissner,Nucl.Phys.A699(2002)709[arXiv:hep-ph/0107199]; A.Nehme and P.Talavera,Phys.Rev.D65(2002)054023 [arXiv:hep-ph/0107299].[28]I.T.Todorov,Phys.Rev.D3(1971)2351;A.Nandy,Phys.Rev.D5(1972)1531;H.Jallouli and H.Sazdjian,Annals Phys.253(1997)376[arXiv:hep-ph/9602241].[29]G.E.Pustovalov,JETP5(1957)1234;S.G.Karshenboim,Can.J.Phys.76(1998)169;S.G.Karshenboim,U.D.Jentschura,V.G.Ivanov and G.Soff, Eur.Phys.J.D2(1998)209.[30]M.Knecht and R.Urech,Nucl.Phys.B519(1998)329[arXiv:hep-ph/9709348].[31]U.G.Meissner,G.Muller and S.Steininger,Phys.Lett.B406(1997)154[Erratum-ibid.B407(1997)454][arXiv:hep-ph/9704377].[32]M.Knecht and A.Nehme,Phys.Lett.B532(2002)55[arXiv:hep-ph/0201033].[33]J.Bijnens and P.Talavera,JHEP0203(2002)046[arXiv:hep-ph/0203049];seealso S.R.Amendolia et al.[NA7Collaboration],Nucl.Phys.B277(1986)168;G.Colangelo,arXiv:hep-ph/0312017.[34]R.Karplus and A.Klein,Phys.Rev.87(1952)848.。
a r X i v :h e p -p h /0507323v 1 28 J u l 2005UWThPh-2005-12Isospin odd πK scattering lengthJ.SchweizerInstitut f¨u r Theoretische Physik,University of Vienna,A–1090Vienna,AustriaE-mail:julia.schweizer@univie.ac.at1IntroductionIn the sixties and seventies a set of experiments was performed on πK scat-tering [1].To obtain predictions for the low–energy parameters,the measured πK phases had to be extrapolated using dispersion relations and crossing symmetry [2],since the region of interest is not directly accessible by scat-tering experiments.The most precise values for the πK scattering lengths were obtained only recently from an analysis of Roy-Steiner equations [3,4].Alternatively,particular combinations of πK scattering lengths may be ex-tracted from experiments on πK atoms [5,6,7].The πK atom decays due to the strong interactions into π0K 0and a lifetime measurement will allow one todetermine the isospin odd S-wave πK scattering length a −0=1/3(a 1/20−a 3/20).Such a measurement is planned at CERN [8].Particularly interesting aboutthe isospin oddπK scattering length is that there exists a low–energy the-orem due to Roessl[9].Based on SU(2)chiral perturbation theory(CHPT) [9,10,11,12],where the strange quark mass is treated as a heavy partner,it is valid to all orders in powers of m s.It states that Weinberg’s current algebra result[13,14]receives corrections of order M2πonly,a−0=MπMK8πF2π(Mπ+MK) 1+δ(2)+δ(4)+O(p6) ,(2) where O(p6)={ˆm3,ˆm2m s,ˆmm2s}.The scattering length is expressed in termsof the physical meson masses Mπand MKand the physical pion decay constant Fπ[24].The next-to-leading order contributionδ(2)[16,17]depends on onesingle low–energy constant L r5[19]only,δ(2)=M2πµ2−3(2M2K−M2π)M2K−4M2K−M2π3M2π+MπM K3(4M2K−M2π))−¯J(uthr,M2K,1(2π)d(m21−q2)−1(m22−(p+q)2)−1.(4)Note that at the order considered it makes a difference whether we represent δ(2)as a function of the physical pion,kaon andηmasses or express one of them through the other two1.In Eq.(3),we choose to describeδ(2)in terms of the physical pion and kaon mass only,because this ensures that bothδ(2) andδ(4)are independently scale invariant.The two–loop order correction can be decomposed asδ(4)=δ(4)Li=C i=0+δ(4)1−loop Li+δ(4)Li L j+δ(4)Ci.(5)Thefirst term contains the two–loop functions,the second one–loop functions with insertions of O(p4)coupling constants and the last two terms consist of counter term contributions.Some of the two–loop functions inδ(4)Li=C i=0 are very demanding to analyze analytically.For the moment,we thus restrictourselves to the chiral double logs,δ(4)Li=C i=0=δ(4)log2+δ(4)rem,(6)and neglect the remainderδ(4)rem which is given numerically in Table2.In a first step,we extract the contributions from the p6low–energy constants(C r i) [23,25]from the representation of theπK scattering amplitude in Ref.[18],δ(4)Ci =16M2π1This will generate a correction proportional to∆GMO≡(4M2K−M2π−3M2η)/(M2η−M2π)[19]which contributes toδ(4).as well as products of two p4constants(L r i×L r j),δ(4)Li L j =64M2πL r5dµ=−1dµ=1dµ=−Γ(2)i2L(µ/µ0),C r i(µ)=C r i(µ0)−12 2Γ(1)i+Γ(L)i(µ0) L(µ/µ0),(11)with the chiral logarithmL(µ/µ0)=1µ20.(12)As a two–loop order quantityδ(4)consists ofδ(4)=ˆa(µ)+ i b i C r i(µ)+ i,j b ij L r i(µ)L r j(µ),(13)whereˆa(µ)is scale dependent and contains one–loop functions with insertions of p4constants as well as two–loop functions.In order to extract the dou-ble log and log×L r i contributions fromˆa(µ),we insert the solutions for the renormalized coupling constants into the latter equation,δ(4)=ˆa(µ0)+ i b i C r i(µ0)+ i,j b ij L r i(µ0)L r j(µ0),ˆa(µ0)=ˆa(µ)−12L(µ/µ0) b i 2Γ(1)i+Γ(L)i(µ0) −2b ijΓi L r j(µ0) .(14)Now,the scale dependence ofˆa(µ0)becomes apparent and we may read offthe wanted log2and log×L r i terms.The solutions of the renormalization group equations thus allow us to determine the double log and log×L r i contributions from Eqs.(7)and(8).The double chiral logs(log2)amount toδ(4) log2=M2π8+59M2π3F4π M2K[84L r1+114L r2+53L3−96L r4−28L r5+48(3L r6+L7+2L r8)]−M2π[12L r1+30L r2+19L3−64L r5+24(2L7+L r8)]}L(Mχ/µ).(16) Here Mχstands for a characteristic meson mass.In the remaining part of this section,we investigate Roessl’s low–energy the-orem[9]at next-to-next-to-leading order in SU(3)CHPT.More precisely,we specify the order M2πand order M4πcorrections to Eq.(1).To approach the SU(2)chiral expansion,we regard the kaon mass as heavy and expand a−0in powers of Mπ/M K,a−0=MπMKF2π 8L r5−1µ2+4ln M2π144π2 −12+10√2−7ln4Table 1Isospin odd scattering length a −0:CA current algebra value,SU(2)prediction [9],chiral SU(3)prediction at order p 4[16]and order p 6[18],dispersive analysis from Roy-Steiner equations [4].*Note that in Ref.[9]M π=137.5MeV and M K =495.5MeV,while all other references use M π.=M π+and M K .=M K +for the pion and kaon masses in the isospin symmetry limit.with insertions of p 4couplings in powers of M π/M K .We havec 2|1−loop L i =M 2K2[84L r 1+114L r 2+53L 3−96L r 4−28L r5+48(3L r 6+L 7+2L r 8)]lnM 2K27L 356√2−5ln43[L r 5−6(2L 7+L r8)] 13√2+2ln42L r 2+20458π2F 4π1µ2+4[8L r 1+12L r 2+6L 3−8L r4−9L r 5+6(2L r 6+L r 8)]lnM 2π281L 3−14152+49L 3−17L r 5+18(2L 7+L r 8)ln448L r 1+4L r 2−4106L r 5−67(2L 7+L r8),(20)where we have checked that the log ×L r i terms agree with Eq.(16).Here both the contributions to M 2πc 2and M 4πc 4are numerically sizeable,see Table 2.Table 2Numerical results for the p 6contributions at the scale µ=770MeV:⋆pure loop contributions and †resonance estimate are taken from Ref.[18].The notation is understood as in Eq.(5).For instance the contributions of the 1-loop ×L r i terms toδ(4)is given by δ(4)1−loop L i =0.013.3Numerical analysisIn the following,we present the numerical results for the partial p 6corrections to δ(4).The pion and kaon mass in the isospin symmetry limit are identifiedwith their charged masses M π.=M π+and M K .=M K +.To be consistent with the numerical analysis performed in Ref.[18],we use for the pion decay constant 2F π=92.4MeV.In Table 1,we list the various numerical results for a −0available in the literature.The first row contains the current algebra value,the next number is the SU(2)prediction at next-to-leading order [9],row three and four display the order p 4[16]and order p 6[18]SU(3)predictions and the last value is based on a phenomenological analysis from Roy-Steiner equations [4].As can be read off,the SU(3)prediction at order p 6is in good agreement with the Roy-Steiner value.The SU(3)chiral expansion of the scattering length a −0looks as follows8πF 2π(M π+M K )2Recently,a new value was obtained F π=92.2±0.2MeV [27].Table3Variations of the partial p6contributions toδ(4)for Mη≤µ≤770MeV(Mρ).More precisely,we display the difference∆δ(4)a=δ(4)a|µ=Mη−δ(4)a|µ=Mρ.For the notation, see Table2.10of Ref.[28].The double chiral logs are evaluated for a characteristic meson mass3Mχ=Mand the size of the remainderδ(4)rem is estimated by the use of KEq.(6).Row two and three of Table2contain the partial order p6corrections to the coefficients c2and c4,respectively.Note that for the double chiral logs as well as for the products of p4constants their contribution to c4can be neglected while for the one–loop functions with insertions of L r i’s,both M2πc2 and M4πc4are numerically sizeable.The enhancement of the coefficient c4is,see Eq.(20). mainly due the contributions proportional to ln Mπ/MKAs one can read offfrom Table2,more than half of the contributions to δ(4)=0.14stem from the resonance estimate for the p6constants which in-cludes effects of the lowest-lying vector and scalar resonances[18].We checked that with this procedure the meson resonance exchange contributions to C r15 and C r17vanish which implies that c4|C i is equal to zero.Further,for the combination of p6constants occurring in c2|C i,the contributions from scalar resonances do not play a dominant role:They amount to0.03of the0.08 generated by the C r i’s in total.It would be instructive to see whether these features persist in an improved estimate for the p6constants which respects the constraints that follow by imposing the proper asymptotic behaviour for massless QCD[29].The splitting of the order p6contributions in Table2is scale dependent. Table3displays the scale dependence of the various contributions toδ(4). The values for the1-loop×L r i,L r i×L r j and C r i terms at the scalesµ=770 MeV andµ=Mηallow us to read offthe scale dependence of the pure loop.contributionsδ(4)Li=C i=0Finally,we sum up the various SU(3)one-and two–loop contributions to c2,and c4and get for the expansion of a−0in powers of Mπ/MK)8πF2π(Mπ+MK3The choice Mχ=√Note that this decomposition is valid up to the contribution ofδ(4)rem=0.04 pared to the chiral SU(3)expansion in Eq.(21),the series in Mπ/MK converges much more rapidly.The correction M2πc2consists ofM2πc2=M2π(4πFπ)2β+··· ,(23)where the coefficientsαandβcontain the one–loop and two–loop contribu-tions,respectively.Numerically,we haveα=7.6,where the dominant part stems from the term proportional to ln Mπ/MKin Eq.(18).The contributions from double logs,1-loop×L i terms and p6constants toβare listed in Table 2.Here the bulk part comes from the resonance estimate for the p6constants [18].4ConclusionsIn the present work,we used the chiral two–loop representation for theπK amplitude available in the literature[18]to investigate the isospin odd S-wave scattering length a−0.This scattering length differs from other low–energy parameters inπK scattering in the sense that contributions of m s in the chiral expansion are suppressed by powers ofˆm.Based on SU(2)CHPT[9],there exists a low–energy theorem(1)which states that the current algebra result for a−0receives corrections of order M2πonly.It was therefore expected that the one–loop result[15,16,17]in SU(3)CHPT represents a decent estimate for the scattering length.However,the dispersive analysis from Roy-Steiner equations[4]and the chiral two–loop calculation[18]are not in agreement with this expectation.In fact,the numerical analysis performed in Ref.[18] showed that the two–loop order corrections to a−0are of the same order of magnitude as the one–loop contributions.In order to understand this rather substantial next-to-next-to-leading order correction,we determined analytically the contributions containing p6con-stants(7),products of two p4constants(8),double chiral logs(15)and single logarithms times p4constants(16).We further expanded the one–loop func-tions with insertions of p4constants in powers of Mπ/MK,see Eqs.(19)and(20).The expansion of the pure two–loop functions in powers of Mπ/MKwas beyond the scope of this work.The numerical values of the partial p6contri-butions are collected in Table2.In the remaining part of this work,we investigated the low–energy theorem for a−0at next-to-next-to-leading order in the SU(3)expansion.While it is true that the corrections are of order M2π,the chiral expansion of the accom-panying coefficient proceeds in powers of MKand is not protected againstsizeable contributions.At two–loop accuracy in the SU(3)expansion,the or-der M2πcorrection roughly amounts to about20%,see Eq.(22).Note that this number depends on the resonance estimate[18]for the p6constants.If we compare this result with Roessl’s value[9],the SU(2)prediction for the scattering length a−0seems to be underestimated.Atfirst surprisingly,we have to keep in mind that the numerical estimates for the low–energy constants in SU(2)CHPT were obtained through matching the scattering amplitude with the corresponding SU(3)CHPT result at one–loop order.It would be very in-teresting to estimate these low–energy constants using a resonance saturation approach in the context of SU(2)CHPT with strangeness number1. AcknowledgmentsIt is a pleasure to thank J.Gasser for many helpful comments and discussions. Further,I thank J.Bijnens,G.Ecker,R.Kaiser and P.Talavera for useful re-marks and discussions,and J.Bijnens for providing me with fortran programs for the two–loopπK scattering amplitude.This work was supported by the Swiss National Science Foundation.References[1]For a review,we refer to:ng,Fortsch.Phys.26(1978)509.[2] ng,Nuovo Cim.A41(1977)73;ng and W.Porod,Phys.Rev.D21(1980)1295;N.Johannesson and G.Nilsson,Nuovo Cim.A43(1978) 376;A.Karabarbounis and G.Shaw,J.Phys.G6,583(1980).[3] B.Ananthanarayan and P.Buettiker,Eur.Phys.J.C19(2001)517[arXiv:hep-ph/0012023].[4]P.Buettiker,S.Descotes-Genon and B.Moussallam,Eur.Phys.J.C33(2004)409[arXiv:hep-ph/0310283].[5]S.Deser,M.L.Goldberger,K.Baumann and W.Thirring,Phys.Rev.96(1954)774.[6]S.M.Bilenky,V.H.Nguyen,L.L.Nemenov and ebuchava,Yad.Fiz.10(1969)812;[7]J.Schweizer,Phys.Lett.B587(2004)33[arXiv:hep-ph/0401048];J.Schweizer,Eur.Phys.J.C36(2004)483[arXiv:hep-ph/0405034].[8] B.Adeva et al.,CERN-SPSC-2004-009;available at:http://dirac.web.cern.ch/DIRAC/future.html[9] A.Roessl,Nucl.Phys.B555(1999)507[arXiv:hep-ph/9904230].[10]S.Weinberg,PhysicaA96(1979)327.[11]J.Gasser and H.Leutwyler,Annals Phys.158,142(1984).[12]M.Frink, B.Kubis and U.G.Meissner,Eur.Phys.J.C25(2002)259[arXiv:hep-ph/0203193].[13]S.Weinberg,Phys.Rev.Lett.17(1966)616.[14]R.W.Griffith,Phys.Rev.176(1968)1705.[15]V.Bernard,N.Kaiser and U.G.Meissner,Nucl.Phys.B357(1991)129.[16]B.Kubis and U.G.Meissner,Phys.Lett.B529(2002)69[arXiv:hep-ph/0112154].[17]A.Nehme,Eur.Phys.J.C23(2002)707[arXiv:hep-ph/0111212].[18]J.Bijnens,P.Dhonte and P.Talavera,JHEP0405(2004)036[arXiv:hep-ph/0404150].[19]J.Gasser and H.Leutwyler,Nucl.Phys.B250(1985)465.[20]V.Bernard,N.Kaiser and U.G.Meissner,Nucl.Phys.B364(1991)283.[21]M.Jamin,J. A.Oller and A.Pich,Nucl.Phys.B587(2000)331[arXiv:hep-ph/0006045].[22]J.Sa Borges and F.R.A.Simao,Phys.Rev.D53(1996)4806;J.Sa Borges,J.Soares Barbosa and V.Oguri,Phys.Lett.B412(1997)389.[23]J.Bijnens,G.Colangelo and G.Ecker,Annals Phys.280(2000)100[arXiv:hep-ph/9907333].[24]G.Amoros,J.Bijnens and P.Talavera,Nucl.Phys.B568(2000)319[arXiv:hep-ph/9907264].[25]J.Bijnens,G.Colangelo and G.Ecker,JHEP9902(1999)020[arXiv:hep-ph/9902437].[26]M.Jamin,J. A.Oller and A.Pich,JHEP0402(2004)047[arXiv:hep-ph/0401080].[27]S.Descotes-Genon and B.Moussallam,arXiv:hep-ph/0505077.[28]G.Amoros,J.Bijnens and P.Talavera,Nucl.Phys.B602(2001)87[arXiv:hep-ph/0101127].[29]G.Ecker,J.Gasser,A.Pich and E.de Rafael,Nucl.Phys.B321(1989)311;G.Ecker,J.Gasser,H.Leutwyler, A.Pich and E.de Rafael,Phys.Lett.B223(1989)425;M.Knecht,B.Moussallam and J.Stern,Nucl.Phys.B429(1994)125[arXiv:hep-ph/9402318];M.Knecht and A.Nyffeler,Eur.Phys.J.C21(2001)659[arXiv:hep-ph/0106034];V.Cirigliano,G.Ecker, M.Eidemuller,R.Kaiser,A.Pich and J.Portoles,JHEP0504(2005)006 [arXiv:hep-ph/0503108].11。