【配套K12】[学习](全国通用版)2018-2019版高中数学 第一章 导数及其应用 1.5 定积
- 格式:doc
- 大小:292.50 KB
- 文档页数:14
第3课时简单复合函数的导数学习目标 1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax+b)的导数).知识点复合函数的概念及求导法则已知函数y=ln(2x+5),y=sin(x+2).思考这两个函数有什么共同特征?答案函数y=ln(2x+5),y=sin(x+2)都是由两个基本函数复合而成的.梳理1.函数y=e-x的导数为y′=e-x.( ×)2.函数f(x)=sin(-x)的导数为f′(x)=cos x.( ×)3.函数y=cos(3x+1)由函数y=cos u,u=3x+1复合而成.( √)类型一 求复合函数的导数 命题角度1 单纯的复合函数求导 例1 求下列函数的导数. (1)y =11-2x2;(2)y =log 2(2x +1); (3)y =ecos x +1;(4)y =sin 2⎝ ⎛⎭⎪⎫2x +π3. 考点 简单复合函数的导数 题点 简单复合函数的导数 解 (1)y =122(12)x --,设y =12u-,u =1-2x 2,则y ′=(12u -)′(1-2x 2)′=⎝ ⎛⎭⎪⎫-1232u -·(-4x )=-12322(12)x --·(-4x )=2x 322(12)x --.(2)设y =log 2u ,u =2x +1, 则y x ′=y u ′·u x ′=2u ln 2=2(2x +1)ln 2. (3)设y =e u,u =cos x +1, 则y x ′=y u ′·u x ′=e u·(-sin x ) =-ecos x +1sin x .(4)y =1-cos ⎝⎛⎭⎪⎫4x +2π32对于t =cos ⎝ ⎛⎭⎪⎫4x +2π3, 设u =4x +2π3,则t =cos u ,t u ′u x ′=-4sin u =-4sin ⎝⎛⎭⎪⎫4x +2π3.∴y ′=2sin ⎝⎛⎭⎪⎫4x +2π3. 反思与感悟 (1)求复合函数的导数的步骤(2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁. 跟踪训练1 求下列函数的导数. (1)y =(x 2-4)2;(2)y =ln(6x +4); (3)y =103x -2;(4)y =2x -1;(5)y =sin ⎝ ⎛⎭⎪⎫3x -π4;(6)y =cos 2x .考点 简单复合函数的导数 题点 简单复合函数的导数解 (1)y ′=2(x 2-4)(x 2-4)′=2(x 2-4)·2x =4x 3-16x .(2)y ′=16x +4·(6x +4)′=33x +2.(3)y ′=(103x -2ln 10)·(3x -2)′=3×103x -2ln 10.(4)y ′=122x -1·(2x -1)′=12x -1.(5)y ′=cos ⎝ ⎛⎭⎪⎫3x -π4·⎝ ⎛⎭⎪⎫3x -π4′=3cos ⎝ ⎛⎭⎪⎫3x -π4.(6)y ′=2cos x ·(cos x )′=-2cos x ·sin x =-sin 2x . 命题角度2 复合函数与导数运算法则结合求导 例2 求下列函数的导数. (1)y =ln 3xe x ;(2)y =x 1+x 2;(3)y =x cos ⎝ ⎛⎭⎪⎫2x +π2sin ⎝ ⎛⎭⎪⎫2x +π2. 考点 简单复合函数的导数题点 简单复合函数的导数解 (1)∵(ln 3x )′=13x ×(3x )′=1x ,∴y ′=(ln 3x )′e x-(ln 3x )(e x)′(e x )2=1x-ln 3xe x=1-x ln 3xx e x. (2)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x2=(1+2x 2)1+x 21+x2. (3)∵y =x cos ⎝ ⎛⎭⎪⎫2x +π2sin ⎝ ⎛⎭⎪⎫2x +π2 =x (-sin 2x )cos 2x =-12x sin 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′ =-12sin 4x -x2cos 4x ·4=-12sin 4x -2x cos 4x .反思与感悟 (1)在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不易用求导法则求导的函数,可适当地进行等价变形,以达到化异求同、化繁为简的目的.(2)复合函数的求导熟练后,中间步骤可以省略,即不必再写出函数的复合过程,直接运用公式,由外及内逐层求导. 跟踪训练2 求下列函数的导数. (1)y =sin 3x +sin x 3; (2)y =x ln(1+2x ). 考点 简单复合函数的导数 题点 简单复合函数的导数解 (1)y ′=(sin 3x +sin x 3)′=(sin 3x )′+(sin x 3)′ =3sin 2x cos x +cos x 3·3x 2=3sin 2x cos x +3x 2cos x 3.(2)y ′=x ′ln(1+2x )+x [ln(1+2x )]′ =ln(1+2x )+2x1+2x .类型二 复合函数导数的应用例3 设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切,求a ,b 的值. 考点 简单复合函数的导数题点 简单复合函数的导数的综合应用 解 由曲线y =f (x )过(0,0)点, 可得ln 1+1+b =0,故b =-1. 由f (x )=ln(x +1)+x +1+ax +b , 得f ′(x )=1x +1+12x +1+a , 则f ′(0)=1+12+a =32+a ,即为曲线y =f (x )在点(0,0)处的切线的斜率. 由题意,得32+a =32,故a =0.反思与感悟 复合函数导数的应用问题,正确的求出此函数的导数是前提,审题时注意所给点是不是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键. 跟踪训练3 曲线y =e sin x在点(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l的方程.考点 简单复合函数的导数题点 简单复合函数的导数的综合应用 解 由y =e sin x,得y ′=(esin x)′=cos x e sin x,即=0|x y'=1,则切线方程为y -1=x -0,即x -y +1=0.若直线l 与切线平行,可设直线l 的方程为x -y +c =0. 两平行线间的距离d =|c -1|2=2,得c =3或c =-1.故直线l 的方程为x -y +3=0或x -y -1=0.1.函数y =12(e x +e -x)的导数是( )A.12(e x -e -x) B.12(e x +e -x ) C .e x-e -xD .e x+e -x考点 简单复合函数的导数 题点 简单复合函数的导数 答案 A解析 y ′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x -e -x ). 2.函数y =x 2cos ⎝ ⎛⎭⎪⎫2x -π3的导数为( )A .y ′=2x cos ⎝ ⎛⎭⎪⎫2x -π3-x 2sin ⎝ ⎛⎭⎪⎫2x -π3B .y ′=2x cos ⎝ ⎛⎭⎪⎫2x -π3-2x 2sin ⎝ ⎛⎭⎪⎫2x -π3C .y ′=x 2cos ⎝ ⎛⎭⎪⎫2x -π3-2x sin ⎝ ⎛⎭⎪⎫2x -π3D .y ′=2x cos ⎝ ⎛⎭⎪⎫2x -π3+2x 2sin ⎝ ⎛⎭⎪⎫2x -π3考点 简单复合函数的导数 题点 简单复合函数的导数 答案 B解析 y ′=(x 2)′cos ⎝ ⎛⎭⎪⎫2x -π3+x 2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x -π3′=2x cos ⎝ ⎛⎭⎪⎫2x -π3+x 2⎣⎢⎡⎦⎥⎤-sin ⎝ ⎛⎭⎪⎫2x -π3⎝ ⎛⎭⎪⎫2x -π3′=2x cos ⎝ ⎛⎭⎪⎫2x -π3-2x 2sin ⎝⎛⎭⎪⎫2x -π3.3.已知函数f (x )=ln(3x -1),则f ′(1)=________. 考点 简单复合函数的导数 题点 简单复合函数的导数 答案 32解析 ∵f ′(x )=13x -1·(3x -1)′=33x -1,∴f ′(1)=32.4.函数y =2cos 2x 在x =π12处的切线斜率为________.考点 简单复合函数的导数题点 简单复合函数的导数的综合应用 答案 -1解析 由函数y =2cos 2x =1+cos 2x , 得y ′=(1+cos 2x )′=-2sin 2x ,所以函数在x =π12处的切线斜率为-2sin ⎝ ⎛⎭⎪⎫2×π12=-1. 5.曲线y =2e x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为________.考点 简单复合函数的导数题点 简单复合函数的导数的综合应用 答案 e 2解析 y ′=122e x,切线的斜率k =12e 2,则切线方程为y -e 2=e22(x -4),令x =0,得y =-e 2, 令y =0,得x =2,∴切线与坐标轴围成的面积为12×2×|-e 2|=e 2.求简单复合函数f (ax +b )的导数实质是运用整体思想,先把简单复合函数转化为常见函数y =f (u ),u =ax +b 的形式,然后再对y =f (u )与u =ax +b 分别求导,并把所得结果相乘.灵活应用整体思想把函数化为y =f (u ),u =ax +b 的形式是关键.一、选择题1.下列函数不是复合函数的是( )A .y =-x 3-1x+1B .y =cos ⎝⎛⎭⎪⎫x +π4C .y =1ln xD .y =(2x +3)4考点 简单复合函数的导数 题点 复合函数的判断 答案 A解析 A 中的函数是一个多项式函数,B 中的函数可看作函数u =x +π4,y =cos u 的复合函数,C 中的函数可看作函数u =ln x ,y =1u的复合函数,D 中的函数可看作函数u =2x +3,y=u 4的复合函数,故选A.2.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4考点 简单复合函数的导数 题点 简单复合函数的导数 答案 D解析 y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)(x -1)+(x +1)2=3x 2+2x -1, 所以y ′|x =1=4.3.设函数f (x )=(1-2x 3)10,则f ′(1)等于( ) A .0 B .60 C .-1D .-60考点 简单复合函数的导数 题点 简单复合函数的导数 答案 B解析 f ′(x )=10(1-2x 3)9(-6x 2) 所以f ′(1)=10(1-2)9(-6)=60. 4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5 B .ln(2x +5)+2x2x +5C .2x ln(2x +5) D.x 2x +5考点 简单复合函数的导数题点 简单复合函数的导数 答案 B解析 y ′=[x ln(2x +5)]′ =x ′ln(2x +5)+x [ln(2x +5)]′ =ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x2x +5.5.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( ) A .0 B .1 C .2D .3考点 简单复合函数的导数题点 简单复合函数的导数的综合应用 答案 D 解析 y ′=a -1x +1,由题意得=0|x y'=2,即a -1=2, 所以a =3. 6.曲线y =e -2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23D .1考点 简单复合函数的导数题点 简单复合函数的导数的综合应用 答案 A解析 ∵=0|x y'=-2e-2×0=-2,∴曲线在点(0,2)处的切线方程为y =-2x +2.由⎩⎪⎨⎪⎧y =-2x +2,y =x ,得x =y =23,∴A ⎝ ⎛⎭⎪⎫23,23,则围成的三角形的面积为12×23×1=13.7.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π4B.⎣⎢⎡⎭⎪⎫π4,π2C.⎝⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎭⎪⎫3π4,π考点 简单复合函数的导数题点 简单复合函数的导数的综合应用 答案 D解析 y ′=-4e x(e x +1)2=-4ex(e x )2+2e x+1 =-4e x+1ex +2. ∵e x+1e x ≥2⎝ ⎛⎭⎪⎫当且仅当e x =1e x =1时等号成立,∴e x+1ex +2≥4,∴y ′∈[-1,0),即tan α∈[-1,0), ∴α∈⎣⎢⎡⎭⎪⎫3π4,π.二、填空题8.函数y =sin 2x cos 3x 的导数是________________. 考点 简单复合函数的导数 题点 简单复合函数的导数答案 2cos 2x cos 3x -3sin 2x sin 3x 解析 ∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′ =2cos 2x cos 3x -3sin 2x sin 3x . 9.曲线y =x ex -1在点(1,1)处切线的斜率为________.考点 简单复合函数的导数题点 简单复合函数的导数的综合应用 答案 2 解析 y ′=ex -1+x ex -1=(x +1)ex -1,故曲线在点(1,1)处的切线斜率为(1+1)e1-1=2. 10.若y =f (x )=(2x +a )2,且f ′(2)=20,则a =________.考点 简单复合函数的导数题点 简单复合函数的导数答案 1解析 令u =2x +a ,则y x ′=y u ′·u x ′=(u 2)′(2x +a )′=4(2x +a ),则f ′(2)=4(2×2+a )=20,∴a =1.11.若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 考点 简单复合函数的导数题点 简单复合函数的导数的综合应用答案 (-ln 2,2)解析 设P (x 0,0e x -),0=|x x y'=0e x --=-2,得x 0=-ln 2,∴P (-ln 2,2).12.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为________.考点 简单复合函数的导数题点 简单复合函数的导数的综合应用答案 2解析 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧ 1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0=-1,a =2.三、解答题13.曲线y =e 2x cos 3x 在点(0,1)处的切线与直线l 平行,且与l 的距离为5,求直线l 的方程.考点 简单复合函数的导数题点 简单复合函数的导数的综合应用解 由y ′=(e 2x cos 3x )′=(e 2x )′cos 3x +e 2x (cos 3x )′=2e 2x cos 3x +e 2x (-3sin 3x )=e 2x (2cos 3x -3sin 3x ),得=0|x y'=2.则切线方程为y -1=2(x -0),即2x -y +1=0.若直线l 与切线平行,可设直线l 的方程为2x -y +c =0,两平行线间的距离d =|c -1|5=5,得c =6或c =-4. 故直线l 的方程为2x -y +6=0或2x -y -4=0.四、探究与拓展14.已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.考点 简单复合函数的导数题点 简单复合函数的导数的综合应用答案 2x -y =0解析 设x >0,则-x <0,f (-x )=ex -1+x . 因为f (x )为偶函数,所以f (x )=ex -1+x ,f ′(x )=e x -1+1,f ′(1)=2,即所求的切线方程为y -2=2(x -1),即2x -y =0.15.求曲线y =ln(2x -1)上的点到直线l :2x -y +3=0的最短距离.考点 简单复合函数的导数题点 简单复合函数的导数的综合应用解 作出直线l :2x -y +3=0和曲线y =ln(2x -1)的图象(图略)可知它们无公共点,所以平移直线l ,当l 与曲线相切时,切点到直线l 的距离就是曲线上的点到直线l 的最短距离,y ′=12x -1(2x -1)′=22x -1. 设切点为P (x 0,y 0),所以22x 0-1=2,所以x 0=1, 所以y 0=ln(2×1-1)=0,P (1,0).所以曲线y =ln(2x -1)上的点到直线l :2x -y +3=0的最短距离为P (1,0)到直线l :2x -y +3=0的距离,最短距离d =|2×1-0+3|22+(-1)2=55= 5.。
第一章 1.5 第1课时 画函数y =Asin(ωx +φ)的图象A 级 基础巩固一、选择题1.为了得到y =cos x4的图象,只需把y =cos x 的图象上的所有点( A )A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14,纵坐标不变C .纵坐标伸长到原来的4倍,横坐标不变D .纵坐标缩短到原来的14,横坐标不变[解析] 由图象的周期变换可知,A 正确. 2.下列命题正确的是( B ) A .y =sin x 的图象向右平移π2个单位得y =cos x 的图象 B .y =cos x 的图象向右平移π2个单位得y =sin x 的图象 C .当φ>0时,y =sin x 的图象向右平移φ个单位可得y =sin(x +φ)的图象 D .当φ<0时,y =sin x 的图象向左平移φ个单位可得y =sin(x -φ)的图象 3.要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( C )A .向左平移π4个单位B .向右平移π4个单位C .向左平移π8个单位D .向右平移π8个单位[解析] 由y =3sin2(x +φ)=3sin(2x +π4),得∴2φ=π4,φ=π8.故向左平移π8个单位.4.为了得到函数y =sin(2x -π3)的图象,只需把函数y =sin(2x +π6)的图象( B )A .向左平移π4个长度单位B .向右平移π4个长度单位C .向左平移π2个长度单位D .向右平移π2个长度单位[解析] 由y =sin(2x +π6)――→x →x +φy =sin[2(x +φ)+π6]=sin(2x -π3),即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个长度单位,故选B .5.将函数f (x )=sin2x 的图象向右平移φ(0<φ<π2)个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D ) A .5π12B .π3C .π4D .π6[解析] 向右平移φ个单位后,得到g (x )=sin(2x -2φ),又|f (x 1)-g (x 2)|=2,∴不妨令2x 1=π2+2k π,k ∈Z,2x 2-2φ=-π2+2m π,m ∈Z ,∴x 1-x 2=π2-φ+(k -m )π,k ,m ∈Z ,又|x 1-x 2|min =π3,∴π2-φ=π3,∴φ=π6,故选D .6.要得到函数y =sin(4x -π3)的图象,只需将函数y =sin4x 的图象( B ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位[解析] y =sin(4x -π3)=sin4(x -π12),故要将函数y =sin4x 的图象向右平移π12个单位.故选B .二、填空题7.将函数y =cos2x 的图象向左平移π5个单位,所得图象对应的解析式为 y =cos(2x+2π5) . 8.将函数y =sin x 的图象上所有的点的横坐标缩短到原来的14倍(纵坐标不变)得__y =sin4x __的图象.三、解答题9.将函数y =12sin2x 的图象上所有的点的横坐标伸长为原来的2倍,然后横坐标不变,纵坐标缩短为原来的一半,求所得图象的函数解析式.[解析] y =12sin2x ――→横坐标变为原来的2倍y =12sin2(12x )=12sin x . y =12sin x ――→纵坐标变为原来的一半y =14sin x . 即所得图象的解析式为y =14sin x .10.已知函数y =3sin(12x -π4).(1)用“五点法”画函数的图象;(2)说出此图象是由y =sin x 的图象经过怎样的变换得到的. [解析] (1)列表:描点:在坐标系中描出下列各点(π2,0),(3π2,3),(5π2,0),(7π2,-3),(9π2,0).连线:将所得五点用光滑的曲线连接起来,得到所求函数的图象,如右图所示. 这样就得到了函数y =3sin(12x -π4)在一个周期内的图象,再将这部分图象向左或向右平移4k π(k ∈Z )个单位长度,得函数y =3sin(12x -π4)的图象.(2)①把y =sin x 的图象上所有的点向右平行移动π4个单位长度,得到y =sin(x -π4)的图象;②把y =sin(x -π4)图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin(12x -π4)的图象;③将y =sin(12x -π4)的图象上所有的点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin(12x -π4)的图象.B 级 素养提升一、选择题1.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( C )A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)[解析] 函数y =sin x 的图象上的点向右平移π10个单位长度可得函数y =sin(x -π10)的图象;横坐标伸长到原来的2倍(纵坐标不变)可得函数y =sin(12x -π10)的图象,所以所求函数的解析式是y =sin(12x -π10).2.把函数y =cos2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向右平移1个单位长度,再向下平移1个单位长度,得到的图象是( B )[解析] 把函数y =cos2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向右平移1个单位长度得:y 2=cos(x -1)+1,再向下平移1个单位长度得:y 3=cos(x -1).令x =0,得:y 3>0;x =π2+1,得:y 3=0;观察即得答案.3.某同学用“五点法”画函数y =A sin(ωx +φ)(A >0,ω>0)在一个周期内简图时,列表如下:则有( C )A .A =2,ω=π12,φ=0B .A =2,ω=3,φ=π12C .A =2,ω=3,φ=-π4D .A =1,ω=2,φ=-π12[解析] 由表格得A =2,34π-π12=2πω,∴ω=3.∴ωx +φ=3x +φ.当x =π12时,3x +φ=π4+φ=0,∴φ=-π4.4.将函数y =f (x )图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x 轴向左平移π2个单位,得到的曲线与y =12sin x 的图象相同,则y =f (x )的函数表达式为( D )A .y =12sin(12x -π2)B .y =12sin2(x +π2)C .y =12sin(12x +π2)D .y =12sin(2x -π2)[解析] 根据题意,y =12sin x 的图象沿x 轴向右平移π2个单位后得到y =12sin(x -π2),再将此函数图象上点的纵坐标不变,横坐标缩短为原来的12倍,得到y =12sin(2x -π2),此即y =f (x )的解析式.∴应选D .二、填空题5.把函数y =sin(2x -π3)的图象向右平移π4个单位长度,再把所得图象上各点的横坐标缩短为原来的12倍,所得图象对应的解析式为 y =sin(4x -5π6) .[解析] 将函数y =sin(2x -π3)的图象向右平移π4个单位长度,得到函数y =sin[2(x-π4)-π3]=sin(2x -5π6)的图象,再将所得函数y =sin(2x -5π6)的图象上各点的横坐标缩短为原来的12倍,得到函数y =sin(4x -5π6)的图象.6.将函数f (x )的图象向右平移π3个单位长度后,再向上平移1个单位长度得函数y =2sin ⎝ ⎛⎭⎪⎫4x -π4的图象,则f (x )= 2sin ⎝ ⎛⎭⎪⎫4x +13π12-1 .[解析] 将y =2sin ⎝ ⎛⎭⎪⎫4x -π4的图象向左平移π3个单位长度,得函数y =2sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π3-π4=2sin ⎝ ⎛⎭⎪⎫4x +13π12的图象,再向下平移一个单位长度,得函数y =2sin ⎝ ⎛⎭⎪⎫4x +13π12-1的图象,即f (x )=2sin ⎝⎛⎭⎪⎫4x +13π12-1. 三、解答题7.已知函数f (x )=3sin(12x -π4),x ∈R .(1)列表并画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?[解析] (1)函数f (x )的周期T =2π12=4π.由12x -π4=0,π2,π,3π2,2π, 解得x =π2,3π2,5π2,7π2,9π2.列表如下:描出五个关键点并光滑连线,得到一个周期的简图. 图象如下:(2)方法一:先把y =sin x 的图象向右平移π4个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.方法二:先把y =sin x 的图象所有点的纵坐标扩大为原来的3倍,然后把所有点的横坐标扩大为原来2倍,再把图象向右平移π2个单位,得到f (x )的图象.8.将函数y =lg x 的图象向左平移一个单位长度,可得函数f (x )的图象;将函数y =cos(2x -π6)的图象向左平移π12个单位长度,可得函数g (x )的图象.(1)在同一直角坐标系中画出函数f (x )和g (x )的图象; (2)判断方程f (x )=g (x )解的个数.[解析] 函数y =lg x 的图象向左平移一个单位长度,可得函数f (x )=lg(x +1)的图象,即图象C 1;函数y =cos(2x -π6)的图象向左平移π12个单位长度,可得函数g (x )=cos[2(x +π12)-π6]=cos2x 的图象,即图象C 2.(1)画出图象C 1和C 2的图象如图(2)由图象可知:两个图象共有7个交点. 即方程f (x )=g (x )解的个数为7.C 级 能力拔高(2016·北京理)将函数y =sin(2x -π3)图象上的点P (π4,t )向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin2x 的图象上,则( A )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6 C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3[解析] 因为点P ⎝ ⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×4π-π3=sin π6=12.又P ′⎝ ⎛⎭⎪⎫π4-s ,12在函数y =sin2x 的图象上,所以12=sin2⎝ ⎛⎭⎪⎫π4-s ,则2⎝ ⎛⎭⎪⎫π4-s =2k π+π6或2⎝ ⎛⎭⎪⎫π4-s =2k π+5π6,k ∈Z ,得s =-k π+π6或s =-k π-π6,k ∈Z ,又s >0,故s 的最小值为π6,故选A .。
1.1.3 导数的几何意义学习目标 1.了解导函数的概念,理解导数的几何意义.2.会求简单函数的导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.知识点一导数的几何意义如图,P n的坐标为(x n,f(x n))(n=1,2,3,4),P的坐标为(x0,y0),直线PT为在点P处的切线.思考 1 割线PP n的斜率k n是多少?答案割线PP n的斜率k n=f x n-f x0x n-x0.思考 2 当点P n无限趋近于点P时,割线PP n的斜率k n与切线PT的斜率k有什么关系?答案k n无限趋近于切线PT的斜率k.梳理(1)切线的定义:设PP n是曲线y=f(x)的割线,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT 称为曲线y =f (x )在点P 处的切线.(2)导数f ′(x 0)的几何意义:导数f ′(x 0)表示曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx. (3)切线方程:曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).知识点二导函数思考已知函数f (x )=x 2,分别计算f ′(1)与f ′(x ),它们有什么不同.答案f ′(1)=lim Δx →0f 1+Δx -f 1Δx=2. f ′(x )=lim Δx →0f x +Δx -f x Δx =2x ,f ′(1)是一个值,而f ′(x )是一个函数.梳理对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称导数), 即f ′(x )=y ′=lim Δx →0f x +Δx -f x Δx. 特别提醒:区别联系f ′(x 0)f ′(x 0)是具体的值,是数值在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这一点的函数值f ′(x )f ′(x )是函数f (x )在某区间I 上每一点都存在导数而定义的一个新函数,是函数1.函数在一点处的导数f ′(x 0)是一个常数.( √)2.函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.(√) 3.直线与曲线相切,则直线与已知曲线只有一个公共点.( ×) 类型一求切线方程命题角度1 曲线在某点处的切线方程例1 已知曲线C :y =13x 3+43.求曲线C 在横坐标为2的点处的切线方程.考点求函数在某点处的切线方程。
习题课导数的应用学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用.1.函数的单调性与其导数的关系定义在区间(a,b)内的函数y=f(x)2.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.函数y=f(x)在[a,b]上最大值与最小值的求法(1)求函数y=f(x)在(a,b)内的极值.(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.类型一 构造法的应用命题角度1 比较函数值的大小例1 已知定义在⎝⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是它的导函数,且sin x ·f ′(x )>cos x ·f (x )恒成立,则( )A.2f ⎝ ⎛⎭⎪⎫π6>f⎝ ⎛⎭⎪⎫π4 B.3f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π3 C.6f ⎝ ⎛⎭⎪⎫π6>2f ⎝ ⎛⎭⎪⎫π4 D.3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3 考点 利用导数研究函数的单调性 题点 构造法的应用 答案 D解析 由f ′(x )sin x >f (x )cos x , 得f ′(x )sin x -f (x )cos x >0,构造函数g (x )=f (x )sin x,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x. 当x ∈⎝ ⎛⎭⎪⎫0,π2时,g ′(x )>0,即函数g (x )在⎝ ⎛⎭⎪⎫0,π2上单调递增,∴g ⎝ ⎛⎭⎪⎫π6<g ⎝ ⎛⎭⎪⎫π3,∴3f⎝ ⎛⎭⎪⎫π6<f⎝ ⎛⎭⎪⎫π3, 故选D.反思与感悟 用构造法比较函数值的大小关键是构造出恰当的函数,利用函数的单调性确定函数值的大小.跟踪训练1 已知定义域为R 的奇函数f (x )的导函数为f ′(x ),当x ≠0时,f ′(x )+f (x )x<0,若a =12 f ⎝ ⎛⎭⎪⎫12,b =-2f ()-2,c =⎝ ⎛⎭⎪⎫ln 12 f ⎝ ⎛⎭⎪⎫ln 12,则a ,b ,c 的大小关系是( )A .a <c <bB .b <c <aC .a <b <cD .c <a <b考点 利用导数研究函数的单调性题点 构造法的应用 答案 B解析 令g (x )=xf (x ), 则g (-x )=-xf (-x )=xf (x ),∴g (x )是偶函数.g ′(x )=f (x )+xf ′(x ), ∵f ′(x )+f (x )x<0, ∴当x >0时,xf ′(x )+f (x )<0, 当x <0时,xf ′(x )+f (x )>0. ∴g (x )在(0,+∞)上是减函数. ∵12<ln 2<1<2, ∴g (2)<g (ln 2)<g ⎝ ⎛⎭⎪⎫12. ∵g (x )是偶函数,∴g (-2)=g (2),g ⎝ ⎛⎭⎪⎫ln 12=g (ln 2), ∴g (-2)<g ⎝ ⎛⎭⎪⎫ln 12<g ⎝ ⎛⎭⎪⎫12,故选B. 命题角度2 求解不等式例2 已知定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=2,则不等式f (x )<2e x的解集为( ) A .(-∞,0) B .(-∞,2) C .(0,+∞)D .(2,+∞)考点 利用导数研究函数的单调性 题点 构造法的应用 答案 C 解析 设g (x )=f (x )ex,则g ′(x )=f ′(x )-f (x )ex.∵f (x )>f ′(x ),∴g ′(x )<0,即函数g (x )在R 上单调递减. ∵f (0)=2,∴g (0)=f (0)=2, 则不等式等价于g (x )<g (0). ∵函数g (x )单调递减,∴x >0,∴不等式的解集为(0,+∞),故选C.反思与感悟 构造恰当函数并判断其单调性,利用单调性得到x 的取值范围.跟踪训练2 已知定义在R 上的函数f (x )满足f (1)=1,且对任意的x ∈R 都有f ′(x )<13,则不等式f (lg x )>lg x +23的解集为________.考点 利用导数研究函数的单调性 题点 构造法的应用 答案 (0,10)解析 ∵f ′(x )<13,∴f ′(x )-13<0,∴f (x )-x +23在R 上为减函数.设F (x )=f (x )-x +23,则F (x )在R 上为减函数.∵f (1)=1,∴F (1)=f (1)-1=1-1=0.由f (lg x )>lg x +23,得f (lg x )-lg x +23>0,∴F (lg x )>F (1).∵F (x )在R 上单调递减,∴lg x <1,∴0<x <10, ∴原不等式的解集为(0,10). 类型二 利用导数研究函数的单调性 例3 已知函数f (x )=ax -ax-2ln x (a ∈R ).(1)若函数f (x )在区间[1,+∞)上是单调函数,求实数a 的取值范围; (2)讨论函数f (x )的单调区间. 考点 利用导数求函数的单调区间 题点 利用导数求含参数函数的单调区间解 (1)f ′(x )=a +a x 2-2x =ax 2-2x +ax 2(x >0).①当a ≤0时,f ′(x )<0,函数f (x )单调递减; ②当a >0时,令g (x )=ax 2-2x +a , ∵函数f (x )在区间[1,+∞)上是单调函数, ∴g (x )≥0在区间[1,+∞)上恒成立, ∴a ≥2xx 2+1在区间[1,+∞)上恒成立. 令u (x )=2xx 2+1,x ∈[1,+∞).∵u (x )=2x +1x ≤22x ·1x=1, 当且仅当x =1时取等号. ∴a ≥1.∴当a ≥1时,函数f (x )单调递增.∴实数a 的取值范围是(-∞,0]∪[1,+∞).(2)由(1)可知:①当a ≤0时,f ′(x )<0,函数f (x )在(0,+∞)上单调递减; ②当a ≥1时,此时函数f (x )在(0,+∞)上单调递增. ③当0<a <1时,由ax 2-2x +a =0, 解得x =1-1-a 2a 或x =1+1-a2a.∴函数f (x )在⎝ ⎛⎭⎪⎫0,1-1-a 2a ,⎝ ⎛⎭⎪⎫1+1-a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-a 2a ,1+1-a 2a 上单调递减.反思与感悟 利用导数研究函数单调性应注意以下几点 (1)关注函数的定义域,单调区间应为定义域的子区间. (2)已知函数在某个区间上的单调性时转化要等价. (3)分类讨论求函数的单调区间实质是讨论不等式的解集. (4)求参数的范围时常用到分离参数法.跟踪训练3 设函数f (x )=ln x +x 2-2ax +a 2,a ∈R . (1)当a =2时,求函数f (x )的单调区间;(2)若函数f (x )在[1,3]上不存在单调递增区间,求实数a 的取值范围. 考点 利用导数研究函数的单调性 题点 存在递增(或递减)区间解 (1)当a =2时,f (x )=ln x +x 2-4x +4(x >0), f ′(x )=1x +2x -4=2x 2-4x +1x,令f ′(x )>0,解得x >2+22或x <2-22,令f ′(x )<0,解得2-22<x <2+22,故f (x )在⎝ ⎛⎭⎪⎫0,2-22上单调递增,在⎝ ⎛⎭⎪⎫2-22,2+22上单调递减,在⎝ ⎛⎭⎪⎫2+22,+∞上单调递增.(2)f ′(x )=1x +2x -2a =2x 2-2ax +1x,x ∈[1,3],设g (x )=2x 2-2ax +1,假设函数f (x )在[1,3]上不存在单调递增区间, 必有g (x )≤0,于是⎩⎪⎨⎪⎧g (1)=3-2a ≤0,g (3)=19-6a ≤0,解得a ≥196.即实数a 的取值范围为⎣⎢⎡⎭⎪⎫196,+∞. 类型三 函数的极值、最值与导数例4 已知函数f (x )=2ax -ln(2x ),x ∈(0,e],g (x )=ln xx,x ∈(0,e],其中e 是自然对数的底数,a ∈R .(1)当a =1时,求函数f (x )的单调区间和极值; (2)求证:在(1)的条件下,f (x )>g (x )+12;(3)是否存在实数a ,使f (x )的最小值是3,若存在,求出a 的值;若不存在,请说明理由. 考点 导数在最值中的应用 题点 已知最值求参数(1)解 当a =1时,f (x )=2x -ln(2x ),f ′(x )=2-1x =2x -1x,x ∈(0,e],当0<x <12时,f ′(x )<0,此时f (x )单调递减;当12<x <e 时,f ′(x )>0,此时f (x )单调递增. 所以f (x )的极小值为f ⎝ ⎛⎭⎪⎫12=1, 故f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12,单调递增区间为⎝ ⎛⎦⎥⎤12,e ,f (x )的极小值为f ⎝ ⎛⎭⎪⎫12=1,无极大值.(2)证明 令h (x )=g (x )+12=ln x x +12,h ′(x )=1-ln xx2,x ∈(0,e], 当0<x <e 时,h ′(x )>0,此时h (x )单调递增, 所以h (x )max =h (e)=1e +12<1,由(1)知f (x )min =1,所以在(1)的条件下,f (x )>g (x )+12.(3)解 假设存在实数a ,使f (x )=2ax -ln(2x ),x ∈(0,e]有最小值3,f ′(x )=2a -1x=2ax -1x,x ∈(0,e],①当a ≤0时,因为x ∈(0,e],所以f ′(x )<0,f (x )在(0,e]上单调递减, 所以f (x )min =f (e)=2a e -ln(2e)=3, 解得a =4+ln 22e(舍去),②当0<12a <e ,即a >12e 时,f (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递减,在⎝ ⎛⎦⎥⎤12a ,e 上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12a =1-ln 1a =3,解得a =e 2,满足条件,③当12a ≥e,即0<a ≤12e 时,f ′(x )<0,f (x )在(0,e]上单调递减,所以f (x )min =f (e)=2a e -ln(2e)=3, 解得a =4+ln 22e(舍去).综上,存在实数a =e 2,使得当x ∈(0,e]时,f (x )的最小值为3.反思与感悟 (1)已知极值点求参数的值后,要代回验证参数值是否满足极值的定义. (2)讨论极值点的实质是讨论函数的单调性,即f ′(x )的正负.(3)求最大值要在极大值与端点值中取最大者,求最小值要在极小值与端点值中取最小者. 跟踪训练4 设函数f (x )=c ln x +12x 2+bx (b ,c ∈R ,c ≠0),且x =1为f (x )的极值点.(1)若x =1为f (x )的极大值点,求f (x )的单调区间(用c 表示); (2)若函数f (x )恰有两个零点,求实数c 的取值范围. 考点 函数极值的综合应用 题点 函数零点与方程的根解 f ′(x )=c x +x +b =x 2+bx +cx,∵x =1为f (x )的极值点,∴f ′(1)=0, ∴f ′(x )=(x -1)(x -c )x且c ≠1,b +c +1=0.(1)若x =1为f (x )的极大值点,∴c >1, 当0<x <1时,f ′(x )>0;当1<x <c 时,f ′(x )<0; 当x >c 时,f ′(x )>0.∴f (x )的单调递增区间为(0,1),(c ,+∞);单调递减区间为(1,c ). (2)①若c <0,则f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 函数f (x )恰有两个零点,则f (1)<0,即12+b <0,∴-12<c <0;②若0<c <1,则f (x )极大值=f (c )=c ln c +12c 2+bc ,f (x )极小值=f (1)=12+b ,∵b =-1-c ,则f (x )极大值=c ln c +12c 2+c (-1-c )=c ln c -c -12c 2<0,f (x )极小值=-12-c ,从而得f (x )只有一个零点;③若c >1,则f (x )极小值=f (c )=c ln c +12c 2+c (-1-c )=c ln c -c -12c 2<0,f (x )极大值=f (1)=-12-c ,从而得f (x )只有一个零点.综上,使f (x )恰有两个零点的c 的取值范围为⎝ ⎛⎭⎪⎫-12,0.1.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.43B.73C.83D.163考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 C解析 由题意可知f (0)=0,f (1)=0,f (2)=0, 可得1+b +c =0,8+4b +2c =0,解得b =-3,c =2, 所以函数的解析式为f (x )=x 3-3x 2+2x .f ′(x )=3x 2-6x +2,由方程3x 2-6x +2=0,可得x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-2×23=83.2.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的正数a ,b ,若a <b ,则必有( ) A .bf (b )≤af (a ) B .bf (a )≤af (b ) C .af (a )≤bf (b )D .af (b )≤bf (a )考点 利用导数研究函数的单调性 题点 构造法的应用 答案 A解析 设g (x )=xf (x ),x ∈(0,+∞), 则g ′(x )=xf ′(x )+f (x )≤0,∴g (x )在区间(0,+∞)上单调递减或g (x )为常函数. ∵a <b ,∴g (a )≥g (b ),即af (a )≥bf (b ),故选A.3.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则m 的取值范围是________.考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围答案 ⎣⎢⎡⎭⎪⎫32,+∞ 解析 f ′(x )=2x 3-6x 2,令f ′(x )=0,得x =0或x =3, 验证可知x =3是函数的最小值点, 故f (x )min =f (3)=3m -272,由f (x )+9≥0恒成立,得f (x )≥-9恒成立, 即3m -272≥-9,∴m ≥32.4.已知函数f (x )=x (x 2-ax +3).(1)若x =13是f (x )的极值点,求f (x )在区间[-1,4]上的最大值与最小值;(2)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围.考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 解 (1)由f (x )=x 3-ax 2+3x , 得f ′(x )=3x 2-2ax +3,由已知得f ′⎝ ⎛⎭⎪⎫13=0,解得a =5, ∴f (x )=x 3-5x 2+3x ,f ′(x )=3x 2-10x +3, 由f ′(x )=0,解得x =13或x =3,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴函数f (x )在[-1,4]上的最小值为-9,最大值是1327.(2)f ′(x )=3x 2-2ax +3,由f (x )在[1,+∞)上单调递增,得3x 2-2ax +3≥0, 即a ≤32⎝⎛⎭⎪⎫x +1x ,要使上式成立,只要a ≤⎣⎢⎡⎦⎥⎤32⎝ ⎛⎭⎪⎫x +1x min 即可,设g (x )=x +1x(x ≥1),由于g (x )在[1,+∞)上单调递增, ∴g (x )min =2,∴a ≤3,即实数a 的取值范围是(-∞,3].导数作为一种重要的工具,在研究函数中具有重要的作用,例如函数的单调性、极值与最值等问题,都可以通过导数得以解决.不但如此,利用研究导数得到函数的性质后,还可以进一步研究方程、不等式等诸多代数问题,所以一定要熟练掌握利用导数来研究函数的各种方法.一、选择题1.函数f (x )=x cos x -sin x 在下面哪个区间内是增函数( )A.⎝⎛⎭⎪⎫π2,3π2 B .(π,2π) C.⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)考点 函数的单调性与导数的关系题点 利用导数值的正负号判定函数的单调性答案 B解析 f ′(x )=cos x -x sin x -cos x =-x sin x ,若f (x )在某区间内是增函数,只需在此区间内f ′(x )大于或等于0(不恒为0)即可.∴只有选项B 符合题意,当x ∈(π,2π)时,f ′(x )>0恒成立.2.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( )A .0≤a ≤21B .a =0或a =7C .a <0或a >21D .a =0或a =21 考点 利用导数研究函数的极值题点 极值存在性问题答案 A解析 f ′(x )=3x 2+2ax +7a ,当Δ=4a 2-84a ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数f (x )不存在极值点.3.若函数f (x )=(x 2+ax -1)ex -1的一个极值点为x =1,则f (x )的极大值为( ) A .-1B .-2e -3C .5e -3D .1 考点 利用导数研究函数的极值题点 已知极值求参数答案 C解析 由题意知f ′(1)=0,解得a =-1,∴f ′(x )=(x 2+x -2)e x -1,则函数的极值点为x 1=-2,x 2=1,当x <-2或x >1时,f ′(x )>0,函数是增函数,当x ∈(-2,1)时,函数是减函数,∴f (x )极大值=f (-2)=5e -3.4.已知定义在R 上的函数f (x )的图象如图,则x ·f ′(x )>0的解集为( )A .(-∞,0)∪(1,2)B .(1,2)C .(-∞,1)D .(-∞,1)∪(2,+∞)考点 函数的单调性与导数的关系题点 根据单调性确定导数值的正负号答案 A解析 不等式x ·f ′(x )>0等价于当x >0时,f ′(x )>0,即当x >0时,函数单调递增,此时1<x <2;或者当x <0时,f ′(x )<0,即当x <0时,函数单调递减,此时x <0,综上,1<x <2或x <0,即不等式的解集为(-∞,0)∪(1,2).5.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( ) A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 考点 利用导数求函数的单调区间题点 已知函数的单调性求参数(或其范围)答案 C解析 由题意知f ′(x )=-x +b x +2≤0,x ∈(-1,+∞), 即f ′(x )=-x 2-2x +b x +2≤0, 即-x 2-2x +b =-(x +1)2+1+b ≤0,∴1+b ≤0,b ≤-1.6.已知函数f (x )=x 2-2ln x ,若关于x 的不等式f (x )-m ≥0在[1,e]上有实数解,则实数m 的取值范围是( )A .(-∞,e 2-2)B .(-∞,e 2-2] C .(-∞,1) D .(-∞,1] 考点 利用导数求函数中参数的取值范围题点 利用导数求函数中参数的取值范围答案 B解析 由f (x )-m ≥0得f (x )≥m ,函数f (x )的定义域为(0,+∞),f ′(x )=2x -2x =2(x 2-1)x, 当x ∈[1,e]时,f ′(x )≥0,此时,函数f (x )单调递增,所以f (1)≤f (x )≤f (e).即1≤f (x )≤e 2-2,要使f (x )-m ≥0在[1,e]上有实数解,则有m ≤e 2-2.7.定义在R 上的函数f (x )满足f ′(x )>1-f (x ),f (0)=6,其中f ′(x )是f (x )的导函数,则不等式e x f (x )>e x +5(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,0)∪(3,+∞)C .(-∞,0)∪(1,+∞)D .(3,+∞) 考点 利用导数研究函数的单调性题点 构造法的应用答案 A解析 不等式e x f (x )>e x +5可化为e x f (x )-e x -5>0.设g (x )=e x f (x )-e x -5,则g ′(x )=e x f (x )+e x f ′(x )-e x =e x[f (x )+f ′(x )-1]>0,所以函数g (x )在定义域R 上单调递增.又g (0)=0,所以g (x )>0的解集为(0,+∞).二、填空题8.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递增区间为________________.考点 利用导数研究函数的极值题点 已知极值求参数答案 (-∞,-1)和(1,+∞)解析 令f ′(x )=3x 2-3a =0,得x =±a .由题意得f (a )=2,f (-a )=6,得a =1,b =4.由f ′(x )=3x 2-3>0,得f (x )的单调递增区间为(-∞,-1)和(1,+∞). 9.已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.考点 利用导数研究函数的单调性题点 比较函数值的大小答案 c <a <b解析 f (2)=f (π-2),f (3)=f (π-3),因为f ′(x )=1+cos x ≥0,故f (x )在⎝ ⎛⎭⎪⎫-π2,π2上是增函数, 因为π2>π-2>1>π-3>0, 所以f (π-2)>f (1)>f (π-3).即c <a <b .10.若函数f (x )=4x x 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是________. 考点 利用导数求函数的单调区间题点 已知函数的单调性求参数(或其范围)答案 (-1,0]解析 f ′(x )=4-4x 2(x 2+1)2,令f ′(x )>0,得-1<x <1, 即函数f (x )的增区间为(-1,1).又f (x )在(m,2m +1)上单调递增, 所以⎩⎪⎨⎪⎧ m ≥-1,m <2m +1,2m +1≤1,解得-1<m ≤0.11.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,则实数a 的取值范围为________.考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围答案 [1,+∞)解析 由f (x )>1,得ax -ln x >1,∵x >1,∴原不等式转化为a >1+ln x x, 设g (x )=ln x +1x ,得g ′(x )=-ln x x 2, 当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(1,+∞)上单调递减,则g (x )<g (1)=1,∵a >1+ln x x在(1,+∞)上恒成立,∴a ≥1.三、解答题12.已知函数f (x )=-x 3+3x 2+9x +a .(1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 考点 导数在最值问题中的应用题点 求函数的最值解 (1)∵f ′(x )=-3x 2+6x +9,令f ′(x )<0,解得x <-1或x >3,∴函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(2)∵f (-2)=8+12-18+a =2+a , f (2)=-8+12+18+a =22+a ,∴f (2)>f (-2).于是有22+a =20,∴a =-2,∴f (x )=-x 3+3x 2+9x -2.当x ∈(-1,3)时,f ′(x )>0,∴f (x )在[-1,2]上单调递增.又由于f (x )在[-2,-1)上单调递减,∴f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值,∴f (-1)=1+3-9-2=-7,即f (x )的最小值为-7.13.已知函数f (x )=12x 2-a ln x (a ∈R ). (1)若f (x )在x =2时取得极值,求a 的值;(2)求f (x )的单调区间;(3)求证:当x >1时,12x 2+ln x <23x 3. 考点 利用导数研究函数的单调性题点 利用导数证明不等式(1)解 f ′(x )=x -a x ,因为x =2是一个极值点,所以2-a 2=0,则a =4. 此时f ′(x )=x -4x =(x +2)(x -2)x, 因为f (x )的定义域是(0,+∞),所以当x ∈(0,2)时,f ′(x )<0;当x ∈(2,+∞),f ′(x )>0,所以当a =4时,x =2是一个极小值点,故a =4.(2)解 因为f ′(x )=x -a x =x 2-a x, 所以当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x +a )(x -a )x, 所以函数f (x )的单调递增区间为(a ,+∞);单调递减区间为(0,a ).(3)证明 设g (x )=23x 3-12x 2-ln x , 则g ′(x )=2x 2-x -1x, 因为当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0, 所以g (x )在x ∈(1,+∞)上是增函数,所以g (x )>g (1)=16>0, 所以当x >1时,12x 2+ln x <23x 3. 四、探究与拓展14.已知函数f (x )是定义在R 上的奇函数,f (1)=0,当x >0时,有xf ′(x )-f (x )x 2>0,则不等式x 2f (x )>0的解集是________________.考点 利用导数求函数的单调区间题点 求不等式的解集答案 (-1,0)∪(1,+∞)解析 令g (x )=f (x )x (x ≠0), 则g ′(x )=xf ′(x )-f (x )x 2. ∵当x >0时,xf ′(x )-f (x )x 2>0,即g ′(x )>0, ∴g (x )在(0,+∞)上为增函数.又f (1)=0,∴g (1)=f (1)=0,∴在(0,+∞)上,g (x )>0的解集为(1,+∞).∵f (x )为奇函数,∴g (x )为偶函数,∴在(-∞,0)上,g (x )<0的解集为(-1,0).由x 2f (x )>0,得f (x )>0(x ≠0).又f (x )>0的解集为(-1,0)∪(1,+∞),∴不等式x 2f (x )>0的解集为(-1,0)∪(1,+∞).15.设函数f (x )=-13x 3+12x 2+2ax . (1)若f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值. 考点 导数在最值问题中的应用题点 已知最值求参数解 (1)已知f (x )=-13x 3+12x 2+2ax , 则f ′(x )=-x 2+x +2a , 由于函数f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间, 即导函数在⎝ ⎛⎭⎪⎫23,+∞上存在函数值大于零的部分, 故f ′⎝ ⎛⎭⎪⎫23=-⎝ ⎛⎭⎪⎫232+23+2a >0,即a >-19. 即实数a 的取值范围为⎝ ⎛⎭⎪⎫-19,+∞. (2)已知0<a <2时,f (x )在[1,4]上取到最小值-163, 而f ′(x )=-x 2+x +2a 的图象开口向下,且对称轴为x =12, 则f ′(1)=-1+1+2a =2a >0,f ′(4)=-16+4+2a =2a -12<0,则必有一点x 0∈[1,4],使得f ′(x 0)=0,此时函数f (x )在[1,x 0]上单调递增,在[x 0,4]上单调递减,因为f (1)=-13+12+2a =16+2a >0, 所以f (4)=-13×64+12×16+8a =-403+8a <0. 所以f (4)=-403+8a =-163,即a =1. 此时,由f ′(x 0)=-x 20+x 0+2=0,得x 0=2或-1(舍去),即f (x )在[1,2]上单调递增,在[2,4]上单调递减.10 3.所以函数f(x)max=f(2)=。
1.1.2 程序框图
1.1.3 算法的三种基本逻辑结构和框图表示(1)——顺序结构、条件分支
结构
课时过关·能力提升
1程序框图中表示处理框的是()
A.矩形框
B.菱形框
C.圆形框
D.椭圆形框
答案 A
2阅读下面的程序框图,若输入的a,b,c分别是21,32,75,则输出的a,b,c分别是()
A.75,21,32
B.21,32,75
C.32,21,75
D.75,32,21
解析本题中的程序框图是简单的顺序结构,只是使用了多次变量赋值,所以只要明确给一个变量赋值的含义,容易得出最后输出的a,b,c的值是75,21,32.
答案 A
3如图所示的是一个程序框图,已知a1=3,输出的结果为7,则a2的值是()
A.9
B.10
C.11
D.12
解析令a2=x,结合程序框图x=11.
答案 C
4如图所示的程序框图能判断任意输入的数x是奇数还是偶数,其中判断框内的条件是()
A.x=0
B.m=0
C.x=1
D.m=1
答案 B
5任给x的值,计算函数y
A.x>1,x<1,y=3
B.x=1,x>1,y=3。
第一课 导数及其应用[核心速填]1.导数的概念(1)定义:函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f x 0+Δx -f x 0Δx,称为函数y =f (x )在x =x 0处的导数.(2)几何意义:函数y =f (x )在x =x 0处的导数是函数图象在点(x 0,f (x 0))处的切线斜率. 2.几个常用函数的导数(1)若y =f (x )=c ,则f ′(x )=0. (2)若y =f (x )=x ,则f ′(x )=1. (3)若y =f (x )=x 2,则f ′(x )=2x . (4)若y =f (x )=1x ,则f ′(x )=-1x2.(5)若y =f (x )=x ,则f ′(x )=12x .3.基本初等函数的导数公式(1)若f (x )=c (c 为常数),则f ′(x )=0. (2)若f (x )=x α(α∈Q *),则f ′(x )=αx α-1.(3)若f (x )=sin x ,则f ′(x )=cos_x . (4)若f (x )=cos x ,则f ′(x )=-sin_x . (5)若f (x )=a x,则f ′(x )=a xln_a . (6)若f (x )=e x,则f ′(x )=e x. (7)若f (x )=log a x ,则f ′(x )=1x ln a. (8)若f (x )=ln x ,则f ′(x )=1x.4.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gxg 2x.5.复合函数的求导法则 (1)复合函数记法:y =f (g (x )). (2)中间变量代换:y =f (u ),u =g (x ). (3)逐层求导法则:y ′x =y ′u ·u ′x .6.函数的单调性、极值与导数 (1)函数的单调性与导数在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减.(2)函数的极值与导数①极大值:在点x =a 附近,满足f (a )≥f (x ),当x <a 时,f ′(x )>0,当x >a 时,f ′(x )<0,则点a 叫做函数的极大值点,f (a )叫做函数的极大值;②极小值:在点x =a 附近,满足f (a )≤f (x ),当x <a 时,f ′(x )<0,当x >a 时,f ′(x )>0,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.7.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤 (1)求函数y =f (x )在(a ,b )内的极值.(2)将函数y =f (x )的各极值与端点处的函数值比较,其中最大的一个是最大值,最小的一个为最小值.8.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).9.定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x ;②⎠⎛a b [f (x )+g (x )]d x =⎠⎛a b f (x )d x +⎠⎛ab g (x )d x ;③⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).[体系构建][题型探究](1)求曲线y =f (x )在点(2,-6)处的切线方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.【导学号:31062107】[解] (1)∵f ′(x )=(x 3+x -16)′=3x 2+1, ∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)法一:设切点为(x 0,y 0), 则直线l 的斜率为f ′(x 0)=3x 20+1, ∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16. 整理得,x 30=-8, ∴x 0=-2.∴y 0=(-2)3+(-2)-16=-26.k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1.解得,x 0=-2,∴y 0=(-2)3+(-2)-16=-26.k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4. 设切点坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, ∴x 0=±1. ∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.即切点为(1,-14)或(-1,-18).切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.[规律方法] 1.导数的几何意义的应用:利用导数的几何意义可以求出曲线上任意一点处的切线方程y -y 0=fx 0x -x 0,明确“过点P x 0,y 0的曲线y =f x 的切线方程”与“在点P x 0,y 0处的曲线y =f x 的切线方程”的异同点2.围绕着切点有三个等量关系:切点x 0,y 0,则k =fx 0,y 0=f x 0,x 0,y 0满足切线方程,在求解参数问题中经常用到.[跟踪训练]1.直线y =kx +b 与曲线y =x 3+ax +1相切于点(2,3),则b =________. [解析] ∵y =x 3+ax +1过点(2,3), ∴a =-3,∴y ′=3x 2-3, ∴k =y ′|x =2=3×4-3=9, ∴b =y -kx =3-9×2=-15. [答案] -15(1)f x )-f (x )≤0,对任意正数a ,b ,若a <b ,则必有( ) 【导学号:31062108】A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )(2)设f (x )=a ln x +x -1x +1,其中a 为常数,讨论函数f (x )的单调性. (1)A [令F (x )=f x x,则F ′(x )=xfx -f xx 2.又当x >0时,xf ′(x )-f (x )≤0,∴F ′(x )≤0, ∴F (x )在(0,+∞)上单调递减. 又a <b , ∴F (a )>F (b ), ∴f a a >f bb, ∴bf (a )>af (b ),故选A.](2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2x +2=ax 2+a +x +ax x +2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增. 当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12x -2x x +2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-a ++2a +1a,x 2=-a +-2a +1a,由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a>0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,函数f (x )在⎝⎛⎭⎪⎫0,-a ++2a +1a, ⎝ ⎛⎭⎪⎫-a +-2a +1a ,+∞上单调递减,在⎝⎛⎭⎪⎫-a ++2a +1a ,-a +-2a +1a 上单调递增.[规律方法] 利用导数确定参数的取值范围时,要充分利用f x 与其导数f x之间的对应关系,然后结合函数的单调性等知识求解求解参数范围的步骤为:对含参数的函数f x求导,得到fx ;若函数f x 在a ,b 上单调递增,则f x恒成立;若函数fx 在a ,b 上单调递减,则f x 恒成立,得到关于参数的不等式,解出参数范围;验证参数范围中取等号时,是否恒有fx =0.若f x =0恒成立,则函数f x 在a ,b 上为常函数,舍去此参数值.[跟踪训练]2.若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.[解]函数f(x)的导数f′(x)=x2-ax+a-1.令f′(x)=0,解得x=1或x=a-1.当a-1≤1,即a≤2时,函数f(x)在(1,+∞)上为增函数,不合题意.当a-1>1,即a>2时,函数f(x)在(-∞,1)上为增函数,在(1,a-1)上为减函数,在(a-1,+∞)上为增函数.依题意当x∈(1,4)时,f′(x)<0,当x∈(6,+∞)时,f′(x)>0.故4≤a-1≤6,即5≤a≤7.因此a的取值范围是[5,7].3x +y=0平行.(1)求函数f(x)的解析式;(2)求函数f(x)在区间[0,t](0<t<3)上的最大值和最小值.[解](1)因为f′(x)=3x2+2ax,曲线在P(1,0)处的切线斜率为f′(1)=3+2a,即3+2a=-3,a=-3.又函数过(1,0)点,即-2+b=0,b=2.所以a=-3,b=2,f(x)=x3-3x2+2.(2)由f(x)=x3-3x2+2,得f′(x)=3x2-6x.由f′(x)=0,得x=0或x=2.①当0<t≤2时,在区间(0,t)上,f′(x)<0,f(x)在[0,t]上是减函数,所以f(x)max =f(0)=2,f(x)min=f(t)=t3-3t2+2.②当2<t<3时,当x变化时,f′(x),f(x)的变化情况如下表:min maxf(t)-f(0)=t3-3t2=t2(t-3)<0,所以f(x)max=f(0)=2.母题探究:(变结论)在本例条件不变的情况下,若关于x的方程f(x)=c在区间[1,3]上恰有两个相异的实根,求实数c的取值范围.[解] 令g (x )=f (x )-c =x 3-3x 2+2-c , 则g ′(x )=3x 2-6x =3x (x -2).在x ∈[1,2)上,g ′(x )<0;在x ∈(2,3]上,g ′(x )>0. 要使g (x )=0在[1,3]上恰有两个相异的实根,则⎩⎪⎨⎪⎧g ,g <0,g,解得-2<c ≤0.[规律方法] 求极值时一般需确定f x =0的点和单调性,对于常见连续函数,先确定单调性即可得极值点,当连续函数的极值点只有一个时,相应的极值点必为函数的最值点求闭区间上可导函数的最值时,对函数极值是极大值还是极小值可不再作判断,只需要直接与端点的函数值比较即可获得.[跟踪训练]3.已知a ,b 为常数且a >0,f (x )=x 3+32(1-a )x 2-3ax +b .(1)函数f (x )的极大值为2,求a ,b 间的关系式;(2)函数f (x )的极大值为2,且在区间[0,3]上的最小值为-232,求a ,b 的值.【导学号:31062109】[解] (1)f ′(x )=3x 2+3(1-a )x -3a =3(x -a )(x +1), 令f ′(x )=0,解得x 1=-1,x 2=a , 因为a >0,所以x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:(2)当0<a <3时,由(1)知,f (x )在[0,a )上为减函数,在(a,3]上为增函数, 所以f (a )为最小值,f (a )=-12a 3-32a 2+b .即-12a 3-32a 2+b =-232.又由b =3-2a 2,于是有a 3+3a 2+3a -26=0,即(a +1)3=27,所以a =2,b =-32.当a >3时,由(1)知f (x )在[0,3]上为减函数,即f (3)为最小值,f (3)=-232,从而求得a =10748,不合题意,舍去.综上,a =2,b =-32.),其中容器的中间为圆柱体,左右两端均为半球体,按照设计要求容器的体积为64π3立方米.假设该容器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为3千元,半球体部分每平方米建造费用为4千元.设该容器的总建造费用为y 千元.图11(1)将y 表示成r 的函数,并求该函数的定义域;(2)确定r 和l 为何值时,该容器的建造费用最小,并求出最小建造费用. [解] 由题意可知4πr 33+πr 2l =64π3,∴l =643r 2-4r 3. 又圆柱的侧面积为2πrl =128π3r -8πr 23,两端两个半球的表面积之和为4πr 2.所以y =⎝ ⎛⎭⎪⎫128π3r-8πr 23×3+4πr 2×4=128πr +8πr 2.又l =643r 2-4r3>0⇒r <2,所以定义域为(0,2).(2)因为y ′=-128πr2+16πr =16πr 3-r 2,所以令y ′>0,得2<r <2;令y ′<0,得0<r <2.所以当r =2米时,该容器的建造费用最小,为96π千元,此时l =83米.[规律方法] 解决优化问题的步骤要分析问题中各个数量之间的关系,建立适当的函数模型,并确定函数的定义域. 要通过研究相应函数的性质,如单调性、极值与最值,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.验证数学问题的解是否满足实际意义. [跟踪训练]4.现有一批货物由海上A 地运往B 地,已知轮船的最大航行速度为35海里/小时,A 地至B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y (元)表示为速度x (海里/小时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度行驶?[解] (1)依题意得y =500x (960+0.6x 2)=480 000x+300x ,函数的定义域为(0,35],即y =480 000x+300x (0<x ≤35).(2)由(1)知y =480 000x +300x (0<x ≤35),所以y ′=-480 000x2+300.令y ′=0,解得x =40或x =-40(舍去).因为函数的定义域为(0,35],所以函数在定义域内没有极值.又当0<x ≤35时,y ′<0,所以y =480 000x+300x 在(0,35]上单调递减,故当x =35时,函数y =480 000x+300x 取得最小值.故为了使全程运输成本最小,轮船应以35海里/小时的速度行驶.设函数f (1)求f (x )的极值点;(2)若关于x 的方程f (x )=a 有3个不同实根,求实数a 的取值范围; (3)已知当x ∈(1,+∞)时,f (x )≥k (x -1)恒成立,求实数k 的取值范围.【导学号:31062110】[解] (1)f ′(x )=3(x 2-2),令f ′(x )=0, 得x 1=-2,x 2= 2.当x ∈(-∞,-2)∪(2,+∞)时,f ′(x )>0,当x ∈(-2,2) 时,f ′(x )<0,因此x 1=-2,x 2=2分别为f (x )的极大值点、极小值点. (2)由(1)的分析可知y =f (x )图象的大致形状及走向如图所示.要使直线y =a 与y =f (x )的图象有3个不同交点需5-42=f (2)精品K12教育教学资料精品K12教育教学资料 <a <f (-2)=5+4 2.则方程f (x )=a 有3个不同实根时,所求实数a 的取值范围为(5-42,5+42).(3)法一:f (x )≥k (x -1),即(x -1)(x 2+x -5)≥k (x -1),因为x >1,所以k ≤x 2+x -5在(1,+∞)上恒成立,令g (x )=x 2+x -5,由二次函数的性质得g (x )在(1,+∞)上是增函数,所以g (x )>g (1)=-3,所以所求k 的取值范围是为(-∞,-3].法二:直线y =k (x -1)过定点(1,0)且f (1)=0,曲线f (x )在点(1,0)处切线斜率f ′(1)=-3,由(2)中草图知要使x ∈(1,+∞)时,f (x )≥k (x -1)恒成立需k ≤-3.故实数k 的取值范围为(-∞,-3].[规律方法] 讨论方程根的个数,研究函数图象与x 轴或某直线的交点个数、不等式恒成立问题的实质就是函数的单调性与函数极最值的应用.问题破解的方法是根据题目的要求,借助导数将函数的单调性与极最值列出,然后再借助单调性和极最值情况,画出函数图象的草图,数形结合求解.[跟踪训练]5.已知函数f (x )=e x +1x -a,a ∈R ,试讨论函数f (x )的零点个数. [解] 函数f (x )的定义域为{x |x ≠a }.(1)当x >a 时,e x >0,x -a >0,∴f (x )>0,即f (x )在(a ,+∞)上无零点.(2)当x <a 时,f (x )=e x x -a +1x -a , 令g (x )=e x (x -a )+1,则g ′(x )=e x (x -a +1).由g ′(x )=0得x =a -1.当x <a -1时,g ′(x )<0;当x >a -1时,g ′(x )>0,∴g (x )在(-∞,a -1)上单调递减,在(a -1,+∞)上单调递增,∴g (x )min =g (a -1)=1-e a -1.∴当a =1时,g (a -1)=0,∴x =a -1是f (x )的唯一零点;当a <1时,g (a -1)=1-ea -1>0,∴f (x )没有零点; 当a >1时,g (a -1)=1-e a -1<0,∴f (x )有两个零点.。
第一课时直线与平面垂直1若直线a⊥平面α,直线b∥α,则直线a与b的关系是()A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直b∥α,则在平面α内存在一条直线c,使得b∥c,因为直线a⊥平面α,c⊂α,所以a ⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直,故选C.2如图,BC是Rt△ABC的斜边,PA⊥平面ABC,PD⊥BC,则图中直角三角形的个数是()A.8B.7C.6D.5PA⊥AC, PA⊥AD,PA⊥AB,BC⊥AD,BC⊥PD,AC⊥AB.图中的直角三角形分别为△PAC,△PAD,△PAB,△ADC,△ADB,△PCD,△PDB,△ABC,共8个,故选A.3设α表示平面,a,b,l表示直线,给出下列四个命题:①⇒l⊥α;②⇒b⊥α;③⇒b⊥α;④⇒a⊥α.其中正确的命题是()A.①②B.②③C.③④D.②中当a,b相交时才成立;③中由a∥α,a⊥b知b∥α或b⊂α或b⊥α或b与α相交;④中当a垂直于平面α内的两条相交直线时,有a⊥α,若a只垂直于平面α内的一条直线,则不能得出a⊥α,从而不正确.4已知直线a,b与平面α,给出下列四个命题:①若a∥b,b⊂α,则a∥α;②若a∥α,b⊂α,则a∥b;③若a∥α,b∥α,则a∥b;④若a⊥α,b∥α,则a⊥b.其中正确命题的个数是 ()A.1B.2C.3D.45在正方形SG1G2G3中,E,F分别是G1G2和G2G3的中点,D是EF的中点,现在沿SE,SF和EF把这个正方形折起,使点G1,G2,G3重合,重合后的点记为G,则下列结论成立的是()A.SD⊥平面EFGB.SG⊥平面EFGC.GF⊥平面SEFD.GD⊥平面SEFSG⊥GE,SG⊥GF,又GF与GE相交于点G,所以SG⊥平面EFG.6如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误..的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.△AEF的面积与△BEF的面积相等7对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,BD⊥AC,则BC⊥AD.其中真命题的序号是.①,取BC的中点E.连接AE,DE,则BC⊥AE,BC⊥DE,所以BC⊥AD.对于命题④,过A向平面BCD作垂线AO,如图,连接BO并延长与CD交于点G,则CD⊥BG,同理CH⊥BD.所以O为△BCD的垂心,连接DO,则BC⊥DO,BC⊥AO,所以BC⊥AD.8如图,已知在矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于.PA⊥平面ABCD,所以PA⊥QD.又因为PQ⊥QD,PA∩PQ=P,所以QD⊥平面PAQ.所以AQ⊥QD,即Q在以AD为直径的圆上,当圆与BC相切时,点Q只有一个,故BC=2AB=2.9如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是.,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.10如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2, AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得BC⊥DC.又因为PD∩DC=D,PD⊂平面PCD,DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,所以PC⊥BC.AC,设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而由AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积V=S△ABC·PD=.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以PC=.由PC⊥BC,BC=1,得△PBC的面积S△PBC=,由V=S△PBC·h=·h=,得h=.因此,点A到平面PBC的距离为.★11如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M,N,G分别是棱CC1,AB,BC的中点,且CC1=AC.求证:(1)CN∥平面AMB1;(2)B1M⊥平面AMG.设AB1的中点为P,连接NP,MP.因为CM∥AA1,且CM=AA1,NP∥AA1,且NP=AA1,所以CM∥NP,且CM=NP.所以四边形CNPM是平行四边形.所以CN∥MP.因为CN⊄平面AMB1,MP⊂平面AMB1,所以CN∥平面AMB1.(2)因为CC1⊥平面ABC,所以CC1⊥AG.由△ABC是正三角形得AG⊥BC,又因为BC∩CC1=C,所以AG⊥平面CC1B1B.所以B1M⊥AG.因为CC1⊥平面ABC,所以CC1⊥AC.设AC=2a,则CC1=2 a.在Rt△MCA中,AM= a.同理,B1M= a.因为BB1∥CC1,所以BB1⊥平面ABC.所以BB1⊥AB.所以AB1==2 a.所以AM2+B1M2=A.所以B1M⊥AM.又因为AG∩AM=A,AG⊂平面AMG,AM⊂平面AMG, 所以B1M⊥平面AMG.。
1.1.2 棱柱、棱锥和棱台的结构特征1过正棱台两底面中心的截面一定是()A.直角梯形B.等腰梯形C.一般梯形或等腰梯形D.矩形答案:C2如图是一个简单多面体的表面展开图(沿图中虚线折叠即可还原),则这个多面体的顶点数为()A.6B.7C.8D.9解析:还原几何体,如图.由图观察知,该几何体有7个顶点.答案:B3一个正四面体的各条棱长都是a,则这个正四面体的高是()A.aB.aC.aD.解析:因为正四面体底面外接圆半径为a,所以正四面体的高为h= a.答案:B4有四种说法:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.以上说法中,正确的个数是()A.1B.2C.3D.4解析:①不正确,除底面是矩形外还应满足侧棱与底面垂直才是长方体;②不正确,当底面是菱形时就不是正方体;③不正确,两条侧棱垂直于底面一边不一定垂直于底面,故不一定是直平行六面体;④正确,因为对角线相等的平行四边形是矩形,由此可以推测此时的平行六面体是直平行六面体,故选A.答案:A5如果正四棱台两底面边长分别为 3 cm和5 cm,那么它的中截面(过各侧棱中点的截面)面积为()A.2 cm2B.16 cm2C.25 cm2D.4 cm2解析:如图,取A'A,B'B的中点分别为E,F,所以EF=×(3+5)=4(cm).则S中截面=42=16(cm2).答案:B★6如图,几何体①~⑤均由4个棱长为1的小正方体构成,几何体⑥由15个棱长为1的小正方体构成.现从几何体①~⑤中选出三个放到几何体⑥上,使得几何体⑥成为一个棱长为3的大正方体.则下列几何体中,能够完成任务的为()A.几何体①②⑤B.几何体①③⑤C.几何体②④⑤D.几何体③④⑤解析:本题主要考查正方体的结构特征等知识,同时考查分析问题和解决问题的能力.观察得先将⑤放入⑥中的空缺处,然后上面可放入①②,其余可以验证不合题意.故选A.答案:A7一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱的长为.。
第一课时并集、交集【选题明细表】1.设集合M={y|y=x2+1,x∈R},N={y|y=-x2+1,x∈R},则M∩N是( C )(A){0,1} (B){(0,1)}(C){1} (D)以上都不对解析:M∩N={y|y≥1}∩{y|y≤1}={1},选C.2.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},则(A∩B)∪C等于( C )(A){0,1,2,6,8} (B){3,7,8}(C){1,3,7,8} (D){1,3,6,7,8}解析:因为集合A={0,1,2,3,4,5},B={1,3,6,9},所以A∩B={1,3},因为C={3,7,8},所以(A∩B)∪C={1,3,7,8},故选C.3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( D )(A)1 (B)2 (C)3 (D)4解析:因为{1,3}∪A={1,3,5},所以1和3可能是集合A的元素,5一定是集合A的元素,则集合A可能是{5},{1,5},{3,5},{1,5,3}共4个.故选D.4.(2018·重庆市第一中学高一月考)设集合A={(x,y)|x+y=1},B={(x,y)|2x-y=-4},则A∩B等于( D )(A){x=-1,y=2} (B)(-1,2)(C){-1,2} (D){(-1,2)}解析:由得所以A∩B={(-1,2)},故选D.5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( B )(A)3 (B)0或3 (C)1或0 (D)1或3解析:因为B∪A=A,所以B⊆A,因为集合A={1,3,m2},B={1,m},所以m=3,或m2=m,所以m=3或m=0.故选B.6.设集合A={x|x2-(a+3)x+3a=0},B={x|x2-5x+4=0},集合A∪B中所有元素之和为8,则实数a的取值集合为( D )(A){0} (B){0,3}(C){1,3,4} (D){0,1,3,4}解析:解方程x2-5x+4=0得x=4或1,所以B={1,4},解方程x2-(a+3)x+3a=0得x=3或a,所以A={3}或{3,a},因为1+4+3=8,所以A={3}或{3,0}或{3,1}或{3,4}.所以a=0或1或3或4.故选D.7.(2018·桂林一中高一期中)若集合A={x|2x+1>0},B={x|2x-1<2},则A∩B= .解析:由A中不等式解得x>-,即A={x|x>-},由B中不等式解得x<,即B={x|x<},则A∩B={x|-<x<}.答案:{x|-<x<|8.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是,若A∩B=∅,则a的范围为.解析:根据题意,集合A={x|1≤x≤2},若A∩B=A,则有A⊆B,必有a>2,若A∩B=∅,必有a≤1.答案:{a|a>2} {a|a≤1}9.集合A,B各有两个元素,A∩B中有一个元素,若集合C同时满足:(1)C⊆(A∪B),(2)C⊇(A∩B),则满足条件C的个数为( D )(A)1 (B)2 (C)3 (D)4解析:设A={a,b},B={b,c},由(1)知C⊆{a,b,c},由(2)知{b}⊆C,所以C中必有元素b,则C的个数为22=4,故选D.10.设A={x|2x2-px+q=0},B={x|6x2+(p+2)x+5+q=0},若A∩B={},则A∪B等于( A )(A){,,-4} (B){,-4}(C){,} (D){}解析:由A∩B={}知,∈A,∈B,所以⇒所以A={x|2x2+7x-4=0}={-4,},B={x|6x2-5x+1=0}={,}.显然,A∪B={,,-4}.故选A.11.已知集合A={4,5,2},B={4,m},若A∪B=A,则m= .解析:因为A∪B=A,所以B⊆A.又A={4,5,2},B={4,m}.所以m=5或m=2.由m=2知m=0或m=4.当m=4时与集合中元素的互异性矛盾,故m=0或5.答案:0或512.已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},若A⊆(A∩B),求实数a的取值范围. 解:因为A⊆(A∩B),且(A∩B)⊆A,所以A∩B=A,即A⊆B.显然A=∅满足条件,此时a<6.若A≠∅,如图所示,则或由解得a∈∅;由解得a>.综上,满足条件A⊆(A∩B)的实数a的取值范围是{a|a<6,或a>}.13.已知集合A={x|2m-1<x<3m+2},B={x|x≤-2或x≥5},是否存在实数m,使A∩B≠∅?若存在,求实数m的取值范围;若不存在,请说明理由.解:若A∩B=∅,分A=∅和A≠∅讨论:(1)若A=∅,则2m-1≥3m+2,解得m≤-3,此时A∩B=∅;(2)若A≠∅,要使A∩B=∅,则应有即所以-≤m≤1.综上,当A∩B=∅时,m≤-3或-≤m≤1,所以当m取值范围为{m|-3<m<-或m>1}时,A∩B≠∅.。
第一章 1.4 1.4.1 正弦函数、余弦函数的图象A 级 基础巩固一、选择题1.对于正弦函数y =sin x 的图象,下列说法错误的是( D ) A .向左右无限伸展B .与y =cos x 的图象形状相同,只是位置不同C .与x 轴有无数个交点D .关于y 轴对称2.从函数y =cos x ,x ∈[0,2π)的图象来看,对应于cos x =12的x 有( B )A .1个值B .2个值C .3个值D .4个值[解析] 如图所示,y =cos x ,x ∈[0,2π]与y =12的图象,有2个交点,∴方程有2个解.3.在[0,2π]上,满足sin x ≥22的x 的取值范围是( B ) A .[0,π4]B .[π4,3π4]C .[π4,π2]D .[3π4,π][解析] 由图象得:x 的取值范围是[π4,34π].4.函数y =-cos x (x >0)的图象中与y 轴最近的最高点的坐标为( B )A .(π2,1)B .(π,1)C .(0,1)D .(2π,1)[解析] 用五点法作出函数y =-cos x ,x >0的图象如图所示.5.函数y =|sin x |的图象( B ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于坐标轴对称[解析] y =|sin x |=⎩⎪⎨⎪⎧sin x , k π≤x <2k π+π-sin x , k π+π≤x <2k π+2πk ∈Z ,其图象如图:6.函数y =1sin x 的定义域为( B )A .RB .{x |x ≠k π,k ∈Z }C .[-1,0)∪(0,1]D .{x |x ≠0}[解析] 由sin x ≠0,得x ≠k π(k ∈Z ),故选B . 二、填空题7.已知函数f (x )=3+2cos x 的图象经过点(π3,b ),则b =__4__.[解析] b =f (π3)=3+2cos π3=4.8.下列各组函数中,图象相同的是__(4)__. (1)y =cos x 与y =cos(π+x ); (2)y =sin(x -π2)与y =sin(π2-x );(3)y =sin x 与y =sin(-x ); (4)y =sin(2π+x )与y =sin x . [解析] 本题所有函数的定义域是R . cos(π+x )=-cos x ,则(1)不同;sin(x -π2)=-sin(π2-x )=-cos x ,sin(π2-x )=cos x ,则(2)不同;sin(-x )=-sin x ,则(3)不同; sin(2π+x )=sin x ,则(4)相同. 三、解答题9.在[0,2π]内用五点法作出y =-sin x -1的简图. [解析] (1)按五个关键点列表(2)描点并用光滑曲线连接可得其图象,如图所示.10.判断方程x 2-cos x =0的根的个数.[解析] 设f (x )=x 2,g (x )=cos x ,在同一直角坐标系中画出f (x )和g (x )的图象,如图所示.由图知f (x )和g (x )的图象有两个交点,则方程x 2-cos x =0有两个根.B 级 素养提升一、选择题1.若cos x =0,则角x 等于( B ) A .k π(k ∈Z ) B .π2+k π(k ∈Z )C .π2+2k π(k ∈Z )D .-π2+2k π(k ∈Z )2.当x ∈[0,2π]时,满足sin(π2-x )≥-12的x 的取值范围是( C )A .[0,2π3]B .[4π3,2π]C .[0,2π3]∪[4π3,2π]D .[2π3,4π3][解析] 由诱导公式化简可得cos x ≥-12,结合余弦函数的图象可知选C .3.函数y =cos x +|cos x | x ∈[0,2π]的大致图象为( D)[解析] y =cos x +|cos x |=⎩⎪⎨⎪⎧2cos x x ∈[0,π2]∪[3π2,2π]0 x ∈π2,3π2,故选D .4.在(0,2π)上使cos x >sin x 成立的x 的取值范围是( A ) A .(0,π4)∪(5π4,2π)B .(π4,π2)∪(π,5π4)C .(π4,5π4)D .(-3π4,π4)[解析] 第一、三象限角平分线为分界线,终边在下方的角满足cos x >sin x . ∵x ∈(0,2π),∴cos x >sin x 的x 范围不能用一个区间表示,必须是两个区间的并集. 二、填空题5.若sin x =2m +1,则m 的取值范围是__{m |-1≤m ≤0}__. [解析] 由-1≤2m +1≤1,解得-1≤m ≤0. 6.函数f (x )=⎩⎪⎨⎪⎧sin x ,x ≥0,x +2,x <0,则不等式f (x )>12的解集是 ⎩⎨⎧⎭⎬⎫x |-32<x <0,或π6+2k π<x <5π6+2k π,k ∈N .[解析] 在同一平面直角坐标系中画出函数f (x )和函数y =12的图象,如图所示,当f (x )>12时,函数f (x )的图象位于函数y =12的图象上方,此时有-32<x <0或π6+2k π<x <5π6+2k π(k ∈N ).三、解答题7.若集合M ={θ|sin θ≥12},N ={θ|cos θ≤12},θ∈[0,2π],求M ∩N .[解析] 首先作出正弦函数,余弦函数在[0,2π]上的图象以及直线y =12,如图所示.由图象可知,在[0,2π]内, sin θ≥12,π6≤θ≤5π6,cos θ≤12时,π3≤θ≤4π3.所以在[0,2π]内,同时满足sin θ≥12与cos θ≤12时,π3≤θ≤5π6.所以M ∩N ={θ|π3≤θ≤5π6}.8.已知函数f (x )=⎩⎪⎨⎪⎧sin x x ≤cos x ,cos xx >sin x ,试画出f (x )的图象.[解析] 在同一坐标系内分别画出正、余弦曲线,再比较两个函数的图象,上方的画成实线,下方的画面虚线,则实线部分即为f (x )的图象.C级能力拔高若函数y=2cos x(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,求这个封闭图形的面积.[解析]观察图可知:图形S1与S2,S3与S4是两个对称图形,有S1=S2,S3=S4,因此函数y=2cos x的图象与直线y=2所围成的图形面积可以转化为求矩形OABC的面积.因为|OA|=2,|OC|=2π,所以S矩形OABC=2×2π=4π.故所求封闭图形的面积为4π.。
第一章计数原理章末评估验收(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.十字路口来往的车辆,如果不允许回头,则不同的行车路线有( )A.24种B.16种C.12种D.10种解析:完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.答案:C2.5名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为( )A.C25B.25C.52D.A25解析:“去”或“不去”,5个人中每个人都有两种选择,所以,出现的可能情况有2×2×2×2×2=25(种).答案:B3.C03+C14+C25+C36+…+C1720的值为( )A.C321 B.C320 C.C420 D.C421解析:原式=(C04+C14)+C25+C36+…+C1720=(C15+C25)+C36+…+C1720=(C26+C36)+…+C1720=C1721=C21-1721=C 4 21.答案:D4.(1+x)7的展开式中x2的系数是( )A.42 B.35C.28 D.21解析:由二项式定理得T3=C27·15·x2=21x2,所以x2的系数为21. 答案:D5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lga -lgb 的不同值的个数是( )A .9B .10C .18D .20解析:从1,3,5,7,9这五个数中每次取出两个不同数的排列个数为A 25=20,但lg 1-lg 3=lg 3-lg 9,lg 3-lg 1=lg 9-lg 3,所以不同值的个数为20-2=18.答案:C6.设f (x )=(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1,则f (x )等于( )A .(2x +2)5B .2x 5C .(2x -1)5D .(2x )5解析:f (x )=C 05(2x +1)5(-1)0+C 15(2x +1)4(-1)1+C 25(2x +1)3(-1)2+C 35(2x +1)2(-1)3+C 45(2x +1)1(-1)4+C 55(2x +1)0(-1)5=[(2x +1)-1]5=(2x )5.答案:D7.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,则共有出场方案的种数是( )A .6A 33 B .3A 33 C .2A 33D .A 22A 14A 44解析:先选一名男歌手排在两名女歌手之间,有A 14种选法,这两名女歌手有A 22种排法,再把这三人作为一个元素,与另外三名男歌手排列有A 44种排法,根据分步乘法计数原理知,有A 14A 22A 44种出场方案.答案:D8.若⎝⎛⎭⎪⎪⎫x -123x n的展开式中的第4项为常数项,则展开式的各项系数的和为( ) A.112 B.124 C.116D.132解析:T 4=C 3n (x )n -3⎝ ⎛⎭⎪⎪⎫-123x 3=-18C 3n x n -32-1,令n -32-1=0,解得n =5,再令x =1,得⎝ ⎛⎭⎪⎫1-125=132.答案:D9.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1 B.1121 C.1021D.521解析:从袋中任取2个球共有C 215=105种,其中恰好1个白球1个红球共有C 110C 15=50(种),所以恰好1个白球1个红球的概率为50105=1021.答案:C10.(2015·课标全国Ⅰ卷)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:在(x 2+x +y )5的5个因式中,2个取因式中x 2剩余的3个因式中1个取x ,其余因式取y ,故x 5y 2的系数为C 25C 13C 22=30.答案:C11.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A .300B .216C .180D .162解析:由题意知可分为两类:(1)选0,共有C 23C 12C 13A 33=108(个);(2)不选0,共有C 23A 44=72(个).由分类加法计数原理得108+72=180(个).答案:C 12.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S 等于( )A .23 008B .-23 008C .23 009D .-23 009解析:设(x -2)2 006=a 0x2 006+a 1x2 005+…+a 2 005x +a 2 006.则当x =2时,有a 0(2)2 006+a 1(2)2 005+…+a 2 005(2)+a 2 006=0.①当x =-2时,有a 0(2)2 006-a 1(2)2 005+…-a 2 005(2)+a 2 006=23 009.②①-②有a 1(2)2 005+…+a 2 005(2)=-23 0092=-23 008.故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知⎝⎛⎭⎪⎫mx -1x 6的展开式中x 3的系数为15,则m 的值为________.解析:因为T r +1=C r 6(mx )6-r(-x -12)r =(-1)r m 6-r ·C r6x 6-r -12r ,由6-r -12r =3,得r=2.所以(-1)r m6-r·C r 6=m 4C 26=15⇒m =±1.答案:±114.5个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有________种. 解析:甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有A 33A 24=72(种). 答案:7215.平面直角坐标系中有五个点,分别为O (0,0),A (1,2),B (2,4),C (-1,2),D (-2,4).则这五个点可以确定不同的三角形个数为________.解析:五点中三点共线的有O ,A ,B 和O ,C ,D 两组.故可以确定的三角形有C 35-2=10-2=8(个).答案:816.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴某大型展览会的三个不同场馆服务,不同的分配方案有________种(用数字作答).解析:先分组C 25C 23C 11A 22,再把三组分配乘以A 33得:C 25C 23C 11A 22A 33=90(种).答案:90三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),求不同的买法有多少种(用数字作答).解:分两类:第一类,买5本2元的有C 58种; 第二类,买4本2元的和2本1元的有C 48C 23种. 故不同的买法共有C 58+C 48C 23=266(种).18.(本小题满分12分)已知⎩⎪⎨⎪⎧C x n =C 2xn ,C x +1n =113C x -1n ,试求x ,n 的值.解:因为C xn =C n -xn =C 2x n ,所以n -x =2x 或x =2x (舍去),所以n =3x . 又由C x +1n =113C x -1n ,得n !(x +1)!(n -x -1)!=113·n !(x -1)!(n -x +1)!,整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!, 3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1). 所以x =5,n =3x =15.19.(本小题满分12分)设(1-2x )2 013=a 0+a 1x +a 2x 2+…+a 2 013x2 013(x ∈R).(1)求a 0+a 1+a 2+…+a 2 013的值; (2)求a 1+a 3+a 5+…+a 2 013的值; (3)求|a 0|+|a 1|+|a 2|+…+|a 2 013|的值. 解:(1)令x =1,得a 0+a 1+a 2+…+a 2 013=(-1)2 013=-1.①(2)令x =-1,得a 0-a 1+a 2-a 3+…-a 2 013=32 013.②与①式联立,①-②得 2(a 1+a 3+…+a 2 013)=-1-32 013, 所以a 1+a 3+…+a 2 013=-1+32 0132(3)T r -1=C r2 013(-2x )r=(-1)r.C r 2 013(2x )r, 所以a 2k -1<0,a 2k >0(k ∈N *).所以|a 0|+|a 1|+|a 2|+…+|a 2 013|=a 0-a 1+a 2-…-a 2 013=32 013(令x =-1).20.(本小题满分12分)设⎝⎛⎭⎪⎪⎫32+133n的展开式的第7项与倒数第7项的比是1∶6,求展开式中的第7项.解:T 7=C 6n (32)n -6⎝ ⎛⎭⎪⎪⎫1336,T n +1-6=T n -5=C 6n (32)6⎝ ⎛⎭⎪⎪⎫133n -6. 由⎣⎢⎢⎡⎦⎥⎥⎤C 6n (32)n -6⎝ ⎛⎭⎪⎪⎫1336∶⎣⎢⎢⎡⎦⎥⎥⎤C 6n (32)6⎝ ⎛⎭⎪⎪⎫133n -6=1∶6, 化简得6n3-4=6-1,所以n3-4=-1,解得n =9.所以T 7=C 69(32)9-6⎝ ⎛⎭⎪⎪⎫1336=C 39×2×19=563.21.(本小题满分12分)某校高三年级有6个班级,现要从中选出10人组成高三女子篮球队参加高中篮球比赛,且规定每班至少要选1人参加.这10个名额有多少不同的分配方法?解:法一 除每班1个名额以外,其余4个名额也需要分配.这4个名额的分配方案可以分为以下几类:(1)4个名额全部给某一个班级,有C 16种分法; (2)4个名额分给两个班级,每班2个,有C 26种分法;(3)4个名额分给两个班级,其中一个班级1个,一个班级3个.由于分给一班1个,二班3个和一班3个、二班1个是不同的分法,因此是排列问题,共有A 26种分法;(4)分给三个班级,其中一个班级2个,其余两个班级每班1个,共有C 16·C 25种分法; (5)分给四个班,每班1个,共有C 46种分法.故分配方法共有N =C 16+C 26+A 26+C 16·C 25+C 46=126(种).法二 该问题也可以从另外一个角度去考虑:因为是名额分配问题,名额之间无区别,所以可以把它们视作排成一排的10个相同的球,要把这10个球分开成6段(每段至少有一个球).这样,每一种分隔办法,对应着一种名额的分配方法.这10个球之间(不含两端)共有9个空位,现在要在这9个位子中放进5块隔板,放法共有N =C 59=126(种).故共有126种分配方法.22.(本小题满分12分)设a >0,若(1+a ·x 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,求a 的值.解:通项公式为T r +1=C r na r x r2.若含x 2项,则r =4,此时的系数为C 4n ·a 4; 若含x 项,则r =2,此时的系数为C 2n ·a 2. 根据题意,有C 4n a 4=9C 2n a 2, 即C 4n a 2=9C 2n .①又T 3=135x ,即有C 2n a 2=135.② 由①②两式相除,得C 4n C 2n =9C 2n135.结合组合数公式,整理可得3n 2-23n +30=0,解得n =6,或n =53(舍去),将n =6代入②中,得15a 2=135, 所以a 2=9,因为a >0,所以a =3.。
1.3.1 函数的单调性与导数(二)学习目标 1.会利用导数证明一些简单的不等式问题.2.掌握利用导数研究含参数的单调性的基本方法.1.函数的单调性与其导数正负的关系定义在区间(a,b)内的函数y=f(x):特别提醒:①若在某区间上有有限个点使f′(x)=0,其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).②f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为0.2.函数图象的变化趋势与导数值大小的关系一般地,设函数y=f(x),在区间(a,b)上3.利用导数解决单调性问题需要注意的问题(1)定义域优先的原则:解决问题的过程只能在定义域内,通过讨论导数的符号来判断函数的单调区间.(2)注意“临界点”和“间断点”:在对函数划分单调区间时,除了必须确定使导数等于零的点外,还要注意在定义域内的间断点.(3)如果一个函数的单调区间不止一个,这些单调区间之间不能用“∪”连接,而只能用“逗号”或“和”字等隔开.1.如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( √ ) 2.函数在某区间上变化越快,函数在这个区间上的导数的绝对值越大.( √ )类型一 利用导数求参数的取值范围例1 若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________. 考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 [1,+∞)解析 由于f ′(x )=k -1x,f (x )=kx -ln x 在区间(1,+∞)上单调递增,等价于f ′(x )=k -1x≥0在(1,+∞)上恒成立. 由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞). 引申探究1.若将本例中条件递增改为递减,求k 的取值范围. 解 ∵f ′(x )=k -1x,又f (x )在(1,+∞)上单调递减,∴f ′(x )=k -1x≤0在(1,+∞)上恒成立,即k ≤1x ,∵0<1x<1,∴k ≤0.即k 的取值范围为(-∞,0].2.若将本例中条件递增改为不单调,求k 的取值范围.解 f (x )=kx -ln x 的定义域为(0,+∞),f ′(x )=k -1x.当k ≤0时,f ′(x )<0.∴f (x )在(0,+∞)上单调递减,故不合题意. 当k >0时,令f ′(x )=0,得x =1k,只需1k ∈(1,+∞),即1k>1,则0<k <1.∴k 的取值范围是(0,1).反思与感悟 (1)利用导数法解决取值范围问题的两个基本思路①将问题转化为不等式在某区间上的恒成立问题,即f ′(x )≥0(或f ′(x )≤0)恒成立,利用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意;②先令f ′(x )>0(或f ′(x )<0),求出参数的取值范围后,再验证参数取“=”时f (x )是否满足题意.(2)恒成立问题的重要思路 ①m ≥f (x )恒成立⇒m ≥f (x )max ; ②m ≤f (x )恒成立⇒m ≤f (x )min .跟踪训练1 若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上单调递减,在(6,+∞)上单调递增,求实数a 的取值范围. 考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 解 方法一 (直接法)f ′(x )=x 2-ax +a -1,令f ′(x )=0,得x =1或x =a -1.当a -1≤1,即a ≤2时,函数f (x )在(1,+∞)上单调递增,不合题意.当a -1>1,即a >2时,函数f (x )在(-∞,1)和(a -1,+∞)上单调递增,在(1,a -1)上单调递减,由题意知(1,4)⊂(1,a -1)且(6,+∞)⊂(a -1,+∞), 所以4≤a -1≤6,即5≤a ≤7. 故实数a 的取值范围为[5,7]. 方法二 (数形结合法) 如图所示,f ′(x )=(x -1)[x -(a -1)].因为在(1,4)内,f ′(x )≤0, 在(6,+∞)内f ′(x )≥0, 且f ′(x )=0有一根为1, 所以另一根在[4,6]上.所以⎩⎪⎨⎪⎧f ′(4)≤0,f ′(6)≥0,即⎩⎪⎨⎪⎧3×(5-a )≤0,5×(7-a )≥0,所以5≤a ≤7.故实数a 的取值范围为[5,7].方法三(转化为不等式的恒成立问题)f′(x)=x2-ax+a-1.因为f(x)在(1,4)上单调递减,所以f′(x)≤0在(1,4)上恒成立.即a(x-1)≥x2-1在(1,4)上恒成立,所以a≥x+1,因为2<x+1<5,所以当a≥5时,f′(x)≤0在(1,4)上恒成立,又因为f(x)在(6,+∞)上单调递增,所以f′(x)≥0在(6,+∞)上恒成立,所以a≤x+1,因为x+1>7,所以当a≤7时,f′(x)≥0在(6,+∞)上恒成立.综上知5≤a≤7.故实数a的取值范围为[5,7].类型二证明不等式例2 证明e x≥x+1≥sin x+1(x≥0).考点利用导数研究函数的单调性题点利用导数证明不等式证明令f(x)=e x-x-1(x≥0),则f′(x)=e x-1≥0,∴f(x)在[0,+∞)上单调递增,∴对任意x∈[0,+∞),有f(x)≥f(0),而f(0)=0,∴f(x)≥0,即e x≥x+1,令g(x)=x-sin x(x≥0),g′(x)=1-cos x≥0,∴g(x)≥g(0),即x-sin x≥0,∴x+1≥sin x+1(x≥0),综上,e x≥x+1≥sin x+1.反思与感悟用导数证明不等式f(x)>g(x)的一般步骤(1)构造函数F(x)=f(x)-g(x),x∈[a,b].(2)证明F′(x)=f′(x)-g′(x)≥0,且F(a)>0.(3)依(2)知函数F(x)=f(x)-g(x)在[a,b]上是单调递增函数,故f(x)-g(x)>0,即f(x)>g(x).这是因为F(x)为单调递增函数,所以F(x)≥F(a)>0,即f(x)-g(x)≥f(a)-g(a)>0.跟踪训练2 已知x >0,证明不等式ln(1+x )>x -12x 2成立.考点 利用导数研究函数的单调性 题点 利用导数证明不等式 证明 设f (x )=ln(1+x )-x +12x 2,则f ′(x )=11+x -1+x =x21+x .当x >-1时,f ′(x )>0,则f (x )在(-1,+∞)内是增函数. ∴当x >0时,f (x )>f (0)=0.∴当x >0时,不等式ln(1+x )>x -12x 2成立.1.已知命题p :对任意x ∈(a ,b ),有f ′(x )>0,q :f (x )在(a ,b )内是单调递增的,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 考点 函数的单调性与导数的关系题点 利用导数值的正负号判定函数的单调性 答案 A2.已知对任意实数x ,都有f (-x )=-f (x ),g (-x )=g (x ),且当x >0时,f ′(x )>0,g ′(x )>0,则当x <0时( ) A .f ′(x )>0,g ′(x )>0 B .f ′(x )>0,g ′(x )<0 C .f ′(x )<0,g ′(x )>0 D .f ′(x )<0,g ′(x )<0考点 函数的单调性与导数的关系题点 利用导数值的正负号判定函数的单调性 答案 B解析 由题意知,f (x )是奇函数,g (x )是偶函数. 当x >0时,f (x ),g (x )都单调递增, 则当x <0时,f (x )单调递增,g (x )单调递减,即f ′(x )>0,g ′(x )<0.3.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是________.考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 [-1,1)解析 f ′(x )≤0,即3x 2-12≤0,得-2≤x ≤2. ∴f (x )的减区间为[-2,2], 由题意得(2m ,m +1)⊆[-2,2], ∴⎩⎪⎨⎪⎧2m ≥-2,m +1≤2,2m <m +1,得-1≤m <1.4.函数y =ax -ln x 在⎝ ⎛⎭⎪⎫12,+∞上单调递增,则a 的取值范围为________.考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 [2,+∞)解析 y ′=a -1x,由题意知,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,y ′≥0, 即a ≥1x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立, 由x ∈⎝ ⎛⎭⎪⎫12,+∞得,1x <2,∴a ≥2.5.证明方程x -12sin x =0只有一个实根,并试求出这个实根.考点 利用导数研究函数的单调性 题点 利用导数证明不等式解 令f (x )=x -12sin x ,x ∈(-∞,+∞),则f ′(x )=1-12cos x >0,所以f (x )在(-∞,+∞)上为单调递增函数,其图象若穿越x 轴,则只有一次穿越的机会, 显然x =0时,f (x )=0.所以方程x -12sin x =0有唯一的实根x =0.利用导数法解决取值范围问题的两个基本思路(1)将问题转化为不等式在某区间上的恒成立问题,即f ′(x )≥0(或f ′(x )≤0)恒成立,利用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意;(2)先令f ′(x )>0(或f ′(x )<0),求出参数的取值范围后,再验证参数取“=”时,f (x )是否满足题意.一、选择题1.函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1]D .(-∞,-1]和[1,+∞) 考点 利用导数求函数的单调区间 题点 利用导数求不含参数函数的单调区间 答案 A解析 y ′=4x 3-4x ,令y ′<0,即4x 3-4x <0, 解得x <-1或0<x <1,所以函数的单调递减区间为(-∞,-1)和(0,1),故选A. 2.若f (x )=ln xx,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1考点 利用导数研究函数的单调性 题点 比较函数值的大小 答案 A解析 由f ′(x )=1-ln x x2<0,解得x >e , ∴f (x )在(e ,+∞)上为减函数, ∵e<a <b ,∴f (a )>f (b ).3.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A.⎣⎢⎡⎭⎪⎫1,32B.⎝ ⎛⎦⎥⎤1,32 C .(1,2] D .[1,2) 考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 A解析 显然函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )单调递减区间为⎝⎛⎭⎪⎫0,12.因为函数在区间(k -1,k +1)上不是单调函数,所以k -1<12<k +1,解得-12<k <32,又因为(k-1,k +1)为定义域内的一个子区间,所以k -1≥0,即k ≥1.综上可知,1≤k <32.4.若a >0,且f (x )=x 3-ax 在[1,+∞)上是增函数,则a 的取值范围是( ) A .(0,3) B .(0,3] C .(3,+∞)D .[3,+∞)考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 B解析 由题意得,f ′(x )=3x 2-a ≥0在x ∈[1,+∞)上恒成立, 即a ≤(3x 2)min =3, 又a >0,∴0<a ≤3. 5.若函数y =a (x 3-x )在⎝ ⎛⎭⎪⎫-33,33上单调递减,则a 的取值范围是( ) A .(0,+∞) B .(-1,0) C .(1,+∞)D .(0,1)考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 A解析 y ′=a (3x 2-1)=3a ⎝ ⎛⎭⎪⎫x -33·⎝ ⎛⎭⎪⎫x +33, 当-33<x <33时,⎝⎛⎭⎪⎫x -33⎝ ⎛⎭⎪⎫x +33<0, 要使y =a (x 3-x )在⎝ ⎛⎭⎪⎫-33,33上单调递减,只需y ′<0,即a >0.6.设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( ) A .f (x )>g (x ) B .f (x )<g (x )C .f (x )+g (a )>g (x )+f (a )D .f (x )+g (b )>g (x )+f (b ) 考点 利用导数研究函数的单调性 题点 构造法的应用 答案 C解析 设h (x )=f (x )-g (x ),∵f ′(x )-g ′(x )>0,∴h ′(x )>0,∴h (x )在[a ,b ]上是增函数, ∴当a <x <b 时,h (x )>h (a ), ∴f (x )-g (x )>f (a )-g (a ), 即f (x )+g (a )>g (x )+f (a ). 二、填空题7.若y =sin x +ax 在R 上是增函数,则a 的取值范围是________. 考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 [1,+∞)解析 因为y ′=cos x +a ≥0, 所以a ≥-cos x 对x ∈R 恒成立. 所以a ≥1.8.若函数y =13ax 3-12ax 2-2ax (a ≠0)在[-1,2]上为增函数,则a 的取值范围是________.考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 (-∞,0)解析 y ′=ax 2-ax -2a =a (x +1)(x -2)>0, ∵当x ∈(-1,2)时,(x +1)(x -2)<0, ∴a <0.9.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.考点 利用导数求函数的单调区间 题点 已知函数的单调性求参数(或其范围) 答案 (0,+∞)解析 ∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0.10.若函数f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是________. 考点 利用导数求函数的单调区间题点 已知函数的单调性求参数(或其范围)答案 (-∞,-1]解析 f ′(x )=-x +bx +2,由题意知f ′(x )=-x +b x +2≤0在(-1,+∞)上恒成立, 即bx +2≤x 在(-1,+∞)上恒成立,∵x >-1,∴x +2>1>0,∴b ≤x (x +2),设y =x (x +2),则y =x 2+2x =(x +1)2-1,∵x >-1,∴y >-1,∴要使b ≤x (x +2)成立,则有b ≤-1.11.若f (x )=2x -a x 2+2(x ∈R )在区间[-1,1]上是增函数,则a 的取值范围是________. 考点 利用导数求函数的单调区间题点 已知函数的单调性求参数(或其范围)答案 [-1,1]解析 f ′(x )=2·-x 2+ax +2(x 2+2)2, ∵f (x )在[-1,1]上是增函数,∴f ′(x )=2·-x 2+ax +2(x 2+2)2≥0. ∵(x 2+2)2>0,∴x 2-ax -2≤0对x ∈[-1,1]恒成立.令g (x )=x 2-ax -2,则⎩⎪⎨⎪⎧ g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧ 1+a -2≤0,1-a -2≤0,∴-1≤a ≤1.即a 的取值范围是[-1,1].三、解答题12.已知函数f (x )=ax 2+ln(x +1).(1)当a =-14时,求函数f (x )的单调区间; (2)若函数f (x )在区间[1,+∞)上为减函数,求实数a 的取值范围.考点 利用导数求函数的单调区间题点 已知函数的单调性求参数(或其范围)解 (1)当a =-14时, f (x )=-14x 2+ln(x +1)(x >-1),f ′(x )=-12x +1x +1=-(x +2)(x -1)2(x +1)(x >-1). 当f ′(x )>0时,解得-1<x <1;当f ′(x )<0时,解得x >1.故函数f (x )的单调递增区间是(-1,1),单调递减区间是(1,+∞).(2)因为函数f (x )在区间[1,+∞)上为减函数,所以f ′(x )=2ax +1x +1≤0对任意x ∈[1,+∞)恒成立, 即a ≤-12x (x +1)对任意x ∈[1,+∞)恒成立. 令g (x )=-12x (x +1), 易求得在区间[1,+∞)上g ′(x )>0,故g (x )在区间[1,+∞)上单调递增,故⎣⎢⎡⎦⎥⎤-12x (x +1)min =g (1)=-14, 故a ≤-14. 即实数a 的取值范围为⎝⎛⎦⎥⎤-∞,-14. 13.已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.考点 利用导数研究函数的单调性题点 利用导数证明不等式(1)解 f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0,得⎩⎪⎨⎪⎧ x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52. (2)证明 令F (x )=f (x )-(x -1),x ∈(1,+∞). 则F ′(x )=1-x 2x. 当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在(1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.四、探究与拓展14.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是__________.考点 利用导数研究函数的单调性题点 构造法的应用答案 (-∞,-1)∪(0,1)解析 因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝ ⎛⎭⎪⎫f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x >0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x <0⇔f (x )>0.综上,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).15.设函数f (x )=x e kx (k ≠0).(1)求函数f (x )的单调区间;(2)若函数f (x )在区间(-1,1)上单调递增,求k 的取值范围.考点 利用导数求函数的单调区间题点 已知函数的单调性求参数(或其范围)解 (1)由f ′(x )=(1+kx )e kx =0,得x =-1k(k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增. 若k <0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. 综上,k >0时,f (x )的增区间为⎝ ⎛⎭⎪⎫-1k ,+∞,减区间为⎝ ⎛⎭⎪⎫-∞,-1k , k <0时,f (x )的增区间为⎝ ⎛⎭⎪⎫-∞,-1k ,减区间为⎝ ⎛⎭⎪⎫-1k ,+∞. (2)由(1)知,若k >0,则当且仅当-1k≤-1, 即0<k ≤1时,函数f (x )在(-1,1)上单调递增;若k <0,则当且仅当-1k≥1,即-1≤k <0时,函数f (x )在(-1,1)上单调递增. 综上可知,函数f (x )在区间(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].。
第1课时排列与排列数公式学习目标 1.了解排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.知识点一排列的定义从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.思考让你安排这项活动需要分几步?答案分两步.第1步确定上午的同学;第2步确定下午的同学.梳理一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.知识点二排列数及排列数公式思考从1,2,3,4这4个数字中选出3个能构成多少个无重复数字的3位数?答案4×3×2=24(个).梳理1.a,b,c与b,a,c是同一个排列.( ×)2.同一个排列中,同一个元素不能重复出现.( √)3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.( ×)4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.( ×)类型一排列的概念例1 判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.考点排列的概念题点排列的判断解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.反思与感悟判断一个具体问题是否为排列问题的思路跟踪训练1 判断下列问题是否为排列问题.(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M ={1,2,…,9}中,任取两个元素作为a ,b ,可以得到多少个焦点在x 轴上的椭圆方程x 2a 2+y 2b 2=1?可以得到多少个焦点在x 轴上的双曲线方程x 2a 2-y 2b2=1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线? 考点 排列的概念 题点 排列的判断解 (1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题. (2)第一问不是排列问题,第二问是排列问题.若方程x 2a 2+y 2b 2=1表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大小关系一定;在双曲线x 2a 2-y 2b 2=1中,不管a >b 还是a <b ,方程x 2a 2-y 2b2=1均表示焦点在x 轴上的双曲线,且是不同的双曲线,故是排列问题.(3)确定直线不是排列问题,确定射线是排列问题. 类型二 排列的列举问题例2 (1)从1,2,3,4四个数字中任取两个数字组成两位不同的数,一共可以组成多少个? (2)写出从4个元素a ,b ,c ,d 中任取3个元素的所有排列. 考点 排列的概念 题点 列举所有排列解 (1)由题意作“树状图”,如下.故组成的所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个. (2)由题意作“树状图”,如下.故所有的排列为abc ,abd ,acb ,acd ,adb ,adc ,bac ,bad ,bca ,bcd ,bda ,bdc ,cab ,cad ,cba ,cbd ,cda ,cdb ,dab ,dac ,dba ,dbc ,dca ,dcb .反思与感悟 利用“树状图”法解决简单排列问题的适用范围及策略(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式. (2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列.跟踪训练2 写出A ,B ,C ,D 四名同学站成一排照相,A 不站在两端的所有可能站法. 考点 排列的概念 题点 列举所有排列解 由题意作“树状图”,如下,故所有可能的站法是BACD ,BADC ,BCAD ,BDAC ,CABD ,CADB ,CBAD ,CDAB ,DABC ,DACB ,DBAC ,DCAB .类型三 排列数公式及应用例3 (1)用排列数表示(55-n )(56-n )…(69-n )(n ∈N *且,n <55); (2)计算2A 58+7A 48A 88-A 59;(3)求证:A m n +1-A m n =m A m -1n . 考点 排列数公式 题点 利用排列数公式计算(1)解 因为55-n,56-n ,…,69-n 中的最大数为69-n ,且共有69-n -(55-n )+1=15(个)元素,所以(55-n )(56-n )…(69-n )=A 1569-n . (2)解 2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=8×7×6×5×(8+7)8×7×6×5×(24-9)=1.(3)证明 方法一 因为A mn +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·⎝ ⎛⎭⎪⎫n +1n +1-m -1=n !(n -m )!·m n +1-m=m ·n !(n +1-m )!=m A m -1n ,所以A mn +1-A mn =m A m -1n .方法二 A m n +1表示从n +1个元素中取出m 个元素的排列个数,其中不含元素a 1的有A mn 个. 含有a 1的可这样进行排列:先排a 1,有m 种排法,再从另外n 个元素中取出m -1个元素排在剩下的m -1个位置上,有A m -1n 种排法. 故A m n +1=m A m -1n +A mn , 所以m A m -1n =A m n +1-A mn .反思与感悟 排列数公式的形式及选择方法排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.跟踪训练3 不等式A x 8<6A x -28的解集为( ) A .[2,8] B .[2,6] C .(7,12) D .{8} 考点 排列数公式题点 解含有排列数的方程或不等式 答案 D解析 由A x 8<6A x -28,得8!(8-x )!<6×8!(10-x )!,化简得x 2-19x +84<0, 解得7<x <12,①又⎩⎪⎨⎪⎧x ≤8,x -2≥0,所以2≤x ≤8,②由①②及x ∈N *,得x =8.1.从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分别计算它们的结果,在这些问题中,有几种运算可以看作排列问题( ) A .1 B .3 C .2 D .4 考点 排列的概念 题点 排列的判断 答案 C解析 因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题,而减法、除法与两数字的位置有关,故是排列问题.2.从甲、乙、丙三人中选两人站成一排的所有站法为( ) A .甲乙,乙甲,甲丙,丙甲 B .甲乙,丙乙、丙甲C .甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D .甲乙,甲丙,乙丙 考点 排列的概念 题点 列举所有排列 答案 C3.(x -3)(x -4)(x -5)…(x -12)(x -13),x ∈N *,x >13可表示为( ) A .A 10x -3 B .A 11x -3 C .A 10x -13 D .A 11x -13 考点 排列数公式 题点 利用排列数公式计算 答案 B解析 从(x -3),(x -4),…到(x -13)共(x -3)-(x -13)+1=11(个)数,所以根据排列数公式知(x -3)(x -4)(x -5)…(x -12)(x -13)=A 11x -3.4.从5本不同的书中选2本送给2名同学,每人1本,不同的送法种数为( ) A .5 B .10 C .15 D .20 考点 排列的应用题点 无限制条件的排列问题 答案 D5.解方程A 42x +1=140A 3x . 考点 排列数公式题点 解含有排列数的方程或不等式解 根据题意,原方程等价于⎩⎪⎨⎪⎧2x +1≥4,x ≥3,x ∈N *,(2x +1)·2x ·(2x -1)(2x -2)=140x (x -1)(x -2),即⎩⎪⎨⎪⎧x ≥3,x ∈N *,(2x +1)(2x -1)=35(x -2),整理得4x 2-35x +69=0(x ≥3,x ∈N *),解得x =3⎝ ⎛⎭⎪⎫x =234∉N *,舍去.1.判断一个问题是否是排列问题的思路排列的根本特征是每一个排列不仅与选取的元素有关,而且与元素的排列顺序有关.这就说,在判断一个问题是否是排列问题时,可以考虑所取出的元素,任意交换两个,若结果变化,则是排列问题,否则不是排列问题.2.关于排列数的两个公式(1)排列数的第一个公式A m n=n(n-1)(n-2)…(n-m+1)适用m已知的排列数的计算以及排列数的方程和不等式.在运用时要注意它的特点,从n起连续写出m个数的乘积即可.(2)排列数的第二个公式A m n=n!(n-m)!用于与排列数有关的证明、解方程、解不等式等,在具体运用时,应注意先提取公因式再计算,同时还要注意隐含条件“n,m∈N*,m≤n”的运用.一、选择题1.A m12=9×10×11×12,则m等于( )A.3 B.4 C.5 D.6考点排列数公式题点利用排列数公式计算答案 B2.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组;②从甲、乙、丙三名同学中选出两人参加一项活动;③从a,b,c,d中选出3个字母;④从1,2,3,4,5这五个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A.1个 B.2个 C.3个 D.4个考点排列的概念题点排列的判断答案 B解析由排列的定义知①④是排列问题.3.与A310·A77不相等的是( )A.A910 B.81A88 C.10A99 D.A1010考点排列数公式题点利用排列数公式证明答案 B解析A310·A77=10×9×8×7!=A910=10A99=A1010,81A88=9A99≠A1010,故选B.4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( )A.6 B.4 C.8 D.10题点 列举所有排列 答案 B解析 列树状图如下: 丙甲乙乙甲 乙甲丙丙甲故组成的排列为丙甲乙,丙乙甲,乙甲丙,乙丙甲,共4种.5.从2,3,5,7四个数中任选两个分别相除,则得到的不同结果有( ) A .6个 B .10个 C .12个 D .16个 考点 排列的应用题点 无限制条件的排列问题 答案 C解析 不同结果有A 24=4×3=12(个). 6.下列各式中与排列数A mn 相等的是( ) A.n !(n -m +1)!B .n (n -1)(n -2)…(n -m ) C.n A m n -1n -m +1D .A 1n A m -1n -1考点 排列数公式 题点 利用排列数公式证明 答案 D 解析 A mn =n !(n -m )!,而A 1n A m -1n -1=n ×(n -1)!(n -m )!=n !(n -m )!,∴A 1n A m -1n -1=A mn .7.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为( )A .6B .9C .12D .24 考点 排列的概念 题点 列举所有排列 答案 B解析 这四位数列举为如下: 1 012,1 021,1 102,1 120,1 201, 1 210,2 011,2 101,2 110,共9个. 二、填空题8.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成________个以b 为首的不同的排列,它们分别是________________________________________.题点 列举所有排列答案 12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed 解析 画出树状图如下:可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed . 9.若集合P ={x |x =A m 4,m ∈N *},则集合P 中共有________个元素. 考点 排列数公式 题点 利用排列数公式计算 答案 3解析 由题意知,m =1,2,3,4,由A 34=A 44,故集合P 中共有3个元素. 10.满足不等式A 7nA 5n >12的n 的最小值为________.考点 排列数公式题点 解含有排列数的方程或不等式 答案 10解析A 7n A 5n =n !(n -7)!n !(n -5)!=(n -5)!(n -7)!>12,得(n -5)(n -6)>12, 解得 n >9或n <2(舍去).∴最小正整数n 的值为10.11.2017北京车展期间,某调研机构准备从5人中选3人去调查E1馆、E3馆、E4馆的参观人数,不同的安排方法种数为________. 考点 排列的应用题点 无限制条件的排列问题 答案 60解析 由题意可知,问题为从5个元素中选3个元素的排列问题,所以安排方法有5×4×3=60(种).12.由1,4,5,x四个数字组成没有重复数字的四位数,所有这些四位数的各数位上的数字之和为288,则x=________.考点排列的应用题点无限制条件的排列问题答案 2解析当x≠0时,有A44=24(个)四位数,每个四位数的数字之和为1+4+5+x,故24(1+4+5+x)=288,解得x=2;当x=0时,每个四位数的数字之和为1+4+5=10,而288不能被10整除,即x=0不符合题意,综上可知,x=2.三、解答题13.一条铁路线原有n个车站,为了适应客运需要,新增加了2个车站,客运车票增加了58种,问原有多少个车站?现有多少车站?考点排列的应用题点无限制条件的排列问题解由题意可得A2n+2-A2n=58,即(n+2)(n+1)-n(n-1)=58,解得n=14.所以原有车站14个,现有车站16个.四、探究与拓展14.若S=A11+A22+A33+A44+…+A100100,则S的个位数字是( )A.8 B.5 C.3 D.0考点排列数公式题点利用排列数公式计算答案 C解析1!=1,2!=2,3!=6,4!=24,5!=120,而6!=6×5!,7!=7×6×5!, (100)=100×99×…×6×5!,所以从5!开始到100!,个位数字均为0,所以S的个位数字为3. 15.京沪高速铁路自北京南站至上海虹桥站,双线铁路全长1 318公里,途经北京、天津、河北、山东、安徽、江苏、上海7个省市,设立包括北京南、天津西、济南西、南京南、苏州北、上海虹桥等在内的21个车站,计算铁路部门要为这21个车站准备多少种不同的火车票?考点排列的应用题点无限制条件的排列问题精品K12教育教学资料解对于两个火车站A和B,从A到B的火车票与从B到A的火车票不同,因为每张票对应一个起点站和一个终点站.因此,结果应为从21个不同元素中,每次取出2个不同元素的排列数A221=21×20=420(种).所以一共需要为这21个车站准备420种不同的火车票.精品K12教育教学资料。
1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程学习目标 1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.知识点一 曲边梯形的面积思考1 如何计算下列两图形的面积?答案 ①直接利用梯形面积公式求解.②转化为三角形和梯形求解. 思考2 如图所示的图形与我们熟悉的“直边图形”有什么区别?答案 已知图形是由直线x =1,y =0和曲线y =x 2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段. 梳理 曲边梯形的概念及面积求法(1)曲边梯形:由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的图形称为曲边梯形(如图①所示).(2)求曲边梯形面积的方法把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形.对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).(3)求曲边梯形面积的步骤:①分割;②近似代替;③求和;④取极限.知识点二 求变速直线运动的(位移)路程一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s.1.求汽车行驶的路程时,分割的区间表示汽车行驶的路程.( × ) 2.当n 很大时,函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值,只能用⎝ ⎛⎭⎪⎫i n 2近似代替.( × )3.利用求和符号计算∑i =14i (i +1)=40.( √)类型一 求曲边梯形的面积例1 求由直线x =0,x =2,y =0与曲线y =x 2+1所围成的曲边梯形的面积.⎣⎢⎡⎦⎥⎤参考公式12+22+…+n 2=16n (n +1)(2n +1)考点 求曲边梯形的面积问题 题点 求曲线梯形的面积问题 解 令f (x )=x 2+1. (1)分割将区间[0,2]n 等分,分点依次为x 0=0,x 1=2n ,x 2=4n,…,x n -1=2(n -1)n,x n =2.第i 个区间为⎣⎢⎡⎦⎥⎤2i -2n ,2i n (i =1,2,…,n ),每个区间长度为Δx =2i n -2i -2n =2n .(2)近似代替、求和取ξi =2in(i =1,2,…,n ),S n =∑i =1nf ⎝ ⎛⎭⎪⎫2i n ·Δx =∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2i n 2+1·2n =8n 3∑i =1ni 2+2=8n3(12+22+…+n 2)+2=8n 3·n (n +1)(2n +1)6+2 =43⎝ ⎛⎭⎪⎫2+3n +1n 2+2.(3)取极限S =lim n →∞S n =lim n →∞ ⎣⎢⎡⎦⎥⎤43⎝ ⎛⎭⎪⎫2+3n +1n 2+2=143,即所求曲边梯形的面积为143.反思与感悟 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用一些常见的求和公式,如 1+2+3+…+n =n (n +1)2,12+22+32+…+n 2=n (n +1)(2n +1)6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22.跟踪训练1 求由直线x =0,x =1,y =0和曲线y =x 2所围成的图形的面积. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 解 (1)分割将区间[0,1]等分为n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,⎣⎢⎡⎦⎥⎤2n ,3n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,其中i =1,2,…,n ,每个小区间的长度为 Δx =i n -i -1n =1n.过各分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)近似代替 在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,以i -1n 处的函数值⎝ ⎛⎭⎪⎫i -1n 2为高,小区间的长度Δx =1n 为底边的小矩形的面积作为第i 个小曲边梯形的面积,即ΔS i ≈⎝⎛⎭⎪⎫i -1n 2·1n.(3)求和∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫i -1n 2·1n =0·1n +⎝ ⎛⎭⎪⎫1n 2·1n +⎝ ⎛⎭⎪⎫2n 2·1n +…+⎝ ⎛⎭⎪⎫n -1n 2·1n =1n 3[12+22+…+(n -1)2]=13-12n +16n 2. (4)取极限曲边梯形的面积S =lim n →∞ ⎝ ⎛⎭⎪⎫13-12n +16n 2=13.类型二 求变速运动的路程例2 当汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程s =vt .如果汽车做变速直线运动,在时刻t 的速度为v (t )=t 2+2(单位:km/h),那么它在1≤t ≤2(单位:h)这段时间行驶的路程是多少? 考点 变速运动的路程问题 题点 变速运动的路程问题解 将区间[1,2]等分成n 个小区间, 第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i -1n ·1n. s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i -1n 1n =1n ∑n i =1 ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i -1n 2+2 =1n ∑ni =1 ⎣⎢⎡⎦⎥⎤(i -1)2n 2+2(i -1)n +3 =1n ⎩⎨⎧ 3n +1n2[02+12+22+…+(n -1)2]+⎭⎬⎫1n[0+2+4+6+…+2(n -1)]=3+(n -1)(2n -1)6n 2+n -1n. s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤3+(n -1)(2n -1)6n 2+n -1n =133. 所以这段时间行驶的路程为133km. 引申探究本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶路程,比较两次求出的结果是否一样?解 将区间[1,2]等分成n 个小区间,第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i n ·1n.s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i n 1n=3+1n 3[12+22+…+(n -1)2+n 2]+1n2[2+4+6+…+2(n -1)+2n ]=3+(n +1)(2n +1)6n 2+n +1n. s =lim n →∞ s n =lim n →∞⎣⎢⎡⎦⎥⎤3+(n +1)(2n +1)6n 2+(n +1)n =133. 所以这段时间行驶的路程为133km. 所以分别用小区间的两个端点求出的行驶路程是相同的.反思与感悟 求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.跟踪训练2 一辆汽车在直线形公路上做变速行驶,汽车在时刻t 的速度为v (t )=-t 2+5(单位:km/h),试计算这辆汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km). 考点 变速运动的路程问题 题点 变速运动的路程问题解 (1)分割:在区间[0,2]上等间隔插入n -1个点,将区间分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),Δt =2n .则汽车在时间段⎣⎢⎡⎦⎥⎤0,2n ,⎣⎢⎡⎦⎥⎤2n ,4n ,⎣⎢⎡⎦⎥⎤2(n -1)n ,2n n 上行驶的路程分别记为:Δs 1,Δs 2,…,Δs i ,…,Δs n ,有s n =∑i =1nΔs i .(2)近似代替:取ξi =2in(i =1,2,…,n ),Δs i ≈v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2i n2+5·2n=-4i 2n 2·2n+10n(i =1,2,…,n ).(3)求和:s n =∑i =1nΔs i =∑i =1n⎝ ⎛⎭⎪⎫-4i 2n 2·2n +10n=-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10.(4)取极限:s =lim n →∞s n =lim n →∞ ⎣⎢⎡⎦⎥⎤-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10=223.1.把区间[1,3] n 等分,所得n 个小区间的长度均为( ) A.1n B.2n C.3n D.12n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 区间[1,3]的长度为2,故n 等分后,每个小区间的长度均为2n.2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C3.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12 C .1 D.32 考点 变速运动的路程问题 题点 变速运动的路程问题 答案 B4.∑i =1ni n=________.考点 求曲边梯形的面积问题 题点 求和符号的表示答案n +12解析∑i =1ni n =1n (1+2+…+n )=1n ·n (n +1)2=n +12. 5.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是________. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 1.02解析 将区间5等分所得的小区间为⎣⎢⎡⎦⎥⎤1,65,⎣⎢⎡⎦⎥⎤65,75,⎣⎢⎡⎦⎥⎤75,85,⎣⎢⎡⎦⎥⎤85,95,⎣⎢⎡⎦⎥⎤95,2, 于是所求平面图形的面积近似等于110⎝ ⎛⎭⎪⎫1+3625+4925+6425+8125=110×25525=1.02.求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n 等分区间[a ,b ]; (2)近似代替:取点ξi ∈[x i -1,x i ];(3)求和:∑i =1nf (ξi )·b -an; (4)取极限:s =lim n →∞∑i =1nf (ξi )·b -an. “近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).一、选择题1.和式∑i =15(x i +1)可表示为( )A .(x 1+1)+(x 5+1)B .x 1+x 2+x 3+x 4+x 5+1C .x 1+x 2+x 3+x 4+x 5+5D .(x 1+1)(x 2+1)…(x 5+1) 考点 求曲边梯形的面积问题 题点 求和符号的表示 答案 C解析∑i =15(x i +1)=(x 1+1)+(x 2+1)+(x 3+1)+(x 4+1)+(x 5+1)=x 1+x 2+x 3+x 4+x 5+5.2.在求由x =a ,x =b (a <b ),y =f (x ) (f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入(n -1)个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定. A .1 B .2 C .3D .4考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S . ∴①正确,②③④错误.3.在求由直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间[0,2]等分成n 个小区间,则第i 个小区间是( ) A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n D.⎣⎢⎡⎦⎥⎤2i n,2(i +1)n考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 将区间[0,2]等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n .4.在求由曲线y =1x与直线x =1,x =3,y =0所围成图形的面积时,若将区间n 等分,并用每个区间的右端点的函数值近似代替每个小曲边梯形的高,则第i 个小曲边梯形的面积ΔS i 约等于( ) A.2n +2i B.2n +2i -2C.2n (n +2i )D.1n +2i考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 每个小区间的长度为2n,第i 个小曲边梯形的高为11+2i n, ∴第i 个小曲边梯形的面积为2n ×11+2i n=2n +2i .5.在等分区间的情况下f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是( )A.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·2n B.lim n →∞ ∑n i =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n C.lim n →∞ ∑ni =1⎝ ⎛⎭⎪⎫11+i 2·1nD.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 ∵Δx =2-0n =2n,∴和式为∑ni =1⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n .故选B.6.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( ) A.130 B.125 C.127D.19考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 D解析 将区间[0,1]三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为S =03×13+⎝ ⎛⎭⎪⎫133×13+⎝ ⎛⎭⎪⎫233×13=19. 7.设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf(ξi )Δx (其中Δx 为小区间的长度),那么S n 的大小( ) A .与f (x )和区间[a ,b ]有关,与分点的个数n 和ξi 的取法无关 B .与f (x )和区间[a ,b ]的分点的个数n 有关,与ξi 的取法无关 C .与f (x )和区间[a ,b ]的分点的个数n ,ξi 的取法都有关 D .与f (x )和区间[a ,b ]的ξi 的取法有关,与分点的个数n 无关 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf (ξi )·Δx .若对和式求极限,则可以得到函数y =f (x )的图象与直线x =a ,x =b ,y =0围成的区域的面积,在求极限之前,和式的大小与函数式、分点的个数和变量的取法都有关.8.lim n →∞∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 的含义可以是( )A .求由直线x =1,x =5,y =0,y =3x 围成的图形的面积B .求由直线x =0,x =1,y =0,y =15x 围成的图形的面积C .求由直线x =0,x =5,y =0,y =3x 围成的图形的面积D .求由直线x =0,x =5,y =0及曲线y =5x围成的图形的面积 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 C解析 将区间[0,5]n 等分,则每一区间的长度为5n ,各区间右端点对应函数值为y =15i n, 因此∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 可以表示由直线x =0,x =5,y =0和y =3x 围成的图形的面积的近似值.9.若直线y =2x +1与直线x =0,x =m ,y =0围成图形的面积为6,则正数m 等于( )A .1B .3C .2D .4 考点 求曲边梯形的面积问题题点 由曲边梯形的面积求参数答案 C解析 将区间[0,m ]n 等分,每个区间长为m n ,区间左端点函数值y =2·mi n +1=2mi +n n, 作和S n =∑i =1n ⎝⎛⎭⎪⎫2mi +n n ·m n=m +m n ·2m n(1+2+3+…+n ) =m +2m 2n 2·n (n +1)2 =m +m 2(n +1)n, ∵S =lim n →∞ ⎣⎢⎡⎦⎥⎤m +m 2(n +1)n =6, ∴m =2.故选C.二、填空题10.在区间[0,8]上插入9个等分点后,则所分的小区间长度为________,第5个小区间是________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 45 ⎣⎢⎡⎦⎥⎤165,4 解析 在区间[0,8]上插入9个等分点后,把区间[0,8]10等分,每个小区间的长度为810=45,第5个小区间为⎣⎢⎡⎦⎥⎤165,4. 11.已知某物体运动的速度v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.考点 变速运动的路程问题题点 变速运动的路程问题答案 55解析 ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.12.当n 很大时,下列可以代替函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值有________个. ①f ⎝ ⎛⎭⎪⎫1n ;②f ⎝ ⎛⎭⎪⎫i n ;③f ⎝ ⎛⎭⎪⎫i -1n ;④f ⎝ ⎛⎭⎪⎫i n -12n . 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 3解析 因为当n 很大时,区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的任意的取值都可以代替,又因为1n ∉⎣⎢⎡⎦⎥⎤i -1n ,i n ,i -1n ∈⎣⎢⎡⎦⎥⎤i -1n,i n ,i n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,i n -12n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,故能代替的有②③④. 三、解答题13.求由直线x =0,x =1,y =0和曲线y =x 2+2x 围成的图形的面积.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题解 将区间[0,1]n 等分,每个区间长度为1n ,区间右端点函数值y =⎝ ⎛⎭⎪⎫i n 2+2·i n =i 2n 2+2i n. 作和S n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 2+2i n 1n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 3+2i n 2 =1n 3∑i =1n i 2+2n 2∑i =1n i =1n 3·16n (n +1)(2n +1)+2n 2·n (n +1)2=(n +1)(2n +1)6n 2+n +1n =8n 2+9n +16n 2,∴所求面积S =lim n →∞ 8n 2+9n +16n 2 =lim n →∞ ⎝ ⎛⎭⎪⎫43+32n +16n 2=43. 四、探究与拓展14.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n ,则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 43解析 由于y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n, 则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,π3上的面积为23. 而y =sin 3x 的周期为2π3, 所以y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为23×2=43. 15.有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?考点 变速运动的路程问题题点 变速运动的路程问题解 (1)分割在时间区间[0,2]上等间隔地插入n -1个分点,将它分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),其长度为Δt =2i n -2(i -1)n =2n .每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ),用小矩形的面积Δs ′i 近似地代替Δs i ,于是 Δs i ≈Δs ′i =v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n 3+4n(i =1,2,…,n ). (3)求和s n =∑i =1n Δs ′i =∑i =1n ⎝ ⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4 =24n 3·n (n +1)(2n +1)6+4=8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4. (4)取极限s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12. 所以这段时间内行驶的路程为12 km.。
第一章 1.4 1.4.2 第1课时 周期函数A 级 基础巩固一、选择题1.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )[解析] 由已知,得f (x )是周期为2的偶函数,故选B .2.函数y =sin ⎝ ⎛⎭⎪⎫-x 2+π4的最小正周期为( C ) A .π B .2π C .4πD .π23.函数f (x )=7sin(2x 3+15π2)是( A )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为3π的奇函数D .周期为4π3的偶函数4.函数y =|cos x |的最小正周期是( C ) A .π4B .π2C .πD .2π5.下列说法中正确的是( A )A .当x =π2时,sin(x +π6)≠sin x ,所以π6不是f (x )=sin x 的周期B .当x =5π12时,sin(x +π6)=sin x ,所以π6是f (x )=sin x 的一个周期C .因为sin(π-x )=sin x ,所以π是y =sin x 的一个周期D .因为cos(π2-x )=sin x ,所以π2是y =cos x 的一个周期6.若函数y =2sin ωx (ω>0)的图象与直线y +2=0的两个相邻公共点之间的距离为2π3,则ω的值为( A ) A .3 B .32 C .23D .13[解析] 函数y =2sin ωx 的最小值是-2,该函数的图象与直线y +2=0的两个相邻公共点之间的距离恰好是一个周期,故由2πω=2π3,得ω=3.二、填空题7.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=__2__.8.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=__-1__. [解析] 由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 三、解答题9.已知定义在R 上的函数f (x )满足f (x +2)f (x )=1,求证:f (x )是周期函数. [证明] ∵f (x +2)=1f x, ∴f (x +4)=f [(x +2)+2]=1f x +2=11f x=f (x ). ∴函数f (x )是周期函数,4是一个周期.10.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x .(1)求当x ∈[-π,0]时,f (x )的解析式; (2)画出函数f (x )在[-π,π]上的简图; (3)求当f (x )≥12时x 的取值范围.[解析] (1)∵f (x )是偶函数,∴f (-x )=f (x ). ∵当x ∈[0,π2]时,f (x )=sin x ,∴当x ∈[-π2,0]时,f (x )=f (-x )=sin(-x )=-sin x .又∵当x ∈[-π,-π2]时,x +π∈[0,π2],f (x )的周期为π,∴f (x )=f (π+x )=sin(π+x )=-sin x .∴当x ∈[-π,0]时,f (x )=-sin x . (2)如右图.(3)∵在[0,π]内,当f (x )=12时,x =π6或5π6,∴在[0,π]内,f (x )≥12时,x ∈[π6,5π6].又∵f (x )的周期为π,∴当f (x )≥12时,x ∈[k π+π6,k π+5π6],k ∈Z .B 级 素养提升一、选择题1.函数y =cos(k 4x +π3)(k >0)的最小正周期不大于2,则正整数k 的最小值应是( D )A .10B .11C .12D .13[解析] T =2πk4=8πk≤2,∴k ≥4π又k ∈N *∴k 最小为13,故选D .2.函数y =⎪⎪⎪⎪⎪⎪7sin ⎝ ⎛⎭⎪⎫3x -π5的周期是( C ) A .2π B .π C .π3D .π6[解析] T =12·2π3=π3.3.函数y =|sin x |+|cos x |的最小正周期为( A ) A .π2B .πC .2πD .4π [解析] ∵⎪⎪⎪⎪⎪⎪sin x +π2 +⎪⎪⎪⎪⎪⎪cos x +π2 =|sin x |+|cos x |.∴原函数的最小正周期为π2.4.函数f (x )=4sin(23x +15π2)是( A )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为43π的奇函数D .周期为43π的偶函数[解析] f (x )=4sin(23x +15π2)=4sin(23x +32π)=-4cos 23x ,∴T =3π,且满足f (-x )=f (x ),故选A .二、填空题5.若函数f (x )是以π2为周期的偶函数,且f (π3)=1,则f (-17π6)=__1__.[解析] ∵f (x )的周期为π2,且为偶函数,∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6)=f (π6)=f (π2-π2)=f (-π3)=f (π3)=1.6.设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为 ±45.[解析] ∵f (x )的最小正周期为π2,ω>0,∴ω=2ππ2=4.∴f (x )=3sin ⎝⎛⎭⎪⎫4x +π6. 由f ⎝ ⎛⎭⎪⎫α4+π12=3sin ⎝ ⎛⎭⎪⎫α+π3+π6=3cos α=95, ∴cos α=35.∴sin α=±1-cos 2α=±45.三、解答题7.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.[解析] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π] k ∈Z ,0,x ∈[2k π-π,2k π k ∈Z .函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π. 8.已知f (x )是以π为周期的偶函数,且x ∈[0,π2]时,f (x )=1-sin x ,求当x ∈[52π,3π]时f (x )的解析式.[解析] x ∈[52π,3π]时,3π-x ∈[0,π2],因为x ∈[0,π2]时,f (x )=1-sin x ,所以f (3π-x )=1-sin(3π-x )=1-sin x . 又f (x )是以π为周期的偶函数, 所以f (3π-x )=f (-x )=f (x ), 所以f (x )的解析式为f (x )=1-sin x ,x ∈[52π,3π].C 级 能力拔高定义在R 上的偶函数f (x )满足f (x )=f (x +2),当x ∈[3,4]时,f (x )=x -2,则有下面三个式子:①f (sin 12)<f (cos 12);②f (sin π3)<f (cos π3);③f (sin1)<f (cos1).其中一定成立的是__②③__(填序号).。
第一章 导数及其应用章末复习学习目标 1.理解导数的几何意义,并能解决有关切线的问题.2.能熟练应用求导公式及运算法则.3.掌握利用导数研究函数的单调性、极值与最值,并能应用其解决一些实际问题.4.了解定积分的概念及其简单的应用.1.导数的概念(1)定义:函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx,称为函数y =f (x )在x =x 0处的导数.(2)几何意义:函数y =f (x )在x =x 0处的导数是函数图象在点(x 0,f (x 0))处的切线的斜率,表示为f ′(x 0),其切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 2.基本初等函数的导数公式 (1)c ′=0. (2)(x α)′=αxα-1.(3)(a x)′=a xln a (a >0). (4)(e x)′=e x. (5)(log a x )′=⎝⎛⎭⎪⎫ln x ln a ′=1x ln a (a >0,且a ≠1).(6)(ln x )′=1x.(7)(sin x )′=cos x . (8)(cos x )′=-sin x . 3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的求导法则 (1)复合函数记法:y =f (g (x )). (2)中间变量代换:y =f (u ),u =g (x ).(3)逐层求导法则:y x′=y u′·u x′.5.函数的单调性、极值与导数 (1)函数的单调性与导数在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减.(2)函数的极值与导数①极大值:在点x =a 附近,满足f (a )≥f (x ),当x <a 时,f ′(x )>0,当x >a 时,f ′(x )<0,则点a 叫做函数的极大值点,f (a )叫做函数的极大值;②极小值:在点x =a 附近,满足f (a )≤f (x ),当x <a 时,f ′(x )<0,当x >a 时,f ′(x )>0,则点a 叫做函数的极小值点,f (a )叫做函数的极小值. (3)求函数f (x )在闭区间[a ,b ]上的最值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的极值与端点处的函数值f (a ),f (b )比较,其中最大的一个就是最大值,最小的一个就是最小值. 6.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃba f (x )d x =F (b )-F (a ). 7.定积分的性质(1)ʃba kf (x )d x =k ʃba f (x )d x (k 为常数). (2)ʃba [f 1(x )±f 2(x )]d x =ʃba f 1(x )d x ±ʃba f 2(x )d x . (3)ʃba f (x )d x =ʃca f (x )d x +ʃbc f (x )d x (其中a <c <b ).1.f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) 2.函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )3.若函数y =f (x )在区间[a ,b ]上连续且恒正,则ʃba f (x )d x >0.( √ )类型一 导数几何意义的应用例1 设函数f (x )=13x 3+ax 2-9x -1(a >0),直线l 是曲线y =f (x )的一条切线,当l 的斜率最小时,直线l 与直线10x +y =6平行. (1)求a 的值;(2)求f (x )在x =3处的切线方程. 考点 求函数在某点处的切线方程 题点 求曲线的切线方程解 (1)f ′(x )=x 2+2ax -9=(x +a )2-a 2-9,f ′(x )min =-a 2-9,由题意知-a 2-9=-10,∴a =1或-1(舍去). 故a =1.(2)由(1)得a =1, ∴f ′(x )=x 2+2x -9, 则k =f ′(3)=6,f (3)=-10.∴f (x )在x =3处的切线方程为y +10=6(x -3), 即6x -y -28=0.反思与感悟 利用导数求切线方程时关键是找到切点,若切点未知需设出.常见的类型有两种:一类是求“在某点处的切线方程”,则此点一定为切点,易求斜率进而写出直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q (x 1,y 1),由y 0-y 1x 0-x 1=f ′(x 1)和y 1=f (x 1),求出x 1,y 1的值,转化为第一种类型.跟踪训练1 直线y =kx +b 与曲线y =x 3+ax +1相切于点(2,3),则b = . 考点 求曲线在某点处的切线方程 题点 曲线的切线方程的应用 答案 -15解析 由题意知f (2)=3,则a =-3.f (x )=x 3-3x +1,f ′(x )=3x 2-3,f ′(2)=3×22-3=9=k ,又点(2,3)在直线y =9x +b 上, ∴b =3-9×2=-15.类型二 函数的单调性、极值、最值问题例2 设a 为实数,函数f (x )=e x-2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x>x 2-2ax +1. 考点 利用导数研究函数的单调性 题点 利用导数证明不等式(1)解 由f (x )=e x-2x +2a ,x ∈R , 知f ′(x )=e x-2,x ∈R . 令f ′(x )=0,得x =ln 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=eln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明 设g (x )=e x-x 2+2ax -1,x ∈R , 于是g ′(x )=e x-2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0, 即e x -x 2+2ax -1>0, 故e x>x 2-2ax +1.反思与感悟 本类题考查导数的运算,利用导数研究函数的单调性,求函数的极值和证明不等式,考查运算能力、分析问题、解决问题的能力. 跟踪训练2 已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围;(3)若关于x 的方程f (x )=b 恰有两个不相等的实数根,求实数b 的取值范围. 考点 函数极值的综合应用 题点 函数零点与方程的根解 (1)f (x )的定义域是(0,+∞),f ′(x )=1+ln x , 令f ′(x )>0,解得x >1e ,令f ′(x )<0,解得0<x <1e,故f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 故f (x )min =f ⎝ ⎛⎭⎪⎫1e =1e ln 1e =-1e .(2)∵f (x )=x ln x ,当x ≥1时,f (x )≥ax -1恒成立, 等价于x ln x ≥ax -1(x ≥1)恒成立, 等价于a ≤ln x +1x(x ≥1)恒成立,令g (x )=ln x +1x,则a ≤g (x )min (x ≥1)恒成立;∵g ′(x )=1x -1x 2=x -1x2,∴当x ≥1时,g ′(x )≥0,∴g (x )在[1,+∞)上单调递增,∴g (x )min =g (1)=1, ∴a ≤1,即实数a 的取值范围为(-∞,1].(3)若关于x 的方程f (x )=b 恰有两个不相等的实数根, 即y =b 和y =f (x )在(0,+∞)上有两个不同的交点, 由(1)知当0<x <1e时,f (x )<0,f (x )在⎝⎛⎭⎪⎫0,1e 上单调递减,在⎝⎛⎭⎪⎫1e,+∞上单调递增,f (x )min =f ⎝ ⎛⎭⎪⎫1e =1e ln 1e=-1e ;故当-1e <b <0时,满足y =b 和y =f (x )在(0,+∞)上有两个不同的交点,即若关于x 的方程f (x )=b 恰有两个不相等的实数根,则-1e <b <0.类型三 定积分及其应用例3 求由曲线y =sin x 与直线x =-π2,x =54π,y =0所围成的图形的面积.考点 利用定积分求曲线所围成图形面积 题点 需分割的图形的面积求解 解 所求面积S =5π4ππ22sin d =sin d x x x x ---⎰⎰+ʃπ0sin x d x 5π4πsin d x x -⎰=-(-cos x )0π2|-+(-cos x )|π0-(-cos x )5π4π|=1+2+⎝ ⎛⎭⎪⎫1-22=4-22.反思与感悟 由定积分求曲边梯形面积的方法步骤 (1)画出函数的图象,明确平面图形的形状. (2)通过解方程组,求出曲线交点的坐标. (3)确定积分区间与被积函数,转化为定积分计算.(4)对于复杂的平面图形,常常通过“割补法”来求各部分的面积之和.跟踪训练3 如图所示,直线y =kx 将抛物线y =x -x 2与x 轴所围图形的面积分为相等的两部分,求k 的值.考点 利用定积分求曲线所围成图形面积 题点 已知曲线所围成图形的面积求参数解 抛物线y =x -x 2与x 轴的两交点的横坐标分别为x 1=0,x 2=1,所以抛物线与x 轴所围图形的面积S = ʃ10(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 22-x 3310=12-13=16. 抛物线y =x -x 2与y =kx 两交点的横坐标分别为x 1′=0,x 2′=1-k , 所以S2=ʃ1-k 0(x -x 2-kx )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫1-k 2x 2-x 331-k 0=16(1-k )3, 又知S =16,所以(1-k )3=12,于是k =1-312=1-342.1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4考点 导数的几何意义的应用 题点 导数的几何意义解析 ∵直线l :y =kx +2是曲线y =f (x )在x =3处的切线,∴f (3)=1.又点(3,1)在直线l 上,∴3k +2=1,从而k =-13,∴f ′(3)=k =-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),则g ′(3)=f (3)+3f ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.2.函数F (x )=ʃx0t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0,最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值 考点 微积分基本定理的应用 题点 微积分基本定理的综合应用 答案 B解析 F ′(x )=()ʃx 0t (t -4)d t ′=x 2-4x ,令F ′(x )=0,解得x =0或4, 当F ′(x )>0时,x >4或x <0,当F ′(x )<0时,0<x <4. ∴F (x )在[0,4]上单调递减,在[-1,0]和[4,5]上单调递增. 又F (0)=0,F (-1)=-73,F (4)=-323,F (5)=-253,所以当x =0时,F (x )取最大值0,当x =4时,F (x )取最小值-323.故选B.3.函数f (x )=ax 3+bx 2+cx +d 的图象如图,则函数y =ax 2+32bx +c 3的单调递增区间是( )A .(-∞,2] B.⎣⎢⎡⎭⎪⎫12,+∞C .[-2,3]D.⎣⎢⎡⎭⎪⎫98,+∞ 考点 函数极值的综合应用 题点 函数极值在函数图象上的应用解析 不妨取a =1,又d =0,∴f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c . 由题图可知f ′(-2)=0,f ′(3)=0, ∴12-4b +c =0,27+6b +c =0, ∴b =-32,c =-18.∴y =x 2-94x -6,y ′=2x -94,当x >98时,y ′>0,即单调递增区间为⎣⎢⎡⎭⎪⎫98,+∞,故选D.4.体积为16π的圆柱,当它的半径为 时,圆柱的表面积最小. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案 2解析 设圆柱底面半径为r ,母线长为l . ∴16π=πr 2l ,即l =16r2.则S 表面积=2πr 2+2πrl =2πr 2+2πr ×16r 2=2πr 2+32πr,由S ′=4πr -32πr2=0,得r =2.∴当r =2时,圆柱的表面积最小. 5.已知函数f (x )=ex +bx过点(1,e).(1)求y =f (x )的单调区间; (2)当x >0时,求f (x )x的最小值; (3)试判断方程f (x )-mx =0(m ∈R 且m 为常数)的根的个数. 考点 函数极值的综合应用 题点 函数零点与方程的根 解 (1)由函数f (x )=ex +bx过点(1,e),得e1+b=e ,即b =0,∴f (x )=e xx (x ≠0),f ′(x )=e x(x -1)x2, 令f ′(x )>0,得x >1,令f ′(x )<0,得0<x <1或x <0,y =f (x )的单调递增区间是(1,+∞),单调递减区间是(-∞,0),(0,1).(2)设g (x )=f (x )x =e xx 2,x >0,g ′(x )=e x(x 2-2x )x4, 令g ′(x )=0,解得x =2或x =0(舍去),当x ∈(0,2)时,g ′(x )<0, 当x ∈(2,+∞)时,g ′(x )>0,∴g (x )在(0,2)上单调递减,在(2,+∞)上单调递增,∴f (x )x 的最小值为g (2)=e 24.(3)方程f (x )-mx =0(m ∈R 且m 为常数)等价于m =f (x )x=g (x ), g ′(x )=e x(x 2-2x )x4,易知当x <0时,g ′(x )>0. 结合(2)可得函数g (x )在区间(0,2)上单调递减,在(-∞,0),(2,+∞)上单调递增. 原问题转化为y =m 与y =g (x )的交点个数,其图象如图,当m ≤0时,方程f (x )-mx =0(m ∈R 且m 为常数)的根的个数为0; 当0<m <e24时,方程f (x )-mx =0(m ∈R 且m 为常数)的根的个数为1;当m =e24时,方程f (x )-mx =0(m ∈R 且m 为常数)的根的个数为2;当m >e24时,方程f (x )-mx =0(m ∈R 且m 为常数)的根的个数为3.1.利用导数的几何意义可以求出曲线上任意一点处的切线方程y -y 0=f ′(x 0)(x -x 0).明确“过点P (x 0,y 0)的曲线y =f (x )的切线方程”与“在点P (x 0,y 0)处的曲线y =f (x )的切线方程”的异同点.2.借助导数研究函数的单调性,经常同三次函数,一元二次不等式结合,融分类讨论、数形结合于一体.3.利用导数求解优化问题,注意自变量中的定义域,找出函数关系式,转化为求最值问题. 4.不规则图形的面积可用定积分求解,关键是确定积分上、下限及被积函数,积分的上、下限一般是两曲线交点的横坐标.一、选择题1.已知函数f (x )=-aπsin πx ,且lim h →0 f (1+h )-f (1)h=2,则a 的值为( )A .2B .-2C .2πD .-2π考点 导数的概念题点 导数的概念的简单应用 答案 A 解析 ∵lim h →0f (1+h )-f (1)h=2,∴f ′(1)=2,f (x )=-aπsin πx ,f ′(x )=-a cos πx ,∴-a cos π=2,∴a =2,故选A.2.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴 B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定考点 导数的几何意义的应用 题点 导数的几何意义 答案 B解析 ∵曲线y =f (x )在某点处的导数值为0, ∴切线的斜率为0,故选B.3.若函数f (x )的导数是f ′(x )=-x (ax +1)(a <0),则函数f (x )的单调递减区间是( )A.⎣⎢⎡⎦⎥⎤1a ,0 B.(]-∞,0,⎣⎢⎡⎭⎪⎫1a,+∞C.⎣⎢⎡⎦⎥⎤0,-1aD .(-∞,0],⎣⎢⎡⎭⎪⎫-1a,+∞考点 利用导数求函数的单调区间 题点 利用导数求不含参数函数的单调区间 答案 C解析 ∵f ′(x )=-x (ax +1)(a <0),令f ′(x )<0,即-x (ax +1)<0, 解得0<x <-1a,故选C.4.由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .π20(sin cos )d x x x -⎰B .20π4(sin cos )d x x x -⎰ C .π2(cos sin )d x x x -⎰D .20π4(cos sin )d x x x -⎰考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 D解析 如图所示,两个阴影部分面积相等,所以两个阴影面积之和等于0<x <π4阴影部分面积的2倍,故选D.5.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )·f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (2)和极小值f (-2)C .函数f (x )有极大值f (-2)和极小值f (1)D .函数f (x )有极大值f (-2)和极小值f (2) 考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 D解析 由函数的图象可知,f ′(-2)=0,f ′(2)=0, 并且当x <-2时,f ′(x )>0,当-2<x <1,f ′(x )<0,函数f (x )有极大值f (-2). 又当1<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,故函数f (x )有极小值f (2),故选D.6.已知a ≤1-x x +ln x 对任意x ∈⎣⎢⎡⎦⎥⎤12,2恒成立,则a 的最大值为( ) A .0 B .1 C .2D .3考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 答案 A解析 令f (x )=1-xx+ln x ,∴f ′(x )=1x ⎝ ⎛⎭⎪⎫1-1x ,当x ∈⎣⎢⎡⎭⎪⎫12,1时,f ′(x )<0,f (x )单调递减, 当x ∈(1,2]时,f ′(x )>0,f (x )单调递增, ∴f (x )≥f (1)=0,则a ≤0,即a 的最大值为0.7.若函数f (x )=13x 3-⎝ ⎛⎭⎪⎫1+b 2x 2+2bx 在区间[3,5]上不是单调函数,则函数f (x )在R 上的极大值为( ) A.23b 2-16b 3B.32b -23 C .2b -43D .0考点 函数在某点处取得极值的条件 题点 含参数求极值问题 答案 C解析 f ′(x )=x 2-(2+b )x +2b =(x -b )(x -2), ∵函数f (x )在区间[3,5]上不是单调函数, ∴3<b <5,由f ′(x )>0,得x <2或x >b , 由f ′(x )<0,得2<x <b ,故f (x )在(-∞,2)上单调递增,在(2,b )上单调递减,在(b ,+∞)上单调递增, ∴函数f (x )的极大值为f (2)=2b -43.二、填空题8.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 . 考点 求函数在某点处的切线斜率或切点坐标 题点 求函数在某点处的切点坐标 答案 (-2,15)解析 y ′=3x 2-10,令y ′=2,解得x =±2.又∵点P 在第二象限内,∴x =-2,此时y =15,∴点P 的坐标为(-2,15).9.已知曲线y =x 与直线x =a ,y =0所围成的封闭区域的面积为a 3,则a = . 考点 利用定积分求曲线所围成图形面积 题点 已知曲线所围成图形的面积求参数答案3123解析 由题意得a 3=ʃax d x =⎪⎪⎪2332x a 0=2332a , 即32a =23,解得a =3123.10.已知定义在区间(-π,0)上的函数f (x )=x sin x +cos x ,则f (x )的单调递减区间是 .考点 利用导数求函数的单调区间 题点 利用导数求不含参数函数的单调区间答案 ⎝⎛⎭⎪⎫-π2,0解析 f ′(x )=x cos x ,当x ∈⎝ ⎛⎭⎪⎫-π2,0时,f ′(x )<0, ∴f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-π2,0. 11.若函数f (x )=xx 2+a(a >0)在[1,+∞)上的最大值为33,则实数a 的值为 . 考点 导数在最值问题中的应用 题点 已知最值求参数 答案3-1解析 f ′(x )=a -x 2(x 2+a )2,令f ′(x )=0,得x =±a ,当x >a 时,f ′(x )<0,f (x )单调递减; 当-a <x <a 时,f ′(x )>0,f (x )单调递增.若a ≥1,即a ≥1,则当x ∈[1,+∞)时,f (x )max =f (a )=a 2a =33, 解得a =32<1,不合题意,∴a <1, 且当x ∈[1,+∞)时,f (x )max =f (1)=11+a =33, 解得a =3-1,满足a <1. 三、解答题12.求抛物线y =-x 2+4x -3与其在点(0,-3)和点(3,0)处的切线所围成的图形的面积. 考点 求函数在某点处的切线方程 题点 曲线的切线方程的应用 解 如图,∵y ′=-2x +4,∴y ′|x =0=4,y ′|x =3=-2.∴在点(0,-3)处的切线方程是y =4x -3,在点(3,0)处的切线方程是y =-2(x -3). 联立方程组⎩⎪⎨⎪⎧y =4x -3,y =-2x +6,即⎩⎪⎨⎪⎧x =32,y =3,得交点坐标为⎝ ⎛⎭⎪⎫32,3. 所以由它们围成的图形面积为S =33222302[(43)(43)]d [2(3)(43)]d x x x x x x x x---+-+----+-⎰⎰=33222302d (69)d x x x x x +-+⎰⎰=x 33320|+⎝ ⎛⎭⎪⎫x 33-3x 2+9x 332|=94.13.已知函数f (x )=⎝ ⎛⎭⎪⎫x 22-kx ln x +x 24. (1)若f (x )在定义域内单调递增,求实数k 的值; (2)若f (x )的极小值大于0,求实数k 的取值范围. 考点 利用导数研究函数的极值 题点 已知极值求参数解 (1)依题意可知f ′(x )=(x -k )(ln x +1), 令f ′(x )=0,可得x 1=k ,x 2=1e .若x 1≠x 2,则在x 1,x 2之间存在一个区间, 使得f ′(x )<0,不满足题意. 因此x 1=x 2,即k =1e.(2)当k <1e 时,若k >0,则f ′(x )在⎝ ⎛⎭⎪⎫k ,1e 上小于0,在⎝ ⎛⎭⎪⎫1e ,+∞上大于0,若k ≤0,则f ′(x )在⎝ ⎛⎭⎪⎫0,1e 上小于0,在⎝ ⎛⎭⎪⎫1e ,+∞上大于0, 因此x =1e 是极小值点,f⎝ ⎛⎭⎪⎫1e =k e -14e 2>0, 解得k >14e ,∴14e <k <1e.当k >1e 时,f ′(x )在⎝ ⎛⎭⎪⎫1e ,k 上小于0,在(k ,+∞)上大于0, 因此x =k 是极小值点,f (k )=k 24(1-2ln k )>0,解得k <e ,∴1e<k < e.当k =1e时,f (x )没有极小值点,不符合题意.综上可得,实数k 的取值范围为⎝ ⎛⎭⎪⎫14e ,1e ∪⎝ ⎛⎭⎪⎫1e ,e . 四、探究与拓展14.设函数f (x )=ln x +m x (m ∈R ),若对任意的b >a >0,f (b )-f (a )b -a<1恒成立,则实数m 的取值范围是 .考点 数学思想方法在导数中的应用 题点 转化与化归思想在导数中的应用答案 ⎣⎢⎡⎭⎪⎫14,+∞ 解析 对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立. 设函数h (x )=f (x )-x =ln x +m x-x , 则h (x )在(0,+∞)上是单调减函数,即h ′(x )=1x -mx2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,得m ≥14,所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞. 15.已知函数f (x )=ln x -a (x -1),a ∈R . (1)讨论函数f (x )的单调性;(2)当x ≥1时,f (x )≤ln xx +1恒成立,求实数a 的取值范围.考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1-axx,若a ≤0,则f ′(x )>0,∴f (x )在(0,+∞)上单调递增, 若a >0,则由f ′(x )=0,得x =1a,当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,∴f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.∴当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)f (x )-ln x x +1=x ln x -a (x 2-1)x +1,令g (x )=x ln x -a (x 2-1),x ≥1,g ′(x )=ln x +1-2ax ,令F (x )=g ′(x )=ln x +1-2ax ,F ′(x )=1-2axx,①若a ≤0,F ′(x )>0,g ′(x )在[1,+∞)上单调递增,g ′(x )≥g ′(1)=1-2a >0,∴g (x )在[1,+∞)上单调递增,g (x )≥g (1)=0, 从而f (x )-ln x x +1≥0,不符合题意.②若0<a <12,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,F ′(x )>0,∴g ′(x )在⎝ ⎛⎭⎪⎫1,12a 上单调递增, 从而g ′(x )>g ′(1)=1-2a >0,∴g (x )在⎣⎢⎡⎭⎪⎫1,12a 上单调递增,g (x )≥g (1)=0, 从而f (x )-ln xx +1≥0,不符合题意.③若a ≥12,F ′(x )≤0在[1,+∞)上恒成立,∴g ′(x )在[1,+∞)上单调递减,g ′(x )≤g ′(1)=1-2a ≤0, 从而g (x )在[1,+∞)上单调递减, ∴g (x )≤g (1)=0,f (x )-ln xx +1≤0,综上所述,实数a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.。
1.3.1 函数的单调性与导数(一)学习目标 1.理解导数与函数的单调性的关系.2.掌握利用导数判断函数单调性的方法.3.能利用导数求不超过三次多项式函数的单调区间.知识点一函数的单调性与导函数的关系思考观察图中函数f(x),填写下表.导数值切线的斜率倾斜角曲线的变化趋势函数的单调性f′(x)>0k>0锐角上升递增f′(x)<0k<0钝角下降递减梳理一般地,设函数y=f(x)在区间(a,b)内可导,则在区间(a,b)内,(1)如果f′(x)>0,则f(x)在这个区间内单调递增;(2)如果f′(x)<0,则f(x)在这个区间内单调递减.知识点二利用导数判断函数的单调性的一般步骤(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为减区间.1.函数f(x)在定义域上都有f′(x)<0,则函数f(x)在定义域上单调递减.( ×) 2.函数f(x)在某区间内单调递增,则一定有f′(x)>0.( ×)类型一函数图象与导数图象的应用例1 已知函数y=f(x)的定义域为[-1,5],部分对应值如下表.f(x)的导函数y=f′(x)的图象如图所示.x -104 5f(x)122 1给出下列关于函数f(x)的说法:①函数y=f(x)是周期函数;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确说法的个数是( )A.4 B.3C.2 D.1考点函数的单调性与导数的关系题点根据导函数的图象确定原函数图象答案 D解析依题意得,函数f(x)不可能是周期函数,因此①不正确;当x∈(0,2)时,f′(x)<0,因此函数f(x)在[0,2]上是减函数,②正确;当x∈[-1,t]时,若f(x)的最大值是2,则结合函数f(x)的可能图象分析可知,此时t的最大值是5,因此③不正确;注意到f(2)的值不明确,结合函数f(x)的可能图象分析可知,将函数f(x)的图象向下平移a(1<a<2)个单位长度后相应曲线与x轴的交点个数不确定,因此④不正确.故选 D.反思与感悟(1)函数的单调性与其导函数的正负的关系:在某个区间(a,b)内,若f′(x)>0,则y=f(x)在(a,b)上单调递增;如果f′(x)<0,则y=f(x)在这个区间上单调递减;若恒有f′(x)=0,则y=f(x)是常数函数,不具有单调性.(2)函数图象变化得越快,f′(x)的绝对值越大,不是f′(x)的值越大.跟踪训练 1 已知y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),则所给四个图象中,y=f(x)的图象大致是( )。
§1.6微积分基本定理学习目标 1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.知识点一微积分基本定理(牛顿—莱布尼茨公式)思考已知函数f(x)=2x+1,F(x)=x2+x,则?10(2x+1)d x与F(1)-F(0)有什么关系?答案由定积分的几何意义知,?10(2x+1)d x=12×(1+3)×1=2,F(1)-F(0)=2,故?10(2x+1)d x=F(1)-F(0).梳理(1)微积分基本定理①条件:f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x);②结论:?b a f(x)d x=F(b)-F(a);③符号表示:?b a f(x)d x=F(x)|b a=F(b)-F(a).(2)常见的原函数与被积函数关系①?b a c d x=cx|b a(c为常数).②?b a x n d x=1n+1x n+1b a(n≠-1).③?b a sin x d x=-cos x|b a.④?b a cos x d x=sin x|b a.⑤?b a 1xd x=ln x|b a(b>a>0).⑥?b a e x d x=e x|b a.⑦?b a a x d x=a xln aba(a>0且a≠1).⑧?b a x d x=2332x b a(b>a>0).知识点二定积分和曲边梯形面积的关系思考定积分与曲边梯形的面积一定相等吗?答案当被积函数f(x)≥0恒成立时,定积分与曲边梯形的面积相等,若被积函数f(x)≥0不恒成立,则不相等.梳理设曲边梯形在x轴上方的面积为S上,在x轴下方的面积为S下,则(1)当曲边梯形在x轴上方时,如图①,则?b a f(x)d x=S上.(2)当曲边梯形在x轴下方时,如图②,则?b a f(x)d x=-S下.(3)当曲边梯形在x轴上方,x轴下方均存在时,如图③,则?b a f(x)d x=S上-S下.特别地,若S上=S下,则?b a f(x)d x=0.1.若F′(x)=f(x),则F(x)唯一.( ×)2.微积分基本定理中,被积函数f(x)是原函数F(x)的导数.( √)3.应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( √)类型一求定积分命题角度1 求简单函数的定积分例1 计算下列定积分.(1)?10(2x+e x)d x;(2)?211x-3cos x d x;(3)π22(sin cos)d;22x xx(4)?30(x-3)(x-4)d x.。
1.1.3 第2课时补集及综合应用(建议用时:45分钟)[学业达标]一、选择题1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有( )A.3个B.5个C.7个D.8个【解析】A={0,1,3},真子集有23-1=7.【答案】C2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【解析】由题意可知,A∪B={x|x≤0,或x≥1},所以∁U(A∪B)={x|0<x<1}.【答案】D3.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=( )A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}【解析】由题意得∁U B={2,5,8},∴A∩(∁U B)={2,3,5,6}∩{2,5,8}={2,5}.【答案】A4.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图113中的阴影部分表示的集合为( )图113A.{2} B.{4,6}C.{1,3,5} D.{4,6,7,8}【解析】全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},由Venn 图可知阴影部分表示的集合为(∁U A)∩B,∵∁U A={4,6,7,8}.∴(∁U A)∩B={4,6}.故选B.【答案】B5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是( )A.a≤2 B.a<1C.a≥2 D.a>2【解析】∵集合A={x|x<a},B={x|1<x<2},∴∁R B={x|x≤1,或x≥2}.因为A∪(∁R B)=R,所以a≥2,故选C.【答案】C二、填空题6.已知全集U=R,M={x|-1<x<1},∁U N={x|0<x<2},那么集合M∪N=________.【解析】∵U=R,∁U N={x|0<x<2},∴N={x|x≤0,或x≥2},∴M∪N={x|-1<x<1}∪{x|x≤0,或x≥2}={x|x<1,或x≥2}.【答案】{x|x<1,或x≥2}7.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)=________.【解析】∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3},又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩(∁U B)={3}.【答案】{3}8.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.【解析】∁U A={x|x<0},∁U B={y|y<1}={x|x<1}.∴∁U A⊆∁U B.【答案】∁U A⊆∁U B三、解答题9.已知集合U={1,2,3,4,5},若A∪B=U,A∩B=∅,且A∩(∁U B)={1,2},试写出满足上述条件的集合A,B.【解】∵A∪B=U,A∩B=∅,∴A=∁U B,又A∩∁U B={1,2},∴A={1,2},∴B={3,4,5}.10.设全集为R,A={x|3≤x<7},B={x|2<x<10},求:(1)A∩B;(2)∁R A ;(3)∁R (A ∪B ).【解】 (1)∵A ={x |3≤x <7},B ={x |2<x <10},∴A ∩B ={x |3≤x <7}.(2)又全集为R ,A ={x |3≤x <7},∴∁R A ={x |x <3,或x ≥7}.(3)∵A ∪B ={x |2<x <10},∴∁R (A ∪B )={x |x ≤2,或x ≥10}.[能力提升]1.若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( )A .M ∪NB .M ∩NC .(∁U M )∪(∁U N )D .(∁U M )∩(∁U N )【解析】 ∵全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},∴M ∪N ={1,2,3,4}, 则(∁U M )∩(∁U N )=∁U (M ∪N )={5,6}.故选D.【答案】 D2.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B)中元素个数为( )A .1B .2C .3D .4 【解析】 ∵A ={1,2},∴B ={2,4},∴A ∪B ={1,2,4},∴∁U (A ∪B )={3,5}.【答案】 B3.已知全集U ={2,3,a 2-a -1},A ={2,3},若∁U A ={1},则实数a 的值是________.【解析】 ∵U ={2,3,a 2-a -1},A ={2,3},∁U A ={1},∴a 2-a -1=1,即a 2-a -2=0,解得a =-1或a =2.【答案】 -1或24.设全集U =R ,集合A ={x |x ≤-2,或x ≥5},B ={x |x ≤2}.求(1)∁U (A ∪B );(2)记∁U (A ∪B )=D ,C ={x |2a -3≤x ≤-a },且C ∩D =C ,求a 的取值范围.【解】 (1)由题意知,A ={x |x ≤-2,或x ≥5},B ={x |x ≤2},则A ∪B ={x |x ≤2,或x ≥5},又全集U =R ,∁U (A ∪B )={x |2<x <5}.(2)由(1)得D ={x |2<x <5},由C ∩D =C 得C ⊆D ,①当C =∅时,有-a <2a -3,解得a >1.②当C ≠∅时,有⎩⎪⎨⎪⎧ 2a -3≤-a ,2a -3>2,-a <5,解得a ∈∅.综上,a 的取值范围为{a |a >1}.。
1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程学习目标 1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.知识点一 曲边梯形的面积思考1 如何计算下列两图形的面积?答案 ①直接利用梯形面积公式求解.②转化为三角形和梯形求解. 思考2 如图所示的图形与我们熟悉的“直边图形”有什么区别?答案 已知图形是由直线x =1,y =0和曲线y =x 2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段. 梳理 曲边梯形的概念及面积求法(1)曲边梯形:由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的图形称为曲边梯形(如图①所示).(2)求曲边梯形面积的方法把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形.对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).(3)求曲边梯形面积的步骤:①分割;②近似代替;③求和;④取极限.知识点二 求变速直线运动的(位移)路程一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s.1.求汽车行驶的路程时,分割的区间表示汽车行驶的路程.( × ) 2.当n 很大时,函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值,只能用⎝ ⎛⎭⎪⎫i n 2近似代替.( × )3.利用求和符号计算∑i =14i (i +1)=40.( √)类型一 求曲边梯形的面积例1 求由直线x =0,x =2,y =0与曲线y =x 2+1所围成的曲边梯形的面积.⎣⎢⎡⎦⎥⎤参考公式12+22+…+n 2=16n (n +1)(2n +1)考点 求曲边梯形的面积问题 题点 求曲线梯形的面积问题 解 令f (x )=x 2+1. (1)分割将区间[0,2]n 等分,分点依次为x 0=0,x 1=2n ,x 2=4n,…,x n -1=2(n -1)n,x n =2.第i 个区间为⎣⎢⎡⎦⎥⎤2i -2n ,2i n (i =1,2,…,n ),每个区间长度为Δx =2i n -2i -2n =2n .(2)近似代替、求和取ξi =2in(i =1,2,…,n ),S n =∑i =1nf ⎝ ⎛⎭⎪⎫2i n ·Δx =∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2i n 2+1·2n =8n 3∑i =1ni 2+2=8n3(12+22+…+n 2)+2=8n 3·n (n +1)(2n +1)6+2 =43⎝ ⎛⎭⎪⎫2+3n +1n 2+2.(3)取极限S =lim n →∞S n =lim n →∞ ⎣⎢⎡⎦⎥⎤43⎝ ⎛⎭⎪⎫2+3n +1n 2+2=143,即所求曲边梯形的面积为143.反思与感悟 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用一些常见的求和公式,如 1+2+3+…+n =n (n +1)2,12+22+32+…+n 2=n (n +1)(2n +1)6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22.跟踪训练1 求由直线x =0,x =1,y =0和曲线y =x 2所围成的图形的面积. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 解 (1)分割将区间[0,1]等分为n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,⎣⎢⎡⎦⎥⎤2n ,3n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,其中i =1,2,…,n ,每个小区间的长度为 Δx =i n -i -1n =1n.过各分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)近似代替 在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,以i -1n 处的函数值⎝ ⎛⎭⎪⎫i -1n 2为高,小区间的长度Δx =1n 为底边的小矩形的面积作为第i 个小曲边梯形的面积,即ΔS i ≈⎝⎛⎭⎪⎫i -1n 2·1n.(3)求和∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫i -1n 2·1n =0·1n +⎝ ⎛⎭⎪⎫1n 2·1n +⎝ ⎛⎭⎪⎫2n 2·1n +…+⎝ ⎛⎭⎪⎫n -1n 2·1n =1n 3[12+22+…+(n -1)2]=13-12n +16n 2. (4)取极限曲边梯形的面积S =lim n →∞ ⎝ ⎛⎭⎪⎫13-12n +16n 2=13.类型二 求变速运动的路程例2 当汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程s =vt .如果汽车做变速直线运动,在时刻t 的速度为v (t )=t 2+2(单位:km/h),那么它在1≤t ≤2(单位:h)这段时间行驶的路程是多少? 考点 变速运动的路程问题 题点 变速运动的路程问题解 将区间[1,2]等分成n 个小区间, 第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i -1n ·1n. s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i -1n 1n =1n ∑n i =1 ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i -1n 2+2 =1n ∑ni =1 ⎣⎢⎡⎦⎥⎤(i -1)2n 2+2(i -1)n +3 =1n ⎩⎨⎧ 3n +1n2[02+12+22+…+(n -1)2]+⎭⎬⎫1n[0+2+4+6+…+2(n -1)]=3+(n -1)(2n -1)6n 2+n -1n. s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤3+(n -1)(2n -1)6n 2+n -1n =133. 所以这段时间行驶的路程为133km. 引申探究本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶路程,比较两次求出的结果是否一样?解 将区间[1,2]等分成n 个小区间,第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i n ·1n.s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i n 1n=3+1n 3[12+22+…+(n -1)2+n 2]+1n2[2+4+6+…+2(n -1)+2n ]=3+(n +1)(2n +1)6n 2+n +1n. s =lim n →∞ s n =lim n →∞⎣⎢⎡⎦⎥⎤3+(n +1)(2n +1)6n 2+(n +1)n =133. 所以这段时间行驶的路程为133km. 所以分别用小区间的两个端点求出的行驶路程是相同的.反思与感悟 求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.跟踪训练2 一辆汽车在直线形公路上做变速行驶,汽车在时刻t 的速度为v (t )=-t 2+5(单位:km/h),试计算这辆汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km). 考点 变速运动的路程问题 题点 变速运动的路程问题解 (1)分割:在区间[0,2]上等间隔插入n -1个点,将区间分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),Δt =2n .则汽车在时间段⎣⎢⎡⎦⎥⎤0,2n ,⎣⎢⎡⎦⎥⎤2n ,4n ,⎣⎢⎡⎦⎥⎤2(n -1)n ,2n n 上行驶的路程分别记为:Δs 1,Δs 2,…,Δs i ,…,Δs n ,有s n =∑i =1nΔs i .(2)近似代替:取ξi =2in(i =1,2,…,n ),Δs i ≈v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2i n2+5·2n=-4i 2n 2·2n+10n(i =1,2,…,n ).(3)求和:s n =∑i =1nΔs i =∑i =1n⎝ ⎛⎭⎪⎫-4i 2n 2·2n +10n=-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10.(4)取极限:s =lim n →∞s n =lim n →∞ ⎣⎢⎡⎦⎥⎤-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10=223.1.把区间[1,3] n 等分,所得n 个小区间的长度均为( ) A.1n B.2n C.3n D.12n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 区间[1,3]的长度为2,故n 等分后,每个小区间的长度均为2n.2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C3.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12 C .1 D.32 考点 变速运动的路程问题 题点 变速运动的路程问题 答案 B4.∑i =1ni n=________.考点 求曲边梯形的面积问题 题点 求和符号的表示答案n +12解析∑i =1ni n =1n (1+2+…+n )=1n ·n (n +1)2=n +12. 5.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是________. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 1.02解析 将区间5等分所得的小区间为⎣⎢⎡⎦⎥⎤1,65,⎣⎢⎡⎦⎥⎤65,75,⎣⎢⎡⎦⎥⎤75,85,⎣⎢⎡⎦⎥⎤85,95,⎣⎢⎡⎦⎥⎤95,2, 于是所求平面图形的面积近似等于110⎝ ⎛⎭⎪⎫1+3625+4925+6425+8125=110×25525=1.02.求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n 等分区间[a ,b ]; (2)近似代替:取点ξi ∈[x i -1,x i ];(3)求和:∑i =1nf (ξi )·b -an; (4)取极限:s =lim n →∞∑i =1nf (ξi )·b -an. “近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).一、选择题1.和式∑i =15(x i +1)可表示为( )A .(x 1+1)+(x 5+1)B .x 1+x 2+x 3+x 4+x 5+1C .x 1+x 2+x 3+x 4+x 5+5D .(x 1+1)(x 2+1)…(x 5+1) 考点 求曲边梯形的面积问题 题点 求和符号的表示 答案 C解析∑i =15(x i +1)=(x 1+1)+(x 2+1)+(x 3+1)+(x 4+1)+(x 5+1)=x 1+x 2+x 3+x 4+x 5+5.2.在求由x =a ,x =b (a <b ),y =f (x ) (f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入(n -1)个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定. A .1 B .2 C .3D .4考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S . ∴①正确,②③④错误.3.在求由直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间[0,2]等分成n 个小区间,则第i 个小区间是( ) A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n D.⎣⎢⎡⎦⎥⎤2i n,2(i +1)n考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 将区间[0,2]等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n .4.在求由曲线y =1x与直线x =1,x =3,y =0所围成图形的面积时,若将区间n 等分,并用每个区间的右端点的函数值近似代替每个小曲边梯形的高,则第i 个小曲边梯形的面积ΔS i 约等于( ) A.2n +2i B.2n +2i -2C.2n (n +2i )D.1n +2i考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 每个小区间的长度为2n,第i 个小曲边梯形的高为11+2i n, ∴第i 个小曲边梯形的面积为2n ×11+2i n=2n +2i .5.在等分区间的情况下f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是( )A.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·2n B.lim n →∞ ∑n i =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n C.lim n →∞ ∑ni =1⎝ ⎛⎭⎪⎫11+i 2·1nD.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 ∵Δx =2-0n =2n,∴和式为∑ni =1⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n .故选B.6.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( ) A.130 B.125 C.127D.19考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 D解析 将区间[0,1]三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为S =03×13+⎝ ⎛⎭⎪⎫133×13+⎝ ⎛⎭⎪⎫233×13=19. 7.设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf(ξi )Δx (其中Δx 为小区间的长度),那么S n 的大小( ) A .与f (x )和区间[a ,b ]有关,与分点的个数n 和ξi 的取法无关 B .与f (x )和区间[a ,b ]的分点的个数n 有关,与ξi 的取法无关 C .与f (x )和区间[a ,b ]的分点的个数n ,ξi 的取法都有关 D .与f (x )和区间[a ,b ]的ξi 的取法有关,与分点的个数n 无关 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf (ξi )·Δx .若对和式求极限,则可以得到函数y =f (x )的图象与直线x =a ,x =b ,y =0围成的区域的面积,在求极限之前,和式的大小与函数式、分点的个数和变量的取法都有关.8.lim n →∞∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 的含义可以是( )A .求由直线x =1,x =5,y =0,y =3x 围成的图形的面积B .求由直线x =0,x =1,y =0,y =15x 围成的图形的面积C .求由直线x =0,x =5,y =0,y =3x 围成的图形的面积D .求由直线x =0,x =5,y =0及曲线y =5x围成的图形的面积 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 C解析 将区间[0,5]n 等分,则每一区间的长度为5n ,各区间右端点对应函数值为y =15i n, 因此∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 可以表示由直线x =0,x =5,y =0和y =3x 围成的图形的面积的近似值.9.若直线y =2x +1与直线x =0,x =m ,y =0围成图形的面积为6,则正数m 等于( )A .1B .3C .2D .4 考点 求曲边梯形的面积问题题点 由曲边梯形的面积求参数答案 C解析 将区间[0,m ]n 等分,每个区间长为m n ,区间左端点函数值y =2·mi n +1=2mi +n n, 作和S n =∑i =1n ⎝⎛⎭⎪⎫2mi +n n ·m n=m +m n ·2m n(1+2+3+…+n ) =m +2m 2n 2·n (n +1)2 =m +m 2(n +1)n, ∵S =lim n →∞ ⎣⎢⎡⎦⎥⎤m +m 2(n +1)n =6, ∴m =2.故选C.二、填空题10.在区间[0,8]上插入9个等分点后,则所分的小区间长度为________,第5个小区间是________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 45 ⎣⎢⎡⎦⎥⎤165,4 解析 在区间[0,8]上插入9个等分点后,把区间[0,8]10等分,每个小区间的长度为810=45,第5个小区间为⎣⎢⎡⎦⎥⎤165,4. 11.已知某物体运动的速度v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.考点 变速运动的路程问题题点 变速运动的路程问题答案 55解析 ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.12.当n 很大时,下列可以代替函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值有________个. ①f ⎝ ⎛⎭⎪⎫1n ;②f ⎝ ⎛⎭⎪⎫i n ;③f ⎝ ⎛⎭⎪⎫i -1n ;④f ⎝ ⎛⎭⎪⎫i n -12n . 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 3解析 因为当n 很大时,区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的任意的取值都可以代替,又因为1n ∉⎣⎢⎡⎦⎥⎤i -1n ,i n ,i -1n ∈⎣⎢⎡⎦⎥⎤i -1n,i n ,i n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,i n -12n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,故能代替的有②③④. 三、解答题13.求由直线x =0,x =1,y =0和曲线y =x 2+2x 围成的图形的面积.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题解 将区间[0,1]n 等分,每个区间长度为1n ,区间右端点函数值y =⎝ ⎛⎭⎪⎫i n 2+2·i n =i 2n 2+2i n. 作和S n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 2+2i n 1n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 3+2i n 2 =1n 3∑i =1n i 2+2n 2∑i =1n i =1n 3·16n (n +1)(2n +1)+2n 2·n (n +1)2=(n +1)(2n +1)6n 2+n +1n =8n 2+9n +16n 2,∴所求面积S =lim n →∞ 8n 2+9n +16n 2 =lim n →∞ ⎝ ⎛⎭⎪⎫43+32n +16n 2=43. 四、探究与拓展14.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n ,则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 43解析 由于y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n, 则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,π3上的面积为23. 而y =sin 3x 的周期为2π3, 所以y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为23×2=43. 15.有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?考点 变速运动的路程问题题点 变速运动的路程问题解 (1)分割在时间区间[0,2]上等间隔地插入n -1个分点,将它分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),其长度为Δt =2i n -2(i -1)n =2n .每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ),用小矩形的面积Δs ′i 近似地代替Δs i ,于是 Δs i ≈Δs ′i =v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n 3+4n(i =1,2,…,n ). (3)求和s n =∑i =1n Δs ′i =∑i =1n ⎝ ⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4 =24n 3·n (n +1)(2n +1)6+4=8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4. (4)取极限s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12. 所以这段时间内行驶的路程为12 km.。