Model_Based_Inversion_of_Dynamic_Range_Compression
- 格式:pdf
- 大小:1.84 MB
- 文档页数:11
一文详解flow based modelsFlow based models,也被称为可逆生成模型(invertible generative models),是一类用于生成模型的神经网络架构。
与其他生成模型如GAN和VAE不同,flow based models拥有可逆的编码器和解码器结构,使得输入样本可以通过解码器生成样本,同时编码器可以恢复原始样本。
本文将详细解释flow based models的原理和相关参考内容。
首先,flow based models的核心思想是建立输入和输出之间的一对一映射关系,以及通过联合分布近似来进行建模。
flow based models的主要优点是可以计算出精确的似然函数,而不需要通过变分推断或逼近技术。
同时,由于其可逆性质,flow based models还可以进行完全可解推理和采样。
具体地,flow based models通常由多个可逆层组成,每个层都有一个从输入到输出的可逆函数。
这些函数可以是简单的元素级函数如仿射变换和逐通道的非线性函数,也可以是复杂的非线性转换函数如卷积神经网络。
整个模型的可逆性由这些可逆层的组合实现。
通过这些可逆层,flow based models可以将原始样本空间映射到一个更简单的潜在空间,然后通过解码器进行重构。
近年来,flow based models在图像生成、图像修复、语言建模和强化学习等领域取得了广泛应用。
下面列举一些与flow based models相关的参考内容,供读者深入了解和学习:1. "Flow++: Improving Flow-Based Generative Models withVariational Dequantization and Architecture Design",由Jonathan Ho等人于2019年提出的论文,介绍了一种改进的flow based model,通过使用变分量化和架构设计提高了模型的生成效果。
huggingface trainer参数Huggingface库中的Trainer类用于训练和评估模型。
下面是一些常用的Trainer类的参数:1. model (required): 要训练的模型。
2. args (required): 训练的参数配置,是一个TrainingArguments对象。
3. data_collator (optional): 数据整理器,用于将输入数据集与模型的输入进行匹配。
4. train_dataset (optional): 训练数据集。
5. eval_dataset (optional): 评估数据集。
6. tokenizer (optional): 模型的分词器,用于对输入文本进行分词处理。
7. compute_metrics (optional): 自定义的评估指标函数,用于评估模型性能。
8. callbacks (optional): 自定义的回调函数列表,用于在训练过程中执行特定操作。
9. optimizers (optional): 自定义的优化器,用于训练模型。
10. scheduler (optional): 自定义的学习率调度器,用于调整模型的学习率。
11. data_parallel (optional): 是否在多个GPU上进行数据并行。
12. deepspeed (optional): 是否使用DeepSpeed库进行训练。
DeepSpeed 是用于深度学习模型的高效训练和优化的开源库。
13. gradient_accumulation_steps (optional): 梯度累积的步数,用于提高训练效果。
14. max_steps (optional): 最大训练步数。
15. num_train_epochs (optional): 最大训练轮数。
这些参数只是Trainer类的一部分,根据具体的任务和需求,您可能还需要使用其他参数。
二维ising模型蒙特卡洛算法
以下是二维 Ising 模型的蒙特卡洛算法的详细步骤:
1.初始化:生成一个二维自旋阵列,可以随机初始化每个自
旋的取值为+1或-1。
2.定义参数:设置模拟步数(或称为Monte Carlo 步数,MC
steps)、温度(T)、外部磁场(H)和相互作用强度(J)。
3.进行蒙特卡洛模拟循环:
o对于每个 MC 步:
▪对每个自旋位置(i,j)进行以下操作:
▪随机选择一个自旋(i,j)和其相邻的自
旋。
▪计算自旋翻转后的能量差ΔE。
▪如果ΔE 小于等于0,接受翻转,将自旋
翻转。
▪如果ΔE 大于0,根据Metropolis 准则以
概率 exp(-ΔE / T) 决定是否接受翻转。
o每个 MC 步结束后,记录自旋阵列的属性(例如平均磁化、能量等)。
o可以选择在一些 MC 步之后检查系统是否达到平衡状态。
如果需要,可以进行更多的 MC 步。
4.分析结果:使用模拟的自旋阵列进行统计和计算,例如计
算平均自旋、能量、磁化、磁化率、热容等。
这是基本的二维Ising 模型的蒙特卡洛算法步骤。
在实施算法时,还可以根据需要考虑边界条件(如周期性边界条件)、优化算法以提高效率等其他因素。
掌握深度学习中的生成对抗网络和变分自编码器生成对抗网络(GANs)和变分自编码器(VAEs)是深度学习中广泛应用的两种生成模型。
它们在模拟和生成数据方面有着独特的优势。
本文将介绍这两种模型的原理、应用和发展趋势。
一、生成对抗网络(GANs)生成对抗网络(GANs)由生成器(Generator)和判别器(Discriminator)组成。
生成器试图生成与真实数据相似的假数据,而判别器则负责将真实数据与生成的假数据区分开来。
在训练过程中,生成器和判别器不断通过对抗的方式进行优化,最终生成器能够生成高质量的假数据。
GANs的应用非常广泛。
例如,在计算机图像生成中,GANs可以用于生成逼真的人脸图片。
此外,在自然语言处理领域,GANs也可以用于生成写作风格独特的文章或诗歌。
近年来,GANs在医药领域也有突破性进展,可以用于生成新的分子结构,帮助药物发现研究。
GANs的发展也面临着一些挑战。
首先,GANs的训练过程不稳定,容易出现模式崩溃或模式坍塌的问题。
其次,GANs的训练需要大量的数据和计算资源,对硬件设备和数据集的要求较高。
此外,对于GANs 生成的假数据,如何进行评估和量化也是一个难题。
相对于GANs,变分自编码器(VAEs)是一种更为稳定和迅速的生成模型。
二、变分自编码器(VAEs)变分自编码器(VAEs)是一种基于概率模型的生成模型。
它将输入数据通过一个编码器(Encoder)映射到潜在空间,并在潜在空间中进行采样。
然后,通过解码器(Decoder)将潜在空间的向量解码为生成的数据。
与GANs不同,VAEs通过最大化数据的后验概率进行训练。
VAEs的应用也非常广泛。
在图像生成方面,VAEs可以用于生成逼真的人脸、动物等图像。
在自然语言处理领域,VAEs可以用于生成有逻辑和上下文的文章段落。
此外,VAEs还可以应用于数据压缩和降维等领域。
VAEs也面临一些挑战。
例如,VAEs生成的数据相对于GANs的输出来说可能不够清晰和逼真。
deep learning-based models
基于深度学习的模型(Deep Learning-based models)是一种机器学习的方法,它使用深度神经网络来处理大量的数据并从中学习。
深度学习模型通常使用大量的参数和复杂的网络结构,以在各种任务中实现卓越的性能,包括图像识别、语音识别、自然语言处理等。
深度学习模型的基本结构包括输入层、隐藏层和输出层。
输入层接收原始数据,隐藏层通过一系列复杂的计算将输入转化为有意义的特征表示,最后输出层将隐藏层的结果转化为具体的输出。
深度学习模型能够自动学习和提取输入数据的特征,这使得它们在许多任务中比传统的机器学习方法更有效。
深度学习的应用非常广泛,包括但不限于:
1.图像识别:深度学习模型可以自动学习和识别图像中的特征,例如人脸识别、物体检测等。
2.自然语言处理:深度学习模型可以处理和生成自然语言文本,例如机器翻译、文本生成等。
3.语音识别:深度学习模型可以自动识别和转化语音为文本,例如语音助手、语音搜索等。
4.推荐系统:深度学习模型可以根据用户的历史行为和偏好,自动推荐相关的内容或产品,例如视频推荐、电商推荐等。
5.医学影像分析:深度学习模型可以自动分析和识别医学影像,例如CT扫描、MRI图像等,用于辅助医生诊断和治疗疾病。
总的来说,基于深度学习的模型在人工智能领域中发挥着越来越重要的作用,并将在未来继续推动着技术的发展和创新。
生成对抗网络的生成模型训练中的超参数优化技巧分享生成对抗网络(GAN)是一种深度学习模型,由生成器和判别器组成,通过对抗训练来生成逼真的数据样本。
在训练生成模型的过程中,优化超参数是至关重要的一步。
本文将分享一些生成对抗网络的生成模型训练中的超参数优化技巧。
1. 学习率调整学习率是深度学习模型中非常重要的超参数之一。
对于生成对抗网络模型,学习率的选择尤为重要。
通常情况下,初始学习率可以设置为一个较小的值,然后随着训练的进行逐渐减小。
这个过程可以使用学习率衰减的方法,比如指数衰减或者余弦退火等方法。
2. 生成器和判别器的优化器选择在生成对抗网络中,生成器和判别器的优化器选取也是一个非常重要的超参数选择。
通常情况下,可以选择使用Adam优化器作为生成器和判别器的优化器。
Adam优化器能够较好地平衡收敛速度和模型稳定性。
3. 正则化项的选择在生成对抗网络的训练中,正则化项的选择也是一个重要的超参数。
正则化项可以帮助模型减小过拟合的风险,提高模型的泛化能力。
通常情况下,可以选择使用L1正则化或者L2正则化来约束模型的复杂度,防止模型过拟合。
4. 批量大小的选择批量大小是生成对抗网络训练中的另一个重要超参数。
通常情况下,较大的批量大小可以提高训练的效率,但过大的批量大小也会增加内存消耗,降低模型的泛化能力。
因此,在选择批量大小时需要进行权衡,可以通过实验找到一个合适的批量大小。
5. 噪声输入的选择在生成对抗网络的训练中,噪声输入是非常重要的一部分。
噪声输入可以影响生成器的输出结果,因此在训练时需要选择合适的噪声输入。
通常情况下,可以选择使用均匀分布或者正态分布的噪声输入,然后通过实验选择合适的噪声分布参数。
6. 梯度裁剪在生成对抗网络的训练中,梯度裁剪也是一个重要的技巧。
梯度裁剪可以帮助防止梯度爆炸的问题,提高模型的训练稳定性。
通常情况下,可以设置一个阈值,当梯度的范数超过阈值时对梯度进行裁剪。
7. 训练策略的选择在生成对抗网络的训练中,训练策略的选择也是非常重要的一部分。
生成对抗网络的生成模型训练中的超参数优化技巧分享生成对抗网络(GANs)是一种深度学习模型,由两个神经网络组成:生成器和判别器。
生成器试图生成看起来像真实样本的数据,而判别器则试图区分真实数据和生成器生成的假数据。
在生成对抗网络的训练过程中,超参数的选择对模型的性能和收敛速度起着至关重要的作用。
本文将分享一些生成对抗网络的生成模型训练中的超参数优化技巧。
一、学习率调整学习率是深度学习模型中最重要的超参数之一。
在生成对抗网络中,学习率的选择对模型的性能和收敛速度有着直接的影响。
通常情况下,初始的学习率设置为是一个较好的选择。
然后可以尝试不同的学习率调度策略,例如学习率衰减或动态调整学习率的方法,以找到最优的学习率设置。
二、批量大小调整批量大小是另一个重要的超参数,它决定了模型一次更新的样本数量。
在生成对抗网络的训练中,通常使用较大的批量大小来加速模型的训练,但是过大的批量大小可能导致模型收敛不稳定。
因此,需要对批量大小进行调整,找到一个合适的值。
通常情况下,批量大小设置为64或128是一个不错的选择。
三、激活函数选择在生成对抗网络的生成模型中,激活函数的选择也是一个重要的超参数。
常用的激活函数有ReLU、Leaky ReLU和tanh等。
不同的激活函数对模型的训练和生成效果有着不同的影响,因此需要进行合理的选择。
通常情况下,Leaky ReLU在生成对抗网络中的效果较为稳定,但是也可以尝试其他的激活函数,找到最适合当前模型的选择。
四、噪声输入在生成对抗网络的生成模型中,噪声输入是一个非常重要的因素。
噪声输入的大小和分布对模型的生成效果有着直接的影响。
通常情况下,使用均匀分布或正态分布的噪声输入是一个比较常见的选择。
但是也可以尝试其他的噪声输入分布,找到最适合当前模型的选择。
五、正则化方法正则化是在深度学习模型中用来防止过拟合的一种重要技巧。
在生成对抗网络的训练中,正则化方法的选择对模型的泛化能力和生成效果有着重要的影响。
生成对抗网络(GAN)是一种深度学习模型,由生成器和判别器两部分组成。
生成器负责生成数据样本,而判别器则负责判断生成的样本是真实的还是伪造的。
生成对抗网络的训练过程中存在一些常见问题,本文将分享一些解决方法。
一、梯度消失和梯度爆炸问题在生成对抗网络的训练过程中,梯度消失和梯度爆炸是常见的问题。
梯度消失指的是在反向传播过程中,梯度逐渐减小到接近零,导致模型无法收敛;而梯度爆炸则是指梯度逐渐增大,导致模型发散。
为了解决这一问题,可以采用合适的激活函数和初始化方法,以及对网络结构进行调整。
其次,可以尝试使用梯度裁剪技术,即限制梯度的大小,防止梯度爆炸。
此外,合理设置学习率和采用正则化方法也可以有效缓解梯度消失和梯度爆炸问题。
二、模式崩溃问题在生成对抗网络的训练过程中,模式崩溃是一个常见的问题。
模式崩溃指的是生成器只学习到数据分布中的部分模式,导致生成的样本缺乏多样性。
为了解决模式崩溃问题,可以采用多样性促进方法,如在损失函数中引入多样性惩罚项,或者使用多样性促进的评价指标来指导训练过程。
此外,可以通过增加生成器和判别器的容量,以及引入噪声等方法来增加模型的多样性。
同时,合理设计损失函数,平衡生成器和判别器的训练目标,也可以有效缓解模式崩溃问题。
三、模态崩溃问题模态崩溃指生成器只生成数据分布中的部分模态,而忽略了其他模态的情况。
为了解决模态崩溃问题,可以采用多模态损失函数,引入额外的监督信息来指导生成样本的多模态分布。
另外,可以通过增加噪声输入、扩大生成器的输入空间以及增加样本多样性等方法来增加模型的多模态性。
此外,合理设计生成器的网络结构,增加网络的深度和宽度,也可以有效缓解模态崩溃问题。
四、训练不稳定问题在生成对抗网络的训练过程中,训练的不稳定性是一个普遍存在的问题。
为了解决训练不稳定问题,可以采用一些稳定性训练技巧,如渐变惩罚技术、正则化技术等。
此外,采用逐步训练的方法,即先训练生成器,再训练判别器,可以有效提高训练的稳定性。
ptuningv2问答语料
ptuning v2是一种基于预训练模型的微调方法,其基本原理是在预训练模型的基础上,通过添加少量的可训练参数,对模型的输出进行微调。
这种方法在保持预训练模型性能的同时,提高了模型的泛化能力。
P-tuning v2的优化策略主要包括两个方面:一是采用前缀提示策略,将提示信息添加到模型的每一层中,以提高模型的输出准确性;二是采用自适应优化策略,根据模型在训练过程中的表现,动态调整微调参数的权重,以提高模型的收敛速度和性能。
如果你还想了解ptuning v2问答语料的其他信息,可以继续向我提问。
生成对抗网络(GAN)是一种深度学习模型,由生成器和判别器两部分组成。
生成器负责生成新的数据样本,而判别器则负责区分真实数据和生成器生成的数据。
生成对抗网络的训练过程是通过让生成器和判别器相互竞争、相互学习,最终达到生成逼真数据样本的目的。
然而,在生成对抗网络的生成模型训练中,会出现一些常见问题,本文将对这些问题进行分析。
首先,生成对抗网络训练中的常见问题之一是模式崩溃。
模式崩溃指的是生成器在训练过程中只生成少数几种样本,而忽视了其他样本的生成。
这种情况下,生成器可能只学会生成训练集中的一小部分样本,而无法生成多样化的数据。
导致模式崩溃的原因可能是训练数据集过小,或者生成器和判别器的能力不匹配。
为了解决模式崩溃问题,可以采用增加训练数据集的方法,或者修改生成器和判别器的结构,使其能够更好地学习数据分布。
其次,生成对抗网络训练中的另一个常见问题是梯度消失和梯度爆炸。
梯度消失和梯度爆炸是深度学习中常见的问题,也会出现在生成对抗网络的训练中。
在训练过程中,由于多次反向传播导致梯度信息逐渐减小或增大,从而导致模型无法收敛或者训练不稳定。
为了解决梯度消失和梯度爆炸问题,可以采用梯度裁剪、使用合适的激活函数和正则化方法等。
此外,生成对抗网络训练中还会出现样本不平衡的问题。
样本不平衡指的是训练数据集中不同类别的样本数量差异较大,导致生成器学习不均衡,生成的样本也不具有多样性。
为了解决样本不平衡的问题,可以采用过采样或欠采样的方法,使得不同类别的样本数量接近,从而使得生成器能够学习到更多样本的特征。
最后,生成对抗网络训练中还可能出现模式坍塌的问题。
模式坍塌指的是生成器在训练过程中只生成几种样本,而忽视了其他样本的生成。
这种情况下,生成器可能只学会生成训练集中的一小部分样本,而无法生成多样化的数据。
为了解决模式坍塌的问题,可以采用增加训练数据集的方法,或者修改生成器和判别器的结构,使其能够更好地学习数据分布。
综上所述,生成对抗网络的生成模型训练中存在着一些常见问题,如模式崩溃、梯度消失和梯度爆炸、样本不平衡和模式坍塌等。
对抗学习中的深度生成模型和演化算法对抗学习中的深度生成模型和演化算法是当前机器学习领域的热门研究方向之一。
深度生成模型以其出色的生成能力和潜在空间的连续性受到广泛关注,而演化算法则以其全局优化能力和适应性受到青睐。
本文将从理论与应用两个方面,对抗学习中的深度生成模型和演化算法进行综述。
一、理论基础1.1 深度生成模型深度生成模型是一类基于神经网络结构的概率图模型,其目标是从隐变量中学习数据分布。
常见的深度生成模型包括变分自编码器(VAE)、生成对抗网络(GAN)等。
VAE通过最大化数据与隐变量之间的互信息来实现数据分布建模,而GAN则通过最小化真实样本与生成样本之间的差异来实现。
1.2 演化算法演化算法是一类基于生物进化原理设计而成的全局优化方法,其通过不断迭代进化个体来逼近最优解。
常见的演化算法包括遗传算法、粒子群优化等。
遗传算法通过遗传操作(选择、交叉、变异)对个体进行进化,而粒子群优化则通过模拟粒子在解空间中的搜索来优化目标函数。
二、深度生成模型与演化算法的结合2.1 深度生成模型的生成能力深度生成模型以其出色的生成能力在图像合成、文本生成等任务中取得了显著成果。
然而,由于深度生成模型对于目标函数的依赖性较强,其在全局优化问题上存在一定局限性。
为了解决这一问题,研究者开始探索将演化算法与深度生成模型结合起来。
2.2 深度生成模型与演化算法的融合将演化算法引入到深度生成模型中可以提供全局优化能力和适应性。
研究者通过引入进化操作(如选择、交叉和变异)对隐变量进行进化,从而提高了深度生成模型在全局优化问题上的表现。
同时,演化算法还可以通过探索不同隐变量空间来增加样本多样性。
2.3 深度生成模型与演化算法应用实例将深度学习和演化算法结合应用于实际问题中取得了一系列显著成果。
例如,在图像生成领域,研究者通过结合GAN和遗传算法,实现了高质量图像的生成。
在文本生成领域,研究者通过结合VAE和粒子群优化,实现了多样化的文本生成。
中文摘要摘要城市排水管道中广泛存在着超标工业废水偷排漏排进入市政管道,导致污水处理厂运行效率下降甚至活性污泥大批死亡,造成处理水质不达标,排放水体水质恶化的严重污染事件。
现有的物理溯源方法效率低下反馈时间长,不利于偷排漏排事故的快速有效识别。
而由于排水管道系统拓扑结构及水力条件复杂多变,其环境反问题具有高度不确定性,成为常规数学模型溯源方法应用于排水管道中的一大难题。
针对此现状,该研究以排水管道中偷排工业超标污染物质为研究对象,开展了基于在线水质监测数据的排水管道偷排漏排污染物质溯源模型的研究,构建了基于贝叶斯统计推理算法、SWMM水力水质模型以及Matlab编程的排水管网污染物质溯源数学模型,对偷排超标污染物质的排放位置、排放量和排放时段等三个未知的排放特征参数进行了统计反推,获得了排放节点、排放量和排放时段的概率分布;并重点研究了统计反演算法中游走步长的取值、采样监测的时间间隔及在线监测点的空间布置等实际限制条件对反演结果精度的影响;反演模型采用了先进的马尔科夫蒙特卡罗(MCMC)抽样算法,大大提高了溯源的效率,在有限的反馈时间内可提供更精确的溯源结果,从而提高对偷排漏排超标废水的管理水平以及排放事故的应急处理效率。
主要研究内容和结论如下:①开展了SWMM水质模型、贝叶斯统计方法及MATLAB软件的耦合集成研究。
结果表明,MATLAB强大的数据处理功能,能够实现MCMC抽样算法涉及的大量计算,提高反演效率;SWMM与贝叶斯耦合的数学模型可对排水管网未知污染源进行有效的识别追踪,并得出有实际指导意义的排放特征参数的范围,为物理溯源提供更精细的搜索路径和方向。
②贝叶斯统计MCMC抽样算法中游走步长与反演效率和精度的关联关系研究。
结果表明:游走步长过小可能使抽样无法在整个后验空间搜索,使抽样结果陷于局部解,无法准确反演污染源参数的后验概率密度;适当游走步长取值可以实现对污染物反演参数整个后验空间的抽样,避免使反演参数限于局部解,提高反演效率和反演精度;但是步长过大会使抽样样本跳出后验空间,只有很少的样本落在了后验空间,使抽样结果精度降低,若要在过大步长下提高精度就必须增加MCMC链长,这样就会导致抽样时间延长,抽样效率降低。
Seismic Acoustic Impedance Inversion in Reservoir Characterization Utilizing gOcad By Steven Clawson and Hai-Zui (“Hai-Ray”) Meng, Presented at the 2000 gOcad Users MeetingIntroductionWorkflows for utilizing seismic data inverted to acoustic impedance data in reservoir characterization will be shown. We are using the public domain 3D seismic dataset at Boonsville Field in North-Central Texas for our example. This public domain dataset is fairly complete with seismic, well, and production data:•5.5 sq. Miles of 3D seismic data•Vertical seismic profile (VSP) near center of survey•Digital well logs from 38 wells•Well markers for the bend conglomerate group•Perforations, reservoir pressures, production and Petrophysical data for the 38wellsWe acknowledge Oxy USA, Inc., Enserch, Arch Petroleum, Bureau of Economic Geology, GRI and the DOE as contributing members for making this dataset available. This data is made publicly available as part of the technology transfer activities of the Secondary Gas Recovery (SGR) program funded by the U. S. Department of Energy and the Gas Research Institute.Boonsville Field is in the Fort Worth Basin in North-Central Texas.The main productive interval are clastic sandstones in the Pennsylvanian Atokan Bend Conglomerate Group.A type log shows the interbedded sandstones and shales over about 1300 feet of section. The Bend Conglomerate is underlain by the Marble Falls Limestone, a platform carbonate. The Bend Conglomerates were sourced from the northwest on the Red River Arch as the Fort Worth Basin was forming during the Oachita orogeny. These Bend Conglomerate sandstones then pinchout to the southeast, outside of this project area as they become distal to the source, prograding into the Fort Worth Basin.Historical gas production has been from the lower most sequence in the Vineyard. Additional potential is expected in the middle sequences of the Runaway and Vineyardintervals.Conglomerate Group.This example seismic line shows the Bend Conglomerate Group structure. Most striking are the karst collapse features from dissolution of the underlying Ellenburger Limestone, some 2000 feet below the Atoka. These collapse features are seen to causecompartmentalization in the Bend Conglomerate sand bodies.Previous conclusions from the Bureau of Economic Geology’s GRI study are:1) Karsting from Ellenburger carbonates cause collapse features compartmentalizing thereservoir. Large range of compartment sizes exist.2) Need 3D seismic to image the collapse features.3) Seismic attributes can sometimes predict the reservoir faciesUpper Caddo: AmplitudeLower Caddo: Inst. FrequencyLower Bend Conglomerate sequences not definitive4) Reservoirs often exist as stacked compartments of genetic sequences.The utility of the seismic attributes derived from the amplitude data are limited and typically very dependant on the particular interval analyzed. In this project we integrate the well log data in with the seismic for a better defined reservoir model. This integration is accomplished by inverting the seismic amplitude data to acoustic impedance (AI) properties and depth converting the seismic so correlation with the well logs is possible. In this presentation I will only highlight the features of Structural Framework and Rock Property modeling in the overall Reservoir Modeling workflows:Structural Framework => Stratigraphic Gridding => Litholgy and Facies Mapping => Pressure Field => Rock Properties => Fracture Network and Stress Field =>Reservoir Fluids and Dynamic Response.Motivation for Reservoir Modeling include:1) Integration of all relevant and available data.2) Merge data of different scales:(Cores, Well logs, Seismic and Production).3) Dynamically update the model as new information becomes available.4) Measurement of errors and uncertainty as well as expected value.The specific workflows used are dependant on number and type of data available. In this case there is substantial well control and the seismic data is of high resolution (80Hz). Structural Framework WorkflowThe Structural Framework Workflow is shown below:Obtaining the Structural Framework from the seismic gives a much better description than from the well control alone. The karst features were not known until the 3D seismic data was acquired.Integration of the well marker tops and the seismic time horizons proceeds by 2 pathways:1) A reference horizon (the Caddo Limestone) was an excellent reflector that also tied the well tops. This is depth converted by a co-located co-Kriging method.2) Time horizons below this reference did not exactly tie the associated well markers due to tuning effects of the thin bedded Bend Conglomerate Group. For these horizons a velocity field was constructed from interpolating the sonic logs, calibrated to the seismic and checkshot survey. The depth was then created by the time and velocity relationship.3)The fault network will be incorporated in the future using a seismic continuity analysis. Depth conversion of the reference horizon is accomplished thru the strong correlation between the time and depth relationship at the well locations.Co-located co-Kriging of the seismic time and well marker depths produces a very accurate depth structure for the Caddo Limestone.Interpolating the sonic logs in the survey a interval velocity field is produced. Converting these interval velocities to average velocities (inverse Dix’s equation) provides the information on depth converting the intervening horizons.And here are the depth converted intervening seismic horizons.Rock Properties WorkflowThis rock property modeling workflow utilizes the seismic information obtained via inversion to acoustic impedance to better control the well log interpolation of rock properties. This is also accomplished with the accurate structural information that the seismic provides. This workflow is necessarily iterative due to the dependency of one data on another and the iteration between time (on the seismic data) and depth (for the log data) referencing.Seismic to Log Calibration is the first step in integrating the seismic amplitude data with the log properties. Starting off one may not know other than by qualitative correlation what the seismic wavelet is. In this case a reserse polarity wavelet is assumed. The synthetic is then tied to the seismic data, performing a constrained stretching and/or squeezing to fit major events. This stretching/squeezing is primarily due to dispersionbetween seismic velocities and sonic log velocities.A final seismic wavelet is then extracted. Always use more than a single seismic to log calibration tie. In this case 4 well ties were averaged for a consistent wavelet showing that the seismic wavelet is nearly –90degrees out of phase and slightly ringy. The ringing suggests that the deconvolution was not sufficient to collapse the source wavelet. Theseismic bandwidth is very good (20-80Hz).A background acoustic impedance model is needed to supply the low frequency component missing from the seismic trace data in the inversion. This first iteration uses asimple gridding of the 4 sonic logs in the survey.A model based inversion using Hampson-Russell Software’s Strata program shows the transform of the qualitative amplitude data into rock property information. The result is very dependant on the background model used and later we’ll see an improvedbackground model for a better result.Checking this inversion at our key well: B Yates 18D the seismic inverted acoustic impedance ties well qualitatively with well log acoustic impedance. Depth converting thisAI volume is also compared to the well log for quality control.Now that we ha ve seismically derived rock properties from the seismic in depth, let’s see how they correlate to the well logs. In general we see that:1) Low AI relates to shales from the gamma ray log.2) High AI relates to resisitve sandstones from the RT log.3) Correlation of AI to the porosity is more complicated since the shales measure a highporosity with low AI and the more porous sandstones are in an intermediate range of AI,while the tight sandstones are resistive and also high AI.properties show a rather low correlation coefficient.An observation of the relative scales of information is needed. The well logs of course are of higher resolution than the seismic data as shown in the lower variance of AI derived by the seismic data than that represented in the well log data. Smoothing the log curves is required to be able to statistically correlate the respective information. This correlation is also stongly influenced by the exact depth conversion of the seismic information to tie the wells. Due to the thin bedded nature of the Bend Conglomerate Group a mistie of only afew feet will severely effect the correlation.Cross-plotting the seismically derived AI to the smoothed well logs (20 feet averaging) increases the correlation, as now the data are on a more equal sample support resolution. These correlations are still low. These seismically derived AI values are also influencedby the simple background impedance model used in the inversion.in the survey.The well log acoustic impedance (AI) is highly correlated to the Log10(RT). The spatial variogram shows a fairly long range to the correlation in order to provide a goodbackground AI model for a 2nd iteration of inversion.First Kriging the Log10(RT) logs is performed. Next co_Kriging the 4 wells with acoustic impedance information is run. Spatially this new background impedance model is shown to provide spatial features not available with just the 4 wells with sonic logs. Areas near the well control have very high frequency information content. While away from well control the response is subdued towards an average from the Kriging system. Since the seismic is principally used for interpolating the interwell region this background impedance model is low pass filtered to 20Hz. This way the well control is only adding the very long wavelength trends to the inversion result. And the interwellregion should be justly controlled by the seismic data.rock properties.Qualitative correlation to the key well: B Yates 18D yields similar results as before.Now cross-plotting the seismically derived acoustic impedance and the log properties in depth shows a better correlation. These correlations are good enough to use in a co-located co-Kriging of the well log properties.Rock property models are now generated by co-located co-Kriging of the gamma ray logs for lithology discrimination and resistivity logs controlled by the seismically derived AIproperties.A reservoir model of sandstone porosity can be derived by the relationships of lithology to gamma ray and resistivity. Where these models of gamma ray and resistivity are related back to the seismically derived acoustic impedance.By segmenting the data into a sandstone region defined by where:Gamma ray is less than 90 andLog10(Resistivity) is greater than 0.8A sandstone porosity relationship is defined.Constructing the density model in the sandstone facies then is represented here.。
bert的model类参数-概述说明以及解释1.引言1.1 概述概述部分的内容:引言部分是文章的开始,旨在向读者介绍BERT(Bidirectional Encoder Representations from Transformers)模型的model类参数。
BERT是一种基于Transformer模型的预训练语言表示模型,其在自然语言处理领域取得了巨大的成功。
Model类是BERT模型的核心组成部分,它包含了BERT模型的所有参数和方法。
在本文中,我们将详细讨论BERT的Model类参数,包括其定义、作用以及可能的取值范围。
我们将系统地介绍每个参数的含义和影响,以帮助读者更好地理解BERT模型的内部结构和机制。
在接下来的正文部分,我们将分析两个重要的Model类参数,并深入探讨它们的作用。
通过对这些参数的解释和案例分析,读者将能够更好地理解BERT模型的工作原理和训练过程。
最后,在结论部分,我们将对本文的内容进行总结,并对BERT模型的发展和应用前景进行展望。
BERT模型的model类参数是BERT模型的核心组成部分之一,对于理解和应用BERT模型具有重要的意义。
通过本文的阅读,读者将获得关于BERT模型的model类参数的全面了解,从而能够更好地应用和改进BERT模型,提升自然语言处理任务的性能和效果。
文章结构部分的内容可以如下所示:1.2 文章结构本文将围绕BERT的model类参数展开论述,主要分为引言、正文和结论三个部分。
在引言部分,将对BERT模型的背景和研究意义进行概述,介绍BERT 在自然语言处理领域的重要性和应用前景。
同时,也将对本文的结构进行简要说明,指出正文内容及各部分的重点。
正文部分将详细介绍BERT的model类参数。
为了使读者更好地理解BERT模型的工作原理以及各参数的作用,文章将系统地介绍和说明BERT model类中的关键参数。
其中,包括但不限于输入层参数、嵌入层参数、Transformer层参数以及输出层参数等。
扩散模型(Diffusion Model)是一种用于生成人工智能的深度学习模型,其核心思想是通过在数据分布上逐步添加噪声,最终生成一个与原始数据分布相似的噪声图像。
在扩散模型中,有一些参数技巧可以帮助提高模型的性能和生成质量。
以下是一些建议:1. 重参数技巧(Reparameterization trick):在生成过程中,扩散模型使用重参数技巧将噪声添加到模型中。
通过这种方式,可以在保持原始数据分布的同时,引入新的噪声图像。
重参数技巧使得生成过程更加稳定,有助于提高生成质量。
2. 反向过程(Inverse process):在扩散模型中,反向过程用于计算生成噪声图像的概率。
通过计算原始图像与生成的噪声图像之间的似然性,可以优化模型参数以提高生成质量。
3. 优化目标(Optimization objective):对于两个单一变量的高斯分布p和q,KL散度(Kullback-Leibler divergence)可以用于衡量它们之间的差异。
在扩散模型中,可以通过最小化KL散度来优化模型参数,从而使生成的噪声图像更接近原始数据分布。
4. 归一化常数(Normalization constant):在能量模型(Energy-Based Models)中,归一化常数z()用于确保p.d.f 积分等于1。
在扩散模型中,可以采用Flow限制、VAEGAN等方法来处理归一化常数,以提高生成质量。
5. 神经网络结构(Neural network architecture):在扩散模型中,可以使用深度神经网络来近似生成过程。
根据具体任务的需求,可以选择合适的神经网络结构,如卷积神经网络(CNN)等。
6. 采样技巧(Sampling technique):在生成过程中,可以使用重要性采样(Importance sampling)等方法来提高生成质量。
通过在真实数据分布上进行多次采样,可以获得更多的生成图像,从而提高模型的多样性。
mtgnn源码中的使用模块MTGNN(Molecular Transformer with Graph Neural Network)是一种基于图神经网络的分子表示学习模型。
它能够将分子结构转化为高维向量表示,从而实现对分子性质和行为的预测与分析。
MTGNN 源码中包含了多个使用模块,下面将对这些模块进行详细介绍。
1. 数据预处理模块(Data Processing Module)数据预处理模块负责将分子数据转化为模型可以处理的格式。
它首先将分子结构表示为图的形式,然后进行节点和边的特征提取。
在MTGNN源码中,可以看到该模块使用了RDKit等工具包来完成这些任务。
2. 分子特征编码模块(Molecular Feature Encoding Module)分子特征编码模块将分子的节点和边的特征转化为向量表示。
它使用了图神经网络的方法,通过将节点和边的特征与邻居节点和边的特征进行聚合,最终得到整个分子的向量表示。
在MTGNN源码中,可以看到该模块使用了Transformer等模型来实现特征编码。
3. 分子性质预测模块(Molecular Property Prediction Module)分子性质预测模块利用分子的向量表示来预测其性质和行为。
它采用了监督学习的方法,通过训练集中的已知分子性质来学习模型的参数,并利用这些参数对新的分子进行预测。
在MTGNN源码中,可以看到该模块使用了多层感知机等模型来进行性质预测。
4. 模型训练模块(Model Training Module)模型训练模块用于训练MTGNN模型的参数。
它将数据集划分为训练集、验证集和测试集,并使用训练集和验证集的数据来调整模型的参数,以使模型在预测性质时具有较好的性能。
在MTGNN源码中,可以看到该模块使用了Adam等优化算法来进行模型参数的更新。
5. 模型评估模块(Model Evaluation Module)模型评估模块用于评估训练好的MTGNN模型在测试集上的性能。
pythonbasemodel用法BaseModel是Python中一个用于构建其他模型的基类。
它提供了一些常用的方法和属性,以便其他模型可以继承,并在此基础上进行定制化的开发。
以下是关于BaseModel用法的详细解释。
首先,要使用BaseModel,需要从`torch.nn`或`pytorch_lightning`库中导入它。
导入的方式如下:```pythonfrom torch import nnfrom pytorch_lightning.core import LightningModule```BaseModel有一些常用的方法,包括:1. `__init__(`: 用于初始化模型的参数和层。
可以在其中定义模型的结构和设置需要的超参数。
2. `forward(`: 这是一个模型的前向传播方法。
在这个方法中,定义了数据从输入到输出的整个流程。
需要在这个方法中描述模型的结构。
3. `configure_optimizers(`: 该方法用于配置优化器。
在这个方法中,可以设置模型的优化算法、学习率和其他超参数。
4. `training_step(`: 该方法用于定义训练过程的一步。
在这个方法中,可以实现前向传播、计算损失函数、反向传播等操作,并返回相应的训练结果。
5. `validation_step(`: 该方法用于定义验证过程的一步。
在这个方法中,可以实现前向传播、计算损失函数或其他验证指标,并返回相应的验证结果。
6. `test_step(`: 该方法用于定义测试过程的一步。
在这个方法中,可以实现前向传播、计算损失函数或其他测试指标,并返回相应的测试结果。
此外,BaseModel还提供了一些常用的属性1. `hparams`: 模型的超参数。
这是一个与模型关联的字典,其中可以存储和访问模型的超参数。
2. `model`: 输出模型的当前状态,可以使用该属性访问模型的参数。
3. `current_epoch`: 模型当前的训练轮数。
Model-Based Inversion of Dynamic Range CompressionStanislaw Gorlow,Student Member,IEEE,and Joshua D.Reiss,Member,IEEEAbstract—In this work it is shown how a dynamic nonlinear time-variant operator,such as a dynamic range compressor,can be inverted using an explicit signal model.By knowing the model parameters that were used for compression one is able to recover the original uncompressed signal from a“broadcast”signal with high numerical accuracy and very low computational complexity.A compressor-decompressor scheme is worked out and described in detail.The approach is evaluated on real-world audio material with great success.Index Terms—Dynamic range compression,inversion, model-based,reverse audio engineering.I.I NTRODUCTIONS OUND or audio engineering is an established discipline employed in many areas that are part of our everyday life without us taking notice of it.But not many know how the audio was produced.If we take sound recording and reproduction or broadcasting as an example,we may imagine that a prerecorded signal from an acoustic source is altered by an audio engineer in such a way that it corresponds to certain criteria when played back.The number of these criteria may be large and usually depends on the context.In general,the said alteration of the input signal is a sequence of numerous forward transformations, the reversibility of which is of little or no interest.But what if one wished to do exactly this,that is to reverse the transfor-mation chain,and what is more,in a systematic and repeatable manner?The research objective of reverse audio engineering is twofold:to identify the transformation parameters given the input and the output signals,as in[1],and to regain the input signal that goes with the output signal given the transformation parameters.In both cases,an explicit signal model is manda-tory.The latter case might seem trivial,but only if the applied transformation is linear and orthogonal and as such perfectly invertible.Yet the forward transform is often neither linear nor invertible.This is the case for dynamic range compressionManuscript received December05,2012;revised February28,2013; accepted February28,2013.Date of publication March15,2013;date of current version March29,2013.This work was supported in part by the “Agence Nationale de la Recherche”within the scope of the DReaM project (ANR-09-CORD-006)as well as the laboratory with which thefirst author is affiliated as part of the“mobilitéjuniors”program.The associate editor coordinating the review of this manuscript and approving it for publication was Prof.Woon-Seng Gan.S.Gorlow is with the Computer Science Research Laboratory of Bordeaux (LaBRI),CNRS,Bordeaux1University,33405Talence Cedex,France(e-mail: stanislaw.gorlow@labri.fr).J.D.Reiss is with the Centre for Digital Music(C4DM),Queen Mary,Uni-versity of London,London E14NS,U.K.(e-mail:josh.reiss@). Digital Object Identifier10.1109/TASL.2013.2253099(DRC),which is commonly described by a dynamic nonlinear time-variant system.The classical linear time-invariant(LTI) system theory does not apply here,so a tailored solution to the problem at hand must be found instead.At this point,we also like to highlight the fact that neither V olterra nor Wiener model approaches[2]–[4]offer a solution,and neither do describing functions[5],[6].These are useful tools when identifying a time-invariant or a slowly varying nonlinear system or ana-lyzing the limit cycle behavior of a feedback system with a static nonlinearity.A method to invert dynamics compression is described in[7], but it requires an instantaneous gain value to be transmitted for each sample of the compressed signal.To provide a means to control the data rate,the gain signal is subsampled and also en-tropy coded.This approach is highly inefficient as it does not rely on a gain model and is extremely generic.On the other hand,transmitting the uncompressed signal in conjunction with a few typical compression parameters like threshold,ratio,attack,and release would require a much smaller capacity and yield the best possible signal quality with regard to any thinkable measure.A more realistic scenario is when the uncompressed signal is not available on the consumer side.This is usually the case for studio music recordings and broadcast material where the listener is offered a signal that is meant to sound“good”to everyone.However,the loudness war [8]has resulted in over-compressed audio material.Over-com-pression makes a song lose its artistic features like excitingness or liveliness and desensitizes the ear thanks to a louder volume. There is a need to restore the original signal’s dynamic range and to experience audio free of compression.In addition to the normalization of the program’s loudness level,the Dolby solution[9],[10]also includes dynamic range expansion.The expansion parameters that help reproduce the original program’s dynamic range are tuned on the broadcaster side and transmitted as metadata together with the broadcast signal.This is a very convenient solution for broadcasters,not least because the metadata is quite compact.Dynamic range ex-pansion is yet another forward transformation rather than a true inversion.Evidently,none of the previous approaches satisfy the re-verse engineering objective of this work.The goal of the present work,hence,is to invert dynamic range compression,which is a vital element not only in broadcasting but also in mastering. The paper is organized as follows.Section II provides a brief introduction to dynamic range compression and presents the compressor model upon which our considerations are based. The data model,the formulation of the problem,and the pur-sued approach are described next in Section III.The inversion1558-7916/$31.00©2013IEEEFig.1.Basic broadband compressor model(feed forward).is discussed in detail in Section IV.Section V illustrates how an integral step of the inversion procedure,namely the search for the zero-crossing of a non-linear function,can be solved in an iterative manner by means of linearization.Some other com-pressor features are discussed in Section VI.The complete al-gorithm is given in the form of pseudocode in Section VII and its performance is evaluated for different compressor settings in Section VIII.Conclusions are drawn in Section IX,where some directions for future work are mentioned.II.D YNAMIC R ANGE C OMPRESSIONDynamic range compression or simply“compression”is a sound processing technique that attenuates loud sounds and/or amplifies quiet sounds,which in consequence leads to a reduc-tion of an audio signal’s dynamic range.The latter is defined as the difference between the loudest and quietest sound mea-sured in decibel.In the following,we will use the word“com-pression”having“downward”compression in mind,though the discussed approach is likewise applicable to“upward”compres-sion.Downward compressing means attenuating sounds above a certain threshold while leaving sounds below the threshold unchanged.A sound engineer might use a compressor to reduce the dynamic range of source material for purposes of aesthetics, intelligibility,recording or broadcast limitations.Fig.1illustrates the basic compressor model from([11],ch.2)amended by a switchable RMS/peak detector in the side chain making it compatible with the compressor/limiter model from ([12],p.106).We will hereafter restrict our considerations to this basic model,as the purpose of the present work is to demon-strate a general approach rather than a solution to a specific problem.First,the input signal is split and a copy is sent to the side chain.The detector then calculates the magnitude or level of the sidechain signal using the root mean square(RMS)or peak as a measure for how loud a sound is([12],p.107). The detector’s temporal behavior is controlled by the attack and release parameters.The sound level is compared with the threshold level and,for the case it exceeds the threshold,a scale factor is calculated which corresponds to the ratio of input level to output level.The knee parameter determines how quick the compression ratio is reached.At the end of the side chain,the scale factor is fed to a smoothingfilter that yields the gain.The response of thefilter is controlled by another set of attack and re-lease parameters.Finally,the gain control applies the smoothed gain to the input signal and adds afixed amount of makeup gain to bring the output signal to a desired level.Such a broad-band compressor operates on the input signal’s full bandwidth, treating all frequencies from zero through the highest frequency equally.A detailed overview of all sidechain controls of a basic gain computer is given in([11],ch.3),e.g.,III.D ATA M ODEL,P ROBLEM F ORMULATION,ANDP ROPOSED S OLUTIONA.Data Model and Problem FormulationThe employed data model is based on the compressor from Fig.1.The following simplifications are additionally made:the knee parameter(“hard”knee)and the makeup gain(fixed at 0dB)are ignored.The compressor is defined as a single-input single-output(SISO)system,that is both the input and the output are single-channel signals.What follows is a description of each block by means of a dedicated function.The RMS/peak detector as well as the gain computer build upon afirst-order(one-pole)lowpassfilter.The sound level or envelope of the input signal is obtained by(1)where represents an RMS detector,and a peak detector.The non-zero smoothing factor,may take on different values,or,depending on whether the detector is in the attack or release phase.The condition for the level detector to enter the attack phase and to choose over is(2)A formula that converts a time constant into a smoothing factor is given in([12],p.109),so e.g.,where is the sampling frequency.The static nonlinearity in the gain computer is usually modeled in the logarithmic domain as a continuous piecewise linear function:(3) where is the slope,,and is the threshold in decibel.The slope is further derived from the de-sired compression ratio according to(4)Equation(3)is equivalently expressed in the linear domain as(5) where,and is the linear scale factor beforefiltering.The smoothed gain is then calculated as the exponentially-weighted moving average,(6) where the decision for the gain computer to choose the attack smoothing factor instead of is subject to(7) The output signal isfinally obtained by multiplying the above gain with the input signal:(8) Due to the fact that the gain is strictly positive,,it follows that(9) where sgn is the signum or sign function.In consequence,it is convenient to factorize the input signal as a product of the sign and the modulus according to(10)The problem at hand is formulated in the following manner: Given the compressed signal and the model parameters recover the modulus of the original signal from based on.For a more intuitive use,the smoothing factors and may be replaced by the time constants and.The meaning of each parameter is listed below.The threshold in dBThe compression ratio dB:dBThe detector type(RMS or peak)The attack time of the envelopefilter in msThe release time of the envelopefilter in msThe attack time of the gainfilter in msThe release time of the gainfilter in msB.Proposed SolutionThe output of the side chain,that is the gain of,given ,and,may be written as(11) In(11),denotes a nonlinear dynamic operator that maps the modulus of the input signal onto a sequence of instanta-neous gain values according to the compressor model rep-resented ing(11),(8)can be solved for yieldingsubject to invertibility of.In order to solve the above equa-tion one requires the knowledge of,which is unavailable. However,since is a function of,we can express as a function of one independent variable,and in that manner we obtain an equation with a single unknown:(12) where represents the entire compressor.If is invertible, i.e.,bijective for all can be obtained from by(13) And yet,since is unknown,the condition for applying decompression must be predicted from,and ,and therefore needs the condition for toggling between the attack and release phases.Depending on the quality of the prediction,the recovered modulus may differ somewhat at transition points from the original modulus,so that in the end(14)In the next section it is shown how such an inverse compressor or decompressor is derived.IV.I NVERSION OF D YNAMIC R ANGE C OMPRESSIONA.Characteristic FunctionFor simplicity,we choose the instantaneous envelope value instead of as the independent variable in(12).The relation between the two items is given by(1).From(6)and(8), when(15)(16) From(1),(17) or equivalently(note that by definition)(18) Moreover,(18)has a unique solution if and also are in-vertible.Moving the expression on the left-hand side over to the right-hand side,we may define(19) which shall be termed the characteristic function.The root or zero-crossing of hence represents the sought-after enve-lope value.Once is found(see Section V),the current values of,and are updated as per(20) and the decompressed sample is then calculated as(21)B.Attack-Release Phase Toggle1)Envelope Smoothing:In case a peak detector is in use, takes on two different values.The condition for the attack phase is then given by(2)and is equivalent to(22) Assuming that the past value of is known at time,what is needed to be done is to express the unknown in terms of such that the above equation still holds true.If is rather small,,or equivalently if is sufficiently large,ms at44.1-kHz sampling,the term in(15)is negligible,so it approximates(15)as(23) Solving(23)for and plugging the result into(22),we obtain(24) If(24)holds true,the detector is assumed to be in the attack phase.2)Gain Smoothing:Just like the peak detector,the gain smoothingfilter may be in either the attack or release phase. The necessary condition for the attack phase in(7)may also be formulated as(25) But since the current envelope value is unknown,we need to substitute in the above inequality by something that is known.With this in mind,(15)is rewritten as(26) Provided that,and due to the fact that ,the expression in square brackets in(26)is smaller than one,and thus during attack(27) Substituting by using(20), and solving(27)for results in(28) If in(25)is substituted by the expression on the right-hand side of(28),(25)still holds true,so the following sufficient condition is used to predict the attack phase of the gainfilter:(29) Note that the values of all variables are known whenever(29)is evaluated.C.Envelope PredictorAn instantaneous estimate of the envelope value is re-quired not only to predict when compression is active,formally according to(5),but also to initialize the iterative search algorithm in Section V.Resorting once more to(15)itcan be noted that in the opposite case where, and so(30) The sound level of the input signal at time is therefore(31) which must be greater than the threshold for compression to set in,whereas and are selected based on(24)and(29), respectively.D.Error AnalysisConsider being estimated from according to(32) The normalized error is then(33)(34) As during attack andduring release,respectively.The instantaneous gain can also be expressed as(35) where is the runtime in ing(35)in(34),the mag-nitude of the error is given by(36)(37) For,(36)becomes(38) whereas for,(37)converges to infinity:(39) So,the error is smaller for large or short.The smallest possible error is for,which then again depends on the current and the previous value of.The error accumulatesifFig.2.Graphical illustration for the iterative search for the zero-crossing.with.The difference between consecutive-values is signal dependent.The signal envelopefluctuates less and is thus smoother for smaller or longer.is also more stable when the compression ratio is low.Foris perfectly constant.The threshold has a negative impact on error propagation.The lower the more the error depends on ,since more samples are compressed with different-values. The RMS detector stabilizes the envelope more than the peak detector,which also reduces the error.Furthermore,since usu-ally,the error due to is smaller during release whereas the error due to is smaller during attack.Finally,the error is expected to be larger at transition points between quiet to loud signal passages.The above error may cause a decision in favor of a wrong smoothing factor in(24),like instead of e.g.,The decision error from(24)then propagates to(29).Given that ,the error due to(32)is accentuated by(24)with the consequence that(29)is less reliable than(24).The total error in(29)thus scales with.In regard to(31),re-liability of the envelope’s estimate is subject to validity of(24) and(29).A better estimate is obtained when the sound level de-tector and the gainfilter are both in either the attack or release phase.Here too,the estimation error increases withand also with.V.N UMERICAL S OLUTION OF THE C HARACTERISTIC F UNCTION An approximate solution to the characteristic function can be found,e.g.,by means of linearization.The estimate from(31) may moreover serve as a starting point for an iterative search of an optimum:The criterion for optimality is further chosen as the deviation of the characteristic function from zero,initialized to(40) Thereupon,(19)may be approximated at a given point using the equation of a straight line,,where is the slope and is the-intercept.The zero-crossing is characterized by the equation(41)as shown in Fig.2.The new estimate of the optimal is found as(42) If is less optimal than,the iteration is stopped and is thefinal estimate.The iteration is also stopped if is smaller than some.In the latter case,has the optimal value with respect to the chosen criterion.Otherwise,is set to and is set to after every step and the procedure is repeated until has converged to a more optimal value.The proposed method is a special form of the secant method with a single initial value.VI.G ENERAL R EMARKSA.Stereo LinkingWhen dealing with stereo signals,one might want to apply the same amount of gain reduction to both channels to prevent image shifting.This is achieved through stereo linking.One way is to calculate the required amount of gain reduction for each channel independently and then apply the larger amount to both channels.The question which arises in this context is which of the two channels was the gain derived from.To give an answer resolving the dilemma of ambiguity,one solution would be to signal which of the channels carries the applied gain.One could then decompress the marked sample and use its gain for the other channel.Although very simple to implement, this approach provokes an additional data rate of44.1kbps at44.1-kHz sampling.A rate-efficient alternative that comes witha higher computational cost is realized in the following way. First,one decompresses both the left and the right channel in-dependently and in so doing one obtains two estimates and,where subscript shall denote the left channel and subscript the right channel,respectively.In a second step,one calculates the compressed values of and and selects the channel for which holds true.In afinal step,one updates the remaining variables using the gain of the selected channel.B.LookaheadA compressor with a look-ahead function,i.e.,with a delay in the main signal path as in([12],p.106),uses past input samples as weighted output samples.Now that some future input sam-ples are required to invert the process—which are unavailable, the inversion is rendered impossible.and must thus be in sync for the approach to be applied.C.Clipping and LimitingAnother point worth mentioning is that“hard”clipping and “brick-wall”limiting are special cases of compression with the attack time set to zero and the compression ratio set to. The static nonlinearity in that particular case is a one-to-many mapping,which by definition is noninvertible.VII.T HE A LGORITHMThe complete algorithm is divided into three parts,each of them given as pseudocode below.Algorithm1out-lines the compressor that corresponds to the model from Sections II–III.Algorithm2illustrates the decompressor de-scribed in Section IV,and the iterative search from Section V isfinally summarized in Algorithm3.The parameter repre-sents the sampling frequency in kHz.function C OMPfor doif thenelseend ifif thenelseend ifif thenelseend ifend forreturnend functionVIII.P ERFORMANCE E VALUATIONA.Performance MetricsTo evaluate the inverse approach,the following quantities are measured:the root-mean-square error(RMSE),(43) given in decibel relative to full scale(dBFS),the perceptual sim-ilarity between the original and decompressed signal,and the execution time of the decompressor relative to real time(RT). Furthermore,we present the percentage of compressed samples, the mean number of iterations until convergence per compressed sample,the error rate of the attack-release toggle for the gainsmoothingfilter,andfinally the error rate of the envelope pre-dictor.The perceptual similarity is assessed by PEMO-Q[13], Algorithm2The decompressorfunction D ECOMPfor doif thenelseend ifif thenelseend ifif thenC HARFZEROelseend ifend forreturnend functionAlgorithm3The iterative search for the zero-crossingfunction C HARFZEROrepeatif thenreturnend ifuntilreturnend function [14]with as metric.The simulations are run in MATLAB on an Intel Core i5-520M CPU.putational ResultsFig.3shows the inverse output signal for a synthetic input signal using an RMS detector.The inverse signal is obtained from the compressed signal with an error of dBFS.It is visually indistinguishable from the original signal.Due to the fact that the signal envelope is con-stant most of the time,the error is noticeable only around tran-sition points—which are few.The decompressor’s performance is further evaluated for some commercial compressor presets. The used audio material consists of12items covering speech, sung voice,music,and jingles.All items are normalized to LKFS[15].The-value in the break condition of Algorithm3 is set to.A detailed overview of compressor settings and performancefigures is given in Tables I–II.The presented results suggest that the decompressed signal is perceptually in-distinguishable from the original—the-value isflawless. This was also confirmed by the authors through informal lis-tening tests.As can be seen from Table II,the largest inversion error is associated with setting E and the smallest with setting B.For allfive settings,the error is larger when an RMS detector is in use.This is partly due to the fact that has a stronger curvature in comparison to.By defining the distance in (40)as,it is possible to attain a smaller error for an RMS detector at the cost of a slightly longer runtime.In most cases,the envelope predictor works more reliably as compared to the toggle switch between attack and release.It can also be observed that the choice of time constants seems to have little impact on decompressor’s accuracy.The major parameters that affect the decompressor’s performance are and,while the threshold is evidently the predominant one:the RMSE strongly correlates with the threshold level.Figs.4–5show the inversion error as a function of various time constants.These are in the range of typical attack and re-lease times for a limiter(peak)or compressor(RMS)([12],pp. 109–110).It can be observed that the inversion accuracy de-pends on the release time of the peak detector and not so much on its attack time for both the envelope and the gainfilter,see Figs.4,5(b).For the envelopefilter,all error curves exhibit a local dip around a release time of0.5s.The error increases steeply below that bound but moderately with larger values.In the proximity of5s,the error converges to dBFS.With regard to the gainfilter,the error behaves in a reverse manner. The curves in Fig.5(b)exhibit a local peak around0.5s with a value of180dBFS.It can further be observed in Fig.4(a) that the curve for ms has a dip where is close to1ms,i.e.,where is minimal.This is also true for Fig.4(c)and(d):the lowest error is where the attack and release times are identical.As a general rule,the error that is due to the attack-release switch is smaller for the gainfilter in Fig.5. Looking at Fig.6one can see that the error decreases with threshold and increases with compression ratio.At a ratio of 10:1and beyond,the RMSE scales almost exclusively with the threshold.The lower the threshold,the stronger the error prop-agates between decompressed samples,which leads to a largerFig.3.An illustrative example using an RMS amplitude detector with set to 5ms,a threshold ofdBFS (dashed line in the upper right corner),acom-pression ratio of 4:1,and set to 1.6ms for attack and 17ms for release,respectively.TheRMSE is dBFS.TABLE IS ELECTED C OMPRESSOR S ETTINGSTABLE IIP ERFORMANCE F IGURES O BTAINED FOR V ARIOUS A UDIO M ATERIAL (12I TEMS )RMSE value.The RMS detector further augments the error be-cause it stabilizes the envelope more than the peak de-tector.Clearly,the threshold level has the highest impact on the decompressor’s accuracy.IX.C ONCLUSION AND O UTLOOKThis work examines the problem of finding an inverse to a nonlinear dynamic operator such as a digital compressor.The proposed approach is characterized by the fact that it uses an explicit signal model to solve the problem.To find the “dry”or uncompressed signal with high accuracy,it is suf ficient to know the model parameters.The parameters can e.g.,be sent together with the “wet”or compressed signal in the form of metadata as is the case with Dolby V olume and ReplayGain [16].A new bit-stream format is not mandatory,since many digital audio stan-dards,like WA V or MP3,provide means to tag the audio con-Fig.4.RMSE as a function of typical attack and release times using a peak (upper row)or an RMS amplitude detector (lower row).In the left column,the attack time of the envelope filter is varied while the release time is held constant.The right column shows the reverse case.The time constants of the gain filter are fixed at zero.In all four cases,threshold and ratio are fixed at 32dBFS and 4:1,respectively.Fig.5.RMSE as a function of typical attack and release times using a peak (upper row)or an RMS amplitude detector (lower row).In the left column,the attack time of the gain filter is varied while the release time is held constant.The right column shows the reverse case.The time constants of the envelope filter are fixed at zero.In all four cases,threshold and ratio are fixed at 32dBFS and 4:1,respectively.tent with “ancillary”data.With the help of the metadata,one can then reverse the compression applied after mixing or be-fore broadcast.This allows the end user to have control over the amount of compression,which may be preferred because the sound engineer has no control over the playback environ-ment or the listener’s individual taste.When the compressor parameters are unavailable,they can possibly be estimated from the compressed signal.This mayFig.6.RMSE as a function of threshold relative to the signal’s average loudness level(left column)and compression ratio(right column)using a peak(upper row)or an RMS amplitude detector(lower row).The time constants are:ms,ms,and s.thus be a direction for future work.Another direction would be to apply the approach to more sophisticated models that include a“soft”knee,parallel and multiband compression,or perform gain smoothing in the logarithmic domain,see[11],[12],[17], [18]and references therein.In conclusion,we want to draw the reader’s attention to the fact that the presentedfigures suggest that the decompressor is realtime capable which can pave the way for exciting new applications.One such application could be the restoration of dynamics in over-compressed audio or else the accentuation of transient components,see[19]–[21],by an adaptively tuned decompressor that has no prior knowledge of the compressor parameters.A CKNOWLEDGMENTThis work was carried out in part at the Centre for Digital Music(C4DM),Queen Mary,University of London.R EFERENCES[1]D.Barchiesi and J.Reiss,“Reverse engineering of a mix,”J.AudioEng.Soc.,vol.58,pp.563–576,2010.[2]T.Ogunfunmi,Adaptive Nonlinear System Identification:The Volterraand Wiener Model Approaches.New York,NY,USA:Springer Sci-ence+Business Media,2007,ch.3.[3]Y.Avargel and I.Cohen,“Adaptive nonlinear system identificationin the short-time Fourier transform domain,”IEEE Trans.SignalProcess.,vol.57,no.10,pp.3891–3904,Oct.2009.[4]Y.Avargel and I.Cohen,“Modeling and identification of nonlinear sys-tems in the short-time Fourier transform domain,”IEEE Trans.SignalProcess.,vol.58,no.1,pp.291–304,Jan.2010.[5]A.Gelb and W.E.Vander Velde,Multiple-Input Describing Functionsand Nonlinear System Design.New York,NY,USA:McGraw-Hill,1968,ch.1.[6]P.W.J.M.Nuij,O.H.Bosgra,and M.Steinbuch,“Higher-order sinu-soidal input describing functions for the analysis of non-linear systems with harmonic responses,”Mech.Syst.Signal Process.,vol.20,pp.1883–1904,2006.[7]chaise and L.Daudet,“Inverting dynamics compression withminimal side information,”in Proc.DAFx,2008,pp.1–6.[8]E.Vickers,“The loudness war:Background,speculation and recom-mendations,”in Proc.AES Conv.129,Nov.2010.[9]Dolby Digital and Dolby V olume Provide a Comprehensive LoudnessSolution,Dolby Laboratories,2007.[10]Broadcast Loudness Issues:The Comprehensive Dolby Approach,Dolby Laboratories,2011.[11]R.Jeffs,S.Holden,and D.Bohn,Dynamics processor—Technology&Application Tips,Rane Corporation,2005.[12]U.Zölzer,DAFX:Digital Audio Effects,2nd ed.Chichester,WestSussex,U.K.:Wiley,2011,ch.4,The Atrium,Southern Gate,PO19 8SQ.[13]R.Huber and B.Kollmeier,“PEMO-Q—A new method for objectiveaudio quality assessment using a model of auditory perception,”IEEE Trans.Audio Speech Lang.Process.,vol.14,no.6,pp.1902–1911, Nov.2006.[14]HörTech gGmbH,PEMO-Q[Online].Available:http://www.ho-ertech.de/web_en/produkte/pemo-q.shtml,version1.3[15]ITU-R,Algorithms to Measure Audio Programme Loudness and True-Peak Audio Level,Mar.2011,rec.ITU-R BS.1770-2.[16]Hydrogenaudio,ReplayGain[Online].Available:http://wiki.hydroge-/index.php?title=ReplayGain,Feb.2013[17]J.C.Schmidt and J.C.Rutledge,“Multichannel dynamic range com-pression for music signals,”in Proc.IEEE ICASSP,1996,vol.2,pp.1013–1016.[18]D.Giannoulis,M.Massberg,and J.D.Reiss,“Digital dynamic rangecompressor design—A tutorial and analysis,”J.Audio Eng.Soc.,vol.60,pp.399–408,2012.[19]M.M.Goodwin and C.Avendano,“Frequency-domain algorithms foraudio signal enhancement based on transient modification,”J.Audio Eng.Soc.,vol.54,pp.827–840,2006.[20]M.Walsh,E.Stein,and J.-M.Jot,“Adaptive dynamics enhancement,”in Proc.AES Conv.130,May2011.[21]M.Zaunschirm,J.D.Reiss,and A.Klapuri,“A sub-band approachto modification of musical transients,”Comput.Music J.,vol.36,pp.23–36,2012.。