2019年海南省高考理科数学试卷及答案解析【word版】
- 格式:pdf
- 大小:235.19 KB
- 文档页数:7
普通高等学校招生全国统一考试理科数学第I 卷 选择题一、单项选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.1+2i1-2i=( ) A .-45-35iB .-45+35iC .-35-45iD .-35+45i2. 已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8C .5D .43. 函数f (x )=e x -e -xx 2的图象大致为( )A BC D4. 已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3C .2D .05. 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x6. 在△ABC 中,cos c 2=55,BC =1,AC =5,则AB =( )A .4 2B .30C .29D .2 57. 为计算S =1-12+13-14+…+199-1100,设计了如图的程序框图,则在空白框中应填入( )A .i =i +1?B .i =i +2?C .i =i +3?D .i =i +4?8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189. 在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A .15B .56C .55D .22 10. 若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( ) A .π4 B .π2C .3π4D .π11. 已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .5012. 已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A .23 B .12 C .13D .14第II 卷 非选择题二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合,则A.B.C.D.2.若,则z=A.B.C.D.3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12B.16C.20D.245.已知各项均为正数的等比数列{a n}的前4项为和为15,且a5=3a3+4a1,则a3= A.16B.8C.4D.26.已知曲线在点(1,a e)处的切线方程为y=2x+b,则A.B.a=e,b=1C.D.,7.函数在的图象大致为A.B.C.D.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行下边的程序框图,如果输入的为0.01,则输出的值等于A. B. C. D.10.双曲线C:=1的右焦点为F,点P在C的一条渐进线上,O为坐标原点,若,则△PFO的面积为A.B.C.D.11.设是定义域为R的偶函数,且在单调递减,则A.(log3)>()>()B.(log3)>()>()C.()>()>(log3)D.()>()>(log3)12.设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:①在()有且仅有3个极大值点②在()有且仅有2个极小值点③在()单调递增④的取值范围是[)其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学(海南卷)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀第I卷选择题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|x2-5x+6>0},B={x|x-1<0},则()A.(,) B.(-2,1) C.(-3,-1) D.(3,+)2.设Z=-3+2i,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知(2,3),=(3,t),||=1,则=()A. -3B. -2C. 2D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系,为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行,L2点是平衡点,位于地月连线的延长线上。
设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:。
设。
由于a的值很小,因此在近似计算中,则r的近似值为()A. B. C. D.5.演讲比赛共9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始分相比,不变的数字特征时()A.中位数 B.平均数 C.方差 D.极差6.若a>b,则()A.ln(a-b)>0 B.3a<3b C.a3-b3>0 D.|a|>|b|7.设,为两个平面,则∥的充要条件是()A.内有无数条直线与平行 B.内有两条相交直线与平行C.,平行于同一条直线 D.,垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则P=()A.2 B.3 C.4 D.89.下列函数中,以为周期且在区间(,单调递增的是()A f(x)=|cos2x| B. f(x)=|sin2x| C. f(x)=cos|x| D. f(x)=sin|x|10.已知,.则()A. B. C. D.11.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点。
2019海南省高三压轴题数学试卷(理)数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|320}A x x x =+-≤,2{|log (21)0}B x x =-≤,则A B =( )A .2|13x x ⎧⎫-≤≤⎨⎬⎩⎭ B .2|13x x ⎧⎫≤≤⎨⎬⎩⎭C .{|11}x x -≤≤D .12|23x x ⎧⎫<≤⎨⎬⎩⎭2.已知复数z 满足(34)34z i i +=-,z 为z 的共轭复数,则z =( ) A .1B .2C .3D .43.如图,当输出4y =时,输入的x 可以是( )A .2018B .2017C .2016D .20144.已知x 为锐角,cos sin a xx-=a 的取值范围为( )A .[2,2]-B .C .(1,2]D .(1,2)5.把一枚质地均匀、半径为1的圆形硬币抛掷在一个边长为8的正方形托盘上,已知硬币平放在托盘上且没有掉下去,则该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为( )A .18B .916C .4πD .15166.24(1)(1)x x x ++-的展开式中,3x 的系数为( ) A .3-B .2-C .1 D .47.已知正项数列{}n a 满足221120n n n n a a a a ++--=,设121l o gn n a b a +=,则数列{}n b 的前n 项和为( )A .nB .(1)2n n - C .(1)2n n +D .(1)(2)2n n ++8.如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为( )A ...8 D .99.已知数列{}n a 的前n 项和为n S ,且满足11a =,121n n a a n ++=+,则20172017S =( ) A .1009B .1008C .2D .110.已知函数()f x 是定义在R 上的偶函数,()(12)f x f x =-,当[0,6]x ∈时,6()log (1)f x x =+,若()1([0,2020])f a a =∈,则a 的最大值是( ) A .2018B .2010C .2020 D .201111.已知抛物线22(0)y px p =>的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若111AF BF+=,则四边形ACBD 的面积的最小值为( ) A .18B .30C .32 D .3612.已知1a >,方程102x e x a +-=与ln 20x x a +-=的根分别为1x ,2x ,则2212122x x x x ++的取值范围为( )A .(1,)+∞B .(0,)+∞C .1,2⎛⎫+∞ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分.13.已知(1,)a m =,1b =,7a b +=,且向量a ,b 的夹角是60,则m =.14.已知实数x ,y 满足12103x x y x y ≥⎧⎪-+≤⎨⎪+≤⎩,则3z x y =+的最大值是.15.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 且垂直于x 轴的直线与该双曲线的左支交于A ,B 两点,2AF ,2BF 分别交y 轴于P ,Q 两点,若2PQF ∆的周长为16,则1ba +的最大值为. 16.如图,在三棱锥P ABC -中,PC ⊥平面ABC ,AC CB ⊥,已知2AC=,PB =PA AB +最大时,三棱锥P ABC -的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知在ABC ∆中,a ,b ,c 分别为内角A ,B,C 的对边,且cos sin cos A a A C +sin cos 0c A A +=.(1)求角A 的大小;(2)若a =12B π=,求ABC ∆的面积.18.如图,在直三棱柱111ABC A B C -中,90BAC ∠=,2AB AC ==,点M 为11AC 的中点,点N 为1AB 上一动点.(1)是否存在一点N ,使得线段//MN 平面11BB C C ?若存在,指出点N 的位置,若不存在,请说明理由.(2)若点N 为1AB 的中点且CM MN ⊥,求二面角M CN A --的正弦值. 19.某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过30站的地铁票价如下表:现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过30站.甲、乙乘坐不超过10站的概率分别为14,13;甲、乙乘坐超过20站的概率分别为12,13. (1)求甲、乙两人付费相同的概率;(2)设甲、乙两人所付费用之和为随机变量X ,求X 的分布列和数学期望.20.在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的离心率为2,A ,F 分别为椭圆的上顶点和右焦点,AOF ∆的面积为12,直线AF 与椭圆交于另一个点B ,线段AB 的中点为P . (1)求直线OP 的斜率;(2)设平行于OP 的直线l 与椭圆交于不同的两点C ,D ,且与直线AF 交于点Q ,求证:存在常数λ,使得QC QD QA QB λ⋅=⋅.21.已知函数()xe f x x=,()ln 1g x x =+.(1)求函数()f x 的单调区间; (2)证明:3()()x f x g x >.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l:123x t y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 3πρθ⎛⎫=+⎪⎝⎭. (1)求曲线C 的直角坐标方程;(2)设点M 的极坐标为3,2π⎛⎫⎪⎝⎭,直线l 与曲线C 的交点为A ,B ,求M A M B +的值.23.[选修4-5:不等式选讲] 已知函数()1f x x x m =-+-.(1)当3m =时,求不等式()5f x ≥的解集;(2)若不等式()21f x m ≥-对x R ∈恒成立,求实数m 的取值范围.2019海南省高三压轴题数学试卷(理)·答案一、选择题1-5: DABCB 6-10: BCDAD 11、12:CA 二、填空题13. 7 15. 4316. 6 三、解答题17.(1cos sin cos A a A C +sin cos 0c A A +=及正弦定理得,sin (sin cos cos sin )A A C A C+cos B A =,即sin sin()A A C+cos B A =, 又sin()sin 0A C B +=>,所以tan A = 又(0,)A π∈,所以23A π=. (2)由(1)知23A π=,又12B π=,易求得4C π=, 在ABC ∆中,由正弦定理得2sinsin 123b ππ=,所以b =. 所以ABC ∆的面积为1sin 2S ab C=122==. 18.(1)存在点N ,且N 为1AB 的中点. 证明如下:如图,连接1A B ,1BC ,点M ,N 分别为11AC ,1A B 的中点, 所以MN 为11A BC ∆的一条中位线,//MN BC ,MN ⊄平面11BB C C ,1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(2)设1AA a =,则221CM a =+,22414a MN +=+284a +=, 22220544a a CN +=+=,由CM MN ⊥,得222CM MN CN +=,解得a =由题意以点A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴建立如图所示的空间直角坐标系,可得(0,0,0)A ,(0,2,0)C,N ⎛ ⎝⎭,(0,1M ,故1,0,2AN ⎛= ⎝⎭,(0,2,0)AC =,1,2,2CN ⎛=- ⎝⎭,(0,1CM =-,.设(,,)m x y z =为平面ANC 的一个法向量,则0,0,m AC m AN ⎧⋅=⎪⎨⋅=⎪⎩得20,0,2y x z =⎧⎪⎨+=⎪⎩ 令1x =-,得平面ANC的一个法向量(1m =-, 同理可得平面MNC 的一个法向量为(3,2,2)n =, 故二面角M CN A --的余弦值为cos ,m n <>=15=-. 故二面角M CN A --15=.19.(1)由题意知甲乘坐超过10站且不超过20站的概率为1111424--=,乙乘坐超过10站且不超过20站的概率为1111333--=,设“甲、乙两人付费相同”为事件A ,则1111()4343P A =⨯+⨯111233+⨯=,所以甲、乙两人付费相同的概率是13.(2)由题意可知X 的所有可能取值为:6,9,12,15,18.111(6)4312P X ==⨯=,11(9)43P X ==⨯111436+⨯=,111(12)432P X ==⨯+11113433⨯+⨯=,111(12)432P X ==⨯+1134⨯=,111(18)236P X ==⨯=.因此X 的分布列如下:所以X 的数学期望()69126E X =⨯+⨯121534+⨯+⨯1864+⨯=.20.(1)=即222a b =,2222c a b b =-=,所以(0,)A c ,(,0)F c ,所以21122c =,所以1c =,所以椭圆的方程为2212x y +=.直线AF 的方程为1y x =-+,联立221,21,x y y x ⎧+=⎪⎨⎪=-+⎩消去y 得2340x x -=,所以43x =或0x =,所以41,33B ⎛⎫- ⎪⎝⎭,从而得线段AB 的中点21,33P ⎛⎫ ⎪⎝⎭.所以直线OP 的斜率为1132203-=-.(2)由(1)知,直线AF 的方程为1y x =-+,直线OP 的斜率为12,设直线l 的方程为1(0)2y x t t =+≠. 联立1,21,y x t y x ⎧=+⎪⎨⎪=-+⎩得22,321.3t x t y -⎧=⎪⎪⎨+⎪=⎪⎩所以点的坐标为2221,33t t -+⎛⎫ ⎪⎝⎭. 所以2222,33t t QA --⎛⎫= ⎪⎝⎭,2222,33t t QB ++⎛⎫=- ⎪⎝⎭.所以28(1)9QA QB t ⋅=-.联立221,21,2x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得22322202x tx t ++-=,由已知得24(32)0t ∆=->,又0t ≠,得60,t ⎛⎫⎛⎫∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.设11(,)C x y ,22(,)D x y ,则1112y x t =+,2212y x t =+, 1243tx x +=-,212443t x x -=.所以112221,33t t QC x y -+⎛⎫=-- ⎪⎝⎭112211,323t t x x --⎛⎫=++ ⎪⎝⎭,222211,323t t QD x x --⎛⎫=++ ⎪⎝⎭,故12222233t t QC QD x x --⎛⎫⎛⎫⋅=++ ⎪⎪⎝⎭⎝⎭1211112323t t x x --⎛⎫⎛⎫+++ ⎪⎪⎝⎭⎝⎭1212555()46t x x x x -=++25(1)9t -+=25445544363t t t --⨯-⨯25(1)9t -+258(1)49t =⨯-. 所以54QC QD QA QB ⋅=⋅.所以存在常数54λ=,使得QC QD QA QB λ⋅=⋅.21.(1)由题易知2(1)'()xx e f x x-=, 当(,0)(0,1)x ∈-∞时,'()0f x <,当(1,)x ∈+∞时,'()0f x >, 所以()f x 的单调递减区间为(,0)(0,1)-∞,单调递增区间为(1,)+∞.(2)g()x 的定义域为(0,)+∞,要证3()()x f x g x >,即证3ln 1x e x x x+>. 由(1)可知()f x 在(0,1)上递减,在(1,)+∞上递增,所以()(1)f x f e ≥=. 设3ln 1()x h x x +=,0x >,因为423ln '()xh x x--=, 当23(0,)x e -∈时,'()0h x >,当23(,)x e -∈+∞时,'()0h x <,所以()h x 在23(0,)e -上单调递增,在23(,)e -+∞上单调递减,所以223()()3e h x h e -≤=,而23e e >,所以3()()xf xg x >.22.(1)把4sin 3πρθ⎛⎫=+ ⎪⎝⎭展开得2sin ρθθ=+,两边同乘ρ得22sin cos ρρθθ=+①.将222x y ρ=+,cos x ρθ=,sin y ρθ=代入①即得曲线C 的直角坐标方程为2220x y y +--=②.(2)将1,23x t y ⎧=-⎪⎪⎨⎪=+⎪⎩代入②式,得230t ++=,易知点M 的直角坐标为(0,3).设这个方程的两个实数根分别为1t ,2t ,则由参数t的几何意义即得12MA MB t t +=+=23.(1)当3m =时,原不等式可化为135x x -+-≥.若1x ≤,则135x x -+-≥,即425x -≥,解得12x ≤-; 若13x <<,则原不等式等价于25≥,不成立; 若3x ≥,则135x x -+-≥,解得92x ≥. 综上所述,原不等式的解集为:19|22x x x ⎧⎫≤-≥⎨⎬⎩⎭或. (2)由不等式的性质可知()1f x x x m =-+-1m ≥-, 所以要使不等式()21f x m ≥-恒成立,则121m m -≥-, 所以112m m -≤-或121m m -≥-,解得23m ≤, 所以实数m 的取值范围是2|3m m ⎧⎫≤⎨⎬⎩⎭.。
2019年高考真题—普通高等学校统一考试—理科数学(全国卷Ⅲ)—解析版_ 2019年普通高等学校招生全国统一考试(全国 III卷)理科数学一.选择题 1、已知集合,则() A. B. B. C. C. D. D. 答案:A 解答:,所以. 2.若,则() A. B. C. D. 答案:D 解答:,. 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. B.C. D. 答案:C 解答:4.的展开式中的系数为() A. B. C. D. 答案:A 解答:由题意可知含的项为,所以系数为. 5.已知各项均为正数的等比数列的前项和为,且,则() A. B. C. D. 答案:C 解答:设该等比数列的首项,公比,由已知得,,因为且,则可解得,又因为,即可解得,则. 6. 已知曲线在点处的切线方程为,则() A., B., C., D., 答案:D 解析:令,则,,得. ,可得.故选D. 7.函数在的图像大致为() A. B. C. D. 答案:B 解析:∵,∴,∴为奇函数,排除选项C.又∵,根据图像进行判断,可知选项B符合题意. 8.如图,点为正方形的中心,为正三角形,平面平面,是线段的中点,则()A.,且直线,是相交直线B.,且直线,是相交直线C.,且直线,是异面直线D.,且直线,是异面直线答案:B 解析:因为直线,都是平面内的直线,且不平行,即直线,是相交直线,设正方形的边长为,则由题意可得:,根据余弦定理可得:,,所以,故选B. 9.执行右边的程序框图,如果输出为,则输出的值等于() A. B. C.D. 答案:C 解析:第一次循环:;第二次循环:;第三次循环:;第四次循环:;… 第七次循环:,此时循环结束,可得.故选 C. 10. 双曲线:的右焦点为,点为的一条渐近线的点,为坐标原点.若则的面积为() A: B: C: D: 答案: A解析:由双曲线的方程可得一条渐近线方程为;在中过点做垂直因为得到;所以;故选A; 11. 若是定义域为的偶函数,且在单调递减,则() A. B.C. D. 答案:C 解析: 依据题意函数为偶函数且函数在单调递减,则函数在上单调递增;因为;又因为;所以;故选C. 12.设函数,已知在有且仅有个零点,下述四个结论:在有且仅有个极大值点在有且仅有个极小值点在单调递增的取值范围是其中所有正确结论的编号是 A.B. C. D. 答案:D 解析:根据题意,画出草图,由图可知,由题意可得,,解得,所以,解得,故对;令得,∴图像中轴右侧第一个最值点为最大值点,故对;∵,∴在有个或个极小值点,故错;∵,∴,故对. 二.填空题 13.已知,为单位向量,且,若,则 . 答案:解析:∵,∴,∵,∴. 14.记为等差数列的前项和,若,,则 . 答案:解析:设该等差数列的公差为,∵,∴,故,∴. 15.设、为椭圆的两个焦点,为上一点且在第一象限,若为等腰三角形,则的坐标为________. 答案:解析:已知椭圆可知,,,由为上一点且在第一象限,故等腰三角形中,,,,代入可得.故的坐标为. 16.学生到工厂劳动实践,利用D打印技术制作模型。
2019年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}0,1,2M =,{}2=320N x x x -+≤,则MN =(A) {}1(B) {}2(C) {}0,1(D) {}1,2解析:∵{}{}2=32012N x x x x x -+≤=≤≤,∴M N ={}1,2答案:D(2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =(A) 5-(B) 5(C) 4i -+(D) 4i --解析:∵12i z =+,∴22i z =-+,∴2212(2i)(2i)i 25z z =+-+=-=- 答案:A(3)设向量a ,b 满足+=a b -=a b =⋅a b(A) 1(B) 2(C) 3(D) 5解析:∵+=a b ,-=a b ,∴2()10+=a b ……①,2()6-=a b ……②.由①-②得:1=⋅a b 答案:A(4)钝角三角形ABC 的面积是12,1AB =,BC =AC = (A) 5(C) 2(D) 1解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin B = 即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:AC =答案:B(5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 (A) 0.8 (B) 0.75 (C) 0.6(D) 0.45解析:此题为条件概率,所以0.60.80.75P == 答案:A(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件有一个底 面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则 切削掉部分的体积与原来毛坯体积的比值为(A) 1727 (B) 59(C) 1027 (D) 13解析:原来毛坯体积为:223654(cm )ππ⋅⋅=,由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:222243234(cm )πππ⋅⋅+⋅⋅=,则切削掉部分的体积为2543420(cm )πππ-=,所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ=答案:C(7)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S = (A) 4 (B) 5 (C) 6 (D) 7解析:输入的x ,t 均为2.12≤是,1221M =⋅=,235S =+=,112k =+=;22≤是,2222M =⋅=,257S =+=,213k =+=,32≤否,输出7S = 答案:D(8)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = (A) 0 (B) 1 (C) 2 (D) 3解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a = 答案:D(9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为(A) 10 (B) 8 (C) 3 (D) 2解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩表示的平面区域如图阴影部分:做出目标函数0l :2y x =,∵2y x z =-,∴当2y x z =-的截距最小时,z 有最大值。
2019年全国统一高考数学试卷(理科)(新课标Ⅱ)(海南卷)副标题一、选择题(本大题共12小题,共60.0分)1. 设z =−3+2i ,则在复平面内z 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 设函数f(x)的定义域为R ,满足f(x +1)=2f(x),且当x ∈(0,1]时,f(x)=x(x −1).若对任意x ∈(−∞,m],都有f(x)≥−89,则m 的取值范围是( )A. (−∞,94]B. (−∞,73] C. (−∞,52] D. (−∞,83] 3. 若a >b ,则( )A. ln(a −b)>0B. 3a <3bC. a 3−b 3>0D. |a|>|b|4. 若抛物线y 2=2px(p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A. 2B. 3C. 4D. 85. 设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为( )A. √2B. √3C. 2D. √56. 演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A. 中位数B. 平均数C. 方差D. 极差7. 下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( )A. f(x)=|cos2x|B. f(x)=|sin2x|C. f(x)=cos |x|D. f(x)=sin |x|8. 设集合A ={x|x 2−5x +6>0},B ={x|x −1<0},则A ∩B =( )A. (−∞,1)B. (−2,1)C. (−3,−1)D. (3,+∞) 9. 已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( ).A. 15B. √55 C. √33 D. 2√5510. 已知AB ⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =( ) A. −3 B. −2 C. 2 D. 3 11. 设α,β为两个平面,则α//β的充要条件是( )A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面12. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1(R+r)2+M2r2=(R+r)M1R3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为().A. √M2M1R B. √M22M1R C. 3√3M2M1R D. 3√M23M1R二、填空题(本大题共4小题,共20.0分)13.△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为______.14.已知f(x)是奇函数,且当x<0时,f(x)=−e ax.若f(ln2)=8,则a=.15.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、解答题(本大题共7小题,共84.0分)17.已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n−b n+4,4b n+1=3b n−a n−4.(1)证明:{a n+b n}是等比数列,{a n−b n}是等差数列;(2)求{a n}和{b n}的通项公式.18.如图,长方体ABCD−A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B−EC−C1的正弦值..记M的19.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−12轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:△PQG是直角三角形;(ii)求△PQG面积的最大值.20.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.21.已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.22.在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π时,求ρ0及l的极坐标方程;3(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.23.已知f(x)=|x−a|x+|x−2|(x−a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(−∞,1)时,f(x)<0,求a的取值范围.答案和解析1.【答案】C【解析】【分析】本题主要考查共轭复数的代数表示及其几何意义,属于基础题.求出z 的共轭复数,根据复数的几何意义求出复数所对应点的坐标即可. 【解答】解:∵z =−3+2i , ∴z =−3−2i ,∴在复平面内z 对应的点为(−3,−2),在第三象限. 故选C .2.【答案】B【解析】【分析】本题考查了函数与方程的综合运用,属中档题.由f(x +1)=2f(x),得f(x)=2f(x −1),分段求解析式,结合图象可得. 【解答】解:因为f(x +1)=2f(x), ∴f(x)=2f(x −1),∵x ∈(0,1]时,f(x)=x(x −1)∈[−14,0],∴x ∈(1,2]时,x −1∈(0,1],f(x)=2f(x −1)=2(x −1)(x −2)∈[−12,0]; ∴x ∈(2,3]时,x −1∈(1,2],f(x)=2f(x −1)=4(x −2)(x −3)∈[−1,0], 当x ∈(2,3]时,由4(x −2)(x −3)=−89解得x =73或x =83, 若对任意x ∈(−∞,m],都有f(x)≥−89,则m ≤73. 故选B .3.【答案】C【解析】【分析】本题考查了不等式的基本性质,利用特殊值法可迅速得到正确选项,属基础题.取a =0,b =−1,利用特殊值法可得正确选项. 【解答】解:取a =0,b =−1,则: ln (a −b)=ln1=0,排除A ; 3a =30=1>3b =3−1=13,排除B ;令f (x )=x 3,则f(x)在上单调递增,又a >b ,故C 对; |a|=0<|−1|=|b |,排除D . 故选C . 4.【答案】D【解析】【分析】本题考查了抛物线与椭圆的性质,属基础题. 根据抛物线的性质以及椭圆的性质列方程可解得. 【解答】解:由题意可得3p −p =(p2)2,解得p =8. 故选D . 5.【答案】A【解析】【分析】本题考查双曲线的简单性质,考查数形结合的解题思想方法.由题意画出图形,先求出PQ ,再由|PQ|=|OF|列式求C 的离心率. 【解答】 解:如图,由题意,把x =c2代入x 2+y 2=a 2,得PQ =2√a 2−c 24,再由|PQ|=|OF|,得2√a 2−c 24=c ,即2a 2=c 2,∴c 2a 2=2,解得e =ca =√2. 故选A .6.【答案】A【解析】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变, 故选:A .根据题意,由数据的数字特征的定义,分析可得答案.本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题. 7.【答案】A【解析】【分析】本题主要考查了正弦函数、余弦函数的周期性及单调性,考查了排除法的应用,属于中档题.根据正弦函数、余弦函数的周期性及单调性依次判断,利用排除法即可求解. 【解答】解:f(x)=sin |x|不是周期函数,可排除D 选项; f(x)=cos |x|的周期为2π,可排除C 选项;f(x)=|sin 2x|在π4处取得最大值,不可能在区间(π4,π2)上单调递增,可排除B . 故选A . 8.【答案】A【解析】【分析】本题考查交集的计算,关键是掌握交集的定义,涉及到不等式的求解,属于基础题. 根据题意,求出集合A 、B ,由交集的定义计算可得答案. 【解答】解:根据题意,A ={x|x 2−5x +6>0}={x|x >3或x <2}, B ={x|x −1<0}={x|x <1},则A ∩B ={x|x <1},即A ∩B =(−∞,1). 故选A . 9.【答案】B【解析】【分析】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.由二倍角公式化简已知条件可得4sinαcosα=2cos 2α,结合角的范围可求得sinα>0,cosα>0,可得cosα=2sinα,根据同角三角函数基本关系式即可解得sinα的值. 【解答】解:∵2sin2α=cos2α+1,由二倍角公式可得4sinαcosα=2cos 2α, ∵α∈(0,π2),∴sin α>0,cos α>0,∴cosα=2sinα.则有sin 2α+cos 2α=sin 2α+(2sinα)2=5sin 2α=1, 解得sinα=√55.故选B .10.【答案】C【解析】【分析】本题主要考查了向量数量积的定义及性质的坐标表示,属于基础题. 由BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 先求出BC ⃗⃗⃗⃗⃗ 的坐标,然后根据|BC ⃗⃗⃗⃗⃗ |=1,可求t ,结合向量数量积定义的坐标表示即可求解. 【解答】解:∵AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t),∴BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ =(1,t −3). ∵|BC ⃗⃗⃗⃗⃗ |=1,∴t −3=0,即BC ⃗⃗⃗⃗⃗ =(1,0), 则AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2. 故选C . 11.【答案】B【解析】【分析】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题. 由充要条件的定义结合面面平行的判定定理可得结论. 【解答】解:对于A ,α内有无数条直线与β平行,α与β相交或α//β; 对于B ,α内有两条相交直线与β平行,则α//β;对于C ,α,β平行于同一条直线,α与β相交或α//β; 对于D ,α,β垂直于同一平面,α与β相交或α//β. 故选B .12.【答案】D【解析】【分析】本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题. 由α=r R ,推导出M2M 1=3α3+3α4+α5(1+α)2≈3α3,由此能求出r =αR =√M23M13R .【解答】解:∵α=rR , ∴r =αR , 且r 满足方程M 1(R+r)2+M 2r 2=(R +r)M1R 3,∴M 2M 1=3α3+3α4+α5(1+α)2≈3α3,∴r =αR =√M23M13R .故选:D .13.【答案】6√3【解析】【分析】本题考查了余弦定理和三角形的面积公式,属基础题. 利用余弦定理得到c 2,然后根据面积公式求出结果即可.【解答】解:由余弦定理有,∵b =6,a =2c ,B =π3, ∴36=(2c)2+c 2−4c 2cos π3, ∴c 2=12,.故答案为6√3.14.【答案】−3【解析】【分析】本题主要考查函数奇偶性的应用,对数的运算性质,属于基础题.奇函数的定义结合对数的运算可得结果【解答】解:∵f(x)是奇函数,∴f(−ln2)=−8,又∵当x<0时,f(x)=−e ax,∴f(−ln2)=−e−aln2=−8,∴−aln2=ln8,∴a=−3.故答案为−3.15.【答案】0.98【解析】【分析】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题.利用加权平均数公式直接求解.【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,∴经停该站高铁列车所有车次的平均正点率的估计值为:x−=110+20+10(10×0.97+20×0.98+10×0.99)=0.98.故答案为0.98.16.【答案】26;√2−1【解析】【分析】本题考查了几何体的内接多面体,属中档题.中间层是一个正八棱柱,有8个侧面,上层是有8+1个面,下层也有8+1个面,故共有26个面;中间层正八棱柱的棱长加上两个棱长的√22倍等于正方体的棱长.【解答】解:该半正多面体中间层是一个正八棱柱,有8个侧面,故该半正多面体共有8+8+8+ 2=26个面;设其棱长为x,因为每个顶点都在边长为1的正方体上,则x+√22x+√22x=1,解得x=√2−1.故答案为26;√2−1.17.【答案】(1)证明:∵4a n+1=3a n−b n+4,4b n+1=3b n−a n−4,∴4(a n+1+b n+1)=2(a n+b n),4(a n+1−b n+1)=4(a n−b n)+8,即a n+1+b n+1=12(a n+b n),a n+1−b n+1=a n−b n+2;又a1+b1=1,a1−b1=1,∴{a n+b n}是首项为1,公比为12的等比数列,{a n−b n}是首项为1,公差为2的等差数列;(2)解:由(1)可得:a n+b n=(12)n−1,a n−b n=1+2(n−1)=2n−1,∴a n =(12)n +n −12,b n =(12)n −n +12.【解析】本题主要考查了等差、等比数列的定义和通项公式,考查学生的计算能力和推理能力,属于简单题. (1)定义法证明即可;(2)由(1)结合等差、等比的通项公式可得.18.【答案】解:证明:(1)长方体ABCD −A 1B 1C 1D 1中,B 1C 1⊥平面ABA 1B 1, ∴B 1C 1⊥BE , ∵BE ⊥EC 1,∵B 1C 1∩EC 1=C 1, ∴BE ⊥平面EB 1C 1,(2)以C 为坐标原点,建立如图所示的空间直角坐标系,设AE =A 1E =1, ∵BE ⊥平面EB 1C 1, ∴BE ⊥EB 1, ∴AB =1,则E(1,1,1),A(1,1,0),B 1(0,1,2),C 1(0,0,2),C(0,0,0), ∵BC ⊥EB 1,BE ⊥EB 1,且BC ∩BE =E , ∴EB 1⊥面EBC ,故取平面EBC 的法向量为m ⃗⃗ =EB 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,1),设平面ECC 1 的法向量n⃗ =(x,y ,z), 由{n ⃗ ⋅CC 1⃗⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,得{z =0x +y +z =0, 取x =1,得n⃗ =(1,−1,0), ∴cos <m ⃗⃗ ,n ⃗ >=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ |=−12, ∴二面角B −EC −C 1的正弦值为√32.【解析】本题主要考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题. (1)推导出B 1C 1⊥BE ,BE ⊥EC 1,由此能证明BE ⊥平面EB 1C 1.(2)以C 为坐标原点,建立如图所示的空间直角坐标系,利用向量法能求出二面角B −EC −C 1的正弦值.19.【答案】解:(1)由题意得y x+2·y x−2=−12,整理得曲线C 的方程:x 24+y 22=1(y ≠0),∴曲线C 是焦点在x 轴上不含长轴端点的椭圆;(2)(i)设P(x 0,y 0),则Q(−x 0,−y 0),E(x 0,0),G(x G ,y G ),∴直线QE 的方程为:y =y 02x 0(x −x 0),与x 24+y 22=1联立消去y ,得(2x 02+y 02)x 2−2x 0y 02x +x 02y 02−8x 02=0,∴−x 0x G =x 02y 02−8x 022x 02+y 02, ∴x G =(8−y 02)x 02x 02+y 02, ∴y G =y 02x 0(x G −x 0)=y 0(4−x 02−y 02)2x 02+y 02,∴k PG =y G −y 0x G −x 0 =y 0(4−x 02−y 02)2x 02+y 02−y 0x 0(8−y 02)2x 02+y 02−x 0 =4y 0−y 0x 02−y 03−2y 0x 02−y 038x 0−x 0y 02−2x 03−x 0y 02 =y 0(4−3x 02−2y 02)2x 0(4−y 02−x 02),把x 02+2y 02=4代入上式, 得k PG =y 0(4−3x 02−4+x 02)2x 0(4−y 02−4+2y 02)=−y 0×2x 022x 0y 02=−x 0y 0, ∴k PQ ·k PG =y 0x 0·(−x0y 0)=−1,∴PQ ⊥PG ,故△PQG 为直角三角形;(ii)S △PQG =12|PE|·(x G −x Q ) =12y 0(x G +x 0)=12y 0[(8−y 02)x 02x 02+y 02+x 0] =12y 0x 0×8−y 02+2x 02+y 022x 02+y 02 =y 0x 0(4+x 02)2x 02+y 02 =y 0x 0(x 02+2y 02+x 02)2x 02+y 02 =2y 0x 0(x 02+y 02)2x 02+y 02 =8y 0x 0(x 02+y 02)(2x 02+y 02)(x 02+2y 02)=8(y 0x 03+x 0y 03)2x 04+2y 04+5x 02y 02 =8(x 0y 0+y 0x 0)2(x 0y 0+y 0x 0)2+1 令t =x 0y 0+y0x 0,则t ≥2, S △PQG =8t 2t 2+1=82t +1t 利用“对勾”函数f(t)=2t +1t 在[2,+∞)的单调性可知,f(t)≥4+12=92(t =2时取等号), ∴S △PQG ≤892=169(此时x 0=y 0=2√33), 故△PQG 面积的最大值为169.【解析】此题考查了直接法求曲线方程,直线与椭圆的综合,换元法等,对运算能力考查尤为突出,计算难度大.(1)利用直接法不难得到方程;(2)(i)设P(x 0,y 0),则Q(−x 0,−y 0),E(x 0,0),利用直线QE 的方程与椭圆方程联立求得G 点坐标,进而证得PQ ,PG 斜率之积为−1;(ii)利用S =12|PE|×(x G +x 0),代入已得数据,并对x 0y 0+y 0x 0换元,利用“对勾”函数可得最值. 20.【答案】解:(1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…),则P(X =2)=P(A 1A 2)+P(A 1−A 2−)=P(A 1)P(A 2)+P(A 1−)P(A 2−)=0.5×0.4+0.5×0.6=0.5;(2)P(X =4且甲获胜)=P(A 1−A 2A 3A 4)+P(A 1A 2−A 3A 4)=P(A 1−)P(A 2)P(A 3)P(A 4)+P(A 1)P(A 2−)P(A 3)P(A 4)=(0.5×0.4+0.5×0.6)×0.5×0.4=0.1.【解析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.(1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…),则P(X =2)=P(A 1A 2)+P(A 1−A 2−)=P(A 1)P(A 2)+P(A 1−)P(A 2−),由此能求出结果;(2)P(X =4且甲获胜)=P(A 1−A 2A 3A 4)+P(A 1A 2−A 3A 4)=P(A 1−)P(A 2)P(A 3)P(A 4)+P(A 1)P(A 2−)P(A 3)P(A 4),由此能求出事件“X =4且甲获胜”的概率. 21.【答案】解析:(1)函数f(x)=lnx −x+1x−1,定义域为:(0,1)∪(1,+∞); f′(x)=1x +2(x−1)2>0,(x >0且x ≠1),∴f(x)在(0,1)和(1,+∞)上单调递增,①在(0,1)区间取值1e 2,1e 代入函数,由函数零点的定义得,∵f(1e 2)<0,f(1e )>0,f(1e 2)⋅f(1e )<0,∴f(x)在(0,1)有且仅有一个零点,②在(1,+∞)区间取值e ,e 2代入函数,由函数零点的定义得,又∵f(e)<0,f(e 2)>0,f(e)⋅f(e 2)<0,∴f(x)在(1,+∞)上有且仅有一个零点,故f(x)在定义域内有且仅有两个零点;(2)x 0是f(x)的一个零点,则有lnx 0=x 0+1x 0−1, 曲线y =lnx ,则有y′=1x ,曲线y =lnx 在点A(x 0,lnx 0)处的切线方程为:y −lnx 0=1x 0(x −x 0), 即y =1x 0x −1+lnx 0, 可得y =1x 0x +2x 0−1,而曲线y =e x 的切线在点(ln 1x 0,1x 0)处的切线方程为:y −1x 0=1x 0(x −ln 1x 0),即y =1x 0x +2x 0−1,故曲线y =lnx 在点A(x 0,lnx 0)处的切线也是曲线y =e x 的切线.故得证.【解析】本题考查f(x)的单调性,函数导数,在定义域内根据零点存在性定理求零点个数,以及利用曲线的切线方程定义证明.(1)讨论f(x)的单调性,求函数导数,在定义域内根据零点存在性定理求零点个数,(2)运用曲线的切线方程定义可证明y =lnx 在点A(x 0,lnx 0)处的切线方程为y =1x 0x +2x 0−1,曲线y =e x 在点(ln 1x 0,1x 0)处的切线方程为y = 1x 0x +2x 0−1 ,得证.22.【答案】解:(1)如图:∵M(ρ0,θ0)(ρ0>0)在曲线C :ρ=4sinθ上,当θ0=π3时,,且由图得|OP|=|OA|cosθ0=2,在直线l 上任取一点(ρ,θ),则有,即,故l 的极坐标方程为ρcos(θ−π3)=2;(2)设P(ρP ,θP ),则在Rt △OAP 中,有|OP|=|OA|cosθP即ρP =4cosθP ,∵P 在线段OM 上,且AP ⊥OM ,∴θP ∈[π4,π2],其中π4为P 点与M 点重合时的角度,由4cosθP =4sinθP 得到,故P 点轨迹的极坐标方程为ρ=4cosθ,θ∈[π4,π2].【解析】本题考查曲线的极坐标方程及其应用,数形结合能力,是中档题.(1)由θ0=π3可得|OP|=2,在直线l 上任取一点(ρ,θ),利用三角形中边角关系即可求得l 的极坐标方程;(2)设P(ρ,θ),在Rt △OAP 中,根据边与角的关系得答案.23.【答案】解:(1)当a =1时,f(x)=|x −1|x +|x −2|(x −1),∵f(x)<0,∴当x <1时,f(x)=−2(x −1)2<0,恒成立,∴x <1;当x ≥1时,f(x)=(x −1)(x +|x −2|)≥0恒成立,∴x ∈⌀;综上,不等式的解集为(−∞,1).(2)∵x ∈(−∞,1)时,f(x)=|x −a|x −(x −2)(x −a).当a ≥1时,f(x)=2(a −x)(x −1)<0在x ∈(−∞,1)上恒成立;当a <1时,若x ∈(−∞,a),f(x)=2(a −x)(x −1)<0,∴f(x)<0,成立;若x∈(a,1),则f(x)=2(x−a)>0,不满足题意;所以当a<1时,不满足题意;综上,a的取值范围为[1,+∞).【解析】本题考查了绝对值不等式的解法,考查了分类讨论思想,关键是掌握相关知识,逐一分析解答即可,属于中档题.(1)将a=1代入得f(x)=|x−1|x+|x−2|(x−1),然后分x<1和x≥1两种情况讨论f(x)<0即可;(2)根据条件分a≥1和a<1两种情况讨论即可.。
高考理科数学试题及答案(考试时间:120分钟 试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为( ) A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为( )A .2B .3C .2D .2310. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为( )A .3 B .15 C .10 D .3 11. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学全国一卷一、单选题 本大题共12小题,每小题5分,共60分。
在每小题给出的4个选项中,有且只有一项是符合题目要求。
1.已知集合M={x |-4<x <2},N={x |-x -6<0},则M∩U =A{x |-4<x <3} B{x |-4<x <-2} C{x |-2<x <2} D{x |2<x <3}2.设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y),则A BC D 3.已知a =2.0log 2,b =2.02,c =3.02.0,则 A.a <b <c B.a <c <b C.c <a <b D.b <c <a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是⎪⎪⎭⎫ ⎝⎛≈称之为黄金分割.618.021-521-5,著名的“断臂维纳斯”便是如此。
此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是21-5 。
若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是A.165 cmB.175 cmC.185 cmD.190 cm5.函数()][ππ,的-cos sin 2xx x x x f ++=图像大致为 A BC D6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“- -”,右图就是一重卦。
在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.165B.3211C.3221D.1611 7.已知非零向量,满足,且,则与的夹角为 A.6π B.3π C.32π D.65π8.右图是求212121++的程序框图,图中空白框中应填入 A.A A +=21 B.A A 12+= C.A A 211+= D.A A 211+= 9.记n S 为等差数列{n a }的前n项和.已知5054==a S ,,则A.52-=n a nB.103-=n a nC.n n S n 822-=D.n n S n 2212-= 10.已知椭圆C 的焦点为F 1(-1,,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点,若122,2BF AB B F AF ==,则C 的方程为A.1222=+y xB.12322=+y xC.13422=+y xD.14522=+y x 11.关于函数x x x f sin sin )(+=有下述四个结论:①)(x f 是偶函数 ②)(x f 在区间⎪⎭⎫⎝⎛ππ,2单调递增 ③)(x f 是在[]ππ,-有4个零点 ④)(x f 最大值是2 其中所有正确结论的编号是 A.①②④ B.②④ C.①④ D.①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA=PB=PC ,△ABC 是连长为2的正三角形,E ,F 分别是PA ,AB 的中点∠CEF =90o ,则球O 的体积为A.π68B.π64C.π62D.π6二、填空题 本大题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}0,1,2M =,{}2=320N x x x -+≤,则MN =(A) {}1 (B) {}2 (C) {}0,1(D) {}1,2解析:∵{}{}2=32012N x x x x x -+≤=≤≤,∴MN ={}1,2答案:D(2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =(A) 5-(B) 5(C) 4i -+(D) 4i --解析:∵12i z =+,∴22i z =-+,∴2212(2i)(2i)i 25z z =+-+=-=-答案:A(3)设向量a ,b 满足+=a b -=a b =⋅a b(A) 1(B) 2(C) 3(D) 5解析:∵+=a b -=a b 2()10+=a b ……①,2()6-=a b ……②. 由①-②得:1=⋅a b答案:A(4)钝角三角形ABC 的面积是12,1AB =,BC =AC =(A) 5(C) 2 (D) 1解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin B = 即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:AC答案:B(5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 (A) 0.8 (B) 0.75 (C) 0.6 (D) 0.45解析:此题为条件概率,所以0.60.80.75P == 答案:A(6)如图,格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件有一个底 面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则 切削掉部分的体积与原来毛坯体积的比值为(A) 1727 (B) 59(C)1027(D)13解析:原来毛坯体积为:223654(cm )ππ⋅⋅=,由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:222243234(cm )πππ⋅⋅+⋅⋅=,则切削掉部分的体积为2543420(cm )πππ-=,所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ= 答案:C(7)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S = (A) 4 (B) 5 (C) 6 (D) 7 解析:输入的x ,t 均为2.12≤是,1221M =⋅=,235S =+=,112k =+=;22≤是,2222M =⋅=257S =+=,213k =+=,32≤否,输出7S = 答案:D(8)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = (A) 0(B) 1(C) 2解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a = 答案:D(9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为(A) 10(B) 8(C) 3(D) 2解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩表示的平面区域如图阴影部分:做出目标函数0l :2y x =,∵2y x z =-,∴当2y x z =-的截距 最小时,z 有最大值。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( ) A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A【解析】【分析】先求出集合B 再求出交集. 【详解】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A .【点睛】本题考查了集合交集的求法,是基础题.2.若(1i)2i z +=,则z =( )A. 1i --B. 1+i -C. 1i -D. 1+i 【答案】D【解析】【分析】根据复数运算法则求解即可. 【详解】()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D .【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A. 0.5B. 0.6C. 0.7D. 0.8【答案】C【解析】【分析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.4.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A. 12B. 16C. 20D. 24【答案】A【解析】【分析】 本题利用二项展开式通项公式求展开式指定项的系数.【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( )A. 16B. 8C. 4D. 2【答案】C【解析】【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C . 【点睛】应用等比数列前n 项和公式解题时,要注意公比是否等于1,防止出错.6.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A. ,1a e b ==-B. ,1a e b ==C. 1,1a e b -==D. 1,1a e b -==-【答案】D【解析】【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b .【详解】详解:/ln 1,x y ae x =++ /11|12x k y ae a e =-==+=∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.7.函数3222x x x y -=+在[]6,6-的图像大致为A. B. C.D.【答案】B【解析】【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f的近似值即可得出结果.【详解】设32()22x xxy f x-==+,则332()2()()2222x x x xx xf x f x----==-=-++,所以()f x是奇函数,图象关于原点成中心对称,排除选项C.又34424(4)0,22f-⨯=>+排除选项D;36626(6)722f-⨯=≈+,排除选项A,故选B.【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.8.如图,点N为正方形ABCD的中心,ECD∆为正三角形,平面ECD⊥平面,ABCD M是线段ED的中点,则()。
2019届海南省海口市高三高考调研测试题(理)数学试题一、单选题1.()A.B.C.D.【答案】D【解析】根据复数的除法运算法则,直接计算即可得出结果.【详解】.故选D【点睛】本题主要考查复数的除法,熟记运算法则即可,属于基础题型.2.设集合,,则()A.B.C.D.【答案】B【解析】解不等式得到集合,进而可求出交集.【详解】,又,.故选B【点睛】本题主要考查集合的交集,熟记概念即可,属于基础题型.3.某地区的高一新生中,来自东部平原地区的学生有2400人,中部丘陵地区的学生有1600人,西部山区的学生有1000人.计划从中选取100人调查学生的视力情况,现已了解到来自东部、中部、西部三个地区学生的视力情况有较大差异,而这三个地区男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.系统抽样D.按地区分层抽样【答案】D【解析】根据抽样方法的特征,即可得出结论.【详解】由于该地区东部、中部、西部三个地区学生的视力情况有较大差异,故按地区分层抽样. 【点睛】本题主要考查抽样方法,熟记每种抽样方法的特征即可,属于基础题型.4.已知点为双曲线:的左支上一点,,分别为的左、右焦点,则()A.1 B.4 C.6 D.8【答案】B【解析】由双曲线的方程写求出,结合双曲线的定义即可求解.【详解】由,,得,则.故选B【点睛】本题考查双曲线的定义与基本性质,考查运算求解能力与双曲线定义的应用,属于基础题型. 5.设,,是等比数列的前三项,则()A.B.C.D.【答案】A【解析】先由,,是等比数列的前三项,求出,进而可求出公比,即可求出结果.【详解】因为,,是等比数列的前三项,所以,解得,,所以公比,因此.故选A【点睛】本题主要考查等比数列,熟记等比数列的性质以及通项公式即可,属于基础题型.6.下列不等式正确的是()A.B.C.D.【答案】D【解析】根据,,,用排除法即可得出结果.【详解】,,,排除A,B,C,,故选D.【点睛】本题主要考查三角函数值以及对数比较大小的问题,熟记三角函数与对数函数的性质即可,属于常考题型.7.已知变量,满足约束条件,则的最小值为()A.6 B.7 C.8 D.9【答案】C【解析】由约束条件作出可行域,再由化为,表示直线在轴截距,结合图像即可求出结果.【详解】由约束条件作出可行区域如图,因为可化为,因此最小时,最小,而表示直线在轴截距,结合图像可知,直线过点时,截距最小,即最小;由解得,所以.故选C【点睛】本题主要考查简单的线性规划问题,通常需要作出可行域,结合目标函数的几何意义求解,属于基础题型.8.的展开式中系数为有理数的各项系数之和为()A.1 B.20C.21 D.31【答案】C【解析】先写出展开式的通项为:,根据系数为有理数,可得为正整数,再由的范围,即可得出结果.【详解】因为展开式的通项为:,因此,要使系数为有理数,只需为正整数,又因为且,所以,因此系数为有理数的项为,,故所求系数之和为.故选C【点睛】本题主要考查二项式中系数为有理数的问题,熟记二项式定理即可,属于常考题型.9.若直线与曲线相切,则()A.3 B.C.2 D.【答案】A【解析】设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.10.等差数列的首项为2,公差不等于0,且,则数列的前2019项和为()A.B.C.D.【答案】B【解析】先设等差数列的公差为,根据题中条件求出公差,得到,再由裂项相消法即可求出结果.【详解】设等差数列的公差为,由,,可得,所以,因此,所以,所以.故选B【点睛】本题主要考查等差数列的通项公式、以及裂项相消法求数列的和,熟记公式即可,属于常考题型.11.某高为4的三棱柱被一个平面截去一部分后得到一个几何体,它的三视图如图所示,则该几何体的体积与原三棱柱的体积之比是()A.B.C.D.【答案】B【解析】先由三视图确定该几何体是四棱锥,结合题中熟记,求出体积,再求出原三棱柱的体积,即可得出结果.【详解】由侧视图、俯视图知该几何体是高为2且底面积为的四棱锥,其体积为.又三棱柱的体积为,故体积比为.故选B【点睛】本题主要考查几何体的三视图以及几何体的体积,熟记公式即可,属于常考题型.12.已知直线与椭圆:相交于,两点,为坐标原点.当的面积取得最大值时,()A.B.C.D.【答案】A【解析】先联立直线与椭圆方程,设,,由韦达定理得到与,结合弦长公式表示出弦长,进而表示出三角形的面积,根据面积最大值,可求出,代入弦长的表达式,即可得出结果.【详解】由,得.设,,则,,.又到直线的距离,则的面积,当且仅当,即时,的面积取得最大值.此时,.故选A【点睛】本题主要考查椭圆中的弦长问题,通常需要联立直线与椭圆方程,结合韦达定理、以及弦长公式等求解,属于常考题型.二、填空题13.已知向量,的夹角为,且,,则__________.【答案】8【解析】根据向量数量积的概念,列出式子即可求出结果.【详解】因为向量,的夹角为,且,,所以即,解得.故答案为【点睛】本题主要考查平面向量的数量积运算,熟记概念即可,属于基础题型.14.将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则的最小正周期是__________.【答案】【解析】先由图像的变化得到解析式,再由,即可求出函数的最小正周期. 【详解】依题意可得,所以的最小正周期是.故答案为【点睛】本题主要考查三角函数的图像变换问题以及函数的周期,熟记三角函数的性质即可,属于常考题型.15.若函数有零点,则的取值范围为__________.【答案】【解析】根据得到,再根据函数单调性,即可求出结果.【详解】因为,所以,又由指数函数的单调性可知,单调递增,因此,函数有零点,只需,解得.故答案为【点睛】本题主要考查函数的零点,熟记指数函数的单调性以及函数零点的概念即可,属于常考题型. 16.在空间直角坐标系中,,,,,若四面体的外接球的表面积为,则异面直线与所成角的余弦值为__________.【答案】【解析】先由题意得到四面体的外接球即是四面体所在长方体的外接球,再由外接球的表面积求出,从而可得到向量坐标,根据,即可求出结果. 【详解】由题意易知,,两两垂直,所以四面体的外接球即是四面体所在长方体的外接球,且外接球直接等于体对角线的长,因此,解得,从而,则.故答案为【点睛】本题主要考查几何体中外接球的计算、以及异面直线所成角的计算,熟记公式即可,属于常考题型.三、解答题17.在△ABC中,3sinA=2sinB,.(1)求cos2C;(2)若AC-BC=1,求△ABC的周长.【答案】(1);(2).【解析】(1)先求,由二倍角公式即可求(2)由题得,解得a,b 值,再由余弦定理求c边即可求解.【详解】(1)∵,∴,∴.(2)设的内角的对边分别为.∵,∴,∵,∴,.由余弦定理可得,则,的周长为.【点睛】本题考查正余弦定理解三角形,熟记三角的基本关系式,准确运用余弦定理计算c边是关键,是基础题.18.如图,在三棱柱中,底面,,,,点,分别为与的中点.(1)证明:平面.(2)求与平面所成角的正弦值.【答案】(1)见解析(2)【解析】(1)先连接,,根据线面平行的判定定理,即可得出结论;(2)先以为原点建立如图所示的空间直角坐标系,求出直线的的方向向量与平面的法向量,由向量夹角公式求出向量夹角余弦值,即可得出结果.【详解】(1)证明:如图,连接,.在三棱柱中,为的中点.又因为为的中点,所以.又平面,平面,所以平面.(2)解:以为原点建立如图所示的空间直角坐标系,则,,,,所以,,.设平面的法向量为,则,令,得.记与平面所成角为,则.【点睛】本题主要考查线面平行的判定、以及线面角的向量求法,熟记线面平行的判定定理以及空间向量的方法即可,属于常考题型.19.根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下.将河流水位在,,,,,,各段内的频率作为相应段的概率,并假设每年河流水位变化互不影响.(1)求未来4年中,至少有2年该河流水位的概率(结果用分数表示).(2)已知该河流对沿河工厂的影响如下:当时,不会造成影响;当时,损失50000元;当时,损失300000元.为减少损失,工厂制定了三种应对方案.方案一:不采取措施;方案二:防御不超过30米的水位,需要工程费用8000元;方案三:防御34米的最高水位,需要工程费用20000元.试问哪种方案更好,请说明理由.【答案】(1)(2)工厂应采用方案二.【解析】(1)根据频率分布直方图,先得到河流水位的概率,再记“在未来4年中,至少有2年河流水位”为事件,即可由求出结果;(2)记工厂的工程费与损失费之和为,根据题意分别求出三种方案中的期望,比较大小,取期望最小的即可.【详解】解:(1)由频率分布直方图可知河流水位的概率为.记“在未来4年中,至少有2年河流水位”为事件,则.(2)记工厂的工程费与损失费之和为(单位:元).①若采用方案一,则的分布列为0 50000 3000000.78 0.2 0.02(元).②若采用方案二,则的分布列为8000 3080000.98 0.02(元).③若采用方案三:(元).因为,所以工厂应采用方案二.【点睛】本题主要考查频率分布直方图、以及离散型随机变量的期望与分布列,熟记概念和公式即可,属于常考题型.20.在直角坐标系中,抛物线:与直线:交于,两点.(1)设,到轴的距离分别为,,证明:与的乘积为定值.(2)轴上是否存在点,当变化时,总有?若存在,求点的坐标;若不存在,请说明理由.【答案】(1)见解析(2)存在,【解析】(1)先将代入,设,,结合韦达定理,即可证明结论成立;(2)先设设为符合题意的点,直线,的斜率分别为,,由,得当变化时,恒成立,进而可求出结果.【详解】(1)证明:将代入,得.设,,则,从而为定值.(2)解:存在符合题意的点,证明如下:设为符合题意的点,直线,的斜率分别为,.从而.当时,有对任意恒成立,则直线的倾斜角与直线的倾斜角互补,故,所以点符合题意.【点睛】本题主要考查直线与抛物线的位置关系、以及抛物线中的定点问题,通常需要联立直线与抛物线方程,结合韦达定理等求解,属于常考题型.21.已知函数.(1)证明:函数在其定义域上是单调递增函数.(2)设,当时,不等式恒成立,求的取值范围.【答案】(1)见解析(2)【解析】(1)先对函数求导,得到,令,再由导数方法研究单调性,求出最小值即可;(2)先将当时,不等式恒成立,化为恒成立,令,,用导数方法研究其单调性,再记,得到单调性,进而可得出结果.【详解】(1)证明:因为,,所以. 令,则.当时,;当时,,则在区间上单调递减,在区间上单调递增.故,从而在上恒成立,即在上单调递增.(2)解:当时,不等式恒成立等价于当时,不等式恒成立,即当时,恒成立.记,,则,.因为当时,,所以在恒成立,即在上单调递减.因为当时,,所以在恒成立,即在上单调递减.记,因为,所以在上单调递减,所以.因为在上恒成立,所以,即.又,故的取值范围为.【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,通过研究函数的单调性、最值等求解,属于常考题型.22.在直角坐标系中,曲线的参数方程为(为参数),直线:与曲线交于,两点.以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)求的最大值.【答案】(1)(2)【解析】(1)先由参数方程得到普通方程,再由普通方程即可得到极坐标方程;(2)先设,.,以及直线的极坐标方程为,代入(1)中的结果,得到,由韦达定理,以及,即可求出结果.【详解】解:(1)由(为参数),得,即.故的极坐标方程为.(2)设,,直线的极坐标方程为,代入,得,所以,.因为,所以,则,,则.当时,取得最大值,且最大值为.【点睛】本题主要考查参数方程与普通方程的互化、以及直角坐标方程与极坐标方程的互化,熟记公式即可,属于常考题型.23.已知函数.(1)求的最小值;(2)若不等式的解集为,且,求的值.【答案】(1)3(2)【解析】(1)先将函数写出分段函数的形式,再根据每一段的单调性,确定函数的单调性,即可得出结果;(2)先将函数写出分段函数的形式,根据函数单调性,分别由和,求出不等式的解集,在由题中条件即可得出结果.【详解】解:(1),则在上单调递减,在上单调递增,所以.(2)因为,令,则;令,则.所以不等式的解集为,又不等式的解集为,且,所以,故.【点睛】本题主要考查含绝对值不等式,熟记不等式的解法即可,属于常考题型.。