最新人教版九年级数学上册第二十三章中心对称1
- 格式:ppt
- 大小:972.00 KB
- 文档页数:28
说课稿课题:23.2.1中心对称(第1课时)一、教材分析(一)教材地位、作用本节教材是新课标人教版义务教育课程标准实验教科书《数学》九年级(上册)第二十三章旋转中的第二节内容。
本节教材仍属“实验几何”内容,是在学生学习了“轴对称”、“旋转”两种图形变换的基础上,进一步学习的新的图形变换。
本节课主要介绍中心对称的概念和中心对称的性质。
这一节课与轴对称图形基本概念、性质有着紧密的联系,同时与图形的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联系,通过对这一节课的学习,既可以让学生掌握图形的三种基本运动中“旋转”在几何知识中的重要体现,同时也完善了初中部分对“对称图形”(轴对称图形、中心对称图形)的知识讲授,它不但起到了承上启下的作用,还是学生从学习“认知几何”到“认证几何”的重要过渡阶梯。
所以虽然中心对称所占章节不多,但是对于初中几何的教学却有着十分重要的意义.(二)教学重点、难点重点:通过探索得出中心对称的概念,利用中心对称、对称中心、关于中心对称点的概念解决一些问题。
难点:正确理解旋转与中心对称的区别与联系,能利用中心对称的概念、性质作一个图形的中心对称图形。
二、学情分析所教学生是普通初中九年级的学生,整体接受新知识的能力和逻辑推理能力不强,对数学有兴趣且能认真学习的学生不过十来人,其余学生因为基础差也只能学会最基本的概念和简单的运算,班级中学生的成绩分化现象严重。
因此本节课主要要求学生在老师的指导下,以问题为中心,以观察为基础,总结出中心对称的概念和性质,例题与练习以书本为主。
三、教学目的分析(一)知识与技能1.了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题。
2.掌握已知图形关于某点的对称图形的画法。
(二)过程与方法1.运用旋转知识作图,通过旋转角度变化来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题。
2.经历动手操作、观察、猜想、推理、归纳等数学活动,积累学生的数学活动经验,发展学生的实践能力,感受数学思考过程的条理性,合理性,发展学生的形象思维。
人教版数学九年级上册23.2.1《中心对称》说课稿一. 教材分析《中心对称》是人教版数学九年级上册第23.2.1节的内容,属于几何学的范畴。
本节内容是在学生掌握了平面几何的基本概念和性质的基础上进行学习的,旨在让学生了解中心对称的定义和性质,能够运用中心对称解决一些几何问题。
教材中通过丰富的例题和练习题,帮助学生理解和巩固中心对称的概念。
本节内容对于学生来说是比较抽象的,需要通过大量的练习和思考,才能真正理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对于平面几何的基本概念和性质有一定的了解。
但是,中心对称是一个相对抽象的概念,学生可能一时间难以理解。
因此,在教学过程中,我将会注重引导学生通过实际例题,去感受和理解中心对称的性质和应用。
三. 说教学目标1.知识与技能目标:学生能够理解中心对称的定义,掌握中心对称的性质,并能够运用中心对称解决一些几何问题。
2.过程与方法目标:通过观察、思考和操作,学生能够培养自己的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂讨论,主动探索中心对称的性质,体验数学的乐趣。
四. 说教学重难点1.教学重点:中心对称的定义和性质。
2.教学难点:理解并运用中心对称解决几何问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法和学生自主学习法相结合的方式。
通过多媒体课件和几何模型等教学手段,帮助学生直观地理解中心对称的概念。
六. 说教学过程1.导入新课:通过一个简单的实例,引导学生思考中心对称的概念。
2.讲解概念:详细讲解中心对称的定义和性质,通过示例让学生理解和掌握。
3.课堂练习:让学生通过解决一些实际问题,运用中心对称的性质,巩固所学知识。
4.课堂讨论:引导学生进行小组讨论,分享各自的解题思路和方法,培养学生的合作精神。
5.总结提升:对本节课的主要内容进行总结,强调中心对称的重要性质和应用。
七. 说板书设计板书设计简洁明了,主要包括中心对称的定义、性质和应用等方面。
人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿一. 教材分析人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿,主要讲述了中心对称图形的性质和判定。
本节课的内容是在学生已经掌握了中心对称的概念和基本性质的基础上进行进一步的拓展和应用。
教材通过具体的例题和练习题,使学生能够深入理解中心对称图形的性质,并能够运用这些性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于中心对称的概念和基本性质已经有了一定的了解。
但是,学生在应用中心对称性质解决实际问题时,往往会存在一些困惑和困难。
因此,在教学过程中,我需要引导学生通过观察、思考和操作,深入理解中心对称图形的性质,并能够灵活运用这些性质解决实际问题。
三. 说教学目标1.知识与技能:使学生熟练掌握中心对称图形的性质,能够运用性质判定一个图形是否为中心对称图形。
2.过程与方法:通过观察、思考和操作,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。
四. 说教学重难点1.教学重点:中心对称图形的性质和判定。
2.教学难点:如何灵活运用中心对称性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件和实物模型进行教学。
六. 说教学过程1.导入新课:通过展示一些生活中的中心对称图形,引导学生回顾中心对称的概念和基本性质。
2.讲解与示范:讲解中心对称图形的性质,并通过示例演示如何运用性质判定一个图形是否为中心对称图形。
3.学生练习:学生独立完成教材中的练习题,巩固对中心对称性质的理解和运用。
4.小组讨论:学生分组讨论,分享各自的解题方法和思路,互相学习和交流。
5.总结与拓展:总结中心对称图形的性质和判定方法,并给出一些拓展问题,引导学生进一步深入思考。
七. 说板书设计板书设计如下:中心对称图形的性质:1.对称中心:每个点关于对称中心对称。
人教版九年级数学上册23.2.2.2《中心对称图形》教学设计一. 教材分析《中心对称图形》是人教版九年级数学上册第23章《几何变换》中的一个知识点。
本节课主要让学生了解中心对称图形的概念,理解中心对称图形与轴对称图形的区别,学会用旋转的方法来判断两个图形是否为中心对称图形,并能运用中心对称图形的性质解决一些简单问题。
二. 学情分析九年级的学生已经学习了轴对称图形和几何变换的相关知识,他们对几何图形的变换有一定的认识。
但中心对称图形与轴对称图形在概念上容易混淆,需要通过实例来加深理解。
此外,学生对旋转操作的熟练程度不同,需要在教学中关注学生的个体差异。
三. 教学目标1.知识与技能:让学生掌握中心对称图形的概念,了解中心对称图形与轴对称图形的区别,学会用旋转的方法判断两个图形是否为中心对称图形。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感、态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:中心对称图形的概念及性质。
2.难点:中心对称图形与轴对称图形的区别,以及如何运用中心对称图形的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等多种教学方法,引导学生主动探究、积极交流,提高学生的数学素养。
六. 教学准备1.教学课件:制作中心对称图形的相关课件,包括图片、动画等。
2.教学素材:准备一些中心对称图形的实例,如圆、正方形等。
3.练习题:设计一些有关中心对称图形的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的中心对称图形,如圆、手表等,引导学生观察并提问:“这些图形有什么特点?你们能找出它们的共同点吗?”让学生初步感受中心对称图形的美观和实际应用。
2.呈现(10分钟)介绍中心对称图形的定义,并用课件展示中心对称图形的性质。
通过实例讲解,让学生了解中心对称图形与轴对称图形的区别。
人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
新听课记录2024秋季九年级人教版数学上册第二十三章旋转《中心对称:阅读与思考旋转对称》教学目标(核心素养)1.知识与技能:学生能够理解旋转对称的概念,识别旋转对称图形及其旋转中心、旋转角度,掌握旋转对称的基本性质。
2.过程与方法:通过阅读与思考,培养学生自主获取信息、分析问题的能力;通过讨论与交流,提升学生的合作学习和表达能力。
3.情感态度价值观:激发学生对数学图形美的欣赏,培养探索数学奥秘的兴趣,增强对数学知识的应用意识。
导入教师行为:1.展示一组具有旋转对称特性的图片(如风车、时钟指针、花朵等),引导学生观察并提问:“这些图形在旋转过程中有什么共同特点?”2.简要介绍阅读与思考环节的重要性,鼓励学生带着问题去阅读教材相关内容。
学生活动:•学生认真观察图片,思考教师提出的问题。
•带着好奇心和探究欲,翻开教材开始阅读《旋转对称》部分。
过程点评:•通过直观的图片展示,有效吸引了学生的注意力,激发了他们的学习兴趣。
•引导学生带着问题阅读,提高了阅读的针对性和有效性。
教学过程教师行为:1.阅读指导:在学生阅读过程中,教师巡回指导,解答个别学生的疑问,确保每位学生都能理解基本概念。
2.概念讲解:待学生阅读完毕后,教师结合学生的理解情况,系统讲解旋转对称的定义、旋转中心、旋转角度等核心概念。
3.案例分析:选取教材中的典型案例,引导学生分析图形是如何通过旋转实现对称的,强调旋转对称的性质。
4.小组讨论:组织学生分组讨论,分享各自在生活中找到的旋转对称图形的例子,并说明其旋转中心和旋转角度。
学生活动:•学生仔细阅读教材,尝试自己理解旋转对称的概念。
•积极参与小组讨论,分享自己的见解和发现。
•认真倾听教师和同学的讲解,完善自己的知识体系。
过程点评:•通过阅读、讲解、案例分析和小组讨论等多种教学方式相结合,学生对旋转对称的理解逐渐深入。
•小组讨论环节促进了学生之间的交流与合作,培养了学生的团队合作能力和表达能力。
人教版数学九年级上册23.2.1《中心对称》教案一. 教材分析人教版数学九年级上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。
本节内容主要让学生了解中心对称的定义,掌握中心对称的性质和运用,能运用中心对称解决一些简单的几何问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的认识。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:让学生理解中心对称的概念,掌握中心对称的性质,能运用中心对称解决一些简单的几何问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、积极探究的精神。
四. 教学重难点1.重点:中心对称的概念和性质。
2.难点:中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生主动探究,合作交流,培养学生的几何思维能力。
六. 教学准备1.教具准备:多媒体课件、几何画板、黑板、粉笔。
2.学具准备:学生自带直尺、圆规、三角板。
七. 教学过程1. 导入(5分钟)利用多媒体课件展示一些生活中的中心对称图形,如天安门、蝴蝶、脸谱等,引导学生观察并思考:这些图形有什么共同特点?你想到了什么几何概念?2. 呈现(10分钟)教师通过讲解和示范,给出中心对称的定义,并用几何画板展示中心对称的性质。
同时,让学生尝试解释中心对称的概念,并找出生活中的中心对称现象。
3. 操练(15分钟)学生分组进行练习,运用中心对称的性质解决一些简单的几何问题。
教师巡回指导,及时纠正错误,帮助学生巩固知识。
4. 巩固(10分钟)教师选取一些典型的练习题,让学生在课堂上独立完成,检验学生对中心对称知识的掌握程度。
同时,教师对学生的解答进行点评,指出不足之处,巩固所学知识。
5. 拓展(10分钟)教师提出一些拓展问题,如中心对称与轴对称的关系,让学生进行思考和讨论。
人教版九年级数学上册23.2.1《中心对称》说课稿一. 教材分析人教版九年级数学上册第23.2.1节《中心对称》是整个初中数学知识体系中的一部分,主要介绍中心对称图形的概念及其性质。
这一节内容在教材中的位置是在学生已经掌握了平面几何的基本知识的基础上进行教学的,为学生后面学习对称变换、坐标与图形的变换等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的变换、对称性等概念有一定的了解。
但学生在学习这一节内容时,可能会对中心对称图形的概念和性质的理解存在一定的困难,因此,在教学过程中,需要教师耐心引导,通过大量的实例让学生深入理解中心对称图形的概念和性质。
三. 说教学目标1.知识与技能目标:让学生掌握中心对称图形的概念,理解中心对称图形的性质,能运用中心对称的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生良好的数学素养,使学生感受到数学的美。
四. 说教学重难点1.教学重点:中心对称图形的概念及其性质。
2.教学难点:中心对称图形的性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的几何直观能力和逻辑思维能力。
2.教学手段:利用多媒体课件、几何画板等软件,展示中心对称图形的性质和变换过程,增强学生对知识的理解和记忆。
六. 说教学过程1.导入新课:通过展示一些生活中的对称现象,引导学生关注对称性,激发学生学习兴趣。
2.探究中心对称图形的概念:让学生通过观察、操作,发现中心对称图形的特征,从而引出中心对称图形的定义。
3.理解中心对称图形的性质:引导学生通过小组合作学习,探索中心对称图形的性质,教师进行讲解和总结。
4.应用中心对称图形的性质:让学生通过解决一些实际问题,运用中心对称图形的性质,巩固所学知识。
庖丁巧解牛知识·巧学·升华一、关于坐标轴对称的两个点以前我们已经学习过关于x轴(或y轴)对称的两个点的坐标的特点:点(x、y)关于x轴对称的点的坐标为(x,-y),即两个点的横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即两个点的纵坐标相等,横坐标互为相反数.二、关于原点对称的两个点两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P′(-x,-y).如图23-2-25:A′、B′、C′、D′、E′各点关于原点的对称点坐标分别为A′(-4,0)、 B′(0,3)、C′(-2, -1) 、D′(1,-2)、E′(3,2).这些点的坐标与已知点的坐标符号相反.图23-2-25记忆要诀将一个点的两个坐标同时变相反数时,就得到该点的关于原点的对称点的坐标.问题·自主·探究问题过中心对称图形的对称中心任意作一条直线,这条直线能把该对称图形分成面积相等的两部分吗?(设该中心对称图形有面积)可以结合具体图形说明.探究:由于该中心对称图形有面积,现给出中心对称图形如:圆、正方形、正六边形,如图23-2-26.图23-2-26对圆来说,圆心是对称中心,过圆心的任意一条直线,把圆分成两个半圆,面积相等;对正方形、正六边形而言,过对称中心的任意一条直线可以看作是正方形、正六边形的一条对角线所在的直线围绕对称中心旋转一定角度得到的(如图23-2-27),正方形、正六边形的任意一条对角线都是它的对称轴,把正方形、正六边形分成面积相等的两部分.因此,只要探究图形中两阴影部分的面积是否相等.根据中心对称的概念,易知两图形中阴影部分的面积是相等的.图23-2-27所以过中心对称图形的对称中心的任意一条直线把该中心对称图形分成了两个图形,而此时这两个图形关于对称中心成中心对称,故面积相等.典题·热题·新题例1 2005浙江余姚中考 点P (-1,3)关于原点对称的点的坐标是 .思路解析:两个点关于原点对称时,它们的坐标符号相反,点P (-1,3)关于原点对称的点的坐标是(1,-3).答案:(1,-3)例2如果点P (x ,y )关于原点的对称点为(-2,3),则x +y = .思路解析:两个点关于原点对称时,它们的坐标符号相反,即P (x ,y )关于原点的对称点为P ′(-x ,-y ),所以x =2,y =-3.故x +y =-1.答案:-1例3如果点A (-3,2m +1)关于原点对称的点在第四象限,求m 的取值范围.思路解析:由于第四象限关于原点对称的点在第二象限,反之第二象限的点关于原点对称的点在第四象限,所以A (-3,2m +1)应在第二象限,由第二象限的符号特征解之.解:∵A (-3,2m +1)关于原点对称的点在第四象限,∴A (-3,2m +1)在第二象限.∴A 点的纵坐标2m +1>0.∴m >-21.。
教学设计一、教学内容:新人教版九年级数学上册第二十三章第二节中心对称第1课时二、学情分析:1、学生是乡镇普通初中九年级的学生,班级学生学习方面存在一定的差异;但学生对数学抱有浓厚的兴趣。
2、学生在前面已学习了图形的旋转变换,根本上掌握了旋转变换的性质;运用知识解决实际问题的能力和数学建模的能力还不强。
3、对中心对称概念不易理解;归纳和运用性质也存在困难。
三、教材分析:1、本节课选自人教社九年级数学上册23.2.1中心对称。
2、中心对称是在学生已掌握旋转变换的根底上,由一般到特殊的方法归纳引出中心对称是特殊的旋转变换。
在探索中心对称的概念、性质及应用上,让学生经历动手操作、观察、猜测、归纳等方法,进一步培养学生的自主学习能力以及合作、探究的精神,并在这个过程中增加一定的审美体验。
3、中心对称承接平移、轴对称等知识,同时是下节学习中心对称图形的根底,又是后续学习几何的桥梁纽带。
四、教学目标:〔一〕、知识技能:1、通过62页思考中图形旋转的演示理解中心对称、对称中心、关于中心的对称点的概念。
2、结合探究掌握中心对称的性质,会依据中心对称的性质画出与图形成中心对称的图形。
〔二〕、过程与方法:1、通过思考的观察培养学生的观察能力,经历探究性质的过程使学生获得根本的数学活动经验。
2、通过画出与图形成中心对称的图形,进一步培养学生的尺规作图能力。
〔三〕、情感、态度与价值观:让学生经历观察、操作等过程,理解中心对称的概念,从中心对称根本性质的探索活动,进一步开展学生空间观察能力.让学生通过独立思考,自主探究和合作交流,进一步体会中心对称的数学内涵,获得知识,体验成功。
五、教学重点:中心对称的概念与性质及应用。
六、教学难点:中心对称的概念的导入与性质的探究。
七、教学过程:教师引语,创设情境:我们生活在多姿多彩的图形世界中,小时候我们就对多姿多彩的图形充满兴趣与好奇,尤其是对运动变换的图形越加的好奇,我邻居家的乐乐对图形也充满着浓厚的兴趣,他画了一幅中心对称的图形,但是不小心被顽皮的弟弟用橡皮擦去了一局部,现在只剩下了这样的图形,于是他跪求!!!帮助把他画的图形修复,我想让你们帮帮他。
人教版数学九年级上册23.2.2《中心对称图形》说课稿一. 教材分析人教版数学九年级上册第23.2.2节《中心对称图形》是整个初中数学阶段中心对称图形知识的重要内容。
本节课主要介绍了中心对称图形的定义、性质及其在实际问题中的应用。
教材通过丰富的实例,让学生体会中心对称图形的概念,培养学生的空间想象能力,同时,也让学生感受数学与实际生活的紧密联系。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何图形有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,我将会注重引导学生从具体实例中发现中心对称图形的特征,并通过对比分析,让学生深刻理解中心对称图形的性质。
三. 说教学目标1.知识与技能:让学生掌握中心对称图形的定义和性质,能够判断一个图形是否为中心对称图形。
2.过程与方法:通过观察、操作、对比等方法,培养学生发现规律、总结性质的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的空间想象能力,感受数学与实际生活的联系。
四. 说教学重难点1.重点:中心对称图形的定义及其性质。
2.难点:中心对称图形性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、发现、总结中心对称图形的性质。
2.教学手段:利用多媒体课件、实物模型、几何画板等,为学生提供丰富的学习资源,提高教学效果。
六. 说教学过程1.导入新课:通过展示一些生活中的中心对称现象,如轴对称的门、旋转的水龙头等,引导学生发现中心对称图形的特征。
2.探究中心对称图形的定义:让学生观察、操作,尝试用自己的语言描述中心对称图形的特征,然后给出中心对称图形的正式定义。
3.发现中心对称图形的性质:引导学生通过对比、归纳、总结中心对称图形的性质,如对称中心、对称轴等。
4.应用中心对称图形解决实际问题:通过一些实际问题,让学生运用中心对称图形的性质解决问题,巩固所学知识。