2018学年数学人教A版选修2-1优化练习:第二章 2.3 2.3.1 双曲线及其标准的方程
- 格式:doc
- 大小:341.00 KB
- 文档页数:8
§2.3.2双曲线的简单几何性质(1)1、双曲线22154x y -=的( )A 、实轴长为 4B 、23实轴长为8C 、实轴长为10,虚轴长为4D 、实轴长为820,2),则双曲线的标准方程为( )A 、22144x y -=B 、22144y x -=C 、22148y x -=D 、22184x y -= 3、椭圆222134x y n +=和双曲线222116x y n -=有共同的焦点,则实数n 的值是( ) A 、5± B 、3± C 、25 D 、94、P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为320x y -=, 1F 、2F 分别为双曲线左、右焦点,若1||3PF =,则2||PF =( )A 、1或5B 、6C 、7D 、95、双曲线的渐近线方程为34y x =±,则双曲线的离心率为( )A 、53BCD 、53或546 )A 、045B 、030C 、060D 、090 7、双曲线与椭圆2211664x y +=有相同的焦点,它的一条渐近线为y x =,则双曲线的方程为 ;8、双曲线22194x y -=的渐近线方程为 。
9、已知1(F ,2F ,动点P 满足21||||2PF PF -=,当点P 的纵坐标是12时,点P 到原点的距离是 ;10、已知平面内有一条长度为4的定线段AB ,动点P 满足||||3PA PB -=,O 为AB 的中点,则||OP 的最小值为 ; 11、过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与以曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双线的离心率等于 ;12、已知双曲线的中心在原点,焦点1F 、2F 在坐标轴上,e =(4,P 。
(1)求此双曲线的方程;(2)若(3,)M m 在双曲线上,求证12MF MF ⊥(3)求12F MF ∆的面积。
§2.3.1 双曲线及其标准方程学习目标1.掌握双曲线的定义;2.掌握双曲线的标准方程.学习过程一、课前准备复习1:椭圆的定义是什么?椭圆的标准方程是什么?复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =二、新课导学※ 学习探究问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?新知1:双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .新知2:双曲线的标准方程:22222221,(0,0,)x y a b c a b a b -=>>=+(焦点在x 轴)其焦点坐标为1(,0)F c -,2(,0)F c .思考:若焦点在y 轴,标准方程又如何?※ 典型例题例1已知双曲线的两焦点为1(5,0)F -,2(5,0)F ,双曲线上任意点到12,F F 的距离的差的绝对值等于6,求双曲线的标准方程.变式:已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为 .例2 已知,A B 两地相距800m ,在A 地听到炮弹爆炸声比在B 地晚2s ,且声速为340/m s ,求炮弹爆炸点的轨迹方程.变式:如果,A B 两处同时听到爆炸声,那么爆炸点在什么曲线上?为什么?※动手试试练1:求适合下列条件的双曲线的标准方程式:(1)焦点在x轴上,4a=,3b=;(2)焦点为(0,6),(0,6)-,且经过点(2,5)-.练2.点,A B的坐标分别是(5,0)-,(5,0),直线AM,BM相交于点M,且它们斜率之积是49,试求点M的轨迹方程式,并由点M的轨迹方程判断轨迹的形状.三、总结提升※学习小结1 .双曲线的定义;2 .双曲线的标准方程.※知识拓展GPS(全球定位系统):双曲线的一个重要应用.在例2中,再增设一个观察点C,利用B,C两处测得的点P发出的信号的时间差,就可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定点P的准确位置.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.动点P 到点(1,0)M 及点(3,0)N 的距离之差为2,则点P 的轨迹是( ).A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线2.双曲线2255x ky +=的一个焦点是,那么实数k 的值为( ).A .25-B .25C .1-D .13.双曲线的两焦点分别为12(3,0),(3,0)F F -,若2a =,则b =( ).A. 5B. 13C.D.4.已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=则动点P 的轨迹方程为 .5.已知方程22121x y m m -=++表示双曲线,则m 的取值范围 .课后作业1. 求适合下列条件的双曲线的标准方程式:(1)焦点在x 轴上,a =,经过点(5,2)A -;(2)经过两点(7,A --,B .2.相距1400m ,A B 两个哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340/m s ,问炮弹爆炸点在怎样的曲线上,为什么?。
聚焦双曲线的渐近线的问题河南孙尚广在双曲线的几何性质中,渐近线是双曲线所特有的性质,因此学好双曲线的渐近线对学习双曲线的几何性质有很大的帮助。
在学习这部分内容时,应注意以下几点:(1)明确双曲线的渐近线是哪两条直线。
过双曲线实轴的两个端点与虚轴的两个端点分别作对称轴的平行线,它们围成一个矩形,其两条对角线所在直线即为双曲线的渐近线。
画双曲线时,应先画出它的渐近线。
(2)理解“渐进”两字的含义,当双曲线的各支向外延伸时,与这两条直线逐渐接近,接近的程度是无限的。
也可以这样理解:当双曲线上的动点M 沿着双曲线无限远离双曲线的中心时,点M 到这条直线的距离逐渐变小而无限趋近于0。
(3)掌握根据双曲线的标准方程求出它的渐近线方程的方法。
最简单且实用的方法是:把双曲线标准方程中等号右边的1改成0,就得到了此双曲线的渐近线方程。
(4)掌握根据双曲线的渐近线方程求出双曲线方程的方法。
我们不妨先看下面这个具体的例子。
例:求与双曲线116922=-y x 有共同的渐近线,并且过点A (28,6)的双曲线的方程。
解法1:由于双曲线的方程是116922=-y x ,所以其渐近线的方程是x y 34±=,容易判断点A (28,6)在直线x y 34=的上方,故所求双曲线的焦点在y 轴上,所以设双曲线的方程是12222=-bx a y 。
根据已知条件有⎪⎪⎩⎪⎪⎨⎧=+-=1128363422a b b a ,解得642=a ,362=b 。
所以所求双曲线方程是1366422=-x y 。
解法2:实际上,与双曲线116922=-y x 有共同渐近线的双曲线方程都可以表示t y x =-16922(0≠t )的形式。
当0>t 时,所求双曲线的焦点在x 轴上,这时其渐近线方程是x x tt y 3434±=±=; 当0<t 时,所求双曲线的焦点在y 轴上,这时双曲线的标准方程是1)(9)(1622=---t x t y ,其渐近线方程是x x tt y 3434±=--±=。
⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。
[课时作业][A 组 基础巩固]1.某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A .30种B .35种C .42种D .48种解析:分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13×C 24+C 23×C 14=30种选法.答案:A2.5本不同的书全部分给4个学生,每个学生至少1本,不同的分法种数有( )A .480B .240C .120D .96解析:先把5本书中的两本捆起来,再分成4份即可,∴分法种数为C 25A 44=240.答案:B3.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 ( )A .C 28A 23B .C 28A 66 C .C 28A 26D .C 28A 25解析:从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C 28A 26,故选C.答案:C4.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( )A .C 1214C 412C 48B .C 1214A 412A 48 C.C 1214C 412C 48A 33D .C 1214C 412C 48A 33解析:首先从14人中选出12人共C 1214种,然后将12人平均分为3组共C 412·C 48·C 44A 33种,然后这两步相乘,得C 1214·C 412·C 48A 33.将三组分配下去共C 1214·C 412·C 48种.故选A. 答案:A5.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女一定不是O 型,若某人的血型为O 型,则父母血型所有可能情况有________种.解析:父母应为A 或B 或O ,C 13·C 13=9(种).答案:96.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析:不同的获奖情况可分为以下两类:(1)有一个人获得两张有奖奖券,另外还有一个人获得一张有奖奖券,有C 23A 24=36种获奖情况.(2)有三个人各获得一张有奖奖券,有A 34=24种获奖情况.故不同的获奖情况有36+24=60种.答案:607.5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有________种.解析:两老一新时,有C 13×C 12A 22=12种排法;两新一老时,有C 12×C 23A 33=36种排法,故共有48种排法.答案:488.将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答)解析:按C 的位置分类计算.①当C 在第一或第六位时,有A 55=120(种)排法;②当C 在第二或第五位时,有A 24A 33=72(种)排法;③当C 在第三或第四位时,有A 22A 33+A 23A 33=48(种)排法.所以共有2×(120+72+48)=480(种)排法.答案:4809.四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种?解析:恰有一个空盒,则另外三个盒子中小球数分别为1,1,2,实际上可转化为先将四个不同的小球分为三组,两组各1个,另一组2个,分组方法有C 14C 13C 22A 22种,然后将这三组再加上一个空盒进行全排列,共有C 14C 13C 22A 22·A 44=144种放法. 10.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3, 4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有多少种?解析:分三类:第1类,当取出的4张卡片分别标有数字1,2,3,4时,不同的排法有C 12·C 12·C 12·C 12·A 44种.第2类,当取出的4张卡片分别标有数字1,1,4,4时,不同的排法有C 22·C 22·A 44种.第3类,当取出的4张卡片分别标有数字2,2,3,3时,不同的排法有C 22·C 22·A 44种.故满足题意的所有不同的排法种数共有C 12·C 12·C 12·C 12·A 44+2C 22·C 22·A 44=432.[B 组 能力提升]1.已知圆上有9个点,每两点连一线段,则所有线段在圆内的交点有( )A .36个B .72个C.63个D.126个解析:此题可归为圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有C49=126(个).答案:D2.将红、黑、蓝、黄4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法有()A.18种B.24种C.30种D.36种解析:将4个小球放入3个不同的盒子,先在4个小球中任取2个作为1组,再将其与其他2个小球对应3个盒子,共有C24A33=36种情况,若红球和蓝球放到同一个盒子,则黑、黄球放进其余的盒子里,有A33=6种情况,则红球和蓝球不放到同一个盒子的放法种数为36-6=30种.答案:C3.直角坐标系xOy平面上,平行于x轴和平行于y轴的直线各有6条,则由这12条直线组成的图形中,矩形共有________个.解析:从6条水平直线和6条竖直直线中各取2条,每一种取法对应一个矩形,因此矩形共有C26C26=225个.答案:2254.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)________种.解析:分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局、输1局,第4局赢),共有2C23=6种情形;恰好打5局(一人前4局中赢2局、输2局,第5局赢),共有2C24=12种情形.所有可能出现的情形共有2+6+12=20种.答案:205.某区有7条南北向街道,5条东西向街道.(如图)(1)图中有多少个矩形?(2)从A点走向B点最短的走法有多少种?解析:(1)在7条竖线中任选2条,5条横线中任选2条,这样4条线可组成一个矩形,故可组成的矩形有C27·C25=210个.(2)每条东西向的街道被分成6段,每条南北向的街道被分成4段,从A到B最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有C610=C410=210种走法.6.若对任意的x∈A,则1x∈A,就称A是“具有伙伴关系”的集合.求集合M=⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数. 解析:具有伙伴关系的元素组成-1;1; 12,2;13,3;共4组,所以集合M 的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为C 14+C 24+C 34+C 44=15.。
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
第二章 2.3 课时作业18一、选择题1.双曲线方程为x 2-2y 2=2,则它的左焦点坐标为( )A .(-,0) B .(-,0)2252C .(-,0) D .(-,0)623解析:双曲线标准方程为-y 2=1,x 22∴c 2=2+1=3.∴左焦点坐标为(-,0).3答案:D 2.[2014·四川宜宾一模]已知点F 1(-,0),F 2(,0),动点P 满足|PF 2|-|PF 1|=2,22当点P 的纵坐标是时,点P 到坐标原点的距离是( )12A. B. 6232C. D. 23解析:由已知可得c =,a =1,∴b =1.2∴双曲线方程为x 2-y 2=1(x ≤-1).将y =代入,可得点P 的横坐标为x =-.1252∴点P 到原点的距离为=.(-52)2+(12)262答案:A 3.方程-=6化简的结果是( )(x -4)2+y 2(x +4)2+y 2A. -=1 B. -=1x 29y 27x 225y 29C. -=1(x ≤-3) D. -=1(x ≥3)x 29y 27x 29y 27解析:方程的几何意义是动点P (x ,y )到定点(4,0),(-4,0)的距离之差为6,由于6<8,所以动点的轨迹是双曲线的左支,由定义可得方程为-=1,x ≤-3.x 29y 27答案:C 4.已知双曲线的两个焦点分别为F 1(-,0),F 2(,0),P 是双曲线上的一点,且55PF 1⊥PF 2,|PF 1|·|PF 2|=2,则双曲线的标准方程是( )A.-=1 B.-=1x 22y 23x 23y 22C .x 2-=1 D.-y 2=1y 24x 24解析:设|PF 1|=m ,|PF 2|=n ,在Rt △PF 1F 2中m 2+n 2=(2c )2=20,m ·n =2,由双曲线定义知|m -n |2=m 2+n 2-2mn =16.∴4a 2=16.∴a 2=4,b 2=c 2-a 2=1.∴双曲线的标准方程为-y 2=1.x 24答案:D 二、填空题5.双曲线8kx 2-ky 2=8的一个焦点为(0,3),则实数k 的值为__________.解析:方程化为标准形式是-=1,y 2-8k x 2-1k 所以--=9,即k =-1.8k 1k 答案:-16.已知F 是双曲线-=1的左焦点,A (1,4),P 是双曲线右支上的动点,则x 24y 212|PF |+|PA |的最小值为________.解析:如图所示,F (-4,0),设F ′为双曲线的右焦点,则F ′(4,0),点A (1,4)在双曲线两支之间,由双曲线定义,|PF |-|PF ′|=2a =4,而|PF |+|PA |=4+|PF ′|+|PA |≥4+|AF ′|=4+5=9.当且仅当A ,P ,F ′三点共线时取等号.答案:97.[2013·上海静安二模]已知双曲线-=1的左、右焦点分别为F 1、F 2,点M 在x 26y 23双曲线上且MF 1⊥x 轴,则F 1到直线F 2M 的距离为________.解析:由题意知F 1(-3,0),设M (-3,y 0),代入双曲线方程求得|y 0|=,即|MF 1|=.又6262|F 1F 2|=6,利用直角三角形性质及数形结合得F 1到直线F 2M 的距离为d ===.|MF 1|·|F 1F 2||MF 1|2+|F 1F 2|262×664+3665答案:65三、解答题8.已知点P 为双曲线x 2-=1上的点,F 1、F 2是该双曲线的两个焦点,且y 212|PF 1|·|PF 2|=24,求△PF 1F 2的周长.解:由双曲线的定义,得||PF 1|-|PF 2||=2a =2,又|PF 1|·|PF 2|=24,所以|PF 1|+|PF 2|==10.(|PF 1|-|PF 2|)2+4|PF 1|·|PF 2|又因为|F 1F 2|=2c =2,所以△PF 1F 2的周长为|PF 1|+|PF 2|+|F 1F 2|=10+2.13139.已知双曲线-=1的两焦点为F 1、F 2.x 216y 24(1)若点M 在双曲线上,且·=0,求M 点到x 轴的距离;MF1→ MF 2→ (2)若双曲线C 与已知双曲线有相同焦点,且过点(3,2),求双曲线C 的方程.2解:(1)如右图所示,不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,则MF 1⊥MF 2,设|MF 1|=m ,|MF 2|=n ,由双曲线定义知,m -n =2a =8,①又m 2+n 2=(2c )2=80,②由①②得m ·n =8,∴mn =4=|F 1F 2|h ,1212∴h =.255∴M 点到x 轴的距离为.255(2)设所求双曲线C 的方程为-=1(-4<λ<16),x 216-λy 24+λ由于双曲线C 过点(3,2),2所以-=1,1816-λ44+λ解得λ=4或λ=-14(舍去).∴所求双曲线C 的方程为-=1.x 212y 28。
直线与双曲线的地点关系一、选择题( 每题 5 分,共20 分)1.已知双曲线方程为y2x2-4=1,过P(1,0)的直线l与双曲线只有一个公共点,则l的条数为()A. 4B. 3C. 2D. 1分析:数形联合知,过点P(1,0)有一条直线l与双曲线相切,有两条直线与渐近线平行,这三条直线与双曲线只有一个公共点.答案:B2.设双曲线的一个焦点为F,虚轴的一个端点为B,假如直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A. 2B. 33+ 15+ 1C. D.22x2y2分析:设双曲线方程为a2-b2=1(a,b>0),不如设一个焦点为F( c, 0),虚轴端点为B(0, b),则 k FB b=-c.b又渐近线的斜率为±a,因此由直线垂直关系得-b b bc· a=-1(- a明显不切合) ,即 b2= ac,又 c2- a2= b2,故 c2-a2= ac,两边同除以 a2,得方程 e2- e-1=0,解得=5+ 1=1- 5或(舍).e2e2答案:Dx2y23.已知双曲线a2-b2= 1( a>0,b>0) 的右焦点为F,若过点 F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是()A. (1,2]B. (1,2)C. [2 ,+∞ )D. (2 ,+∞)分析:依据双曲线的性质,过右焦点 F 且倾斜角为60°的直线与双曲线只有一个交点,说明其渐近线的斜率的绝对值大于或等于tan 60 °=b3,则c2- a2e2e23,即≥2=- 1≥ 3,故有≥4,≥2.a a e应选 C.答案:C224. 是双曲线 x -y=1 的右支上一点,、 分别是圆 ( x +5) 2+y 2=4 和( x -5) 2+y 2= 1上的点,则| |P9 16 M NPM-| PN | 的最大值为 ()A . 6B . 7C . 8D . 9分析: 设双曲线的两个焦点分别是 F 1( - 5,0) 与 F 2(5,0) ,则这两点正好是两圆的圆心, 当且仅当点 P与 M 、 F 三点共线以及 P 与 N 、 F 三点共线时所求的值最大,此时 | PM |- | PN |=(| PF | +2) - (| PF | -1)=61 2 1 2+ 3= 9.答案: D二、填空题 ( 每题5 分,共 10 分)x 2 y 22225.过双曲线 C : a 2-b 2= 1( a >0, b >0) 的一个焦点作圆 x + y = a 的两条切线,切点分别为A ,B ,若∠=120°( 是坐标原点 ) ,则双曲线 C 的离心率为 ________.AOBO分析: ∵∠ AOB =120° ? ∠ AOF =60° ? ∠ AFO =30° ? c = 2a ,∴ e =c= 2.a答案:2x 2 y 26.已知双曲线 12- 4 = 1 的右焦点为 F ,若过点 F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是 ________.分析:由题意知 (4,0) ,双曲线的两条渐近线方程为y=±3 ,F3x33当过 F 点的直线与渐近线平行时, 知足与右支只有一个交点,画出图形, 经过图形可知, - 3 ≤ k ≤ 3 .答案:3 3-3,3三、解答题 ( 每题 10 分,共 20 分 )7.已知双曲线22A 、B 两点,试问 A 、3x - y = 3,直线 l 过右焦点 F ,且倾斜角为 45°,与双曲线交于2B 两点能否位于双曲线的同一支上?并求弦 AB 的长.分析: ∵ a =1, = 3, = 2,b c又直线 l 过点 F 2(2,0) ,且斜率 k =tan 45 °= 1,∴ l 的方程为 y = x - 2,由 y = x - 2消去 y 并整理得 2x 2+ 4x - 7= 0,3x 2 -y 2= 3设 A ( x 1,y 1) , B ( x 2,y 2) ,7∵ x 1· x 2=- 2<0,∴ A 、B 两点分别位于双曲线的左、右两支上.7 ∵ x 1+ x 2=- 2, x 1· x 2 =- ,2∴ | AB | = 1+12| x 1- x 2| = 2·x 1+ x 22- 4x 1x 227= 2·--4× -2 =6.22y8.已知双曲线 x -3 = 1 上存在对于直线 l : y = kx +4 的对称点,务实数 k 的取值范围.分析: ①当 k = 0 时,明显不建立.②当k ≠0时,在双曲线上随意取两点, ,设 的中点 的坐标为 ( 0, 0) ,由 l ⊥ ,A B AB M M x y AB1可设直线 AB 的方程为 y =- k x + b ,将其代入 3x 2- y 2= 3 中,得 (3 k 2-1) x 2+ 2kbx - ( b 2+ 3) k 2=0.明显 3k 2-1≠0,即 k 2b 2+ 3k 2- 1>0. ①由根与系数的关系得AB 的中点 M 的坐标为- kb x =32-1,②ky 0=3k 2b.③3k 2- 1由于 M 均分 AB ,因此 M ( x 0, y 0) 在直线 l 上,3k 2b- k 2b进而有 3k 2- 1= 3k 2-1+ 4,即 k 2b =3k 2- 1,④将④代入①得2 2+ 2 >0,∴ >0 或b <-1,k b k bb3 2- 1 3 2-1即k 2>0 或k <- 1,31∴ | k |> 3 或 | k |< 2,且 k ≠0,33 1 1∴ k > 3 或 k <- 3 或- 2<k <2,且 k尖子生题库☆☆☆9. (10 分 ) 设圆 C 与两圆 ( x + 5) 2+ y 2= 4, ( x - 5) 2+y 2= 4 中的一个内切,另一个外切.(1) 求圆 C 的圆心轨迹 L 的方程;(2) 已知点 M 3 5 45,(5,0) ,且 P 为 L 上动点,求 ||| -||| 的最大值及此时点P 的坐标.5,MPFP5 分析:(1) 设圆 C 的圆心坐标为 ( x , y ) ,半径为 r .圆 ( x +22= 41,半径为 2,5) + y 的圆心为 F (- 5,0)圆 ( x - 5) 2+ y 2= 4 的圆心为 F ( 5, 0) ,半径为 2.| CF 1| = r + 2, | CF 1| = r - 2, 由题意得| CF | = r - 2或| CF | =r + 2,∴ || CF 1| - | CF || =4.15>4,∵|FF |=2∴圆 C 的圆心轨迹是以 1, F ( 5, 0) 为焦点的双曲线,其方程为 x 22=1.F (- 5,0) 4 - y (2) 由图知, || MP |- | FP || ≤|MF |,∴当 M , P , F 三点共线,且点 P 在 MF 延伸线上时, | MP | - | FP | 获得最大值 |MF |,且 |MF |=355- 5 2+ 455-0 2=2.直线 MF 的方程为 y =- 2x + 2 5,与双曲线方程联立得y =- 2x + 2 5,22整理得 15x -32 5x + 84= 0.x- y 2=1,41456 5解得 x = 15( 舍去 ) , x =5.12此时 y=- 255.∴当|| |-||| 获得最大值 2 时,点P 的坐标为65 2 5 .MP FP 5,-5。
椭圆与双曲线中点弦斜率公式及其推论圆锥曲线中点弦问题是问题在高考中的一个常见的考点.其解题方法一般是利用点差法和韦达定理,设而不求.但一般来说解题过程是相当繁琐的.若能巧妙地利用下面的定理则可以方便快捷地解决问题.定理1(椭圆中点弦的斜率公式):设00(,)M x y 为椭圆22221x y a b+=弦AB (AB 不平行y 轴)的中点,则有:22AB OMb k k a⋅=-证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得:22221212220x x y y a b --+=整理得:2221222212y y b x x a-=--,即2121221212()()()()y y y y b x x x x a+-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a ⋅=-定理2(双曲线中点弦的斜率公式):设00(,)M x y 为双曲线22221x y a b-=弦AB(AB 不平行y 轴)的中点,则有22AB OMb k k a⋅= 证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得:22221212220x x y y a b ---=整理得:2221222212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a+-=+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a ⋅= 例1、已知椭圆22221x y a b-=,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是2,1M -(),则椭圆的离心率是( ) A 、12 B、、分析:本题中弦的斜率 1AB k =且12OMk =-,根据定理有2212b a =,即2222112a c e a -=-=,解得2e =,所以B 答案正确. 例2、过椭圆221164x y +=内的一点(2,1)M 引一条弦,使弦被M 点平分,求这条弦所在的直线方程.解:设弦所在的直线为AB ,根据椭圆中点弦的斜率公式知14AB OM k k ⋅=-,显然12OM k =,所以12AB k =-,故所求的直线方程为11(2)2y x -=--,即240x y +-=.例3、过椭圆2216436x y +=上的一点(8,0)P -作直线交椭圆于Q 点,求PQ 中点的轨迹方程.解:设PQ 的中点为(,)M x y ,则OM yk x=,8PQ y k x =+,由椭圆中点弦的的斜率公式得9816y y x x ⋅=-+,即所求的轨迹方程为29(8)16y x x =-+ 例4、已知椭圆22221(0)x y a b a b +=>>,A 、B 是椭圆上的两点,线段AB 的垂直平分线l 与x 轴交于0(,0)P x ,求证:22220a b a b x a a---<<. 证明:设AB 的中点为11(,)M x y ,由题设可知AB 与x 轴不垂直,10y ∴≠,由椭圆的中点弦斜率公式得:2121ABx b k a y =-⋅2121l a y k b x ∴=,所以直线l 的方程为:211121()a y y y x x b x -=-,令0y =解得21022a x x a b =-,1||x a <,2022a a x a a b ∴-<<-,即:22220a b a b x a a ---<<例5、已知双曲线2212y x -=,经过点(1,1)M 能否作一条直线l ,使l 交双曲线 于A 、B 两点且点M 是线段AB 的中点,若存在这样的直线l ,求出它的方程;若不存在,说明理由.解:若存在这样的直线l 的斜率为k ,则1OM k =,由双曲线中点弦的斜率公式知:2k =,此时l 的方程为:12(1)y x -=-,即21y x =-,将它代入双曲线方程2212y x -=并化简得:22430x x -+=,而该方程没有实数根.故这样的直线l 不存在.定理1推论:若A 、B 是椭圆22221x y a b+=上关于中心对称的两点,P 是椭圆上任一点,当PA 、PB 的斜率PA k 和PB k 都存在时,有22PA PBb k k a⋅=-.证明:如图:连结AB ,取PB 中点M ,连结OM ,则OM PA ,所以有OM PA k k =,由椭圆中点弦斜率公式得:22OM PBb k k a ⋅=-.所以22PA PB b k k a⋅=-.类似地可以证明定理2推论:若A 、B 是双曲线22221x y a b-=上关于中心对称的两点,P 是双曲线上的任一点,当PA 、PB 的斜率PA k 和PB k 都存在时,有22PA PBb k k a⋅=.。
双曲线的简单几何性质一、要点精讲1.双曲线的标准方程和几何性质2.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其标准方程为()022≠=-λλy x ,离心率2=e ,渐近线方程x y ±=。
3、共渐近线的双曲线系方程:与-22a x 22b y =1有相同渐近线的双曲线系方程可设为-22ax ()022≠=λλb y ,若0>λ,则双曲线的焦点在轴上;若0<λ,则双曲线的焦点在轴上。
4、共焦点的双曲线系方程:与-22ax 22b y =1焦点相同的双曲线系方程可设为()2222221,+x y k b k a a k b k -=<<-二、基础自测1.(15安徽)下列双曲线中,渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -=(C )2212y x -= (D )2212x y -= 2.(2013湖北)已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 ( ) A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.(2013课标)已知双曲线2222:1x y C a b -=(0,0)a b >>,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =± D .y x =± 4.(15广东)已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为A .13422=-y x B.191622=-y x C.116922=-y x D. 14322=-y x 5.(2013湖南)设F 1、F 2是双曲线C,22221x y a b-=(a >0,b>0)的两个焦点。
2.3.1 双曲线及其标准方程1.双曲线 (1)定义□01平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. (2)双曲线的集合描述设点M 是双曲线上任意一点,点F 1,F 2是双曲线的焦点,则由双曲线的定义可知,双曲线就是集合□02P ={M |||MF 1|-|MF 2||=2a,0<2a <|F 1F 2|}. 2.双曲线的标准方程1.判一判(正确的打“√”,错误的打“×”)(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程x 2a 2-y 2b2=1中,a >0,b >0且a ≠b .( )(3)双曲线的标准方程可以统一为Ax 2+By 2=1(其中AB <0).( ) 答案 (1)× (2)× (3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线x 24-y 216=1上一点M 到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x 2-4y 2=1的焦距为________.(3)(教材改编P 55T 1)已知双曲线a =5,c =7,则该双曲线的标准方程为________. (4)下列方程表示焦点在y 轴上的双曲线的有________(把序号填在横线上).①x 2-y 22=1;②x 2a +y 22=1(a <0);③y 2-3x 2=1;④x 2cos α+y 2sin α=1⎝ ⎛⎭⎪⎫π2<α<π.答案 (1)4或12 (2) 5 (3)x 225-y 224=1或y 225-x 224=1(4)②③④解析 (3)∵a =5,c =7,∴b =c 2-a 2=24=2 6. 当焦点在x 轴上时,双曲线方程为x 225-y 224=1; 当焦点在y 轴上时,双曲线方程为y 225-x 224=1.探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x 2+y 2sin θ=cos θ表示的曲线是( ) A .焦点在y 轴上的双曲线 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在x 轴上的椭圆[解析] 曲线方程可化为x 2cos θ+y 2cos θsin θ=1,θ是第三象限角,则cos θ<0,cos θsin θ>0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A 拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为x 2m +y 2n=1,则当mn <0时,方程表示双曲线.若⎩⎪⎨⎪⎧m >0,n <0,则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n >0,则方程表示焦点在y 轴上的双曲线.【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 答案 C 解析 原方程化为y 2k 2-1-x 2k +1=1,∵k >1,∴k 2-1>0,k +1>0.∴方程所表示的曲线为焦点在y 轴上的双曲线.探究2 双曲线的标准方程例2 求满足下列条件的双曲线的标准方程.(1)焦点在坐标轴上,且过M ⎝ ⎛⎭⎪⎫-2,352,N ⎝ ⎛⎭⎪⎫473,4两点;(2)两焦点F 1(-5,0),F 2(5,0),且过P ⎝⎛⎭⎪⎫352,2. [解] (1)当双曲线的焦点在x 轴上时,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∵M ,N 在双曲线上,∴⎩⎪⎨⎪⎧(-2)2a 2-⎝ ⎛⎭⎪⎫3522b 2=1,⎝ ⎛⎭⎪⎫4732a 2-42b 2=1,解得⎩⎪⎨⎪⎧1a 2=-116,1b 2=-19(不符合题意,舍去).当双曲线的焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0). ∵M ,N 在双曲线上,∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫3522a 2-4b 2=1,42a 2-⎝ ⎛⎭⎪⎫4732b 2=1,解得⎩⎪⎨⎪⎧1a 2=19,1b 2=116,即a 2=9,b 2=16.∴所求双曲线方程为y 29-x 216=1.(2)由已知可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),代入点P ⎝⎛⎭⎪⎫352,2可得454a 2-4b 2=1,①又a 2+b 2=25,②由①②联立可得a 2=9,b 2=16, ∴双曲线方程为x 29-y 216=1. [解法探究] 例2(1)有没有其他解法呢? 解 ∵双曲线的焦点位置不确定,∴设双曲线方程为mx 2+ny 2=1(mn <0). ∵M ,N 在双曲线上,则有 ⎩⎪⎨⎪⎧4m +454n =1,169×7m +16n =1,解得⎩⎪⎨⎪⎧m =-116,n =19,∴所求双曲线方程为-x 216+y 29=1,即y 29-x 216=1.拓展提升利用待定系数法求双曲线标准方程的步骤(1)定位置:根据条件确定双曲线的焦点在哪条坐标轴上,还是两种都有可能.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0).(3)寻关系:根据已知条件列出关于a ,b ,c (m ,n )的方程组. (4)得方程:解方程组,将a ,b ,c (m ,n )代入所设方程即为所求.【跟踪训练2】 根据下列条件,求双曲线的标准方程. (1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)c =6,经过点(-5,2),焦点在x 轴上. 解 (1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1.由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a2-(15)2b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去).∴所求双曲线方程是x 25-y 2=1.探究3 双曲线定义的应用例3 如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. [解] 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22. (2)将|PF 2|-|PF 1|=2a =6,两边平方得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°,∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.拓展提升双曲线定义的两种应用(1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)双曲线中的焦点三角形双曲线上的点P 与其两个焦点F 1,F 2连接而成的三角形PF 1F 2称为焦点三角形.令|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ,因|F 1F 2|=2c ,所以有①定义:|r 1-r 2|=2a .②余弦公式:4c 2=r 21+r 22-2r 1r 2cos θ. ③面积公式:S △PF 1F 2=12r 1r 2sin θ.一般地,在△PF 1F 2中,通过以上三个等式,所求问题就会顺利解决.【跟踪训练3】 (1)已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的左、右焦点,且|PF 1|=17,求|PF 2|的值.解 由双曲线方程x 264-y 236=1可得a =8,b =6,c =10,由双曲线的图象可得点P 到右焦点F 2的距离d ≥c -a =2,因为||PF 1|-|PF 2||=16,|PF 1|=17,所以|PF 2|=1(舍去)或|PF 2|=33.(2)已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,则S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×64×32=16 3.探究4 与双曲线有关的轨迹问题例4 如图,在△ABC 中,已知|AB |=42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.并指出表示什么曲线.[解] 如图,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,则A (-22,0),B (22,0). 由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵2sin A +sin C =2sin B , ∴2a +c =2b ,即b -a =c2.从而有|CA |-|CB |=12|AB |=22<AB .∴由双曲线的定义知,点C 的轨迹为双曲线的右支且不包括顶点. ∵a =2,c =22,∴b 2=c 2-a 2=6. ∴顶点C 的轨迹方程为x 22-y 26=1(x >2).故C 点的轨迹为双曲线右支且除去点(2,0). 拓展提升用定义法求轨迹方程的一般步骤(1)根据已知条件及曲线定义确定曲线的位置及形状(定形,定位). (2)根据已知条件确定参数a ,b 的值(定参). (3)写出标准方程并下结论(定论).【跟踪训练4】 如图所示,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1, ∴圆心为F 1(-5,0),半径r 1=1. 圆F 2:(x -5)2+y 2=42, ∴圆心为F 2(5,0),半径r 2=4.设动圆M 的半径为R ,则有|MF 1|=R +1, |MF 2|=R +4,∴|MF 2|-|MF 1|=3<|F 1F 2|=10, ∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支, 且a =32,c =5,∴b =912,∴点M 的轨迹方程为49x 2-491y 2=1⎝ ⎛⎭⎪⎫x ≤-32.1.双曲线的定义中,一定要注意的几点(1)前提条件“平面内”不能丢掉,否则就成了空间曲面,不是平面曲线了;(2)不可漏掉定义中的常数小于|F 1F 2|,否则,当2a =|F 1F 2|时,||PF 1|-|PF 2||=2a 表示两条射线;当||PF 1|-|PF 2||>2a 时,不表示任何图形;(3)不能丢掉绝对值符号,若丢掉绝对值符号,其余条件不变,则点的轨迹为双曲线的一支. 2.求双曲线的标准方程时,应注意的两个问题 (1)正确判断焦点的位置;(2)设出标准方程后,再运用待定系数法求解.求双曲线的标准方程也是从“定形”“定式”和“定量”三个方面去考虑.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”是根据“形”设双曲线标准方程的具体形式;“定量”是指用定义法或待定系数法确定a ,b 的值.1.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值X 围是( )A .(-1,3)B .(-1,+∞)C .(3,+∞) D.(-∞,-1) 答案 B解析 依题意,应有m +1>0,即m >-1.2.已知双曲线x 216-y 29=1,则双曲线的焦点坐标为( )A .(-7,0),(7,0)B .(-5,0),(5,0)C .(0,-5),(0,5)D .(0,-7),(0,7) 答案 B解析 由双曲线的标准方程可知a 2=16,b 2=9,则c 2=a 2+b 2=16+9=25,故c =5.又焦点在x 轴上,所以焦点坐标为(-5,0),(5,0).3.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m 答案 B解析 ∵A ,B 在双曲线的右支上, ∴|BF 1|-|BF 2|=2a ,|AF 1|-|AF 2|=2a , ∴|BF 1|+|AF 1|-(|BF 2|+|AF 2|)=4a . ∴|BF 1|+|AF 1|=4a +m .∴△ABF 1的周长为4a +m +m =4a +2m .4.焦点在y 轴上,a =3,c =5的双曲线方程为________. 答案y 29-x 216=1 解析 ∵b 2=c 2-a 2=52-32=16,又焦点在y 轴上, ∴双曲线方程为y 29-x 216=1.5.已知双曲线的两个焦点F 1,F 2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的方程.解 若以线段F 1F 2所在的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系,则word- 11 - / 11 双曲线的方程为标准形式x 2a 2-y 2b 2=1(a >0,b >0).由题意得2a =24,2c =26. ∴a =12,c =13,b 2=132-122=25. 双曲线的方程为x 2144-y 225=1; 若以线段F 1F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立直角坐标系. 则双曲线的方程为y 2144-x 225=1.。
§2.3.1 双曲线及其标准方程(A )1、双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到(5,0)-的距离是( ) A 、7 B 、23 C 、5或25 D 、7或232、双曲线22221(0,0)x y a b a b-=>>,过焦点1F 的直线交在双曲线的一支上的弦长||AB 为m ,另一焦点为2F ,则2ABF ∆的周长为( )A 、4aB 、4a m -C 、42a m +D 、42a m -3、已知方程22111x y k k-=+-表示双曲线,则k 的取值范围是( ) A 、11k -<< B 、0k > C 、0k ≥ D 、1k >或1k <-4、若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同的焦点1F 、2F ,P 为椭圆与双曲线的公共点,则12||||PF PF ⋅等于( )A 、m a -B 、1()2m a - C 、22m a - D 5、到两定点1(3,0)F -,2(3,0)F 的距离之差的绝对值等于6的点M 的轨迹是( )A 、椭圆B 、线段C 、双曲线D 、两条射线6、在方程22mx my n -=中,若0mn <,则方程的曲线是( )A 、焦点在x 轴上的椭圆B 、焦点在x 轴上的双曲线C 、焦点在y 轴上的椭圆D 、焦点在y 轴上的双曲线 7、双曲线22221124x y m m -=+-的焦距是 ; 8、椭圆中的,,a b c 的关系式是 ;双曲线中的,,a b c 的关系式是 ;9、已知双曲线221916x y -=上一点P 到双曲线的一个焦点的距离为3,则点P 到另一个焦点的距离为 ;10、设P 为双曲线2214x y -=上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 ;11、相距2000米的两个哨所A 、B 听到远处传来的炮弹的爆炸声,已知当时的声速是330 米/秒,在A 哨所听到爆炸声的时间比在B 哨所听到时迟4秒,若以A 、B 两哨所所在直线为x 轴,中点为原点建立直角坐标系,则爆炸点所在的曲线方程为 ;12、讨论方程22193x y k k +=--表示的曲线。
圆锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】A.x 225+y 29=1 (y ≠0) B.y 225+x 29=1 (y ≠0) C.x 216+y 216=1 (y ≠0) D.y 216+x 29=1 (y ≠0) 【注:检验去点】3.已知A (0,-5)、B (0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】4.已知两定点F 1(-3,0),F 2(3,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是( ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】5.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.x 216-y 29=1(x ≤-4)B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4)D.x 29-y 216=1(x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :(x +2)2+y 2=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.(2)涉及圆的相切问题中的圆锥曲线:8.已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过B 且与圆A 内切,求圆心P 的轨迹方程. 已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为( ) A.x 24-y 212=1 (x >0)B.x 24-y 212=1 (x <0) C.x 24-y 212=1D.y 24-x 212=1 【注:由题目判断是双曲线的一支还是两支】 9.若动圆P 过点N (-2,0),且与另一圆M :(x -2)2+y 2=8相外切,求动圆P 的圆心的轨迹方程. 【注:双曲线的一支,注意与上题区分】10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.11.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( ) A.椭圆 B.双曲线 C.双曲线的一支 D.抛物线12.已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程. 【注:同上题做比较,说法不一样,本质相同】13.已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.(M 的横坐标非负) (1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】(3)其他问题中的圆锥曲线:14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】2.15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D .抛物线【注:体现抛物线定义的灵活应用】2.涉及到曲线上的点到焦点距离的问题:16.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22 B.12 C.2-12 D.3417.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .418.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.20.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形21.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.【注:椭圆上的点到焦点的距离,最小是a -c ,最大是a+c 】22.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c -a 】23.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】24.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF u u u u r ·2PF u u u u r =0,则|1PF u u u u r +2PF u u u u r |等于( ) A .3 B .6 C .1 D .225.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A.172B.3C. 5D.92【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.55【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或2 【注:抛物线的焦半径,即定义的应用】3.焦点三角形问题:椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+∆=++= 椭圆的焦点三角形面积:推导过程:2tan sin cos 121sin 21cos 1 -)cos (12 (1)-(2)(2)2a (1)COS 2-2 1 b 2b PFPF S 2bPFPF 4c 4a PFPF PF PF 4c PF PF PF PF 2221F PF 22122212212212221θθθθθθθ=+==+==+⎪⎩⎪⎨⎧=+=+∆得双曲线的焦点三角形面积:2tanbS 2F PF 21θ=∆28.设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【注:小题中可以直接套用公式。
2.3.1 双曲线及其标准方程教学要求:学生掌握双曲线的定义和标准方程,以及标准方程的推导.教学重点:双曲线的定义和双曲线的标准方程.教学难点:在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力.教学过程:一、新课导入:1. 提问:椭圆的定义是什么?椭圆的标准方程是什么?(学生口答,教师板书)2. 在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系,若5,3a b ==,则?c =写出符合条件的椭圆方程。
二、讲授新课:1. 双曲线的定义:① 提问:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图2-23,定点12,F F 是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时,|MF 1|-|MF 2|是常数,这样就画出一条曲线;由|MF 2|-|MF 1|是同一常数,可以画出另一支.② 定义:平面内与两定点12,F F 的距离的差的绝对值等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的焦点,两焦点间的距离12F F 叫做双曲线的焦距。
③ (理科)类比椭圆标准方程的建立过程推导出双曲线的标谁方程。
(文科)简单讲解推导给出标准方程。
标准方程:22222221,(0,0,)x y a b c a b a b-=>>=+(焦点12(,0),(,0)F c F c -在x 轴) 思考:若焦点在y 轴,标准方程又如何?④ 例1、58P 分析:由双曲线的标准方程知,只要求出,a b 即可得方程;练习:1、已知双曲线的两焦点为12(8,0),(8,0)F F -,双曲线上任意点到12,F F 的距离的差的绝对值等于10,求此双曲线的标准方程。
2、双曲线的两焦点分别为12(3,0),(3,0)F F -,①若2,___;a b ==则②若1,___;b a ==则3、双曲线的两焦点分别为12(10,0),(10,0)F F -,点(8,0)在双曲线上求双曲线的标准方程。
[课时作业] [A 组 基础巩固]1.与椭圆x 24+y 2=1共焦点且过点Q (2,1)的双曲线方程是( ) A.x 22-y 2=1 B.x 24-y 2=1 C.x 23-y 23=1D .x 2-y 22=1解析:椭圆的焦点F 1(-3,0),F 2(3,0).与椭圆x 24+y 2=1共焦点的只有A 、D 两项, 又因为Q 点在x 22-y 2=1上. 故应选A. 答案:A2.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( ) A.x 24-y 2=1 B .x 2-y 24=1C.x 22-y 23=1D.x 23-y 22=1解析:由题意可设双曲线方程为 x 2a 2-y 25-a 2=1,又由中点坐标公式可得P (5,4), ∴5a 2-165-a 2=1,解得a 2=1. 答案:B3.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A .11 B .9 C .5 D .3解析:由题意知a =3,b =4,c =5,由双曲线定义知,|||PF 1|-|PF 2|=|3-|PF 2||=2a =6,∴|PF 2|=9答案:B4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A.14 B .35 C.34 D.45 解析:双曲线的方程为x 22-y 22=1, 所以a =b =2,c =2, 因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上, 则有|PF 1|-|PF 2|=2a =22, 所以解得|PF 2|=22,|PF 1|=42, 所以根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.答案:C5.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则P 到x 轴的距离为( )A.32B.62 C.3 D. 6解析:∵||PF 1|-|PF 2||=2, ∴|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4, ∴|PF 1|2+|PF 2|2=4+2|PF 1||PF 2|, 由余弦定理知|PF 1|2+|PF 2|2-|F 1F 2|2=2|PF 1||PF 2|cos 60°, 又∵a =1,b =1, ∴c =a 2+b 2=2, ∴|F 1F 2|=2c =22,∴4+2|PF 1||PF 2|-8=|PF 1||PF 2|, ∴|PF 1||PF 2|=4, 设P 到x 轴的距离为|y 0|, S △PF 1F 2=12|PF 1||PF 2|sin 60°=12|F 1F 2||y 0|,∴12×4×32=12×22|y 0|, ∴y 0=32=62. 故选B. 答案:B6.双曲线8kx 2-ky 2=8的一个焦点为(0,3),则实数k 的值为________. 解析:方程化为标准形式是y 2-8k -x 2-1k =1,所以-8k -1k =9, 即k =-1. 答案:-17.若方程x 25-m +y 2m 2-2m -3=1表示焦点在y 轴上的双曲线,则实数m 的取值范围是________.解析:根据焦点在y 轴上的双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),得满足题意的m 需满足不等式组⎩⎨⎧ 5-m <0,m 2-2m -3>0,即⎩⎨⎧m >5,m >3或m <-1, ∴m >5,∴m 的取值范围为(5,+∞). 答案:(5,+∞)8.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1,F 2,P 为双曲线C 的右支上一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于________. 解析:由x 29-y 216=1知c =5,∴|F 1F 2|=2c =10, 由双曲线定义知, |PF 1|-|PF 2|=6, ∴|PF 1|=6+|PF 2|=16,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=256+100-1002×16×10=45.∴sin ∠F 1PF 2=35.∴S 12PF F =12|PF 1||PF 2|sin ∠F 1PF 2=12×16×10×35=48.答案:489.动圆M 与两定圆F 1:x 2+y 2+10x +24=0,F 2:x 2+y 2-10x -24=0都外切,求动圆圆心M 的轨迹方程.解析:将圆的方程化成标准式:F 1:(x +5)2+y 2=1,圆心F 1(-5,0),半径r 1=1, F 2:(x -5)2+y 2=72,圆心F 2(5,0),半径r 2=7. 由于动圆M 与定圆F 1,F 2都外切, 所以|MF 1|=r +1,|MF 2|=r +7, ∴|MF 2|-|MF 1|=6,∴点M 的轨迹是双曲线的左支,且焦点F 1(-5,0),F 2(5,0), ∴c =5,且a =3,∴b 2=c 2-a 2=52-32=16. ∴动圆圆心M 的轨迹方程为x 29-y 216=1(x <0).10.设双曲线x 24-y 29=1,F 1,F 2是其两个焦点,点M 在双曲线上. (1)若∠F 1MF 2=90°,求△F 1MF 2的面积; (2)若∠F 1MF 2=60°时,△F 1MF 2的面积是多少? 解析:(1)由双曲线方程知a =2,b =3,c =13. 设|MF 1|=r 1, |MF 2|=r 2(r 1>r 2). 由双曲线定义, 有r 1-r 2=2a =4,两边平方得r 21+r 22-2r 1·r 2=16, 即|F 1F 2|2-4S △F 1MF 2=16, 也即52-16=4S △F 1MF 2, 求得S △F 1MF 2=9.(2)若∠F 1MF 2=60°.在△MF 1F 2中,由余弦定理得|F 1F 2|2=r 21+r 22-2r 1r 2cos 60°, |F 1F 2|2=(r 1-r 2)2+r 1r 2, 解得r 1r 2=36.求得S △F 1MF 2=12r 1r 2sin 60°=9 3.[B 组 能力提升]1.“mn <0”是“方程mx 2+ny 2=1表示焦点在x 轴上的双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:由mn <0⇔m <0,n >0或m >0,n <0,所以mx 2+ny 2=1表示焦点可能在x 轴上也可能在y 轴上的双曲线; 而mx 2+ny 2=1表示焦点在x 轴的双曲线则有m >0,n <0, 故mn <0. 故应选B. 答案:B2.已知双曲线的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线的左支交于A ,B 两点,线段AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16 B .18 C .21D .26解析:由题意结合双曲线定义得|AF 2|=2a +|AF 1|,|BF 2|=2a +|BF 1|. 又|AF 1|+|BF 1|=|AB |=5,2a =8,∴△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AB |+4a +|AB |=16+2|AB |=26. 答案:D3.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >0,b >0)有共同的焦点F 1,F 2,P 是椭圆和双曲线的一个交点,则|PF 1|·|PF 2|=________. 解析:如图,由椭圆定义知,|PF 1|+|PF 2|=2m , ∴(|PF 1|+|PF 2|)2=4m . ①由双曲线定义知, |PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a , ② ①-②得,|PF 1|·|PF 2|=m -a . 答案:m -a4.已知双曲线x 216-y 24=1的两焦点为F 1,F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程. 解析:(1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF 1→·MF 2→=0, 则MF 1⊥MF 2, 设|MF 1|=m ,|MF 2|=n ,由双曲线定义知,m -n =2a =8, ① 又m 2+n 2=(2c )2=80,②由①②得m ·n =8, ∵12mn =4=12|F 1F 2|·h , ∴h =255.(2)设所求双曲线C 的方程为 x 216-λ-y 24+λ=1(-4<λ<16), 由于双曲线C 过点(32,2), ∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去). ∴所求双曲线C 的方程为x 212-y 28=1.5.在周长为48的Rt △MPN 中,∠MPN =90°,tan ∠PMN =34,求以M 、N 为焦点,且过点P 的双曲线方程.解析:∵△MPN 的周长为48,且tan ∠PMN =34, ∴设|PN |=3k ,|PM |=4k , 则|MN |=5k .由3k +4k +5k =48得k =4. ∴|PN |=12,|PM |=16,|MN |=20.以MN 所在直线为x 轴,以MN 的中点为原点建立直角坐标系,如图所示. 设所求双曲线方程为 x 2a 2-y 2b 2=1(a >0,b >0).由|PM |-|PN |=4得2a =4,a =2,a 2=4.由|MN|=20得2c=20,c=10,∴b2=c2-a2=96.∴所求双曲线方程为x24-y296=1(x≠±2).。
………………………………………………………………………………………………………………………………………………………。
………………………………………………………………………………………………………………………………………………………。