九年级数学上册第10讲一元二次方程根与系数关系课后练习新版苏科版
- 格式:doc
- 大小:77.50 KB
- 文档页数:3
1.3一元二次方程的根与系数的关系一、单选题1.已知方程220x -=的两个根是1x 、2x ,那么这两个根与方程中系数的关系是( ) A .122x x +=-B .122x x =C .122x x +=D .122x x =- A .﹣ B . C . D .3.一元二次方程(x ﹣1)(x +3)=5x ﹣5的根的情况是( )A .无实数根B .有两个不相等的实数根C .有两个相等的实数根D .有一个正根,一个负根 4.已知矩形的长和宽是方程x 2﹣7x +8=0的两个实数根,则矩形的对角线的长为( )A .6B .7C .D . 5.已知方程22650x x +=-,下列判断正确的是( )A .方程两实数根的和等于3B .方程两实数根的积等于52C .方程有两个不相等的实数根D .方程无实数根6. 已知x 1,x 2是关于x 的方程x 2+bx -3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为( )A .4B .-4C .3D .-37.已知m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个根,若(m -1)(n -1)=-6,则a =( )A .-10B .4C .-4D .108.关于x 的一元二次方程x 2-(k -1)x -k +2=0有两个实数根x 1、x 2,若(x 1-x 2+2)(x 1-x 2-2)+2x 1x 2=-3,则k 的值为( )A .0或2B .-2或2C .-2D .2二、填空题9.如果1x 、2x 是方程()200++=≠ax bx c a 的两个根,那么__________b a =-,__________c a =. 10.设方程x 2﹣2021x ﹣1=0的两个根分别为x 1、x 2,则x 1+x 2﹣x 1x 2的值是___. 11.已知关于x 的方程2(3)70x m x m -++-=,若有一个根为0,则m =________;若两根之和为0,则m =___________.。
*2.4 一元二次方程根与系数的关系一、选择题1.若x 1,x 2是一元二次方程x 2-2x -3=0的两个根,则x 1·x 2的值是( ) A .2 B .-2 C .4 D .-32.方程x 2+ax -3=0的两个根为x 1,x 2,且x 1+x 2=2,则a 的值为( ) A .2 B .-2 C .4D .-43.若关于x 的一元二次方程x 2-2x +m =0有两个实数根,其中一个根为x =-1,则另一个根为( )A .x =1B .x =-3C .x =3D .x =44.若α,β是一元二次方程3x 2+2x -9=0的两根,则βα+αβ的值是( )A.427 B .-427C .-5827D.58275.设a ,b 是方程x 2+x -2020=0的两个根,则a 2+2a +b 的值为( ) A .2017B .2018C .2019D .20206.已知一元二次方程2x 2+2x -1=0的两个根为x 1,x 2且x 1<x 2,下列结论正确的是( ) A .x 1+x 2=1 B .x 1·x 2=-1 C .|x 1|<|x 2| D .x 12+x 1=12二、填空题7.设x 1,x 2是一元二次方程x 2-mx -6=0的两个根,且x 1+x 2=1,则x 1=________,x 2=________.8.若矩形的长和宽是方程2x 2-16x +m =0(0<m ≤32)的两根,则矩形的周长为________. 9.若关于x 的方程x 2+(a -1)x +a 2=0的两根互为倒数,则a =________.10.已知关于x 的方程x 2-6x +k =0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则k 的值是________.11.已知关于x 的一元二次方程x 2-4x +m -1=0的实数根x 1,x 2,满足3x 1x 2-x 1-x 2>2,则m的取值范围是________.三、解答题12.已知关于x的方程3x2+mx-8=0有一个根是x=23,求另一个根及m的值.13.关于x的一元二次方程x2+2x+k+1=0的实数根是x1和x2.(1)求k的取值范围;(2)如果x1+x2-x1x2<-1且k为整数,求k的值.14.已知关于x的一元二次方程x2+(2m+1)x+m2-2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.15.已知△ABC 的两边AB ,AC 的长是关于x 的一元二次方程x 2-(2k +5)x +k 2+5k +6=0的两个实数根,BC 边的长为5.(1)当k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)当k 为何值时,△ABC 是等腰三角形?并求出此时△ABC 的周长.16.已知x 1,x 2是一元二次方程4kx 2-4kx +k +2=0的两个实数根.是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,请说明理由.阅读理解题已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1x2=q.反过来,如果x1+x2=-p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个关于x的一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a,b满足a2-15a-5=0,b2-15b-5=0,求ab+ba的值;(3)已知a,b,c均为实数,且a+b+c=0,abc=16,求正数c的最小值.详解详析[课堂达标] 1.[答案] D 2.[答案] B 3.[答案]C4.[解析] C ∵α,β是一元二次方程3x 2+2x -9=0的两根, ∴α+β=-23,αβ=-3,∴βα+αβ=β2+α2αβ=(α+β)2-2αβαβ= (-23)2-2×(-3)-3=-5827.故选C .5.[解析] C 把x =a 代入方程x 2+x -2020=0,得a 2+a -2020=0,∴a 2+a =2020.∵a ,b 是方程x 2+x -2020=0的两个根,∴a +b =-1,∴a 2+2a +b =a 2+a +a +b =2020+(-1)=2019.故选C .6.[解析] D 根据题意,得x 1+x 2=-22=-1,x 1x 2=-12,所以A ,B 选项错误;∵x 1+x 2<0,x 1x 2<0,∴x 1,x 2异号,且负数的绝对值大,所以C 选项错误; ∵x 1为一元二次方程2x 2+2x -1=0的根, ∴2x 12+2x 1-1=0,∴x 12+x 1=12,所以D 选项正确.故选D .7.[答案] -2 3[解析] ∵x 1,x 2是一元二次方程x 2-mx -6=0的两个根,且x 1+x 2=1,∴m =1(经检验,符合题意),∴原方程为x 2-x -6=0,即(x +2)(x -3)=0,解得x 1=-2,x 2=3.8.[答案] 16[解析] 设矩形的长和宽分别为x 1,x 2,根据题意得x 1+x 2=8, 所以矩形的周长为2(x 1+x 2)=16. 9.[答案] -1[解析] ∵方程的两根互为倒数,∴两根的乘积为1, 即a 2=1,∴a =1或a =-1.当a =1时,原方程化为x 2+1=0,方程无实数根,不符合题意,故舍去; 当a =-1时,原方程化为x 2-2x +1=0,Δ=0,符合题意.故a =-1. 10.[答案] 2[解析] ∵x 2-6x +k =0的两根分别为x 1,x 2,∴x 1+x 2=6,x 1x 2=k ,1x 1+1x 2=x 1+x 2x 1x 2=6k =3,解得k =2.11.[答案] 3<m≤5[解析] 依题意,得⎩⎪⎨⎪⎧(-4)2-4(m -1)≥0,3(m -1)-4>2,解得3<m≤5. 故答案是3<m≤5.12.解:设方程的另一个根为x =t. 由题意,得23+t =-m 3,23t =-83,解得t =-4,m =10.故另一个根为x =-4,m 的值为10. 13.解:(1)∵方程有实数根, ∴Δ=22-4(k +1)≥0,解得k≤0, 故k 的取值范围是k≤0.(2)根据一元二次方程根与系数的关系, 得x 1+x 2=-2,x 1x 2=k +1, 所以x 1+x 2-x 1x 2=-2-(k +1).由已知,得-2-(k +1)<-1,解得k >-2. 又由(1)k≤0,∴-2<k≤0. ∵k 为整数,∴k 的值为-1和0.14.解:(1)Δ=(2m +1)2-4(m 2-2)=4m +9≥0,解得m≥-94,∴m 的最小整数值为-2.(2)∵x 1+x 2=-(2m +1),x 1x 2=m 2-2,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(2m +1)2-4(m 2-2)=4m +9, ∴4m +9+m 2=21.解得m 1=-6,m 2=2. ∵m≥-94时,方程有两个实数根,∴m =2.15.解:(1)∵b 2-4ac =[-(2k +5)]2-4(k 2+5k +6)=4k 2+20k +25-4k 2-20k -24=1>0,且AB ,AC 的长是关于x 的一元二次方程x 2-(2k +5)x +k 2+5k +6=0的两个实数根,∴AB +AC =2k +5,AB·AC =k 2+5k +6,∴AB 2+AC 2=(AB +AC)2-2AB·AC =(2k +5)2-2(k 2+5k +6)=4k 2+20k +25-2k 2-10k -12=2k 2+10k +13.若△ABC 是以BC =5为斜边的直角三角形, 则AB 2+AC 2=BC 2,即2k 2+10k +13=25,∴k 2+5k -6=0,∴k 1=1,k 2=-6(不合题意,舍去),即当k 的值为1时,△ABC 是以BC 为斜边的直角三角形.(2)∵x 2-(2k +5)x +k 2+5k +6=0, 即(x -k -2)(x -k -3)=0, ∴x 1=k +2,x 2=k +3.若k +2=5,k =3,则k +3=6, 此时△ABC 的周长=5+5+6=16; 若k +3=5,k =2,则k +2=4, 此时△ABC 的周长=5+5+4=14.综上,当k 的值为3或2时,△ABC 是等腰三角形.当k 的值为3时,△ABC 的周长为16;当k 的值为2时,△ABC 的周长为14.16.解:不存在.理由如下:根据题意得4k≠0,且Δ=b 2-4ac =(-4k)2-4·4k(k +2)≥0, ∴k <0.∵x 1,x 2是一元二次方程4kx 2-4kx +k +2=0的两个实数根, ∴x 1+x 2=1,x 1x 2=k +24k.∵(2x 1-x 2)(x 1-2x 2)=-32,∴2(x 1+x 2)2-9x 1x 2=-32,即2×12-9·k +24k =-32,解得k =185,而k <0,不合题意,舍去.∴不存在k 的值,使(2x 1-x 2)(x 1-2x 2)=-32成立.[素养提升]解:(1)设x 2+mx +n =0(n≠0)的两根为x 1,x 2,则x 1+x 2=-m ,x 1x 2=n , 则所求新方程的两根为1x 1,1x 2.∵1x 1+1x 2=x 1+x 2x 1x 2=-m n ,1x 1·1x 2=1x 1x 2=1n .所以,所求的方程为x 2+m n x +1n =0, 即nx 2+mx +1=0.(2)从a ,b 满足的同一种关系可知:①当a≠b 时,a ,b 是一元二次方程x 2-15x -5=0的两根. ∵b 2-4ac =(-15)2-4×(-5)=245>0, ∴a +b =15,ab =-5,从而a b +b a =a 2+b 2ab =(a +b )2-2ab ab =152-2×(-5)-5=-47.②当a =b 时,a b +ba =1+1=2.∴a b +ba的值为-47或2. (3)由题意得c≠0,a +b +c =0,abc =16, ∴a +b =-c ,ab =16c ,因此,由给出的结论,得a ,b 是方程x 2+cx +16c =0的两个实数根,∴Δ=c 2-4×16c ≥0.∵c >0,∴c 3≥64, ∴c≥4,故c 的最小值为4.。
2021年苏科版九年级数学上册《1.3一元二次方程根与系数的关系》暑假自主学习培优提升训练(附答案)1.已知k≠1,一元二次方程(k-1)x 2+kx+1=0有根,则k 的取值范围是( ). A .k≠2 B .k>2 C .k<2且k≠1 D .k 为一切实数2.已知α,β是方程2202010x x ++=的两个根,则(1+2022α+α2)(1+2022β+β2)的值为( )A .1B .2C .3D .4 3.若k 1>,关于x 的方程()222x 4k 1x 2k 10-++-=的根的情况是( )A .有一正根和一负根B .有两个正根C .有两个负根D .没有实数根 4.若a≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( ) A .14 B .1 C ..4D .3 5.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( ) A .-13 B .12C .14D .15 6.关于x 的一元二次方程()()222120m x m x m -+++-=有两个不相等的正实数根,则m 的取值范围是____________7.已知,m n 是一元二次方程2240x x --=的两个数根,且()()22714367m m a n n -+--100=,则a =__________.8.已知方程22210x kx k +-+=的两实数根的平方和为294,则k 的值为____. 9.等腰△ABC 的两边是关于x 的方程x²-3mx+9m=0的两根,第三边的长是4,则m=______. 10.若关于x 的方程(x ﹣4)(x 2﹣6x +m )=0的三个根恰好可以组成某直角三角形的三边长,则m 的值为_____.11.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2﹣2mn+n 2=_____.12.设mn ,分别为一元二次方程x 2+2x-2021=0的两个实数根,则m 2+3m+n=____. 13.如图,已知直线y=x+4与双曲线y=k x(x <0)相交于A 、B 两点,与x 轴、y 轴分别相交于D 、C 两点,若2k=_____.14.已知x 1、x 2为方程x 2+4x+2=0的两实根,则x 13+14x 2+5=_______.15.已知关于x 的方程()()221110a x a x --++=的两个实数根互为倒数,则a 的值为___. 16.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根.(1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.17.已知关于x 的一元二次方程.(1)若此方程有两个不相等的实数根,求实数k 的取值范围;(2)已知x=3是此方程的一个根,求方程的另一个根及k 的值;(3)当Rt △ABC 的斜边长C=,且两条直角边A 和B 恰好是这个方程的两个根时,求Rt △ABC的面积.18.已知关于x 的方程()()212310k x k x k -+-++=有两个不相等的实数根1x ,2x . ()1求k 的取值范围.()2是否存在实数k ,使方程的两实数根互为相反数?19.已知关于x 的一元二次方程x 2﹣2(a +1)x +a 2+3=0有两个实数根x 1,x 2(1)求实数a 的取值范围(2)若等腰△ABC 的三边长分别为x 1,x 2,6,求△ABC 的周长(3)是否存在实数a ,使x 1,x 222求出这个菱形的面积;若不存在,说明理由.20.如果关于x 的一元二次方程20(a 0)++=≠ax bx c 有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”,例如,一元二次方程2680x x -+=的两个根是2和4,则方程2680x x -+=就是“倍根方程”.(1)若一元二次方程230x x c -+=是“倍根方程”,则c = .(2)若关于x 的一元二次方程20(a 0)++=≠ax bx c 是“倍根方程”,则a ,b ,c 之间的关系为 .(3)若(2)()0(0)x mx n m --=≠是“倍根方程”,求代数式2245m mn n -+的值参考答案6.22m -<< 解:设一元二次方程的两个根分别为12,x x∵关于x 的一元二次方程()()222120m x m x m -+++-=有两个不相等的正实数根 ∴12120,0,0x x x x ∆>+>>∴221212(21)4(2)02102202m m m x x m m x x m ⎧⎪∆=+-->⎪+⎪+=->⎨-⎪-⎪=>⎪-⎩①② 由①得:34m >由②得:122m -<< 故m 的取值范围是:324m << 7.-8解:∵,m n 是一元二次方程2240x x --=的两个数根,∴2m n += ,4mn =- ,∴2n m =-,∴2224mn m m m m , ∴224m m -=,∴22714727428m m m m2367n n 327n n 32227m m 2327m m 3471275=∴22714367285100m m a n n a∴8a =-,故答案为:-8.8.3解:∵22210x kx k +-+=,设方程的两个解为12x x 、 则122k x x +=-,12212k x x -+= ∵两实根的平方和为294,即()()2212x x +=294 ∴()()()2222121212292122422k k x x x x x x -+⎛⎫=+=+-=-- ⎪⎝⎭解得:k=3或k=-11∵当k=-11时,一元二次方程的△<0,不符,需要舍去故答案为:39.4或163解:当4是底边时,则关于x 的方程2390x mx m -+=有两个相等的实数根,∴2(3)490m m ∆=--⨯= ,解得4m =,或0m =1230x x b c m +=+=≠0m ∴=(舍去)当4是腰时,则方程有一个根是4,把x =4代入方程得2390x mx m -+=,解得:16m 3= 综上所述,m 的值为4或163 故答案为:4或163 10.659解:设某直角三角形的三边长分别为a 、b 、c ,依题意可得x ﹣4=0或x 2﹣6x +m =0,∴x =4,x 2﹣6x +m =0,设x2﹣6x+m=0的两根为a、b,∴(﹣6)2﹣4m>0,m<9,根据根与系数关系,得a+b=6,ab=m,则c=4,①c为斜边时,a2+b2=c2,(a+b)2﹣2ab=c2∴62﹣2m=42,m=10(不符合题意,舍去);②a为斜边时,c2+b2=a2,42+(6﹣a)2=a2,a=133,b=6﹣a=53,∴m=ab=13353=659故答案为659.11.32解:∵m、n是一元二次方程x2+2x-7=0的两个根,∴m+n=-2,mn=-7,∴m2-2mn+n2=(m+n)2-4mn=(-2)2-4×(-7)=32.故答案为:32.12.2021解:∵m,n分别为一元二次方程x2+2x-2019=0的两个实数根,∴m+n=-2,m2+2m-2023=0,∴m2+2m=2023,∴m2+3m+n=m2+2m+m+n=2023-2=2021.13.-3解:设A(a,a+4),B(c,c+4),则4 y xkyx=+⎧⎪⎨=⎪⎩解得:x+4=kx,即x2+4x−k=0,∵直线y=x+4与双曲线y=kx相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=(2,2 (c−a)2=8,(c−a)2=4,∴16+4k =4,解得:k=−3,故答案为−3.14.-43解:∵x1、x2为方程x2+4x+2=0的两实根∴x1+x2=-4,x12+4x1=-2∴x13+14x2+5=x1•x12+14x2+5=x1•(-4x1-2)+14x2+5=-4x12-2x1+14x2+5 =-4(-4x1-2)-2x1+14x2+5=14(x1+x2)+13=-56+13=-43.15解:∵方程(a2-1)x2-(a+1)x+1=0有两个实数根,∴a≠±1,设方程(a2-1)x2-(a+1)x+1=0的两个实数根分别为α、β,又∵方程(a2-1)x2-(a+1)x+1=0的两个实数根互为倒数,∴αβ=21 1a-=1,解得∵△=[-(a+1)]2-4×(a2-1)=(1-2)2-4×1 =-22-1<0,∴a=-2时方程(a 2-1)x 2-(a+1)x+1=0无解,因此a=-2舍去,∴a=2,故答案为:216.(1)a≥0且a≠6;(2)a 的值为7、8、9或12.解:(1)∵原方程有两实数根,∴260(2)4(6)*0a a a a -≠⎧⎨∆=-->⎩, ∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,∴x 1+x 2=﹣26a a -,x 1x 2=6a a -, ∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=-6a a ﹣26a a -+1=﹣66a -. ∵(x 1+1)(x 2+1)是负整数,∴﹣66a -是负整数,即66a -是正整数. ∵a 是整数,∴a ﹣6的值为1、2、3或6,∴a 的值为7、8、9或12.17.(1)k <2.(2)方程的另一个根为x=-1,k=-2.(3)△ABC 的面积为.解:(1)∵原方程有两个不相等的实数根,∴B 2﹣4AC=4-4(k-1)>0,解得k <2. (2)当x=3时,得k=-2,解x 2-2x-3=0得x=3或-1,所以方程的另一个根为x=-1,k=-2. (3)根据勾股定理得:A 2+B 2=C 2=3;因为两条直角边A 和B 恰好是这个方程的两个根, 则A+B=2,因为(A+B )2-2AB=A 2+B 2=3,所以2AB=1,△ABC 的面积为.18.(1)13 12k <且1k ≠;(2) k 不存在,理由见解析 解:(1)方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2,可得:k ﹣1≠0且△=﹣12k +13>0,解得:k <1312且k ≠1; (2)假设存在两根的值互为相反数,设为 x 1,x 2.∵x 1+x 2=0,∴﹣231k k --=0,∴k =32. 又∵k <1312且k ≠1,∴k 不存在. x 1+x 2=﹣p ,x 1x 2=q .19.(1)a ≥1;(2)14;(3)存在,4.解:(1)根据题意得△=4(a +1)2﹣4(a 2+3)=8a ﹣8≥0, ∴a ≥1;(2)①当等腰△ABC 底边为6,x 1=x 2时,△=0,则a =1,方程变形为x 2﹣4x +4=0,解得x 1=x 2=2,而2+2<6,不符合三角形三边的关系,舍去; ②当等腰△ABC 腰长为6,x 1=6或x 2=6时,把x =6代入方程x 2﹣2(a +1)x +a 2+3=0得36﹣12(a +1)+a 2+3=0,解得a 1=3,a 2=9,当a =3时,方程化为x 2﹣8x +12=0,解得x =2或6,三角形三边为6、6、2,则△ABC 的周长为6+6+2=14;当a =9时,方程化为x 2﹣20x +84=0,解得x =14或6,而6+6<14,不符合三角形三边的关系,舍去;∴△ABC 的周长为14;(3)存在.由题意得:x 1+x 2=2(a +1),x 1•x 2=a 2+3, ∵14x 12+1 4x 222, ∴(x 1+x 2)2﹣2x 1x 2=22,即4(a +1)2﹣2(a 2+3)=88,整理得a 2+4a ﹣45=0,解得a 1=5,a 2=﹣9(舍去),当a =5,方程化为x 2﹣12x +28=0,则x 1•x 2=28,所以这个菱形的面积=12×28=14. 20.(1)2c =;(2)229b ac =;(3)0解:(1)∵一元二次方程230x x c -+=是“倍根方程”∴令2x 1=x 2,有x 1+ x 2=3,x 1x 2=c∴c=2(2)设x=m ,x=2m 是方程20(a 0)++=≠ax bx c 的解 ∴2m+m=-b a ,2m 2=c a消去m 解得2b 2=9ac所以a ,b ,c 之间的关系为229b ac =(3)∵(2)()0(0)x mx n m --=≠是“倍根方程” ∴方程的两个根分别为x=2和x=n m , ∴n m =4或n m=1,即n=4m 或n=m 当n=4m 时,原式为(m-n )(4m-n )=0,当n=m 时,原式为(m-n )(4m-n )=0,∴代数式2245m mn n -+=0。
根与系数的关系(韦达定理)(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.43一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•射阳县校级二模)已知x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,下列结论正确的是()A.x1=x2B.﹣2x1=﹣2x2C.x1+x2=﹣2 D.x1•x2=1解:∵Δ=(﹣2)2﹣4×1×(﹣1)=8>0,∴方程有两个不相等的实数解,即x1≠x2,所以A选项不符合题意;∵x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,∴﹣2x1﹣1=0,﹣2x2﹣1=0,∴﹣2x1﹣1=﹣2x2﹣1,即﹣2x1=﹣2x2,所以B选项符合题意;∵x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,∴x1+x2=2,x1x2=﹣1,所以C选项和D选项不符合题意.故选:B.2.(2分)(2023•苏州模拟)关于x的方程(x﹣1)(x﹣2)﹣m2=0的根的情况是()A.有一正一负两个不相等的实数根B.有两个正的不相等实数根C.至多有一个正的实数根D.至少有一个正的实数根解:方程整理得:x2﹣3x+2﹣m2=0,∵Δ=9﹣4(2﹣m2)=4m2+1>0,∴方程有两个不相等的实数根,∵方程的两个根和为3>0,∴至少有一个正的实数根,故选:D.3.(2分)(2020秋•盐城期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是()A.0 B.2020 C.4040 D.4042解:∵a,b是方程x2+x﹣2021=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.4.(2分)(2020秋•金坛区月考)已知关于x的一元二次方程x2+(2m+1)x+m﹣1=0的两个根分别是x1,x2,且满足x12+x22=3,则m的值是()A.0 B.﹣2 C.0 或﹣D.﹣2或0解:∵方程x2+(2m+1)x+m﹣1=0的两个根分别是x1,x2,∴x1+x2=﹣(2m+1),x1x2=m﹣1,∵x12+x22=3,即(x1+x2)2﹣2x1x2=3,∴[﹣(2m+1)]2﹣2(m﹣1)=3,解得m=0或m=﹣,∵Δ=(2m+1)2﹣4(m﹣1)=4m2+5>0,∴m为任意实数,方程均有实数根,∴m=0或m=﹣均符合题意.故选:C.5.(2分)(2020秋•江都区月考)若a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,则a2﹣3b的值是()A.3 B.﹣15 C.﹣3 D.15解:∵a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,∴a2+3a﹣6=0,即a2=﹣3a+6,a+b=﹣3,则a2﹣3b=﹣3a+6﹣3b=﹣3(a+b)+6=﹣3×(﹣3)+6=9+6=15,故选:D.6.(2分)(2021•建邺区一模)关于x的方程3x2﹣7x+4=0的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根解:∵a=3,b=﹣7,c=4,∴Δ=b2﹣4ac=49﹣4×3×4=1>0,∴关于x的方程3x2﹣7x+4=0有两个实数根.设关于x的方程3x2﹣7x+4=0的两根分别是α、β.又∵αβ=>0,∴α、β同号.∵α+β=>0,∴α>0,β>0.∴该方程有两个正根.故选:A.7.(2分)(2021秋•常熟市校级月考)关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,则另一根为()A.1 B.﹣2 C.2 D.3解:设方程x2+kx﹣3=0的另一个根为a,∵关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,∴由根与系数的关系得:﹣3a=﹣3,解得:a=1,即方程的另一个根为1,故选:A.8.(2分)(2020秋•锡山区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有()个.①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若p、q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,则必有2b2=9ac.A.1 B.2 C.3 D.4 解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则px2+3x+q=(px+1)(x+q)=0,∴,x2=﹣q,∴,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:,,若x1=2x2,则,即,∴,∴,∴,∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,则,∴,∴,∴,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,∴正确的有:②③④共3个.故选:C.9.(2分)(2018秋•相城区期中)已知m,n是方程x2﹣2018x+2019=0的两个根,则(m2﹣2019m+2018)(n2﹣2019n+2018)的值是()A.1 B.2 C.4037 D.4038解:∵m,n是方程x2﹣2018x+2019=0的两个根,∴m+n=2018,mn=2019,m2﹣2018m+2019=0,n2﹣2018n+2019=0,∴m2﹣2019m+2018=﹣m﹣1,n2﹣2019n=﹣n﹣1,∴(m2﹣2019m+2018)(n2﹣2019n+2018)=(﹣m﹣1)(﹣n﹣1)=mn+m+n+1=2019+2018+1=4038,故选:D.10.(2分)(2021•武进区校级自主招生)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.解:方法1、∵方程有两个不相等的实数根,则a≠0且Δ>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选:D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023•工业园区校级模拟)已知:一元二次方程x2﹣5x+c=0有一个根为2,则另一根为.解:设方程的另一根为α,则α+2=5,解得α=3.故答案为:3.12.(2分)(2023•徐州二模)关于x的方程x2+mx﹣4=0的一根为x=1,则另一根为.解:设这个一元二次方程的另一根为x2,∵关于x的方程x2+mx﹣4=0的一根为x=1,∴∴x2=﹣4故答案为:x=﹣4.13.(2分)(2023•玄武区二模)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p+q=.解:∵关于x的方程x2+px+q=0的两根为﹣3和﹣1,∴﹣3+(﹣1)=﹣p,﹣3×(﹣1)=q,∴p=4,q=3,∴p+q=7,故答案为:7.14.(2分)(2023•海陵区校级二模)若关于x的一元二次方程x2+5x﹣1=0的两个实数根分别为x1,x2,则x1+x2=.解:∵关于x的一元二次方程x2+5x﹣1=0的两个实数根分别为x1,x2,∴,故答案为:﹣5.15.(2分)(2022秋•海陵区校级期末)已知一元二次方程2x2+4x﹣3=0的两根为a和b,则a2+b2的值为.解:由题意可得,a+b=﹣=﹣2,ab=﹣∴a2+b2=(a+b)2﹣2ab=4﹣2×(﹣)=7,故答案为:7.(2011秋•江宁区校级期中)已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.(2分)16.解:根据题意得x1+x2=﹣6,x1x2=3,所以+====10.故答案为10.17.(2分)(2021秋•东台市期中)在解一元二次方程x2+px+q=0时,小明看错了系数p,解得方程的根为1和﹣3;小红看错了系数q,解得方程的根为4和﹣2,则p=,q=.解:∵小明看错了系数p,解得方程的根为1和﹣3,∴q=1×(﹣3)=﹣3,∵小红看错了系数q,解得方程的根为4和﹣2,∴﹣p=4﹣2=2,∴p=﹣2,故答案为:﹣2、﹣3.18.(2分)(2020x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则:px2+3x+q=(px+1)(x+q)=0,∴x1=﹣,x2=﹣q,∴x2=﹣q=﹣=2x1,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:x1=,x2=,若x1=2x2,则,=×2,即,﹣×2=0,∴=0,∴=0,∴3=﹣b∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,×2=,即,则,×2﹣=0,∴=0,∴﹣b+3=0,∴b=3,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,故答案为:②③④(2分)(2019春•崇川区校级期末)设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为;19.解:∵设a,b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,a2+a﹣2019=0,∴a2+a=2019,∴a2+2a+b=(a2+a)+(a+b)=2019+(﹣1)=2018,故答案为:2018.20.(2分)(2019秋•江阴市期中)若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是.(只要求写出两个).解:∵﹣12=2×(﹣6)=6×(﹣2)=﹣3×4=﹣4×3等等,∴k=2+(﹣6)=﹣4,或6+(﹣2)=4,或k=±1,故填空答案:4或﹣4.答案不唯一.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2016秋•吴江区期中)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.解:(1)证明:∵在方程x2﹣6x﹣k2=0中,Δ=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.22.(6分)(2015秋•灌云县校级月考)已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.解:(1)∵a=,b=﹣(m﹣2),c=m2方程有两个相等的实数根,∴Δ=0,即Δ=b2﹣4ac=[﹣(m﹣2)]2﹣4××m2=﹣4m+4=0,∴m=1.原方程化为:x2+x+1=0 x2+4x+4=0,(x+2)2=0,∴x1=x2=﹣2.(2)不存在正数m使方程的两个实数根的平方和等于224.∵x1+x2=﹣=4m﹣8,x1x2==4m2x12+x22=(x1+x2)2﹣2x1x2=(4m﹣8)2﹣2×4m2=8m2﹣64m+64=224,即:8m2﹣64m﹣160=0,解得:m1=10,m2=﹣2(不合题意,舍去),又∵m1=10时,Δ=﹣4m+4=﹣36<0,此时方程无实数根,∴不存在正数m使方程的两个实数根的平方和等于224.23.(8分)(2022秋•张家港市校级月考)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=.x1x2=.(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.解:(1)∵一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2==,x1x2==﹣,故答案为:,﹣;(2)∵一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,∴m+n=,mn=﹣,∴====;(3)∵实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,∴s与t看作是方程2x2﹣3x﹣1=0的两个实数根,∴s+t=,st=﹣,∴(s﹣t)2=(s+t)2﹣4st,(s﹣t)2=()2﹣4×(﹣),(s﹣t)2=,∴s﹣t=,∴====.24.(8分)(2022秋•通州区校级月考)关于x的方程kx2+(k+2)x+=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.解:(1)∵方程有两个不相等的实数根,∴Δ=(k+2)2﹣4k•>0且k≠0,∴k2+4k+4﹣k2>0,且k≠0,∴k>﹣1且k≠0,即k的取值范围是k>﹣1且k≠0.(2)不存在.理由如下:∵关于x的方程kx2+(k+2)x+=0的两根分别为x1、x2,∴x1+x2=−,x1•x2=,假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,则x1,x2不为0,且+=0,∴+==﹣=0,∴k+2=0,∴k=﹣2,而k=﹣2与方程有两个不相等实数根的条件k>﹣1且k≠0矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.25.(8分)(2021秋•泰兴市校级月考)关于x的方程:2(x﹣k)=x﹣4①和关于x的一元二次方程:(k﹣1)x2+2mx+(3﹣k)+n=0②(k、m、n均为实数),方程①的解为非正数.(1)求k的取值范围;(2)如果方程②的解为负整数,k﹣m=2,2k﹣n=6且k为整数,求整数m的值;(3)当方程②有两个实数根x1、x2,满足(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,且k为正整数,试判断|m|≤2是否成立?请说明理由.解:(1)∵关于x的方程:2(x﹣k)=x﹣4.解得x=2k﹣4∵关于x的方程:2(x﹣k)=x﹣4的解为非正数.∴2k﹣4≤0,∴解得k≤2,∵由方程②可知k≠1,∴k≤2且k≠1.(2)∵一元二次方程一元二次方程:(k﹣1)x2+2mx+(3﹣k)+n=0中k﹣m=2,2k﹣n=6,∴k=m+2,n=2k﹣6=2m+4﹣6=2m﹣2,∴把k=m+2,n=2m﹣2代入原方程得:(m+1)x2+2mx+m﹣1=0,因式分解得,[(m+1)x+(m﹣1)](x+1)=0,∴x1=﹣,x2=﹣1,∵方程②的解为负整数,﹣=﹣1,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3.(3)|m|≤2成立,理由是:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=﹣=﹣2m,x1x2==1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5,Δ=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣(n+1)≥0②,把①代入②得:4m2﹣4(2m2﹣4)≥0,m2≤4,则|m|≤2,∴|m|≤2成立.26.(8分)(2022秋•洪泽区期中)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=,x1x2=.(2)初步体验:已知一元二次方程x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)类比应用:已知实数s、t满足s2﹣3s﹣1=0,t2﹣3t﹣1=0,且s≠t,求的值.(4)思维拓展:已知实数a、b、c满足a+b=c﹣5、ab=,且c<5,求c的最大值.解:(1)∵一元二次方程x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2=﹣=3,x1x2==﹣1,故答案为:3,﹣1;(2)∵一元二次方程x2﹣3x﹣1=0的两根分别为m,n,∴m+n=3,mn=﹣1,∴=﹣11;(3)∵实数s,t满足s2﹣3s﹣1=0,t2﹣3t﹣1=0,且s≠t,∴s,t是一元二次方程2x2﹣3x﹣1=0的两个实数根,∴s+t=3,st=﹣1.∵(t﹣s)2=(t+s)2﹣4st=32﹣4×(﹣1)=13,∴t﹣s=±∴;(4)∵a+b=c﹣5,ab=,∴将a、b看作是方程x2﹣(c﹣5)x+=0的两实数根.∵Δ=(c﹣5)2﹣4×≥0,而c<5,∴(5﹣c)3≥64,∴5﹣c≥4,即c≤1,∴c的最大值为1.27.(8分)(2021秋•海陵区校级月考)已知关于x的一元二次方程x2﹣2(k+1)x+k2+k+3=0(k为常数).(1)若方程的两根为菱形相邻两边长,求k的值;(2)是否存在满足条件的常数k,使该方程的两解等于边长为2的菱形的两对角线长,若存在,求k的值;若不存在,说明理由.解:(1)∵方程的两根为菱形相邻两边长,∴此方程有两个相等的实数根,∴Δ=0,∴[﹣2(k+1)]2﹣4(k2+k+3)=0,4(k2+2k+1)﹣4k2﹣4k﹣12=0,4k2+8k+4﹣4k2﹣4k﹣12=0,4k﹣8=0,k=2,(2)不存在,理由如下:∵该方程的两解是菱形的两对角线长,∴a+b=2(k+1),ab=k2+k+3,设菱形的两对角线长a,b.∵菱形的两对角线互相垂直平分,∴由勾股定理得,+=4,+=4,b2+a2=16,∴b2+2ab+a2﹣2ab=16,(a+b)2﹣2ab=16,[2(k+1)]2﹣2(k2+k+3)=16,解得k=,∵Δ=4k﹣8,∴4k﹣8≥0.∴k≥2,∵k=<2,∴不存在满足条件的常数k.28.(8分)(2022秋•惠山区校级月考)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:无论m取何值方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的等腰三角形的周长.(1)证明:∵Δ=(m+2)2﹣4﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4≥4,即△≥4,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该等腰三角形的腰为1、底边为3时,∵1+1<3∴构不成三角形;②当该等腰三角形的腰为3、底边为1时,等腰三角形的周长=3+3+1=7。
苏科新版九年级上学期《1.3 一元二次方程的根与系数的关系》同步练习卷一.选择题(共6小题)1.若x1,x2是方程x2+x﹣1=0的两根,则(x1﹣2)•(x2﹣2)的值为()A.2B.4C.5D.﹣22.m为有理数,且方程2x2+(m+1)x﹣(3m2﹣4m+n)=0的根为有理数,则n的值为()A.4B.1C.﹣2D.﹣63.已知实数a、b满足a+8b﹣2b2=7,当b在1≤b≤4的范围内取值时,a可取的整数值有()个.A.6B.7C.8D.94.关于x的一元二次方程x2﹣5x+p=0的两实根都是整数,则整数p的取值可以有()A.2个B.4个C.6个D.无数个5.方程的正整数解的组数是()A.0B.1C.2D.36.以x为未知数的方程2007x+2007a+2008b=0(a,b为有理数,且b>0)有正整数解,则ab是()A.负数B.非负数C.正数D.零二.填空题(共13小题)7.已知实数α,β分别满足α2﹣3α﹣11=0,β2﹣3β﹣11=0,且α≠β,则+=.8.一元二次方程x2+4x﹣5=0的两根分别为a和b,则a2+b2的值为.9.一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),则x1﹣x2=.10.若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是.11.设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为;12.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.13.如果m、n为整数,且|m﹣2|+|m﹣n|=1,那么m+n的值为.14.当整数m=时,关于x的一元二次方程x2﹣4mx+4m2﹣4m﹣5=0与mx2﹣6x+9=0的根都是整数.15.设方程x2+px+q=0的两根x1,x2均为正整数,若p+q=28,则(x1﹣1)(x2﹣1)=.16.方程6(6a2+3b2+c2)=5n2的所有整数解是.17.a、b是整数,且满足|a﹣b|+|ab|=2,则ab=.18.方程的整数解有组.19.试证:如果整系数二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c 中至少有一个偶数.三.解答题(共12小题)20.已知a、b是方程x2+2x﹣5=0的两根,不解方程求:(1)+的值;(2)a2+3a+b的值.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.22.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣3=0有两个实数根.(1)求k的取值范围;(2)设方程两实数根分别为x1,x2,且满足x12+x22=23,求k的值.23.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.24.已知x1、x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求实数a的取值范围;(2)若x1、x2满足x1x2﹣x1=4+x2,求实数a的值.25.已知关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足+=﹣,求k的值.26.m是什么整数时,方程(m2﹣1)x2﹣6(3m﹣1)x+72=0有两个不相等的正整数根.27.试确定一切有理数r,使关于x的二次方程rx2+(r+2)x+3r﹣2=0有根且只有整数根,求r的值.28.若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?29.若二次方程x2+2px+2q=0有实根,其中p、q为奇数,证明:此方程的根是无理数.30.设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个不相等的整数根,求m的值及方程的根.31.若关于x的方程(k2﹣2k)x2﹣(6k﹣4)x+8=0的解都是整数,试求实数k 的值.苏科新版九年级上学期《1.3 一元二次方程的根与系数的关系》同步练习卷参考答案与试题解析一.选择题(共6小题)1.若x1,x2是方程x2+x﹣1=0的两根,则(x1﹣2)•(x2﹣2)的值为()A.2B.4C.5D.﹣2【分析】由根与系数的关系可求得(x1+x2)和x1x2的值,再把所求代数式化为两根和与两根积的式子即可求得答案.【解答】解:∵x1,x2是方程x2+x﹣1=0的两根,∴x1+x2=﹣1,x1x2=﹣1,则原式=x1x2﹣2x1﹣2x2+4=x1x2﹣2(x1+x2)+4=﹣1﹣2×(﹣1)+4=﹣1+2+4=5,故选:C.【点评】本题主要考查根与系数的关系,把所求代数式化为两根和与两根积的形式是解题的关键.2.m为有理数,且方程2x2+(m+1)x﹣(3m2﹣4m+n)=0的根为有理数,则n的值为()A.4B.1C.﹣2D.﹣6【分析】运用一元二次方程根的判别式,确定m与n的关系,结合已知求出.【解答】解:由求根公式可知当一元二次方程根为有理根时判别式的算术平方根比为有理数,△=(m+1)2+4×2×(3m2﹣4m+n)=25m2﹣30m+1+8n,要使对任意有理数m,均为有理数,△必须是m的完全平方式,此方程必定有两个相等的根.∴△=302﹣4×25×(1+8n)=0,解得n=1.故选:B.【点评】此题主要考查了一元二次方程根的判别式,以及数的规律,有一定综合性.3.已知实数a、b满足a+8b﹣2b2=7,当b在1≤b≤4的范围内取值时,a可取的整数值有()个.A.6B.7C.8D.9【分析】先对原方程进行变形,将其转化为a与b的函数关系式,然后根据自变量b的取值范围来确定a的取值.【解答】解:由a+8b﹣2b2=7,得a=2(b﹣2)2﹣1,∵1≤b≤4,∴﹣1≤b﹣2≤2,∴﹣1≤2(b﹣2)2﹣1≤7,即﹣1≤a≤7,∴a可取的整数值有:﹣1、0、1、2、3、4、5、6、7共9个.故选:D.【点评】本题主要考查了一元二次方程的整数根与有理根的知识点,在解答此题时,首先将a转化成关于b的一元二次方程的关系式,然后再根据定义域来确定值域.4.关于x的一元二次方程x2﹣5x+p=0的两实根都是整数,则整数p的取值可以有()A.2个B.4个C.6个D.无数个【分析】求得和为﹣5,积为p的所有整数解,也就求得了p的个数.【解答】解:∵﹣5+0=﹣5;﹣4+(﹣1)=﹣5;﹣3+(﹣2)=﹣5;1+(﹣6)=﹣5;2+(﹣7)=﹣5;3+(﹣8)=﹣5;4+(﹣9)=﹣5…∴p=﹣5×0=0或﹣4×(﹣1)=4或﹣3×(﹣2)=6或1×(﹣6)=﹣6或2×(﹣7)=﹣14;或3×(﹣8)=﹣24;或4×(﹣9)=﹣36….故选:D.【点评】本题考查求有整数解的一元二次方程系数的问题;用到的知识点为:有整数解的一元二次方程的常数项分解的2个数的和应等于一次项是系数.5.方程的正整数解的组数是()A.0B.1C.2D.3【分析】利用已知条件将方程变形,整理为平方差形式,分析两数相乘所有的可能.【解答】解:∵,可变形为:(x﹣7)(y﹣7)=49∵x,y为整数,当x=14时,y=14,当x=8时,y=56,当x=56时,y=8,∴其他数据都在不符合要求,符合要求的只有三组.故选:D.【点评】此题主要考查了分式方程的解法,整理为整式方程后再进行分析解决,题目比较简单.6.以x为未知数的方程2007x+2007a+2008b=0(a,b为有理数,且b>0)有正整数解,则ab是()A.负数B.非负数C.正数D.零【分析】首先把方程变形2007(x+a)=﹣2008b,根据b>0可得x+a<0,进而得到x<﹣a,再根据方程有正整数解可得:﹣a>1,即有a<﹣1,继而得到ab<0.【解答】解:原方程可化为:2007(x+a)=﹣2008b,∵b>0,∴﹣2008b<0,∴x+a<0,∴x<﹣a,若方程有正整数解,则须使得:﹣a>1,即有:a<﹣1,∴ab<0故选:A.【点评】此题主要考查了一元一次方程整数根的解法,以及整数的奇偶性,题目比较简单.二.填空题(共13小题)7.已知实数α,β分别满足α2﹣3α﹣11=0,β2﹣3β﹣11=0,且α≠β,则+=﹣.【分析】由α、β分别满足α2﹣3α﹣11=0,β2﹣3β﹣11=0,可得α,β是方程x2﹣3x﹣11=0的两个根,根据根与系数的关系,求出α2+β2,代入变形后的代数式得结果.【解答】解:∵实数α、β分别满足α2﹣3α﹣11=0,β2﹣3β﹣11=0,∴实数α,β是方程x2﹣3x﹣11=0的两个根,∴α+β=3,α•β=﹣11.∵α2+β2=(α+β)2﹣2αβ=9+22=31∴+==﹣.故答案为:﹣【点评】本题考查了根与系数的关系、一元二次方程解的定义.解决本题的关键是:根据α、β分别满足两个方程而得到α、β是同一个方程的两个根.8.一元二次方程x2+4x﹣5=0的两根分别为a和b,则a2+b2的值为26.【分析】根据韦达定理得a+b=﹣4,ab=﹣5,代入a2+b2=(a+b)2﹣2ab计算可得.【解答】解:∵方程x2+4x﹣5=0的两根分别为a和b,∴a+b=﹣4,ab=﹣5,则a2+b2=(a+b)2﹣2ab=16+10=26,故答案为:26.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.9.一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),则x1﹣x2=﹣4.【分析】利用根与系数的关系求出所求即可.【解答】解:∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣=﹣=﹣4,故答案为:﹣4【点评】此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.10.若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是15.【分析】由根与系数的关系可分别求得x1+x2和x1•x2的值,代入求值即可.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,∴x1+x2=3,x1•x2=﹣2,∴x12+x22﹣x1•x2=(x1+x2)2﹣3x1x2=32﹣3×(﹣2)=15,故答案为:15.【点评】本题主要考查根与系数的关系,熟练掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.11.设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为2018;【分析】根据根与系数的关系和一元二次方程的解得出a+b=﹣1,a2+a﹣2019=0,变形后代入,即可求出答案.【解答】解:∵设a,b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,a2+a﹣2019=0,∴a2+a=2019,∴a2+2a+b=(a2+a)+(a+b)=2019+(﹣1)=2018,故答案为:2018.【点评】本题考查了根与系数的关系和一元二次方程的解,能求出a+b=﹣1和a2+a=2019是解此题的关键.12.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是18.【分析】首先将方程组5x2﹣5ax+26a﹣143=0左右乘5得25x2﹣25ax+(130a﹣262)﹣39=0,再分解因式.根据39为两个整数的乘积,令两个因式分别等于39分解的整因数.讨论求值验证即可得到结果.【解答】解:∵5x2﹣5ax+26a﹣143=0⇒25x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=2.8不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=8.4不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=12.4不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.【点评】本题考查因式分解的应用、一元二次方程的整数根与有理根.解决本题的关键是巧妙利用39仅能分解为整数只存在39=1*39或39*1或3*13*13*3或四种情况,因而讨论量,并不大.13.如果m、n为整数,且|m﹣2|+|m﹣n|=1,那么m+n的值为3,或5,或6,或2.【分析】根据条件|m﹣2|+|m﹣n|=1,分情况讨论①|m﹣2|=0时,|m﹣n|=1;②|m﹣2|=1时,|m﹣n|=0;然后分别可以求出m的值,进而得到n的值,最后分别计算m+n的值.【解答】解:当|m﹣2|=0时,|m﹣n|=1,∴m=2,n=1或n=3,∴m+n=3或5.当|m﹣2|=1时,|m﹣n|=0,∴m=3或m=1,n=m,∴m+n=6或2.综上,m+n=3,或5,或6,或2.故答案为:3或5或6或2.【点评】此题主要考查了有理数的绝对值和数学中的分类讨论思想的运用,分类讨论时要考虑全面,此题比较简单,基础性较强.14.当整数m=1时,关于x的一元二次方程x2﹣4mx+4m2﹣4m﹣5=0与mx2﹣6x+9=0的根都是整数.【分析】方程若有解,则方程根的判别式△≥0,求出满足条件的m的取值范围,并求两个解集的公共部分.【解答】解:若关于x的一元二次方程mx2﹣6x+9=0,则△=36﹣36m≥0,解得m≤1,若关于x的一元二次方程x2﹣4mx+4m2﹣4m﹣5=0,则△=16m+20≥0,m≥﹣,故﹣≤m≤1,∵m为整数,m=﹣1,0,1,m=0时方程mx2﹣6x+9=0不是一元二次方程,故应舍去,当m=﹣1时方程mx2﹣6x+9=0即x2+6x﹣9=0,解得:x=﹣3±3,方程的解不是整数,当m=1时,x2﹣6x+9=0解得:x1=x2=3,两方程的解都为整数,故答案为:m=1.【点评】本题主要考查一元二次方程根与系数的关系和根的判别式等知识点,题目比较典型.15.设方程x2+px+q=0的两根x1,x2均为正整数,若p+q=28,则(x1﹣1)(x2﹣1)=29.【分析】首先利用根与系数的关系得出有关x1,x2的方程,利用质数的性质得出方程的解.【解答】解.x1+x2=﹣p,x1x2=q,p+q=x1x2﹣x1﹣x2=28,X1==1+,因为两根均为正整数,且29为质数,所以x2=2 或x2=30,即方程可化为(x ﹣2)(x﹣30)=0,∴方程的两根分别为2,30,(x1﹣1)(x2﹣1)=29.故填:29.【点评】此题主要考查了一元二次方程根与系数的关系以及质数的性质,题目比较典型.16.方程6(6a2+3b2+c2)=5n2的所有整数解是a=b=c=m=0.【分析】先观察,易得a=b=c=n=0是方程6(6a2+3b2+c2)=5n2(1)的一组解,根据(1)可推知b和d具有相同的奇偶性,然后根据若b和d同为奇数与b和d同为偶数两种情况讨论,最终得知只有a=b=c=m=0一组解.【解答】解:显然,a=b=c=n=0是方程6(6a2+3b2+c2)=5n2(1)的一组解.为求(1)的整数解,只须求出它的正整数解即可,而对于正整数解,只要求出a,b,c,n互质的解即可,为此设(a,b,c,n)=1.由方程(1)可知,6是5n2的约数,因为6与5互质,所以6是n2的约数,从而6是n的约数,进一步5n2有约数36,因此6又是6a2+3b2+c2的约数,即6是3b2+c2的约数,所以3是c2的约数,故可设n=6m,c=3d,代入(1)得2a2+b2+3d2=10m2(2)b2+3d2=10m2﹣2a2所以b和d具有相同的奇偶性.①若b和d同为奇数,考察用8除以(2)式两边所得的余数:式(2)左边被8除的余数为2+1+3=6或0+1+3+4;式(2)右边被8除的余数为0或2.此时方程(2)无解,从而方程(1)无解.②若b和d同为偶数,由a,b,d,n互质可知,a为奇数,(2)式左边被8除的余数为2+(0或4)+(0或3)≠8,所以(2)的左边不能被8整除,从而(2)的右边10m2不能被8整除,m一定为奇数;这样可设a=2a1﹣1,b=2b1,d=2d1,m=2m1﹣1,其中a1,b1,d1,m1都是正整数,则方程(2)化为2a1(a1﹣1)﹣10m1(m1﹣1)﹣2=﹣(b12+3d12),10m1(m1﹣1)﹣2a1(a1﹣1)+2=b12+3d12(3)由于m1(m1﹣1)及a1(a1﹣1)为偶数,则(3)式左边为偶数,且被4除余2,而右边b1和d1不能同为偶数,否则(3)式右边能被(4)整除,(3)式不能成立,然而b1和d1同为奇偶时,(3)式右边仍能被4整除,(3)式不能成立,于是,方程(2)无解,从而方程(1)无解.综上讨论知,方程只有一组解a=b=c=m=0.【点评】此题考查了方程的解的推理过程,体现了探索发现的过程,通过反证法得出矛盾,逐步去掉多余的信息是解题的关键.17.a、b是整数,且满足|a﹣b|+|ab|=2,则ab=0.【分析】首先根据|a﹣b|+|ab|=2分情况讨论,可以分成三种情况;(1)|ab|=0,|a﹣b|=2;(2)|ab|=1,|a﹣b|=1;(3)|ab|=2,则|a﹣b|=0再根据条件a、b是整数分别讨论即可.【解答】解:(1)若|ab|=0,则|a﹣b|=2则ab之中必有一个为0若a=0,则|b|=2,则b=±2若b=0,则|a|=2,则a=±2∴ab=0(2)若|ab|=1,则|a﹣b|=1∵a、b是整数∴不存在(3)若|ab|=2,则|a﹣b|=0∵|a﹣b|=0∴a=b又∵|ab|=2∴不存在综上:ab=0【点评】此题主要考查了求方程整数解与分类讨论数学思想的综合运用,主要根据条件考虑全面,不要漏掉每一种符合条件的情况,此题综合难度较大.18.方程的整数解有4组.【分析】首先将y用x表示,平方后根据已知条件分析各项数据,得出所有的可能.【解答】解:∵,∴=x=1998+y﹣2已知x,y为非负整数,所以1998y是个完全平方数,∵1998=2×3×3×3×37,y=2×3×37=222,x=888 或者y=2×3×37×2×2=888,x=222,0也是整数,0也有平方根.∴整数解有(888,222),(222888,),(0,1998)和(1998,0)共4组.故答案为:4.【点评】此题主要考查了方程整数解的有关知识,以及完全平方数,题目比较简单.19.试证:如果整系数二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c 中至少有一个偶数.【分析】先假设a、b、c全是奇数,根据根与系数的关系,利用判别式求得x的值x=,可见存在有理根,即设为有理数n,假设n为偶数,与已知矛盾,从而得到n只能为偶数,进一步证得a,b,c中至少有一个是偶数.【解答】证明:假设a、b、c全为奇数△=b2﹣4ac≥0有:x=,可见存在有理根,即设为有理数n,∴b2﹣4ac=n2,∴(b﹣n)(b+n)=4ac,∵若n为偶数,(b﹣n)(b+n)=奇数×奇数=奇数≠4ac,∴n只能为奇数,b﹣n为偶数b+n为偶数,∴(b﹣n)(b+n)=偶数×偶数=2a×2c(a≤c),即b﹣n=2a,b+n=2c,解得:b=a+c,此时b=奇数+奇数=偶数,与原假设矛盾,∴原假设不成立.∴如果整系数二次方程ax2+bx+c=0存在有理根,那么a、b、c至少有一个是偶数.【点评】本题考查了一元二次方程的整数根与有理根、整数的奇偶性问题,注意对于不能直接证明的问题,采用反证法往往是一种不错的方法.三.解答题(共12小题)20.已知a、b是方程x2+2x﹣5=0的两根,不解方程求:(1)+的值;(2)a2+3a+b的值.【分析】根据根与系数的关系结合一元二次方程的解可得出:a2+2a=5,a+b=﹣2,ab=﹣5.(1)将a+b=﹣2、ab=﹣5代入+=中即可求出结论;(2)将a2+2a=5、a+b=﹣2代入a2+3a+b=(a2+2a)+(a+b)中即可求出结论.【解答】解:∵a、b是方程x2+2x﹣5=0的两根,∴a2+2a=5,a+b=﹣2,ab=﹣5.(1)+===﹣;(2)a2+3a+b=(a2+2a)+(a+b)=5﹣2=3.【点评】本题考查了根与系数的关系以及一元二次方程的解,利用根与系数的关系结合一元二次方程的解找出a2+2a=5、a+b=﹣2、ab=﹣5是解题的关键.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.【分析】(1)计算其判别式,由方程根的情况可得到关于m的不等式,则可求得m的取值范围;(2)由根与系数的关系可用m表示出两根之和、两根之积,则可得到关于m的方程,可求得m的值.【解答】解:(1)△=[﹣2(m+1)]2﹣4(m2﹣3)=8m+16,当方程有两个不相等的实数根时,则有△>0,即8m+16>0,解得m>﹣2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2(m+1),x1x2=m2﹣3,∵x12+x22=22+x1x2=(x1+x2)2﹣2x1x2,∴[2(m+1)]﹣2(m2﹣3)=6+(m2﹣3),化简,得m2+8m﹣9=0,解得m=1或m=﹣9(不合题意,舍去),∴实数m的值为1.【点评】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.22.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣3=0有两个实数根.(1)求k的取值范围;(2)设方程两实数根分别为x1,x2,且满足x12+x22=23,求k的值.【分析】(1)根据方程有实数根得出△=[﹣(2k﹣1)]2﹣4×1×(k2﹣3)=﹣8k+5≥0,解之可得.(2)利用根与系数的关系可用k表示出x1+x2和x1x2的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣3=0有两个实数根,∴△≥0,即[﹣(2k﹣1)]2﹣4×1×(k2﹣3)=﹣4k+13≥0,解得k≤.(2)由根与系数的关系可得x1+x2=2k﹣1,x1x2=k2﹣3,∴x12+x22=(x1+x2)2﹣2x1x2=(2k﹣1)2﹣2(k2﹣3)=2k2﹣4k+7,∵x12+x22=23,∴2k2﹣4k+7=23,解得k=4,或k=﹣2,∵k≤,∴k=4舍去,∴k=﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.23.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.【分析】(1)根据方程有实数根得出△=[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解之可得.(2)利用根与系数的关系可用k表示出x1+x2和x1x2的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根,∴△≥0,即[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解得k≤.(2)由根与系数的关系可得x1+x2=2k﹣1,x1x2=k2+k﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=(2k﹣1)2﹣2(k2+k﹣1)=2k2﹣6k+3,∵x12+x22=11,∴2k2﹣6k+3=11,解得k=4,或k=﹣1,∵k≤,∴k=4(舍去),∴k=﹣1.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.24.已知x1、x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求实数a的取值范围;(2)若x1、x2满足x1x2﹣x1=4+x2,求实数a的值.【分析】(1)根据一元二次方程根的判别式、一元二次方程的定义计算;(2)根据一元二次方程根与系数的关系列出方程,解方程即可.【解答】解:(1)∵一元二次方程(a﹣6)x2+2ax+a=0有两个实数根,∴(2a)2﹣4(a﹣6)×a≥0,a﹣6≠0,解得,a≥0且a≠6;(2)∵x1、x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=,x1•x2=,∵x1x2﹣x1=4+x2,∴x1x2=4+x2+x1,即=4+,解得,a=24.【点评】本题考查的是一元二次方程根的判别式、根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立.25.已知关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足+=﹣,求k的值.【分析】(1)由根的情况,根据根的判别式,可得到关于k的不等式,则可求得k的取值范围;(2)由根与系数的关系可用k表示出两根之和、两根之积,由条件可得到关于k的方程,则可求得k的值.【解答】解:(1)∵关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根,∴△≥0,即[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣;(2)由根与系数的关系可得x1+x2=2k+1,x1x2=k2﹣2,由+=﹣可得:2(x1+x2)=﹣x1x2,∴2(2k+1)=﹣(k2﹣2),∴k=0或k=﹣4,∵k≥﹣,∴k=0.【点评】本题主要考查根的判别式及根与系数的关系,熟练掌握根的个数与根的判别式的关系是解题的关键.26.m是什么整数时,方程(m2﹣1)x2﹣6(3m﹣1)x+72=0有两个不相等的正整数根.【分析】首先根据已知条件可得m2﹣1≠0,进而得到m≠±1,然后根据根的判别式△>0,可得m≠3;再利用求根公式用含m的式子表示x,因为,方程有两个不相等的正整数根,所以分情况讨论m的值即可.【解答】解:∵m2﹣1≠0∴m≠±1∵△=36(m﹣3)2>0∴m≠3用求根公式可得:x1=,x2=∵x1,x2是正整数∴m﹣1=1,2,3,6,m+1=1,2,3,4,6,12,解得m=2.这时x1=6,x2=4.【点评】此题主要考查了一元二次方程的二次项系数不能为0,根的判别式和求方程的整数解的综合运用,还用到了数学中的分类讨论思想,综合性较强.27.试确定一切有理数r,使关于x的二次方程rx2+(r+2)x+3r﹣2=0有根且只有整数根,求r的值.【分析】由于方程的类型已经确定,则r≠0,由根与系数关系得到关于r的两个等式,利用因式(数)分解先求出方程两整数根.【解答】解:由题意可得:r≠0时,设方程的整数根为x1,x2,不妨设x1≤x2,由根据系数关系可得:x1+x2==﹣1﹣①,x1x2==3﹣②,②﹣①得:x1x2﹣(x1+x2)=4,则x1x2﹣(x1+x2)+1=5,(x1﹣1)(x2﹣1)=5,由x1≤x2得:x1﹣1≤x2﹣1,5=1×5=(﹣5)×(﹣1),∴或,解得:或,将上述x1,x2的值代入②得:12=3﹣或0=3﹣解得:r=﹣或,故存在有理数r的值为:﹣或.【点评】本题主要考查了一元二次方程的整数根与有理根.在解答此题时,利用了一元二次方程的根与系数的关系.28.若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?【分析】(1)假设出装卸工作需要小时数,表示出第一人与最后一人所用时间,再由10小时装卸完毕,列出方程;(2)从装卸时间入手列出方程.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.【点评】此题主要考查了一元一次方程的应用,以及不定方程的解法,综合性较强.29.若二次方程x2+2px+2q=0有实根,其中p、q为奇数,证明:此方程的根是无理数.【分析】分别假设方程的根为奇数、偶数、分数,然后将方程变形,得出矛盾,进而根据有理数的概念可判断出方程x2+2px+2q=0此方程的根是无理数.【解答】解:①首先,方程的根不可能是奇数;若x为奇数,则x2为奇数,而2px+2q是偶数,因此x2+2px+2q取奇数值,不可能是0;②其次,方程的根不可能是偶数;若x为偶数,则x2+2px能被4整除,而这时常数项2q被4除时余2,因此不能满足x2+2px+2q≠0;③最后,方程的根不可能是分数;若x为分数,则x+p也是分数,而方程可以变为(x+p)2=p2﹣2q,等号右端的p2﹣2q是一个整数,左端是一个分数,这是一个矛盾!综上可知,当p,q是两个奇数时,方程x2+2px+2q=0不可能有有理根,即此方程的根是无理数.【点评】此题考查了一元二次方程的整数根与有理根的知识,注意运用假设法解题,得出矛盾,然后判断假设正确与否,有一定难度.30.设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个不相等的整数根,求m的值及方程的根.【分析】根据求根公式可知:x==(2m﹣3)±,根据4<m<40可知m的值为12或24,再把m值代入求解即可.【解答】解:解方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0,得,∵原方程有两个不相等的整数根,∴2m+1为完全平方数,又∵m为整数,且4<m<40,2m+1为奇数完全平方数,∴2m+1=25或49,解得m=12或24.∴当m=12时,,x1=26,x2=16;当m=24时,.【点评】本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程.方程ax2+bx+c=0的解为x=.要注意根据实际意义进行值的取舍.31.若关于x的方程(k2﹣2k)x2﹣(6k﹣4)x+8=0的解都是整数,试求实数k 的值.【分析】(1)根据k2﹣2k=0得出k的值,进而求出x的值;(2)当k2﹣2k≠0进行分析,利用代入消元法求出k的值.【解答】解:(1)当k2﹣2k=0,即k=0或k=2,①若k=0时,原方程化为4x+8=0,即x=﹣2符合题意;②若k=2时,原方程化为﹣8x+8=0,则x=1符合题意;(2)当k2﹣2k≠0,即k≠0且k≠2时,原方程可化为:(k2﹣2k)x2﹣(6k﹣4)x+8=0,解得x1=,x2=,将k=,代入x2=得x1x2+2x1﹣x2﹣2=﹣2,∴或或或∴或或或(舍去),或或,解得:k=1或﹣2或,综上:k的值为1,﹣2,【点评】此题主要考查了一元二次方程整数根的求法和代入消元法解方程,题目难度不大.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练1.3一元二次方程的根与系数的关系一、选择题1.已知一元二次方程2x 2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根都是自然数D.无实数根2.下列一元二次方程有两个相等实数根的是()A.x 2﹣2x+1=0B.2x 2﹣x+1=0C.4x 2﹣2x﹣3=0D.x 2﹣6x=03.若一次函数y=kx+b 的图象不经过第二象限,则关于x 的方程x 2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定4.若关于x 的一元二次方程x 2﹣2x+m=0有实数根,则实数m 的取值范围是()A.m<1B.m≤1C.m>1D.m≥15.已知一次函数y=ax+c图象如图,那么一元二次方程ax 2+bx+c=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断6.关于x 的一元二次方程kx 2+4x+4=0有两个不相等的实数根,则k 的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠07.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x 2﹣3x+6=0B.x 2﹣3x﹣6=0C.x 2+3x﹣6=0D.x 2+3x+6=08.已知一元二次方程:x 2﹣3x﹣1=0的两个根分别是x 1、x 2,则x 12x 2+x 1x 22的值为()A.﹣3B.3C.﹣6D.69.若关于x的一元二次方程x 2+mx+m 2-3m+3=0的两根互为倒数,则m的值等于()A.1B.2C.1或2D.010.已知m,n是方程x 2-2x-1=0的两实数根,则+的值为()A.-2B.-C.D.2二、填空题11.若关于x 的一元二次方程(m﹣1)x 2﹣4x+1=0有两个不相等的实数根,则m 的取值范围为.12.若关于x 的一元二次方程x 2﹣x+m=0有两个不相等的实数根,则m 的值可能是______(写出一个即可).13.若关于x 的一元二次方程ax 2+3x﹣1=0有两个不相等实数根,则a 取值范围是______.14.若关于x 的方程x 2﹣5x+k=0的一个根是0,则另一个根是,k=.15.设x 1,x 2是方程4x 2+3x﹣2=0的两根,则x 1+x 2=,x 1x 2=.16.已知关于x 的方程x 2-6x+k=0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则k 的值是________.三、解答题17.关于x 的一元二次方程x 2﹣(2m﹣3)x+m 2+1=0.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数,判断方程根的情况.18.已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k 的值.19.关于x 的一元二次方程(m-2)x 2+2mx+m+3=0有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.20.已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.参考答案1.A.2.A.3. A.4. B.5.A6.D7.B.8.A.9.B 10.A11.m<5且m≠112.0.13.a>﹣2.25且a≠0.14.5,0.15.,﹣.16.2.17.解:(1)∵m 是方程的一个实数根,∴m 2﹣(2m﹣3)m+m 2+1=0,∴;(2)△=b 2﹣4ac=﹣12m+5,∵m<0,∴﹣12m>0.∴△=﹣12m+5>0.∴此方程有两个不相等的实数根.18.(1)证明:△=b 2﹣4ac,=[﹣(2k+1)]2﹣4(k 2+k),=4k 2+4k+1﹣4k 2﹣4k=1>0.∴方程有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2k+1)+k 2+k=0,即k 2﹣k=0,解得:k 1=0,k 2=1.19.解:(1)∵关于x 的一元二次方程(m-2)x 2+2mx+m+3=0有两个不相等的实数根,∴m-2≠0且Δ=(2m)2-4(m-2)(m+3)=-4(m-6)>0.解得m<6且m≠2.∴m 的取值范围是m<6且m≠2.(2)在m<6且m≠2的范围内,最大整数为5.此时,方程化为3x 2+10x+8=0.解得x 1=-2,x 2=-43.20.解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.综上所述,k 的取值范围为k≤.(2)∵x 1和x 2是方程kx 2﹣3x+1=0的两个根,∴x 1+x 2=,x 1x 2=.∵x 1+x 2+x 1x 2=4,∴+=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k 的值为1.。
2021年苏科版九年级数学上册《1.3一元二次方程的根与系数的关系》1.已知α,β是方程x2+2019x+1=0的两个根,则(1+2022α+α2)(1+2022β+β2)的值为()A.4B.9C.12D.152.已知关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,且x12+x22=5,则k的值是()A.﹣2B.2C.﹣1D.13.若m、n是一元二次方程x2+3x﹣9=0的两个根,则m2+4m+n的值是()A.4B.5C.6D.124.已知a,b是方程x2﹣3x﹣5=0的两根,则代数式2a3﹣6a2+b2+7b+1的值是()A.﹣25B.﹣24C.35D.365.已知一元二次方程x2﹣3x+1=0的两根为x1,x2,则x12﹣5x1﹣2x2的值为()A.﹣7B.﹣3C.2D.56.关于x的一元二次方程x2+2mx+m2﹣m=0的两实数根x1,x2,满足x1x2=2,则(x12+2)(x22+2)的值是()A.8B.32C.8或32D.16或407.若关于x的一元二次方程(x﹣b)2=a的两根为1和3,则a,b的值分别为()A.1,2B.4,1C.1,﹣2D.4,﹣18.已知关于x的方程x2﹣6x+k﹣4=0的两根分别是x1,x2,且满足+=2,则k的值是()A.3B.﹣3C.7D.19.若关于x的方程x2+bx+c=0的两个根为x1=1,x2=3,则关于x的方程(x+2)2+b(x+2)+c=0的两个根为()A.x1=﹣1,x2=1B.x1=﹣3,x2=﹣5C.x1=3,x2=5D.x1=3,x2=﹣510.已知m,n是方程x2+x﹣3=0的两个实数根,则m2﹣n+2019的值是()A.2019B.2020C.2021D.202311.已知关于x的一元二次方程x2+4x+m﹣3=0有两个负整数根,则符合条件的所有正整数m的和为()A.16B.13C.10D.712.如果x1,x2是两个不相等实数,且满足x12﹣2x1=1,x22﹣2x2=1,那么x12+x22等于()A.2B.﹣2C.﹣1D.613.已知x1,x2是方程x2﹣2x﹣7=0的两根,则x12﹣x1+x2的值为()A.9B.7C.5D.314.已知关于x的方程x2+kx+2=0的两个根为x1,x2,且++x1x2=0,则k的值为()A.0 B.2C.4D.815.已知x1,x2是关于x的一元二次方程x2﹣4x+m=0的两个实数根.(1)求m的取值范围;(2)若x1+x2﹣x1x2=1,计算m的值.16.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且x1+x2+x1x2=10,求m的值.17.已知关于x的一元二次方程x2﹣mx﹣2=0.(1)求证:无论m取何实数,该方程总有两个不相等的实数根;(2)若方程的一个根为2,求m的值及另一个根.18.已知关于x的一元二次方程x2﹣4mx+4m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,若x1=3﹣x2,求方程的两个根.19.已知关于x的一元二次方程x2﹣6x+2m﹣1=0有x1,x2两实数根.(1)若x1=1,求x2及m的值;(2)是否存在实数m,满足(x1﹣1)(x2﹣1)=?若存在,求出实数m的值;若不存在,请说明理由.20.已知关于x的一元二次方程x2﹣(2k+4)x+k2+4k+3=0.(1)求证:不论k取何值,此一元二次方程总有两个不相等的实数根;(2)若此一元二次方程的两根是Rt△ABC两直角边AB、AC的长,斜边BC的长为10,求k的值.21.已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)求证:无论k为何值时,方程总有实数根.(2)若方程的两个根为x1,x2,且满足,求k的值.22.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c,恰好是这个方程的两个实数根,求△ABC的周长.(3)若方程的两个实数根之差等于3,求k的值.23.已知关于x的一元二次方程x2+(2m+1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.24.非零实数a,b(a≠b)满足a2﹣a﹣2013=0,b2﹣b﹣2013=0,求+的值.25.已知k为实数,关于x的方程x2+k2+1=2k(x﹣1)有两个实数根x1,x2.(1)求实数k的取值范围.(2)若(2x1+1)(2x2+1)=21,试求k的值.26.已知关于x的一元二次方程mx2﹣(m+3)x+3=0.(1)求证:无论m为何值,x=1都是该方程的一个根;(2)若此方程的根都为正整数,求整数m的值.27.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(Ⅰ)证明:不论m为何值时,方程总有实数根.(Ⅱ)m为何整数时,方程有两个不相等的正整数根.28.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.参考答案1.解:∵α,β是方程x2+2019x+1=0的两个根,∴α2+2019α+1=0,β2+2019β+1=0,α+β=﹣2019,αβ=1,∴(1+2022α+α2)(1+2022β+β2)=(1+2019α+α2+3α)(1+2019β+β2+3β)=9αβ=9,故选:B.2.解:∵关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,∴x1+x2=k,x1x2=k﹣3,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴k2﹣2(k﹣3)=5,整理得出:k2﹣2k+1=0,解得:k1=k2=1,故选:D.3.解:∵m、n是一元二次方程x2+3x﹣9=0的两个根,∴m+n=﹣3,mn=﹣9,∵m是x2+3x﹣9=0的一个根,∴m2+3m﹣9=0,∴m2+3m=9,∴m2+4m+n=m2+3m+m+n=9+(m+n)=9﹣3=6.故选:C.4.解:∵a,b是方程x2﹣3x﹣5=0的两根,∴a2﹣3a﹣5=0,b2﹣3b﹣5=0,a+b=3,∴a2﹣3a=5,b2=3b+5,∴2a3﹣6a2+b2+7b+1=2a(a2﹣3a)+3b+5+7b+1=10a+10b+6=10(a+b)+6=10×3+6=36.故选:D.5.解:∵一元二次方程x2﹣3x+1=0的两根为x1,x2,∴x12﹣3x1=﹣1,x1+x2=3,∴x12﹣5x1﹣2x2=x12﹣3x1﹣2(x1+x2)=﹣1﹣2×3=﹣7.故选:A.6.解:由题意得△=(2m)2﹣4(m2﹣m)≥0,∴m≥0,∵关于x的一元二次方程x2+2mx+m2﹣m=0的两实数根x1,x2,满足x1x2=2,则x1+x2=﹣2m,x1•x2=m2﹣m=2,∴m2﹣m﹣2=0,解得m=2或m=﹣1(舍去),∴x1+x2=﹣4,(x12+2)(x22+2)=(x1x2)2+2(x1+x2)2﹣4x1x2+4,原式=22+2×(﹣4)2﹣4×2+4=32;故选:B.7.解:方程(x﹣b)2=a整理得,x2﹣2bx+b2﹣a=0,∵关于x的一元二次方程(x﹣b)2=a的两根为1和3,∴x1+x2=2b=1+3=4,x1•x2=b2﹣a=1×3=3,∴b=2,a=1.故选:A.8.解:∵x2﹣6x+k﹣4=0的两个解分别为x1、x2,∴x1+x2=6,x1x2=k﹣4,+===2,解得:k=7,经检验,k=7符合题意,故选:C.9.解:∵关于x的方程x2+bx+c=0的两个根为x1=1,x2=3,∴关于x的方程(x+2)2+b(x+2)+c=0的两个根满足x+2=1或x+2=3,解得x1=﹣1,x2=1.故选:A.10.解:∵m方程x2+x﹣3=0的实数根,∴m2+m﹣3=0,∴m2=﹣m+3,∴m2﹣n+2019=﹣m+3﹣n+2019=﹣(m+n)+2022,∵m,n是方程x2+x﹣3=0的两个实数根,∴m+n=﹣1,∴m2﹣n+2019=﹣(﹣1)+2022=2023.故选:D.11.解:∵关于x的一元二次方程x2+4x+m﹣3=0中的a=1,b=4,c=m﹣3,且该方程有两个负整数根,∴△=b2﹣4ac=42﹣4(m﹣3)=28﹣4m≥0,∴m≤7.∵m为正整数,且该方程的根都是负整数,∴x==﹣2±.∴.解得m>3.则3<m≤7.又∵是整数,∴m的值6或7,∴6+7=13.故选:B.12.解:∵x1,x2是两个不相等实数,且满足x12﹣2x1=1,x22﹣2x2=1,∴x1,x2是方程x2﹣2x﹣1=0的两个不相等的实数根,则x1+x2=2,x1x2=﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣1)=4+2=6,故选:D.13.解:∵x1,x2是方程x2﹣2x﹣7=0的两根,则x12﹣2x1﹣7=0,x1+x2=2,∴x12﹣x1+x2=x12﹣2x1+x1+x2=7+2=9,故选:A.14.解:由题意知,x1+x2=﹣k,x1•x2=2.则由++x1x2=0得到:+x1x2=+2=0,即+2=0.解得k=4.故选:C.15.解:(1)∵方程有两个实数根,∴Δ=16﹣4m≥0,∴m≤4;(2)由根与系数的关系,得:x1+x2=4,x1x2=m,∵x1+x2﹣x1x2=1,∴4﹣m=1,∴m=3.16.解:(1)由题意可知:Δ=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,x1+x2+x1x2=10,∴2m﹣2+m2﹣2m=10,∴m2=12,∴m=﹣2或m=2.17.解:(1)Δ=m2+8>0,∴无论m取何实数,该方程总有两个不相等的实数根;(2)∵方程的一个根为2,将x=2代入一元二次方程x2﹣mx﹣2=0,得4﹣2m﹣2=0,解得m=1,∴一元二次方程为x2﹣x﹣2=0,解得x=﹣1或x=2,∴方程的另一个解是x=﹣1.18.解:(1)∵△=(4m)2﹣4×1×(4m2﹣9)=16m2﹣16m2+36=36>0,∴已知关于x的一元二次方程x2﹣4mx+4m2﹣9=0一定有两个不相等的实数根;(2)∵x=,∵,∴x1+x2=6,∵x1+x2=4m,∴4m=6,∴,∴,∴x1=6,x2=0.19.解:(1)根据题意得△=(﹣6)2﹣4(2m﹣1)≥0,解得m≤5,x1+x2=6,x1x2=2m﹣1,∵x1=1,∴1+x2=6,x2=2m﹣1,∴x2=5,m=3;(2)存在.∵(x1﹣1)(x2﹣1)=,∴x1x2﹣(x1+x2)+1=,即2m﹣1﹣6+1=,整理得m2﹣8m+12=0,解得m1=2,m2=6,∵m≤5且m≠5,∴m=2.20.(1)证明:∵△=[﹣(2k+4)]2﹣4(k2+4k+3)=4>0,∴不论k取何值,此一元二次方程总有两个不相等的实数根;(2)解:x2﹣(2k+4)x+k2+4k+3=0,(x﹣k﹣1)(x﹣k﹣3)=0,∴x1=k+1>0,x2=k+3>0,∴Rt△ABC两直角边的长为k+1和k+3,斜边BC的长为10,∴(k+1)2+(k+3)2=102,解得k1=﹣9(舍去),k2=5,∴k的值为5.21.(1)证明:∵△=[﹣(k+2)]2﹣4×1×2k=(k﹣2)2≥0,∴无论k取何值,方程总有实数根;(2)解:根据题意得x1+x2=k+2,x1•x2=2k,∵,∴x1x2﹣(x1+x2)+1=k2﹣5,即2k﹣(k+2)+1=k2﹣5,∴k=,∴k的值为或.22.解:(1)△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取何值,(2k﹣3)2≥0,故这个方程总有两个实数根;(2)由求根公式得x=,∴x1=2k﹣1,x2=2.∵另两边长b、c,恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a,b为腰时,则a=b=4,即2k﹣1=4,计算得出k=,此时三角形周长为4+4+2=10;当b,c为腰时,b=c=2,此时b+c=a,构不成三角形,故此种情况不存在.综上所述,△ABC周长为10.(3)∵方程的两个实数根之差等于3,∴,解得:k=0或3.23.解:(1)根据题意得△=(2m+1)2﹣4m2≥0,解得m≥﹣;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2,∵x12﹣x22=0,∴(x1+x2)(x1﹣x2)=0,∴x1+x2=0或x1﹣x2=0,即﹣(2m+1)=0或△=(2m+1)2﹣4m2=0,解得m=﹣或m=﹣,而m≥﹣,∴m的值为﹣.24.解:∵非零实数a,b(a≠b)满足a2﹣a﹣2013=0,b2﹣b﹣2013=0,∴实数a、b是方程x2﹣x﹣2013=0的两根.由根与系数的关系可知a+b=1,ab=﹣2013.∴+===﹣.25.解:(1)原方程即为x2﹣2kx+k2+2k+1=0,则△=4k2﹣4(k2+2k+1)≥0,∴k2﹣(k2+2k+1)≥0∴﹣2k﹣1≥0∴k≤﹣;(2)由根与系数的关系,得x1+x2=2k,x1x2=k2+2k+1,∵(2x1+1)(2x2+1)=21,∴4x1x2+2(x1+x2)+1=21.∴4(k2+2k+1)+4k+1=21.即k2+3k﹣4=0.解得k1=1,k2=﹣4,∵k≤﹣,∴k的值为﹣4.26.(1)证明:∵关于x的一元二次方程mx2﹣(m+3)x+3=0,∴(mx﹣3)(x﹣1)=0,∴x=1或x=,∴无论m为何值,x=1都是该方程的一个根;(2)解:由(1)知,一元二次方程mx2﹣(m+3)x+3=0的解为x=1或x=,∵方程的根都为正整数,∴为正整数,∴m=1或m=3.即整数m的值为1或3.27.(Ⅰ)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(Ⅱ)解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.28.解:(1)由题意得:△≥0且m﹣2≠0,∴(2m+1)2﹣4m(m﹣2)≥0解得m≥﹣且m≠2(2)由题意得有两种情况:①当x1=x2,则△=0,所以m=﹣,x1=x2=﹣×=.②当x1=﹣x2时,则x1+x2=0.,所以m=﹣,因为m≥﹣且m≠2,所以此时方程无解.综上所述,m=﹣,x1=x2=.。
苏科版九年级数学上册 一元二次方程的根与系数的关系- 专题培优训练一、选择题1、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .﹣10B .10C .﹣16D .162、一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( )A .4B .﹣4C .3D .﹣33、已知x 1,x 2是一元二次方程2x 2﹣3x +1=0的两个根,下列结论正确的是( )A .x 1+x 2=-23B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是无理数4、已知关于x 的一元二次方程x 2+mx +n=0的两个实数根分别为x 1=﹣2,x 2=4,则m +n 的值是( )A .﹣10B .10C .﹣6D .2 5、若关于x 的方程x 2+3x +a=0有一个根为﹣1,则另一个根为( )A .﹣2B .2C .4D .﹣36、已知实数x 1,x 2满足x 1+x 2=7,x 1x 2=12,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣7x +12=0B .x 2+7x +12=0C .x 2+7x ﹣12=0D .x 2﹣7x ﹣12=07、若一元二次方程x 2﹣x ﹣2=0的两根为x 1,x 2,则(1+x 1)+x 2(1﹣x 1)的值是( )A .4B .2C .1D .﹣28、若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( )A .12B .10C .4D .﹣4 9、若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且βα11+=﹣32,则m 等于( ) A .﹣2 B .﹣3 C .2 D .310、关于x 的一元二次方程x 2+2mx +2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根; ②(m ﹣1)2+(n ﹣1)2≥2; ③﹣1≤2m ﹣2n ≤1, 其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个二、填空题11、若方程x 2﹣3x +2=0的两根是α、β,则α+αβ+β= .12、若方程240x x c -+=的一个根为23+,则方程的另一个根为 ,c = .13、设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是 .14、已知关于x 的方程x 2+(a ﹣2)x +a +1=0的两实根x 1、x 2满足42221=+x x ,则实数a = . 15、已知x 1,x 2是关于x 的一元二次方程x 2+2x +k ﹣1=0的两个实数根,且x 12+x 22﹣x 1x 2=13,则k 的值为 .16、已知关于x 的一元二次方程x 2﹣4x +m ﹣1=0的实数根x 1,x 2,满足3x 1x 2﹣x 1﹣x 2>2,则m 的取值范围是 .17、已知α,β是关于x 的一元二次方程(m ﹣1)x 2﹣x +1=0两个实根,且满足(α+1)(β+1)=m +1,则m 的值为 .18、关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是整数,则整数a = .19、已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .20、已知a ,b 是一元二次方程x 2+x ﹣1=0的两根,则3a 2﹣b 22a +的值是 . 三、解答题21、已知于x 的元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.22、已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.23、已知关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为x 1、x 2,且|x 1﹣x 2|=4,求m 的值.24、已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.25、已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值.26、如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值一、选择题1、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .﹣10B .10C .﹣16D .16【分析】根据一元二次方程的根与系数的关系得到两根之和即可.解:∵x 1,x 2一元二次方程x 2+10x +16=0两个根,∴x 1+x 2=﹣10.故选:A .2、一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( )A .4B .﹣4C .3D .﹣3【分析】根据根与系数的关系求解.解:x 1•x 2=﹣3. 故选D .3、已知x 1,x 2是一元二次方程2x 2﹣3x +1=0的两个根,下列结论正确的是( )A .x 1+x 2=-23B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是无理数【分析】利用根与系数的关系对A 、B 进行判断;根据根的判别式对C 、D 进行判断. x 1+x 2=23,x 1x 2=21,所以A 、B 选项错误,因为△=(﹣3)2﹣4×2×1=1,所以x1,x2都是有理数,则C选项正确,D选项错误.故选:C.4、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【分析】根据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.5、若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.6、已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0【分析】根据以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0,列出方程进行判断即可.解:以x1,x2为根的一元二次方程x2﹣7x+12=0,故选:A.7、若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A.4 B.2 C.1 D.﹣2A解:根据题意得x1+x2=1,x1x2=﹣2,所以(1+x1)+x2(1﹣x1)=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4.故选:A.8、若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为()A.12 B.10 C.4 D.﹣4A解:∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12;故选:A .9、若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且βα11+=﹣32,则m 等于() A .﹣2 B .﹣3 C .2 D .3B解:α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,∴α+β=2,αβ=m ,∵+===﹣,∴m =﹣3; 故选:B .10、关于x 的一元二次方程x 2+2mx +2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m ﹣1)2+(n ﹣1)2≥2; ③﹣1≤2m ﹣2n ≤1, 其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个【考点】根与系数的关系;根的判别式.【分析】①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用根与系数关系进行解答,据此即可得解.解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n>0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,∵4m2﹣8n≥0,4n2﹣8m≥0,∴m2﹣2n≥0,n2﹣2m≥0,m2﹣2n+n2﹣2m+2=m2﹣2m+1+n2﹣2n+1≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③由根与系数关系可得2m﹣2n=y1y2+y1+y2=(y1+1)(y2+1)﹣1,由y1、y2均为负整数,故(y1+1)•(y2+1)≥0,故2m﹣2n≥﹣1,同理可得:2n﹣2m=x1x2+x1+x2=(x1+1)(x2+1)﹣1,得2n﹣2m≥﹣1,即2m﹣2n≤1,故③正确.故选:D.二、填空题11、若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.【分析】利用根与系数的关系可得出α+β=3,αβ=2,将其代入α+αβ+β中即可求出结论.∵方程x2﹣3x+2=0的两根是α、β,∴α+β=3,αβ=2,∴α+αβ+β=α+β+αβ=3+2=5.故5.12、若方程240x x c -+=的一个根为2+,则方程的另一个根为 ,c = .2-1c =根据韦达定理,124x x +=,因为12x =+22x =-所以(12221c x x =⋅==13、设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是 .1k =由根与系数的关系得()1221x x k +=+,2122x x k ⋅=+.且有()()224142840k k k ∆=+-+=->,即12k >. 所以()()12118x x ++=.从而2230k k +-=,解之得3k =-或1k =.又12k >,所以1k =.14、已知关于x 的方程x 2+(a ﹣2)x +a +1=0的两实根x 1、x 2满足42221=+x x ,则实数a = . 3﹣11解:∵关于x的方程x2+(a﹣2)x+a+1=0的两实根为x1、x2,∴△=(a﹣2)2﹣4(a+1)≥0,即a(a﹣8)≥0,∴当a≥0时,a﹣8≥0,即a≥8;当a<0时,a﹣8<0,即a<8,所以a<0.∴a≥8或a<0,∴x1+x2=2﹣a,x1•x2=a+1,∵x12+x22=4,(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,∴(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,解得a=3±11.∵3<11<4,∴6<3+<7(不合题意舍去),3﹣<0;∴a=3﹣.故a=3﹣11.15、已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为.—2解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,x12+x22﹣x1x2=13=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,故﹣2.16、已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.3<m≤5解:依题意得:,解得3<m≤5.故答案是:3<m≤5.17、已知α,β是关于x的一元二次方程(m﹣1)x2﹣x+1=0两个实根,且满足(α+1)(β+1)=m+1,则m的值为.—1解:根据题意可得α+β=﹣=﹣=,αβ==,∴(α+1)(β+1)=αβ+α+β+1=++1=m+1,即m2﹣m﹣2=0,解得m=﹣1或m=2,∵m﹣1≠0,∴m≠1,当m=2时,△=b2﹣4ac=﹣3<0,无实数根,故m≠2,当m=﹣1时,△=b2﹣4ac=9>0,有实数根,故m=﹣1.故答案是﹣1.18、关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是整数,则整数a = .【分析】分两种情况讨论:当a =1时,x =1;当a ≠1时,△=4a 2≥0,x 1+x 2=a -12,再由已知,可得1﹣a =±1,1﹣a =±2,求出a 的值即可.当a =1时,2x ﹣2=0,解得x =1;当a ≠1时,(a ﹣1)x 2+2x ﹣a ﹣1=0,△=4a 2≥0,x 1+x 2=a -12,x 1•x 2=a a -+11=-112--a , ∵根都是整数,∴1﹣a =±1,1﹣a =±2,∴a =0或a =2或a =﹣1或a =3,故答案为0或1或﹣1或2或3.19、已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .1解:∵x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个实数根,∴x 1+x 2=﹣(3k +1),x 1x 2=2k 2+1.∵(x 1﹣1)(x 2﹣1)=8k 2,即x 1x 2﹣(x 1+x 2)+1=8k 2,∴2k 2+1+3k +1+1=8k 2,整理,得:2k 2﹣k ﹣1=0,解得:k 1=﹣,k 2=1.∵关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,∴△=(3k +1)2﹣4×1×(2k 2+1)>0,解得:k <﹣3﹣2或k >﹣3+2, ∴k =1.故1.20、已知a ,b 是一元二次方程x 2+x ﹣1=0的两根,则3a 2﹣b 22a +的值是 . 【分析】根据根与系数的关系即可求出答案.由题意可知:a +b =﹣1,ab =﹣1, a 2=1-a ,∴原式=3(1﹣a )﹣b +a -12=3﹣3a ﹣b+a -12=3﹣2a ﹣(a +b )+a-12 =3﹣2a +1+a -12=4﹣2a+a-12=4+a a a -+-12222 =4+aa a -+--122)1(2=4+4=8, 故8.三、解答题21、已知于x 的元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.(1)a <2(2)a 的值为﹣1,0,1解:(1)∵关于x 的一元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2,∴△>0,即(﹣6)2﹣4(2a +5)>0,解得a <2;(2)由根与系数的关系知:x 1+x 2=6,x 1x 2=2a +5,∵x 1,x 2满足x 12+x 22﹣x 1x 2≤30,∴(x 1+x 2)2﹣3x 1x 2≤30,∴36﹣3(2a +5)≤30,∴a ≥﹣,∵a 为整数,∴a 的值为﹣1,0,1.22、已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.-1有实数根,则△≥0,且22121216x x x x +=+,联立解得m 的值.依题意有:12212221212222(2)5164(2)4(5)0x x m x x m x x x x m m +=-+⎧⎪=-⎪⎨+=+⎪⎪∆=+--≥⎩由①②③解得:1m =-或15m =-,又由④可知m ≥94- ∴15m =-舍去,故1m =-23、已知关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为x 1、x 2,且|x 1﹣x 2|=4,求m 的值.(1)m ≤2 (2)m=1解:(1)∵关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根,∴△=(﹣6)2﹣4×1×(4m +1)≥0, 解得:m ≤2.(2)∵方程x 2﹣6x +(4m +1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m +1,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=42,即32﹣16m =16,解得:m =1.24、已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.52m > 设1x ,2x 是方程的两根,且11x >,21x <,即110x ->,210x -<,因此1212121212(1)(1)()10284164(28)0x x x x x x x x m x x m --=-++<⎧⎪=-+⎪⎨+=⎪⎪∆=+->⎩,解得52m >.25、已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值. (1)k ≤49 ;(2)k=1 解:(1)当k =0时,原方程为﹣3x +1=0,解得:x =,∴k =0符合题意;当k ≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k ×1≥0,解得:k ≤49. 综上所述,k 的取值范围为k ≤.(2)∵x 1和x 2是方程kx 2﹣3x +1=0的两个根,∴x 1+x 2=,x 1x 2=.∵x 1+x 2+x 1x 2=4,∴+=4,解得:k =1, 经检验,k =1是分式方程的解,且符合题意.∴k 的值为1.26、如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值 当a b ≠时,111a b +=;当a b =时,当13a b ==-+1131a b +, 当13a b ==-1113a b+= 由题意知:,a b 为方程2220x x +-=的两个根,且0,0a b ≠≠,解方程2220x x +-=得:11x =-+21x =--⑴当a b ≠时,有2a b +=-,2ab =-,11212a b a b ab +-∴+===-;⑵当a b =时,方程的根为11x =-+21x =--当1a b ==-+1121a b a ∴+===+;当1a b ==--1121a b a ∴+==-。
一元二次方程根与系数的关系(5种题型)1.探索一元二次方程的根与系数的关系.(重点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(难点)韦达定理:如果12x x ,是一元二次方程 20(0)ax bx c a −+=≠的两个根,由解方程中的公式法得,12x x ==. 那么可推得1212b cx x x x a a+=−⋅=,这是一元二次方程根与系数的关系.题型1:求根与系数关系例1.(2023春·江苏南京·九年级专题练习)若1x ,2x 是一元二次方程2230x x −−=的两个根,则12x x +的值是( ) A .2 B .2− C .3 D .3−【答案】A【分析】根据一元二次方程根与系数的关系可得12x x +的值.【详解】解:一元二次方程2230x x −−=的二次项系数是1a =,一次项系数2b =−,∴由根与系数的关系,得122x x +=.故选:A .【点睛】本题考查了一元二次方程根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,12b x x a +=−,12cx x a =,牢记公式是解题的关键.12x x 是【答案】D【分析】利用两根之积等于ca 即可解决问题.【详解】解:一元二次方程22410x x −+=的两个根为1x、2x ,1212x x ∴=,故选:D .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于ba −,两根之积等于c a ”是解题的关键.题型2:利用根与系数的关系式求代数式的值【答案】4/0.75【分析】根据根与系数的关系求出12x x +和12x x ⋅的值,然后代入221212x x x x +计算即可.【详解】解:∵22310x x +−=,∴1232x x +=−,1212x x ⋅=−,∴()2212121212313224x x x x x x x x ⎛⎫==−⨯−=⎪⎝++⎭. 故答案为:34.【点睛】本题考查了一元二次方程根与系数的关系,若1x ,2x 为方程20(0)ax bx c a ++=≠的两个根,则1x ,2x 与系数的关系式:12b x x a +=−,12cx x a ⋅=. 例4.(2023春·江苏南京·九年级专题练习)若m ,n 分别是一元二次方程2410x x −+=的两个根,则23m m n −+的值为( ) A .3 B .4 C .5 D .6【答案】A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m −+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x −+=的两个根,∴2410m m −+=,m +n =4, ∴241m m −=−,∴2234143m m n m m m n −+=−++=−+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=−,12cx x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 例5.已知12x x ,是方程2133022x x −−=的两根,求下列各式的值:(1)1211x x +;(2)2212x x −;(3)2212x x +;(4)12||x x−.【答案】(1)2−;(2)−3)42;(4). 【解析】解:由韦达定理,得:126x x +=,123x x =−.原式=12122x x x x +=−;原式()()()1212126x x xx x x=+−=−=±6=±=±•=±原式=()21212242x x x x +−=;原式12x x −==.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用.例6.已知2212510520.1m m n n mn n m−−=+−=≠+,,求的值. 【答案】5−.【解析】由22510m m −−=,可得:25120m m −−=,整理得:21520m m +−=,又由于2520n n +−=,所以可知1m 、n 是方程2520x x +−=的两根, 由韦达定理,可得:15n m +=−.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,而且还考查了一元二次方程的根的灵活应用,要注意观察.例7.已知αβ,是方程:2240x x −−=的两根,求代数式3+8+6αβ的值. 【答案】30.【解析】由题及韦达定理可得:2240αα−−=,2αβ+=,得:224αα=+.3+8+6αβ=286ααβ⋅++=()2486ααβ+++=22486ααβ+++=()224486ααβ++++=()81430αβ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,运用了降次等的思想方法.题型3:已知含字母的一元二次方程的一个根,求另一个根及字母的值例8.(2023春·江苏徐州·九年级校考阶段练习)已知关于x 的方程220x x a +−=的一个根为2,则另一个根是______. 【答案】4−【分析】根据一元二次方程根与系数的关系即可求解.【详解】解:设方程220x x a +−=的另一个根为2x ,则222x +=− 解得:24x =−, 故答案为:4−.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200axbx c a ++=≠的两根,12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解题的关键.例9.若方程:2980kx x −+=的一个根为1x =,则k =________;另一个根为________. 【答案】1;8x =.【解析】将1x =代入方程,可得:1k =,再由韦达定理可得:128x x =,得另一根为8x =.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的应用.题型4:有关一元二次方程的根与系数关系的创新题例10.已知一个直角三角形的两个直角边的长恰好是方程:22870x x −+=两个根,求这个直角三角形的周长. 【答案】7.【解析】解:设直角三角形的三边长为a ,b ,c ,且c 是斜边长,由题知,4a b +=,72ab =,由勾股定理,可得:222c a b =+,所以3c =,所以直角三角形的周长7a b c ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,并且考查了直角三角形的性质,即勾股定理的应用.例11.(2023春·江苏苏州·九年级苏州中学校考开学考试)已知关于x 的一元二次方程22430x mx m −+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x −=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==−=,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=,∵122x x −=,∴()()2222121212416124x x x x x x m m −=+−=−=,解得:1m =±, ∵0m >, ∴1m =.根与系数的关系是解题的关键.【答案】(1)③;(2)4;(3)10【分析】(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)设关于x 的方程260x x c −+=的两个根为12,x x ,然后根据“三倍根方程”可令213x x =,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)先把一元二次方程进行因式分解变形,然后根据“三倍根方程”的关系可进行求解.【详解】(1)解:由2320x x −+=可得:121,2x x ==,不满足“三倍根方程”的定义;由230x x −=可得:120,3x x ==,不满足“三倍根方程”的定义;由28120x x −+=可得:122,6x x ==,满足“三倍根方程”的定义;故答案为③;(2)解:设关于x 的方程260x x c −+=的两个根为12,x x ,由一元二次方程根与系数的关系可知:126x x +=,12x x c =,令213x x =,则有146x =, ∴132x =,292x =, ∴274c =; (3)解:由()20x m n x mn −++=可得:()()0x m x n −−=,∴12,x m x n==,令3m n =,则有:2222233910mn n m n n n ==++.【点睛】本题主要考查一元二次方程根与系数的关系及解法,熟练掌握一元二次方程根与系数的关系是解题的关键.一、单选题1.(2022秋·江苏无锡·九年级统考期中)关于下列一元二次方程,说法正确的是( ) A .2560x x ++=的两根之和等于5 B .231x x −=的两根之积等于1C .20x x m ++=两根不可能互为倒数D .210x mx ++=中m =0时,两根互为相反数【答案】C【分析】根据一元二次方程根的判别式以及一元二次方程根与系数的关系进行判断即可求解.【详解】A. 2560x x ++=的两根之和等于5−,故该选项不正确,不符合题意;B. 231x x −=,即方程2310x x −−=的两根之积等于1−,故该选项不正确,不符合题意;C. 20x x m ++=,∵1,1,a b c m ===,24140b ac m ∆=−=−≥,解得14m ≤,∵1m ≠,两根之积为m ,∴方程两根之积不可能互为倒数,故该选项正确,符合题意;D. 210x mx ++=中0m =时,即21x =−,此方程无实根,故该选项不正确,不符合题意.故选C .【点睛】本题考查了一元二次方程根的判别式以及一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=≠的两根,12bx x a +=−,12c x x a =.一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【答案】A【分析】利用根与系数的关系12bx x a +=−即可求解.【详解】解:利用根与系数的关系,可得:1222b a a x x a +=−−=−=,x 的方程220ax ax c −+=的一个解为11x =−,()212213x x ∴=−=−−=,故选:A .【点睛】本题主要考查根与系数的关系,解题的关键是熟练掌握根与系数的关系.【答案】D【分析】根据两根之和为10−,以及两根之间的数量关系,求出两个根,再根据两根之积等于26a +,求出a 的值即可.【详解】解:设方程的两个根为,m n ,4=m n ,由根与系数的关系可得:10m n +=−,即:410n n +=−, 解得:2n =−, ∴()428m =⨯−=−,∵()268216mn a =+=−⨯−=,∴5a=; 故选D .【点睛】本题考查一元二次方程根与系数的关系.熟练掌握两根之和等于ba −,两根之积等于c a ,是解题的关键.【答案】A【分析】根据:若一元二次方程()200ax bx c a ++=≠ 两根分别为12x x ,,则有:1212b x x a c x x a ⎧+=−⎪⎪⎨⎪⋅=⎪⎩, 代入数据计算即可.【详解】解:设方程的另一根为1x ,由根据根与系数的关系可得:11115x mx +=⎧⎨⨯=⎩,解得:156x m =⎧⎨=⎩故选:B.【点睛】本题考查了一元二次方程的根与系数的关系,关键要理解一元二次方程的两根之和只与二次项系数和一次项系数有关,两根之积只与二次项系数和常数项有关,从而快速计算结果.5.(2022·江苏南京·南师附中树人学校校考二模)方程()()1210x x +−+=的根的情况,下列结论中正确的是( ) A .两个正根 B .两个负根 C .一个正根,一个负根 D .无实数根【答案】C 【分析】先把方程()()1210x x -++=化为210x x +−=,再根据2Δ41450b ac =-=+=>可得方程有两个不相等的实数根. 【详解】解:∵()()1210x x -++=(p 为常数),∴210x x +−=,∴2Δ41450b ac =-=+=>,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为1−, ∴一个正根,一个负根. 故选:C .【点睛】本题考查一元二次方程根的判别式以及根与系数关系,注意利用偶次方的非负性判断代数式的符号是解决问题的关键. 二、填空题6.(2023·江苏盐城·统考一模)已知关于x 的一元二次方程280x kx +−=的一个根是2-,则它的另一个根为______. 【答案】4【分析】利用根与系数之间的关系来求解. 【详解】解:设方程的另一个根为m ,关于x 的一元二次方程280x kx +−=的一个根是2-,由根与系数之间的关系可得 28m −=− 4m ∴=,故答案为:4.【点睛】本题主要考查了一元二次方程根与系数之间的关系.解题的关键是一元二次方程20ax bx c ++=的两根如果为1x 、2x ,则有12b x x a +=−,12cx x a ⋅=. 7.(2022秋·江苏盐城·九年级统考期中)已知一元二次方程2202210x x −−=的两个根分别是1x 、2x ,则代数式221212x x x x +的值为______. 【答案】2022−【分析】结合题意利用一元二次方程根与系数的关系求得122022x x +=,121x x =−,代入即可求解.【详解】解:一元二次方程2202210x x −−=的两个根分别是1x、2x ,122022x x ∴+=,121x x =−,()2212121212x x x x x x x x ∴+=+12022=−⨯2022=−,故答案为:2022−.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值;熟练掌握根与系数的关系是解题的关键.【答案】2【分析】由根与系数的关系可得12123x x x x m+==,,结合12121x x x x +−=可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:∵12x x ,是方程230x x m −+=的两个根,∴12123x x x x m+==,, ∵121231x x x x m +−=−=,∴2m =. 故答案为2.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程()200ax bx c a ++=≠的两根时,1212cb a a x x x x +=−=,.9.(2023秋·江苏扬州·九年级校考期末)已知1x、2x 是关于x 的方程2250x x −−=的两个根,则12x x +值等于________. 【答案】2【分析】根据一元二次方程根与系数的关系得出两根之和即可求解. 【详解】解:1x 、2x 是关于x 的方程2250x x −−=的两个根,12221x x −∴+=−=,故答案为:2.【点睛】本题主要考查了一元二次方程的根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系为:12b x x a +=−,12cx x a ⋅=.【答案】6【分析】根据根与系数关系得到两根和与两根积的值,将式子通分代入求解即可得到答案. 【详解】解:由题意可得, ∵1x ,2x 是一元二次方程2560x x +−=的两个根,∴12551x x +=−=−,12661x x −==−,∴121212115566x x x x x x +−+===− 故答案为:56.【点睛】本题考查一元二次方程根与系数之间的关系,解题的关键是熟练掌握12b x x a +=−,12cx x a =.11.(2023秋·江苏南京·九年级统考期末)关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,则p 的取值范围是______. 【答案】21p −<<−【分析】根据一元二次方程根的判别式和根与系数得关系解答即可.【详解】由题意得: 221x x p −−=,∴22(1)0x x p −−+=,∴[]224(2)41(1)48b ac p p ∆=−=−−⨯⨯−+=+,∴122b x x a +=−=,12(1)cx x p a ⋅==−+,∵关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,∴480(1)0p p +>⎧⎨−+>⎩,解得:21p −<<− ∴p 的取值范围是:21p −<<− 故答案为:21p −<<−【点睛】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握相关知识点是解题的关键.【答案】1−/1−【分析】依据根与系数的关系即12bx x a +=−,12c x x a =代入即可求出m n 、的值,最后代入计算即可.1是方程20x mx n ++=的两个根,))11m∴+=−,)()1·1n=,即m =−1n =,1m n ∴+=−, 故答案为:1−.【点睛】本题考查了根与系数的关系,二次根式的混合运算;解题的关键是熟练掌握一元二次方程根与系数的关系.13.(2023·江苏南京·统考二模)若α、β为2240x x +−=的两根,则22ααβα++的值为______. 【答案】0【分析】由已知中α,β是方程2240x x +−=的两个实数根,结合根与系数的关系转化求解即可.【详解】解:α,β是方程2240x x +−=的两个实数根,可得2αβ+=−,∴22()2220ααβαααβααα++=++=−+=.∴22ααβα++的值为0.故答案为:0.【点睛】本题考查的知识点是一元二次方程根与关系,若α,β是一元二次方程20(0)ax bx c a ++=≠的两根时,b a αβ+=−,ca αβ=.14.(2023秋·江苏南京·九年级统考期末)设12,x x 是关于x 的方程2320x x −+=的两个根,则12x x +=_____________.【答案】3【分析】直接利用根与系数的关系12bx x a +=−求解.【详解】解∶根据根与系数的关系12bx x a +=−得123x x +=.故答案为:3.【点睛】本题考車了根与系数的关系∶若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.15.(2023秋·江苏南京·九年级南京外国语学校仙林分校校考期末)设1x 、2x 是方程230x mx m +−+=的两个根,则1212x x x x +−=___________. 【答案】3−【分析】根据根与系数关系,求出两根之和、两根之积即可. 【详解】解:1x 、2x 是方程230x mx m +−+=的两个根,所以,12x x m+=−,123x x m =−+,1212(3)3x x x x m m +−=−−−+=−,故答案为:3−.【点睛】本题考查了一元二次方程根与系数关系,解题根据是熟记根与系数关系,求出两根之和、两根之积.16.(2022秋·江苏淮安·九年级校考期末)若一元二次方程2220x x −−=有两个实数根1x ,2x ,则1212x x x x +−的值是________. 【答案】4【分析】根据一元二次方程根与系数的关系,即可求得.【详解】解:一元二次方程2220x x −−=有两个实数根1x ,2x,122x x ∴+=,122x x =−,()1212224x x x x ∴+−=−−=,故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值问题,熟练掌握和运用一元二次方程根与系数的关系是解决本题的关键. 三、解答题17.(2023·江苏扬州·统考二模)已知关于x 的一元二次方程()2120x m x m −−+−=(1)求证:该方程总有两个实数根.(2)若该方程两个实数根的差为3,求m 的值. 【答案】(1)证明见解析 (2)0或6【分析】(1)由()2120x m x m −−+−=,可知1a =,()1b m =−−,2c m =−,根据()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,证明即可;(2)由()2120x m x m −−+−=,可得121bx x m a +=−=−,122c x x m a ⋅==−,由该方程两个实数根的差为3,可得()2129x x −=,即()()221212124x x x x x x −=+−⋅,()()21429m m −−−=,计算求解即可.【详解】(1)证明:()2120x m x m −−+−=,1a =,()1b m =−−,2c m =−,∴()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,∴该方程总有两个实数根;(2)解:∵()2120x m x m −−+−=,∴121b x x m a +=−=−,122cx x m a ⋅==−,∵该方程两个实数根的差为3,∴()2129x x −=,∵()()221212124x xx x x x −=+−⋅,∴()()21429m m −−−=,解得0m =或6m =, ∴m 的值为0或6.【点睛】本题考查了一元二次方程根的判别,一元二次方程根与系数的关系,完全平方公式的变形.解题的关键在于对知识的熟练掌握与灵活运用.18.(2020秋·江苏南京·九年级统考期中)已知关于x 的方程()220x mx m −+=−.(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值以及方程的另一个根. 【答案】(1)见解析(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到2(2)4m ∆=−+,然后根据判别式的意义得到结论; (2)设方程的另一个为t ,利用根与系数的关系得到2,22t m t m +==−,然后解方程组即可. 【详解】(1)证明:∵1,,2a b m c m ==−=−,∴22224()41(2)48(2)4b ac m m m m m −=−−⨯⨯−=−+=−+, ∵2(2)0m −≥, ∴2(2)40m −+>,∴0∆>,∴不论m 为何值,该方程都有两个不相等的实数根; (2)解:设方程的另一个为t ,根据根与系数的关系得:2,22t m t m +==−, ∴222t t +−=,解得0=t , ∴2m =,∴m 的值为2,另一个根为0.【点睛】本题考查了判别式的意义以及根与系数的关系:若x1,x2是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.一、单选题1.(2022·江苏·九年级专题练习)设一元二次方程2210x x −−=的两根为1x ,2x ,则1122x x x x −+的值为( ) A .1 B .﹣1 C .0 D .3【答案】D【分析】先利用一元二次方程根与系数的关系得122x x +=,121x x =−,再变形得到11221212x x x x x x x x −+=+−,然后利用整体代入的方法计算.【详解】解:根据根与系数的关系得122x x +=,121x x =−,∴1122x x x x −+1212x x x x =+−()21=−−3=,故选:D .【点睛】本题考查利用一元二次方程根与系数的关系求代数式的值,若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,则12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解决问题的关键.2.(2022秋·江苏常州·九年级校考阶段练习)若m 、n 是方程210x x +−=的两个实数根,则22m m n ++的值为( ) A .4 B .2 C .0 D .-1【答案】C【分析】根据根与系数的关系及方程的解的定义即可求解.【详解】∵m 、n 是方程210x x +−=的两个实数根,∴210m m +−=,1bm n a +=−=−,∴21m m +=,∴()()222110m m n m m m n ++=+++=−=,故选:C .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的关系、一元二次方程根的定义. 3.(2022秋·江苏南京·九年级校考阶段练习)若关于x 的方程260x mx =--的一个根是2−,则另一个根是( ) A .2 B .﹣2 C .﹣3 D .3【答案】D【分析】根据根与系数关系得出两根之积为-6,进而可以求出另一个根. 【详解】解:关于x 的方程260x mx =--的一个根是2−, 根据根与系数关系可知,两根之积为-6,则另一个根为632=−-,故选:D .【点睛】本题考查了一元二次方程根与系数关系,解题关键是利用根与系数关系求出两根之积为-6. 4.(2022秋·九年级课时练习)若α和β是关于x 的方程210x bx +−=的两根,且2211αβαβ−−=−,则b 的值是( ) A .-3 B .3C .-5D .5【答案】C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ−=−,代入2211αβαβ−−=−得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +−=的两根,∴+=,1b αβαβ−=−,∴222()1211b αβαβαβαβ−−=−+=−+=− ∴=5b − 故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为ca 是解题的关键.5.(2022秋·江苏苏州·九年级校考阶段练习)设x 1,x 2是方程x 2+5x ﹣6=0的两个根,则x 12+x 22的值是( ) A .5 B .13C .35D .37【答案】D【分析】根据根与系数的关系可以得到x1+x2=-5,x1x2=-6,然后利用将代数式的值代入,计算x12+x22=(x1+x2)2-2x1x2的值.【详解】解:根据题意得x1+x2=-5,x1x2=-6, x12+x22=(x1+x2)2-2x1x2=25+12=37. 故选:D .【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx x a +=−,12cx x a •=.【答案】C【分析】设直角三角形的斜边为c ,两直角边分别为a 与b .根据一元二次方程根与系数关系可得8a b +=,14ab =.再根据勾股定理即可求.【详解】解:设直角三角形的斜边为c ,两直角边分别为a 与b ,直角三角形两直角边是方程28140x x −+=的两根,8a b ∴+=,14ab =,根据勾股定理可得:2222()2642836c a b a b ab =+=+−=−=,6c ∴=.故选:C .【点睛】本题考查勾股定理,一元二次方程根与系数关系,熟练掌握一元二次方程根与系数关系是解题的关键.7.(2020秋·江苏连云港·九年级校考阶段练习)两根均为负数的一元二次方程是( ) A .2712+5=0x x - B .26135=0x x -- C .24215=0x x ++ D .2158=0x x -+【答案】C【分析】因为两根均为负数,所以两实数根的和小于零,两根之积大于零.解题时检验两根之和ba −是否小于零,及两根之积ca 是否大于零.【详解】解:A.125>07x x =,1212>07x x +=,两根均为正数;B.125<06x x =-,1213>06x x +=,两根为一正一负;C.125>04x x =,1221<04x x +=-,两根均为负数;D.128<0x x =-,1215<0x x +=-,两根为一正一负.故答案为:C .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()2=00ax bx c a ++¹的两根时,12=bx x a +−,12=c x x a .二、填空题8.(2022秋·江苏连云港·九年级校考阶段练习)若a ,b 是方程2220x x +−=的两个实数根,则代数式23a a b ++的值为______. 【答案】0【分析】由一元二次方程的解的定义可得出2220a a +−=,即得出222a a +=.根据一元二次方程根与系数的关系可得出2a b +=−,从而即可求出22320a a b a a a b ++=+++=.【详解】∵a ,b 是方程2220x x +−=的两个实数根,∴2220a a +−=,221a b +=−=−,∴222a a +=,∴22322(2)0a b a a a a b ++=+++=+−=. 故答案为:0.【点睛】本题考查一元二次方程的解的定义,一元二次方程根与系数的关系.掌握方程的解就是使方程成立的未知数的值和熟记一元二次方程根与系数的关系:12b x x a +=−、12cx x a ⋅=是解题关键. 9.(2023春·江苏泰州·九年级泰州市姜堰区第四中学校考阶段练习)设方程2202310x x −−=的两个根分别为12x x 、,则1212x x x x +−的值是___________. 【答案】2024【分析】先根据根与系数的关系可求121220231x x x x +==−,,再把12x x +,12x x 的值整体代入所求代数式计算即可.【详解】解:∵方程2202310x x −−=的两个根分别为12x x、,∴121220231x x x x +==−,,∴1212202312024x x x x =−++=.故答案是:2024.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根与系数的关系:若方程的两根为12x x、,则1212b cx x x x a a +=−⋅=,.10.(2023·江苏南京·九年级专题练习)已知1x 、2x 是一元二次方程250x x −−=的两个实数根,则221122x x x x −+的值是________.【答案】16【分析】先根据根与系数的关系得到121215x x x x +==−,,然后利用整体代入的方法计算.【详解】解:根据题意得121215x x x x +==−,,所以()222211221212313516x x x x x x x x −+=+−=−⨯−=().故答案为:16.【点睛】本题考查了根与系数的关系:若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−⋅=.11.(2022春·江苏南通·九年级校考阶段练习)已知:m 、n 是方程2310x x +−=的两根,则22(33)(33)m m n n ++++=_____.【答案】16【分析】根据m 、n 是方程2310x x +−=的两根,即可得到3m n +=−,1mn =−,2310m m +−=,2310n n +−=,从而得到231m m +=,231n n +=,代入计算即可得到答案.【详解】解:∵m 、n 是方程2310x x +−=的两根,∴3m n +=−,1mn =−,2310m m +−=,2310n n +−=,∴231m m +=,231n n +=,∴()()22(33)(33)131316m m n n ++++=++=,故答案为:16.【点睛】本题考查了一元二次方程根的定义,根与系数的关系,熟知一元二次方程根的定义,根与系数的关系,并根据题意将所求代数式变形是解题关键. 三、解答题12.(2022秋·江苏·九年级专题练习)已知关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x . (1)求m 的取值范围;(2)当11x =−时,求另一个根2x 的值. 【答案】(1)3m ≤ (2)23x =【分析】(1)根据题意得()()22420m ∆=−−−≥,解不等式即可求解; (2)根据根与系数的关系得122x x +=,根据11x =−,即可求解.【详解】(1)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴()()22420m ∆=−−−≥,解得3m ≤,所以m 的取值范围为3m ≤;(2)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴122x x +=, ∵11x =−, ∴23x =.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.13.(2022秋·江苏盐城·九年级滨海县第一初级中学校联考阶段练习)已知关于x 的一元二次方程22430x mx m −+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的平方和为10,求m 的值. 【答案】(1)见解析 (2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为1x,2x ,然后根据一元二次方程根与系数的关系可得124x x m+=,2123x x m ⋅=,再根据两个实数根的平方和为10,可得()222121212210x x x x x x +=+−=,由此可解.【详解】(1)证明:由题意得:1a =,4b m =−,23c m =,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为1x ,2x ,则有124x x m +=,2123x x m ⋅=,∵221210x x +=,∴()222222121212216231010x x x x x x m m m +=+−=−⨯==,解得:1m =±, ∵0m >, ∴1m =.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.14.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程()21360x m x m −++−=.(1)求证:方程总有两个实数根; (2)若12127x x x x ++=,求m 的值. 【答案】(1)见解析 (2)3m =【分析】(1 (2)根据一元二次方程根与系数的关系可得1212136x x m x x m +=+=−,,整体代入12127x x x x ++=中,解出m 的值即可.【详解】(1)∵该一元二次方程为()21360x m x m −++−=,∴()1136a b m c m ==−+=−,,,∴()()2222414361025(5)0b ac m m m m m ⎡⎤−=−+−⨯−=−+=−≥⎣⎦,∴该方程总有两个实数根; (2)∵1212136b cx x m x x m a a +=−=+==−,,又∵12127x x x x ++=,∴1367m m ++−=,解得:3m =.【点睛】本题考查根据判别式判断一元二次方程根的情况,一元二次方程的根与系数的关系.掌握一元二次方程20(0)ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根.熟记一元二次方程根与系数的关系:12b x x a +=−和12cx x a ⋅=是解题关键. 15.(2022秋·江苏·九年级专题练习)关于x 的方程:2(x ﹣k )=x ﹣4①和关于x 的一元二次方程:(k ﹣1)x 2+2mx+(3﹣k )+n =0②(k 、m 、n 均为实数),方程①的解为非正数. (1)求k 的取值范围;(2)如果方程②的解为负整数,k ﹣m =2,2k ﹣n =6且k 为整数,求整数m 的值;(3)当方程②有两个实数根x 1、x 2,满足(x 1+x 2)(x 1﹣x 2)+2m (x 1﹣x 2+m )=n+5,且k 为正整数,试判断|m|≤2是否成立?请说明理由.【答案】(1)k≤2且k≠1;(2)m =﹣2或﹣3;(3)成立,见解析【分析】(1)先解出方程①的解,根据一元二次方程的定义和方程①的根为非正数,得出k 的取值范围,即可;(2)先把k =m+2,n =2m ﹣2代入方程②化简,通过因式分解法,用含m 的代数式表示出一元二次方程的两个实数根,根据方程②的解为负整数,m 为整数,即可求出m 的值;(3)根据(1)中k 的取值范围和k 为正整数得出k =2,化简一元二次方程,并将两根和与积代入计算,得出关于m 、n 的等式,结合根的判别式,即可得到结论. 【详解】(1)∵关于x 的方程:2(x ﹣k )=x ﹣4, 解得:x =2k ﹣4,∵关于x 的方程2(x ﹣k )=x ﹣4的解为非正数, ∴2k ﹣4≤0,解得:k≤2, ∵由一元二次方程②,可知k≠1, ∴k≤2且k≠1;(2)∵一元二次方程(k ﹣1)x2+2mx+(3﹣k )+n =0中k ﹣m =2,2k ﹣n =6, ∴k =m+2,n =2k ﹣6=2m+4﹣6=2m ﹣2,∴把k =m+2,n =2m ﹣2代入原方程得:(m+1)x2+2mx+m ﹣1=0, 因式分解得,[(m+1)x+(m ﹣1)](x+1)=0,∴x1=﹣11mm−+=211m−+,x2=﹣1,∵方程②的解为负整数,m为整数,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3;(3)|m|≤2成立,理由如下:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,∵(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=21mk−−=﹣2m,x1x2=31k nk−+−=1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5 ①,△=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣4(n+1)≥0 ②,把①代入②得:4m2﹣8m2+16≥0,即m2≤4,∴|m|≤2.【点睛】本题主要考查一元一次方程与一元二次方程,涉及解一元一次方程,一元二次方程以及一元二次方程的根与系数的关系,根的判别式,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系,根的判别式,是解题的关键.16.(2022秋·江苏·九年级专题练习)关于x的方程2220x ax a−++=有两个不相等的实数根,求分别满足下列条件的取值范围:(1)两根都小于0;(2)两根都大于1;(3)方程一根大于1,一根小于1.【答案】(1)-2<a<-1;(2)2<a<3;(3)a>3【分析】由关于x的方程x2-2ax+a+2=0有两个不相等的实根,得出△=(-2a)2-4(a+2)>0,解得a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,利用根与系数的关系得到α+β=2a,αβ=a+2,再分别根据:(1)由两根都小于0,得出α+β=2a<0,αβ=a+2>0,此求出a的取值范围;(2)由两根都大于1,得出(α-1)(β-1)>0,且对称轴212a−−>,依此求出a的取值范围;(3)由一根大于1,一根小于1,得出(α-1)(β-1)<0,依此求出a的取值范围;【详解】解:∵关于x的方程x2-2ax+a+2=0有两个不相等的实根,∴△=(-2a)2-4(a+2)>0,∴a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,α+β=2a,αβ=a+2.(1)∵两根都小于0,∴α+β=2a<0,αβ=a+2>0,解得:-2<a<0,又22a−−<,a<0;∵a<-1或a>2,∴-2<a<-1;(2)∵两根都大于1,∴(α-1)(β-1)>0,∴αβ-(α+β)+1>0,∴a+2-2a>-1,∴a<3,又212a−−>,a>1;又a<-1或a>2,∴2<a<3;(3))∵一根大于1,一根小于1,∴(α-1)(β-1)<0,∴αβ-(α+β)+1<0,∴a+2-2a<-1,∴a>3.【点睛】本题考查了根的判别式,根与系数的关系,属于基础题,关键是要熟记x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba−,x1x2=ca.17.(2022秋·江苏·九年级专题练习)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:【答案】(1)43(2)4(3)存在,当k=﹣2时,1212212x xy yx x−−=【分析】(1)根据a,b是x2+15x+5=0的解,求出a+b和ab的值,即可求出a bb a+的值.(2)根据a+b+c=0,abc=16,得出a+b=-c,ab=16c,a、b是方程x2+cx+16c=0的解,再根据c2-4•16c≥0,即可求出c的最小值.(3)运用根与系数的关系求出x1+x2=1,x1•x2=k+1,再解y1y2-1221x xx x−=2,即可求出k的值.【详解】(1)∵a、b是方程x2+15x+5=0的二根,∴a+b=﹣15,ab=5,∴a bb a+=()22a b abab+−215255−−⨯=43,故答案是:43;(2)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=16 c,∴a、b是方程x2+cx+16c=0的解,∴c2﹣4•16c≥0,c2﹣34c≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.(3)存在,当k=﹣2时,1212212x xy yx x−−=.由x2﹣y+k=0变形得:y=x2+k ,由x ﹣y=1变形得:y=x ﹣1,把y=x ﹣1代入y=x2+k ,并整理得:x2﹣x+k+1=0, 由题意思可知,x1 , x2是方程x2﹣x+k+1=0的两个不相等的实数根,故有:()()()()()()()212112121221212121212211214101112112k x x x x k y y x x x x x x x x y y x x x x x x =⎧−−+>⎪+⎪⎪=+⎪⎪=−−⎨⎪+−⎪−−=−−−=⎪⎪⎪⎩即:23420k k k ⎧<−⎪⎨⎪+=⎩解得:k=﹣2.【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【答案】(1)x1x2=x3x4= (2)454.【分析】(1)利用换元法解方程,设y =x2,则原方程可化为y2﹣5y+6=0,解关于y 的方程得到y1=2,y2=3,则x2=2或x2=3,然后分别解两个元二次方程即可;(2)根据已知条件,把a2、b2看作方程2x2﹣7x+1=0的两不相等的实数根,然后根据根与系数的关系求解.【详解】(1)解:42560x x −+=,设2y x =,则原方程可化为2560y y −+=,解得12y =,23y =,当=2y 时,22x =,解得1x 2=x当=3y 时,23x =,解得3x 4=x −所以原方程的解为1x 2=x 3x 4x =故答案为:1x ,2=x 3x =4x =(2)解:∴实数a ,b 满足:422710a a −+=,422710b b −+=且a b ≠,2a ∴、2b 可看作方程22710x x −+=的两不相等的实数根,2272a b ∴+=,2212a b =g ;∴2424222714522224a b a b a b +=+-=-´=g ()(); 故答案为:454.【点睛】本题主要考查了用“换元法”把高次方程转化为一元二次方程,韦达定理,完全平方公式,其中转化思想是解决问题的关键.。
一元二次方程课时练习1.3★一元二次方程根与系数关系(选学内容)复习巩固1.下列方程中,两个实数根之和为2的一元二次方程是()A.x2+2x-3=0 B.x2-2x+3=0C.x2-2x-3=0 D.x2+2x+3=02.设一元二次方程x2-2x-4=0的两个实根为x1和x2,则下列结论正确的是() A.x1+x2=2 B.x1+x2=-4C.x1x2=-2 D.x1x2=43.已知x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a,b 的值分别是()A.a=-3,b=1 B.a=3,b=1C.3=2a-,b=-1 D.3=2a-,b=14.若一元二次方程x2+kx-3=0的一个根是x=1,则该方程的另一个根是()A.3 B.-1C.-3 D.-25.已知方程x2-5x+2=0的两个根分别为x1,x2,则x1+x2-x1x2的值为()A.-7 B.-3 C.7 D.36.(2013山东莱芜)已知m,n是方程x2++1=0的两根,则代数式的值为()A.9 B.±3 C.3 D.57.已知方程x2-4x-7=0的根是x1和x2,则x1+x2=__________,x1x2=__________.8.若方程x2-2x+a=0的一个根是3,则该方程的另一个根是__________,a=__________.9.若x1,x2是一元二次方程x2-3x-2=0的两个实数根,则x21+3x1x2+x22的值为__________.10.已知方程x2+3x-1=0的两实数根为α,β,不解方程求下列各式的值.(1)α2+β2;(2)α3β+αβ3;(3)βααβ+.能力提升11.关于x 的一元二次方程x 2-mx +2m -1=0的两个实数根分别是x 1,x 2,且x 12+x 22=7,则(x 1-x 2)2的值是( )A .1B .12C .13D .2512.若关于x 的一元二次方程x 2+(m 2-9)x +m -1=0的两个实数根互为相反数,则m 的值是__________.13.设a ,b 是方程x 2+x -2 015=0的两个不相等的实数根,则a 2+2a +b 的值为__________.14.在解方程x 2+px +q =0时,小张看错了p ,解得方程的根为1与-3;小王看错了q ,解得方程的根为4与-2.这个方程正确的根应该是什么?15.已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.16.阅读材料:已知p 2-p -1=0,1-q -q 2=0,且pq ≠1,求1pq q+的值. 解:由p 2-p -1=0,1-q -q 2=0,可知p ≠0,q ≠0.又因为pq ≠1,所以p ≠1q .所以1-q -q 2=0可变形为2111=0q q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.所以p 与1q 是方程x 2-x -1=0的两个不相等的实数根.故p +1q =1,即1pq q+=1. 根据阅读材料所提供的方法,完成下面的解答.已知2m 2-5m -1=0,2152=0n n +-,且m ≠n ,求11m n+的值.参考答案复习巩固1.C选项B中的方程无实数根.本题易误选为B. 2.A3.D由根与系数的关系知,x1+x2=-2a,x1x2=b.因此-2a=3,b=1,即32a=-,b=1.故选D.4.C设方程的另一个根为x1,由x1·1=-3,得x1=-3.5.D由根与系数的关系,得x1+x2=5,x1x2=2.故x1+x2-x1x2=5-2=3.6.C根据一元二次方程的根与系数的关系,得m+n=-,mn=1.故3===.7.4-78.-1-3设方程的另一个根是x1,则113=23=xx a+⎧⎨⎩,,解得x1=-1,a=-3.9.7x12+3x1x2+x22=(x1+x2)2+x1x2=32+(-2)=7.10.解:因为α,β是方程x2+3x-1=0的两个实数根,所以α+β=-3,αβ=-1.(1)α2+β2=(α+β)2-2αβ=(-3)2-2×(-1)=11.(2)α3β+αβ3=αβ(α2+β2)=(-1)×11=-11.(3)2211111βααβαβαβ++===--.能力提升11.C由根与系数的关系,得x1+x2=m,x1x2=2m-1,则(x1-x2)2=2212x x+-2x1x2=7-2(2m-1)=9-4m;又因为(x1-x2)2=(x1+x2)2-4x1x2=m2-4(2m-1),所以9-4m=m2-8m+4,解得m1=5,m2=-1.当m=5时,Δ<0,故m=-1.此时(x1-x2)2=9-4×(-1)=13.12.-3由根与系数的关系,得-(m2-9)=0,解得m=±3.但当m =3时,原方程无实根,故m =-3.13.2 014 因为a ,b 是方程x 2+x -2 015=0的两个不相等的实数根,故由根与系数的关系可得a +b =-1①,由根的定义,得a 2+a -2 015=0,即a 2+a =2 015②.再由①+②得a 2+2a +b =2 014.14.解:由题意,得1×(-3)=q,4+(-2)=-p .从而可得p =-2,q =-3.因此原方程为x 2-2x -3=0,解得x 1=3,x 2=-1.故这个方程正确的根为3与-1.15.解:(1)依题意,得Δ≥0,即[-2(k -1)]2-4k 2≥0,解得12k ≤. (2)依题意,得x 1+x 2=2(k -1),x 1x 2=k 2.以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1x 2-1,即2(k -1)=k 2-1,解得k 1=k 2=1. 因为12k ≤,所以k 1=k 2=1不合题意,舍去. ②x 1+x 2<0时,则有x 1+x 2=-(x 1x 2-1),即2(k -1)=-(k 2-1).解得k 1=1,k 2=-3. 因为12k ≤,所以k =-3. 综合①②可得k =-3.16.解:由2m 2-5m -1=0知m ≠0.因为m ≠n ,所以11m n≠. 所以21520m m+-=. 根据21520m m +-=与21520n n +-=的特征,可知1m 与1n是方程x 2+5x -2=0的两个不相等的实数根. 所以根据根与系数的关系,得115m n +=-.。
初中数学苏科版九年级上册1.3 一元二次方程根与系数的关系同步练习一、单选题1.已知x1,x2是一元二次方程x2−2x=0的两根,则x1+x2的值是()A.0B.2C.-2D.42.若x1、x2是方程x2−2x−1=0的两个根,则x1+x1x2+x2的值为()A.1B. -1C.3D. -33.已知x1、x2是一元二次方程x2−4x−1=0的两个根,则x1⋅x2等于()A.4B.1C.D.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣35.已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.136.设x1,x2是方程x2+4x−3=0的两个根,则1x1+1x2的值为()A.43B.−43C.3D.47.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=()A.﹣5B.9C.5D.78.若α,β为方程2x2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为()A.-13B.12C.14D.159.已知一元二次方程a(x-x1)(x-x2)=0(a≠0,x1≠x2)与一元一次方程dx+e=0有一个公共解x=x1,若一元二次方程a(x-x1)(x-x2)+(dx+e)=0有两个相等的实数根,则()A.a(x1-x2)=dB.a(x2-x1)=dC.a(x1-x2)²=dD.a(x2-x1)=d二、填空题10.设x1,x2是一元二次方程x2+5x﹣3=0的两根,且2x1(x22+6x2﹣3)+a=4,则a=________.11.已知关于x的方程x2−(a2−2a−15)x+a−1=0两个根是互为相反数,则a的值为________.12.已知m、n是关于x的一元二次方程x2+px+q=0的两个不相等的实数根,且m2+mn+n2=3,则q的取值范围是________.13.若方程x2−3x+1=0的根也是方程x4+ax2+bx+c=0的根,则a+b+2c=________.14.关于x的一元二次方程x2−mx+2m−1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1−x2)2的值是________.三、综合题15.已知关于x的方程x2+(2k+1)x+k2+1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2.满足|x1|+|x2|=x1x2求实数k的值.16.我们在探究一元二次方程根与系数的关系中发现:如果关于x的方程x2+px+q=0的两个根是x1,x2,那么由求根公式可推出x1+x2=﹣p,x1•x2=q,请根据这一结论,解决下列问题:(1)若α,p是方程x2﹣3x+1=0的两根,则α+β=________,α•β=________;若2,3是方程x2+mx+ n=0的两根,则m=________,n=________;(2)已知a,b满足a2﹣5a+3=0,b2﹣5b+3=0,求ab +ba的值;(3)已知a,b,c满足a+b+c=0,abc=5,求正整数c的最小值,17.已知方程+px+q=0的两个根是,,那么+ =-p,x1x2=q,反过来,如果x1+ x2=-p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出—个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2-15a-5=0,b2-15b-5=0,求ab +ba的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值答案解析部分一、单选题1.【答案】B【考点】一元二次方程的根与系数的关系解:∵x1,x2是一元二次方程x2−2x=0的两根,∵x1+x2=2.故答案为:B.【分析】根据一元二次方程根与系数的关系x1+x2=−ba,即可求解.2.【答案】A【考点】一元二次方程的根与系数的关系解:因为x1、x2是方程x2−2x−1=0的两个根,所以x1+x=22,x1•x=2−1所以x1+x1x2+x2=2-1=1故答案为:A【分析】根据一元二次方程根与系数关系求解.3.【答案】C【考点】一元二次方程的根与系数的关系解:x1·x2=ca =−11=−1.故答案为:C.【分析】利用一元二次方程根与系数的关系直接求解即可。
2021-2022学年苏科版数学九年级全册压轴题专题精选汇编专题02 一元二次方程根与系数的关系一.选择题1.(2020•汇川区模拟)已知m、n是一元二次方程x2﹣2x﹣1=0的两根,则m2+n2的值为()A.﹣6B.﹣1C.6D.2【思路引导】根据一元二次方程根与系数的关系,求出m+n和mn的值,m2+n2整理得:(m+n)2﹣2mn,代入计算即可.【完整解答】解:根据题意得:m+n=2,mn=﹣1,所以m2+n2=(m+n)2﹣2mn=22﹣2×(﹣1)=6,故选:C.2.(2020秋•红桥区期中)已知关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣3,则原方程可化为()A.(x+2)(x+3)=0B.(x+2)(x﹣3)=0C.(x﹣2)(x﹣3)=0D.(x﹣2)(x+3)=0【思路引导】根据根与系数的关系,直接代入计算即可.【完整解答】解:∵关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣3,∴2﹣3=﹣p,2×(﹣3)=q,∴p=﹣1,q=﹣6,∴原方程可化为(x﹣2)(x+3)=0.故选:D.3.(2020•南通模拟)已知数m满足6<m<20,如果关于x的一元二次方程mx2﹣(2m﹣1)x+m﹣2=0有有理根,求m的值()A.11B.12C.m有无数个解D.13【思路引导】由题意得m≠0,若关于x的一元二次方程mx2﹣(2m﹣1)x+m﹣2=0有理根,则△≥0,并且△为有理数的平方.而△=(2m﹣1)2﹣4m×(m﹣2)=4m+1,再由m满足6<m<20,确定出△的范围,即可得出结论.【完整解答】解:∵关于x的方程mx2﹣(2m﹣1)x+m﹣2=0是一元二次方程,∴m≠0,∵△=b2﹣4ac=(2m﹣1)2﹣4m×(m﹣2)=4m+1,又∵6<m<20,∴25<4m+1<81,∵如果关于x的一元二次方程mx2﹣(2m﹣1)x+m﹣2=0有有理根,∴△为有理数的平方,∴有无数个有理数m,使(4m+1)是有理数的平方,(如△=6或7或8或30.25或36或37.21或42.25等),故选:C.4.(2020春•安庆期中)已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则a2+b2+ab的值为()A.3B.4C.5D.6【思路引导】先根据根与系数关系得出a+b=2,ab=﹣1,再把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.【完整解答】解:∵a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,∴a+b=2,ab=﹣1,∴a2+b2+ab=(a+b)2﹣ab=4+1=5.故选:C.5.(2020•河北模拟)已知一元二次方程x2+x﹣1=0,嘉淇在探究该方程时,得到以下结论:①该方程有两个不相等的实数根;②该方程有一个根为1;③该方程的根是整数;④该方程有一个根小于﹣1.则其中正确结论的序号为()A.①③B.②④C.①④D.②③【思路引导】先求出△=5>0,判断出①正确,再求出此方程的两个实数根,即可判断出②③错误,④正确,即可得出结论.【完整解答】解:∵一元二次方程x2+x﹣1=0,∴△=12﹣4×1×(﹣1)=5>0,∴此方程有两个不相等的实数根,故①正确;∵a=1,b=1,c=﹣1,∴x==,∴x1=<﹣1,x2=>0,故②③错误,④正确,即正确的有①④,故选:C.二.填空题6.(2021春•周村区期末)设x1、x2是方程x2﹣5x+m=0的两个根,且x1+x2﹣x1x2=2,则m=3.【思路引导】由根与系数的关系可得x1+x2=5、x1x2=m,结合x1+x2﹣x1x2=2可得出关于m的一元一次方程,解之即可得出结论.【完整解答】解:∵x1、x2是方程x2﹣5x+m=0的两个根,∴x1+x2=5,x1x2=m.∵x1+x2﹣x1x2=5﹣m=2,∴m=3.故答案为:3.7.(2021•吉水县一模)已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=12或﹣18.【思路引导】先利用根与系数的关系得到α+β=﹣1,αβ=﹣6,所以α2β+αβ=αβ(α+1)=﹣6(α+1),再解方程解方程x2+x﹣6=0得x1=﹣3,x2=2,然后把α=﹣3和α=2分别代入计算即可.【完整解答】解:根据题意得α+β=﹣1,αβ=﹣6,所以α2β+αβ=αβ(α+1)=﹣6(α+1),而解方程x2+x﹣6=0得x1=﹣3,x2=2,当α=﹣3时,原式=﹣6(﹣3+1)=12;当α=2时,原式=﹣6(2+1)=﹣18.故答案为12或﹣18.8.(2020秋•九江期末)已知m,n是一元二次方程x2+x﹣1=0的两个根,则m2+2m+n等于0.【思路引导】由于m、n是一元二次方程x2+3x﹣7=0的两个根,根据根与系数的关系可得m+n=﹣1,mn=﹣1,而m是方程的一个根,可得m2+m﹣1=0,即m2+m=1,那么m2+2m+n=m2+m+m+n,再把m2+3m、m+n的值整体代入计算即可.【完整解答】解:∵m、n是一元二次方程x2+x﹣1=0的两个根,∴m+n=﹣1,mn=﹣1,∵m是x2+x﹣1=0的一个根,∴m2+m﹣1=0,∴m2+m=1,∴m2+2m+n=m2+m+m+n=1+(m+n)=1﹣1=0.故答案为:0.9.(2020•黔南州)对于实数a,b,定义运算“a*b=”例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=0.【思路引导】求出x2﹣8x+16=0的解,代入新定义对应的表达式即可求解.【完整解答】解:x2﹣8x+16=0,解得:x=4,即x1=x2=4,则x1*x2=x1•x2﹣x22=16﹣16=0,故答案为0.10.(2020秋•澧县月考)已知m、n是方程x2+2x﹣2015=0的两个实数根,则代数式m2+mn+3m+n=﹣2.【思路引导】根据根与系数的关系及方程的解的定义得出m+n=﹣2,mn=﹣2015,m2+2m=2015,代入原式=m2+2m+mn+(m+n)计算可得.【完整解答】解:∵m、n是方程x2+2x﹣2015=0的两个实数根,∴m+n=﹣2,mn=﹣2015,m2+2m=2015,∴m2+mn+3m+n=m2+2m+mn+(m+n)=2015﹣2015﹣2=﹣2.故答案是:﹣2.11.(2020秋•杨浦区期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2的值是0.【思路引导】根据(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣得到=﹣1,或=﹣4,从而得到m+n=0,4m+n=0,进而得到4m2+5mn+n2=(4m+n)(m+n)=0.【完整解答】解:∵(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣,∴=﹣1或=﹣4,∴m+n=0,4m+n=0,∵4m2+5mn+n2=(4m+n)(m+n)=0,故答案是:0.12.(2018•苍南县校级自主招生)设x1、x2是方程x2﹣6x+a=0的两个根,以x1、x2为两边长的等腰三角形只可以画出一个,则实数a的取值范围是0<a≤8或a=9.【思路引导】方程有两个根,设x1≤x2,则可以根据求根公式用含a的式子表示x,由x1>0,x2>0,则0<a≤9,再分两种情况讨论,即根据x1=x2,和x1≠x2,等腰三角形只能作一个,只要较小的根作底,较大的根为腰,再根据三边关系得出不等式求解,再综合得出答案,确定a的取职范围.【完整解答】解:方程x2﹣6x+a=0的两个根为x=3±,设x1,x2为方程两根,(1)若x1=x2,此时a=9,以x1、x2为两边长的等腰三角形是等边三角形,符合题意;(2)若x1≠x2,设x1<x2,则x1=3﹣,x2=3+,∵x1>0,x2>0,∴0<a<9,①以x1为底,x2为腰的等腰三角形必有一个,此时,0<a<9,②以x1为腰,以x2为底的等腰三角形不存在,则有2x1≤x2,∴6﹣2≤3+,≥1,∴0<a≤8,综上所述:当0<a≤8或a=9时只有一个等腰三角形.故答案为:0<a≤8或a=9.13.(2017•内江)设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=47.【思路引导】根据α、β是方程(x+1)(x﹣4)=﹣5的两实数根,得到α+β=3,αβ=1,根据完全平方公式得到α4+β4=47,于是得到结论.【完整解答】解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.14.(2010•合肥校级自主招生)已知α、β是方程x2+x﹣1=0的两个实根,则α4﹣3β=5.【思路引导】由方程的根的定义,可知α2+α﹣1=0,移项,得α2=1﹣α,两边平方,整理得α4=2﹣3α①;由一元二次方程根与系数的关系,可知α+β=﹣1②;将①②两式分别代入α4﹣3β,即可求出其值.【完整解答】解:∵α是方程x2+x﹣1=0的根,∴α2+α﹣1=0,∴α2=1﹣α,∴α4=1﹣2α+α2=1﹣2α+(1﹣α)=2﹣3α.又∵α、β是方程x2+x﹣1=0的两个实根,∴α+β=﹣1.∴α4﹣3β=2﹣3α﹣3β=2﹣3(α+β)=2﹣3×(﹣1)=5.故答案为5.15.(2002•内江)如果m,n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,那么代数式2m2+4n2﹣4n+1999=2013.【思路引导】由于m,n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,可知m,n是x2﹣2x﹣1=0两个不相等的实数根.则根据根与系数的关系可知:m+n=2,又m2=2m+1,n2=2n+1,利用它们可以化简2m2+4n2﹣4n+1999=2(2m+1)+4(2n+1)﹣4n+1999=4m+2+8n+4﹣4n+1999=4(m+n)+2005,然后就可以求出所求的代数式的值.【完整解答】解:由题意可知:m,n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,所以m,n是x2﹣2x﹣1=0两个不相等的实数根,则根据根与系数的关系可知:m+n=2,又m2=2m+1,n2=2n+1,则2m2+4n2﹣4n+1999=2(2m+1)+4(2n+1)﹣4n+1999=4m+2+8n+4﹣4n+1999=4(m+n)+2005=4×2+2005=2013.故填空答案:2013.三.解答题(共12小题)16.(2020秋•梁溪区期末)已知关于x的方程:(k﹣2)x2﹣kx+2=0.(1)若该方程有一个根是2,求该方程的另一个根;(2)证明:无论k取何值,该方程总有实数根.【思路引导】(1)把x=2代入方程,列出关于k的新方程;然后由根与系数的关系解答;(2)证明根的判别式是非负数0即可.【完整解答】解:(1)把x=2代入方程:(k﹣2)x2﹣kx+2=0,得:4(k﹣2)﹣2k+2=0.解得:k=3.由根与系数的关系得x1+x2=﹣,即2+x2=﹣=3,所以x2=1;(2)证明:当k﹣2=0即=2时,该方程是﹣2x+2=0,此时x=1,符合题意.当k﹣2≠0,时,△=b2﹣4ac=(﹣k)2﹣4(k﹣2)×2=(k﹣4)2≥0,该方程总有实数根.综上所述,无论k取何值,该方程总有实数根.17.(2020秋•遂宁期末)已知关于x的一元二次方程kx2+(1﹣2k)x+k﹣2=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当k取满足(1)中条件的最小整数时,设方程的两根为α和β,求代数式α3+β2+β+2017的值.【思路引导】(1)根据一元二次方程的定义和判别式的意义得到k≠0且△=(1﹣2k)2﹣4k(k﹣2)>0,然后求出两不等式的公共部分即可;(2)k=1.方程变为x2﹣x﹣1=0,利用根与系数的关系得到α+β=1,αβ=﹣1,利用一元二次方程根的定义得到α2﹣α﹣1=0,β2﹣β﹣1=0,则β2=β+1,α3=2α+1,然后利用整体代入的方法计算α3+β2+β+2017的值.【完整解答】解:(1)根据题意得k≠0且△=(1﹣2k)2﹣4k(k﹣2)>0,解得k>﹣且k≠0;(2)∵k取满足(1)中条件的最小整数,∴k=1.此时方程变为x2﹣x﹣1=0,∴α+β=1,αβ=﹣1,∵α2﹣α﹣1=0,β2﹣β﹣1=0,∴α2=α+1,β2=β+1,∴α3=α2+α=α+1+α=2α+1,∴α3+β2+β+2017=2α+1+β+1+β+2017=2(α+β)+2019=2×1+2019=2021.18.(2021•薛城区一模)阅读材料:已知方程p2﹣p﹣1=0,1﹣q﹣q2=0且pq≠1,求的值.解:由p2﹣p﹣1=0,及1﹣q﹣q2=0,可知p≠0,q≠0.又∵pq≠1,∴p≠.∵1﹣q﹣q2=0可变形为()2﹣()﹣1=0.根据p2﹣p﹣1=0和()2﹣()﹣1=0的特征.∴p、是方程x2﹣x﹣1=0的两个不相等的实数根,则p+=1,即=1.根据阅读材料所提供的方法,完成下面的解答.已知:2m2﹣5m﹣1=0,+﹣2=0且m≠n,求(1)mn的值;(2)+.【思路引导】由+﹣2=0得到2n2﹣5n﹣1=0,根据题目所给的方法得到m、n是方程2x2﹣5x﹣1=0的两个不相等的实数根,根据根与系数的关系得到m+n=,mn=﹣,利用完全平方公式变形得到原式=(m+n)2﹣4mn,然后利用整体代入的方法计算.【完整解答】解:∵+﹣2=0,∴2n2﹣5n﹣1=0,根据2m2﹣5m﹣1=0和2n2﹣5n﹣1=0的特征,∴m、n是方程2x2﹣5x﹣1=0的两个不相等的实数根,∴m+n=,mn=﹣,(1)mn=﹣;(2)原式===29.19.(2021•南海区一模)如图,已知菱形ABCD的周长是48cm,AE⊥BC,垂足为E,AF⊥CD,垂足为F,∠EAF=2∠C.(1)求∠C的度数;(2)已知DF的长是关于x的方程x2﹣5x﹣a=0的一个根,求该方程的另一个根.【思路引导】(1)根据垂线的定义可得出∠AFD=∠AEB,由四边形内角和为360°结合∠EAF=2∠C,即可求出∠C的度数;(2)根据平行四边形的周长结合两邻边的比例可求出AD的长度,在Rt△ADF中,可求出DF的长度,再利用根与系数的关系即可求出方程x2﹣ax﹣6=0的另一个根.【完整解答】解:(1)∵ABCD是菱形,∴AB=AD=BC=CD=48÷4=12,∠DAB=∠C,又∵AE⊥BC,AF⊥CD,∴∠E=∠F=90°,∵∠EAF=2∠C.∠EAF+∠E+∠F+∠C=360°,∴3∠C=180°,∴∠C=60°,(2)在Rt△ADF中,∠ADF=∠C=60°,∴DF=cos60°×12=6,∵DF的长是关于x的方程x2﹣5x﹣a=0的一个根,设另一个根为x,根据根与系数的关系得,x+6=5,解得x=﹣1,答:方程的另一个根为﹣1.20.(2020秋•绥棱县期末)已知关于x的一元二次方程x2﹣5x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足3x1﹣2x2=5,求实数m的值.【思路引导】(1)根据一元二次方程根的判别式列出不等式,计算即可;(2)根据根与系数的关系求出x2=2,代入原方程计算即可.【完整解答】解:(1)∵方程有实数根,∴△=25﹣4m≥0,解得,m≤;(2)由一元二次方程根与系数的关系可知,x1+x2=5,x1•x2=m,∵3x1﹣2x2=5,∴3x1+3x2﹣5x2=5,∴﹣5x2=﹣10,解得,x2=2,把x=2代入原方程得,m=6.21.(2020秋•来宾期末)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.【思路引导】(1)根据根的判别式判断可得;(2)将x=1代入原方程求出a的值,将a代入原方程可得出关于x的一元一次方程,解之即可得出结论.【完整解答】解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.22.(2020•浙江自主招生)关于x的方程:ax2+2(a﹣3)x+a﹣13=0至少有一个整数根,且a为非负整数,求a的值.【思路引导】先将原方程转化为(x+1)2a=6x+13,进而得出a=,再判断出a为大于等于1的整数,求出整数解的可能,依次代入a=检验,即可得出结论.【完整解答】解:将方程ax2+2(a﹣3)x+a﹣13=0变形为(x+1)2a=6x+13,∵a为非负整数,∴a≥0,当a=0时,6x+13=0,x=﹣,不符合题意,∴a是大于等于1的整数,当x+1=0,即x=﹣1时,(x+1)2a=6x+13不成立,不符合题意,∴a=≥1,∴x2﹣4x﹣12≤0,∴﹣2≤x≤6,∵关于x的方程:ax2+2(a﹣3)x+a﹣13=0至少有一个整数根,∴x整数解可能为﹣2或0或1或2或3或4或5或6,当x=﹣2时,a===1,符合题意,当x=0时,a==13,符合题意,当x=1时,a==,不符合题意,当x=2时,a==,不符合题意,当x=3时,a==,不符合题意,当x=4时,a==,不符合题意,当x=5时,a==,不符合题意,当x=6时,a===1,符合题意,即a的值为1或13.23.(2020•浙江自主招生)边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.【思路引导】根据方程的根为整数,得到根的判别式为平方数,然后进行讨论求出k值,得到三角形三边的长.【完整解答】解:设直角边为a,b(a<b),则a+b=k+2,ab=4k,因方程的根为整数,故其判别式为平方数,设△=(k+2)2﹣16k=n2⇒(k﹣6+n)(k﹣6﹣n)=1×32=2×16=4×8,∵k﹣6+n>k﹣6﹣n,∴或或,解得k1=(不是整数,舍去),k2=15,k3=12,当k2=15时,a+b=17,ab=60⇒a=5,b=12,c=13,当k3=12时,a+b=14,ab=48⇒a=6,b=8,c=10.∴当k=15时,三角形三边的长为:5,12,13.当k=12时,三角形三边的长为:6,8,10.24.(2019秋•寿光市期末)已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值及该方程的另一根(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【思路引导】(1)将x=1代入原方程即可求出a值,再根据根与系数的关系即可求出方程的另一根;(2)根据方程的系数结合根的判别式,即可得出△>0,由此即可证出不论a取何实数,该方程都有两个不相等的实数根.【完整解答】(1)解:将x=1代入原方程,得:1+a+a﹣2=0,解得:a=,∴方程的另一根为﹣a﹣1=﹣﹣1=﹣.答:a的值为,方程的另一根为﹣.(2)证明:△=a2﹣4(a﹣2)=a2﹣4a+8=(a﹣2)2+4.∵(a﹣2)2≥0,∴(a﹣2)2+4>0,即△>0,∴不论a取何实数,该方程都有两个不相等的实数根.25.(2017秋•莒南县期末)已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1、x2满足|x1+x2|=x1x2﹣1,求k的值【思路引导】(1)根据一元二次方程的定义和判别式的意义得到△=(2k﹣2)2﹣4k2≥0,然后求出不等式的解即可;(2)利用根与系数的关系得到x1+x2=2k﹣2,x1x2=k2,加上k≤,则可判断2k﹣2<0,所以|x1+x2|=x1x2﹣1,可化简为:k2+2k﹣3=0,然后解方程求出k的值.【完整解答】解:(1)∵方程有两个实数根x1,x2,∴△=(2k﹣2)2﹣4k2≥0,解得k≤;(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,∵k≤,∴2k﹣2<0,又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣1,可化简为:k2+2k﹣3=0.解得k=1(不合题意,舍去)或k=﹣3,∴k=﹣3.26.(2018秋•二七区校级期中)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足x1+x2+x1x2=5,求实数m的值.【思路引导】(1)当方程有两个不相等的实数根时,△>0,列式计算出m的值;(2)根据根与系数的关系求出两根的和与两根的积,代入x1+x2+x1x2=5中得:m1=4,m2=﹣2,再根据△的取值确定其m的值.【完整解答】解:(1)△=[2(m+1)]2﹣4×1×(m2﹣1)>0,4(m+1)2﹣4m2+4>0,8m>﹣8,m>﹣1,则当m>﹣1时,方程有两个不相等的实数根;(2)x1+x2=﹣2(m+1)=﹣2m﹣2,x1x2=m2﹣1,x1+x2+x1x2=5,﹣2m﹣2+m2﹣1=5,m2﹣2m﹣8=0,(m﹣4)(m+2)=0,m1=4,m2=﹣2,∵方程两实数根分别为x1,x2,∴△≥0,∴m≥﹣1,∴m=4.27.(2017秋•繁昌县月考)已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【思路引导】(1)把方程整理成一般形式,计算其判别式即可证得结论;(2)把x=2代入即可求得m的值,再解方程即可求得方程的另一根.【完整解答】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m2=0,解得m=±,∴原方程为x2﹣7x+10=0,解得x=2或x=5,即m的值为±,方程的另一个根是5.。
2020年秋季苏科版九年级上册知识强化练习1.3 一元二次方程的根与系数的关系一.选择题1.设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3B.﹣C.D.﹣22.已知关于x的一元二次方程x2﹣3x+k+1=0,它的两根之积为﹣4.则k的值为()A.﹣1B.4C.﹣4D.﹣53.若x1、x2是方程x2﹣5x+6=0的两个解,则代数式(x1+1)(x2+1)的值为()A.8B.10C.12D.144.设m是整数,关于x的方程mx2﹣(m﹣1)x+1=0有有理根,则方程的根为()A.B.x=﹣1C.D.有无数个根5.关于x的一元二次方程x2+2x+k+1=0的两根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围是()A.k>﹣2B.k>2C.﹣2<k≤0D.0≤k<26.已知关于x的方程(m2﹣3m+2)x2+(1﹣2m)x﹣m(m+1)=0的根是整数,其中m是实数,则m可取的值有()A.3个B.4个C.5个D.6个7.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4 8.m、n是方程x2﹣2019x+2020=0的两根,(m2﹣2020m+2020)•(n2﹣2020n+2020)的值是()A.2017B.2018C.2019D.2020二.填空题9.已知m,n是方程x2+2x﹣1=0的两个实数根,则式子3m2+6m﹣mn的值为.10.若方程x2﹣3x﹣4=0的两个根分别为x1和x2,则=.11.已知a,b是方程x2+3x﹣1=0的两根,则a2b+ab2的值是.12.若关于x的方程x2﹣34x+34k﹣1=0至少有一个正整数根,求满足条件的正整数k的值.13.已知关于x的方程(a﹣1)x2+2x﹣a﹣1=0的根都是一整数,那么符合条件的整数a 有个.14.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a 的值是.三.解答题15.已知x1,x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式4+4x1x2>x12+x22,且m为整数,求m的值.16.已知关于x的一元二次方程x2﹣2mx+(m2+m)=0有两个实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且x1+x2+x1•x2=4,求m的值.17.已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.18.试求出所有的正整数a,使得关于x的二次方程ax2+(4a﹣1)x+2(2a﹣3)=0至少有一个整数根.参考答案一.选择题1.解:由x2﹣3x+2=0可知,其二次项系数a=1,一次项系数b=﹣3,由根与系数的关系:x1+x2=,故选:A.2.解:∵关于x的一元二次方程x2﹣3x+k+1=0,它的两根之积为﹣4,∴k+1=﹣4,∴k=﹣5.故选:D.3.解:根据题意得x1+x2=5,x1x2=6,所以(x1+1)(x2+1)=x1x2+x1+x2+1=6+5+1=12.故选:C.4.解:(1)当m=0,原方程变为:x+1=0,解得x=﹣1,为有理根;(2)当m≠0,原方程为一元二次方程,∵方程mx2﹣(m﹣1)x+1=0有有理根,∴△=b2﹣4ac为完全平方数,即△=(m﹣1)2﹣4m=(m﹣3)2﹣8为完全平方数,而m是整数,∴设(m﹣3)2﹣8=n2,即(m﹣3)2=8+n2,∴完全平方数的末位数只能为1,4,5,6,9.∴n2的末位数只能为1,6,而大于10的两个完全平方数相差大于8,∴n=1,∴m﹣3=3,即m=6,所以方程为:6x2﹣5x+1=0,(2x﹣1)(3x﹣1)=0,∴x1=,x2=,故选:C.5.解:由题意可知:x1+x2=﹣2,x1x2=k+1,∵x1+x2﹣x1x2<﹣1,∴﹣2﹣k﹣1<﹣1,∴k>﹣2,∵△=4﹣4(k+1)≥0,∴k≤0,∴﹣2<k≤0,故选:C.6.解:①当m2﹣3m+2≠0时,即m≠1和m≠2时,由原方程,得[(m﹣1)x+m][(m﹣2)x﹣(m+1)]=0解得,x=﹣1﹣或x=1+,∵关于x的方程(m2﹣3m+2)x2+(1﹣2m)x﹣m(m+1)=0的根是整数,∴m=0.5,m=1.5,m=1.25;②当m2﹣3m+2=0时,m=1,m=2,分别可得x=0,x=2,因此m=1,m=2也可以;综上所述,满足条件的m值共有5个.故选:C.7.解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.8.解:∵m,n是方程x2﹣2019x+2020=0的两根,∴m2﹣2019m+2020=0,n2﹣2019n+2020=0,mn=2020,∴(m2﹣2020m+2020)•(n2﹣2020n+2020)=(﹣m)(﹣n)=mn=2020.故选:D.二.填空题9.解:∵m是方程x2+2x﹣1=0的根,∴m2+2m﹣1=0,∴m2+2m=1,∴3m2+6m﹣mn=2(m2+2m)﹣mn=2×1﹣mn=2﹣mn,∵m,n是方程x2+2x﹣1=0的两个实数根,∴mn=﹣1,∴3m2+6m﹣mn=2﹣2×(﹣1)=4.故答案为4.10.解:根据题意得x1+x2=3,x1x2=﹣4,所以+===﹣.故答案为﹣.11.解:∵a,b是方程x2+3x﹣1=0的两根,∴根据根与系数的关系得:a+b=﹣3,ab=﹣1,∴a2b+ab2=ab(a+b)=(﹣1)×(﹣3)=3,故答案为:3.12.解:∵方程x2﹣34x+34k﹣1=0至少有1个正整数根,∴△=342﹣4(34k﹣1)=1160﹣136k≥0,正整数k可能取值为1,2,3,4,5,6,7,8,∵只有当k=1时,x1=1,x2=33,∴正整数k的值是1.故答案为:1.13.解:①当a=1时,x=1;②当a≠1时,原式可以整理为:[(a﹣1)x+a+1](x﹣1)=0,易知x=1是方程的一个整数根,再由1+x=且x是整数,知1﹣a=±1或±2,∴a=﹣1,0,2,3;由①、②得符合条件的整数a有5个.故答案为:5.14.解:∵5x2﹣5ax+26a﹣143=0⇒25x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=2.8不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=8.4不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=12.4不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.三.解答题15.解:(1)根据题意得△=(﹣2)2﹣4×2(m+1)≥0,解得m≤﹣.故实数m的取值范围是m≤﹣;(2)根据题意得x1+x2=1,x1x2=,∵4+4x1x2>x12+x22,∴4+4x1x2>(x1+x2)2﹣2x1x2,即4+6x1x2>(x1+x2)2,∴4+6×>1,解得m>﹣2,∴﹣2<m≤﹣,∴整数m的值为﹣1.16.解:(1)根据题意得△=4m2﹣4(m2+m)≥0,解得m≤0;(2)根据题意得x1+x2=2m,x1x2=m2+m,∵x1+x2+x1•x2=4,∴2m+m2+m=4,整理得m2+3m﹣4=0,解得m1=﹣4,m2=1,∵m≤0,∴m的值为﹣4.17.解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k+8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.18.解:ax2+(4a﹣1)x+2(2a﹣3)=0,ax2+4ax+4a=x+6,a(x+2)2=x+6,当x=﹣2时,a不存在,所以x≠﹣2,∵a是正整数,∴a=≥1,由(x+2)2>0得(x+2)2≤x+6,整理得x2+3x﹣2≤0.解得:≤x≤,所以x可取﹣3、﹣2(舍去)、﹣1、0,依次代入a=得到:x=﹣3,a=3;x=﹣1,a=5;x=0,a=1.5(舍去).∴满足条件的正整数a的值是3和5.。
苏科版九上1.3一元二次方程根与系数的关系(2)班级:___________姓名:___________得分:___________一、选择题1.若关于x的方程x2+3ax−4=0有一个根为−1,则另一个根为()A. —2B. 2C. 4D. —32.下列方程中,两根之和为2的是()A. x2+2x−3=0B. x2−2x−3=0C. x2−2x+3=0D. 4x2−2x−3=03.已知x1、x2是一元二次方程x2−4x+1=0的两个根,则x1⋅x2等于()A. −4B. −1C. 1D. 44.已知方程x−5x+2=0的两个解分别为x1、x2,则x1+x2−x1x2的值为()A. −7B. −3C. 3D. 75.已知一元二次方程x2−2x−1=0的两根分别为x1,x2,则x12+x22的值为A. 12B. 8C. 6D. .46.已知方程x2−4x+2=0的两根是x1,x2,则代数式x12+2x1+x22−4x22+2011的值是()A. 2011B. 2012C. 2013D. 20147.已知m、n是关于x的方程x2−3x+a=0的两个根.若(m−1)(n−1)=−6,则a的值为()A. −10B. 4C. −4D. 108.已知x≠y,且x2+2x=3,y2+2y=3,则xy的值为()A. −2B. 2C. −3D. 3二、填空题9.已知关于x的方程x2+3x+a=0有一个根为−2,则另一个根的值为_____.10.已知一元二次方程x2−2x−1=0的两根分别为x1,x2,则x1+x2的值为 _____ .11.若x1,x2是方程x2−3x−4=0的两根,则代数式2x1+2x2−x1x2的值是________.12.若α、β是方程x2+2x−2014=0的两个实数根,则α+β的值为________,α2+3α+β的值为________.13.设x1,x2是一元二次方程x2+5x−1=0的两个根,那么x13−11x1−3x22−16=______ .14.已知α、β是方程x2−2x−4=0的两个实数根,则α2β+αβ2的值是________.15.若方程x2−kx+6=0的两根分别比方程x2+kx+6=0的两根大5,则k的值是______ .三、解答题16.已知关于x的一元二次方程x2−4x−m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.17.已知关于x的方程x2+ax+a−2=0.(1)若该方程的一个根为2,求a的值及该方程的另一根.(2)求证:不论a取何实数,该方程都有两个不相等的实数根.18.已知x1,x2是方程2x2−3x−1=0的两个根,不解方程,求下列各式的值.(1)x12+x22(2)(x1+1x2)(x2+1x1)答案和解析1.C解:设方程另一个根为x1,∴x1×(−1)=−4,解得:x1=4.2.B解:A.△=22−4×(−3)>0,方程有实数解,两根之和为−2,故此选项错误;A.△=(−2)2−4×(−3)>0,方程有实数解,两根之和为2,故此选项正确;;C.△=(−2)2−4×3<0,方程没有实数解,故此选项错误;D.△=(−2)2−4×4×(−3)>0,方程有实数解,两根之和为1,故此选项错误.23.C解:根据题意得x1⋅x2=1.4.C解:∵x2−5x+2=0的两个解分别为x1,x2,∴由韦达定理,得x1+x2=5,x1x2=2;∴x1+x2−x1x2=5−2=3.5.C解:由x1,x2是方程x2−2x−1=0的根,则x1+x2=2,x1·x2=−1,∴x12+x22=(x1+x2)2−2x1x2=22−2×(−1)=6.6.D解:∵方程x2−4x+2=0的两根是x1,x2,∴x12+2=4x1,x22−4x2=−2,∴x12+2x1+x22−4x22+2011=4x1x1+−22+2011=4−1+2011=2014.7.C解:根据题意得:m+n=3,mn=a,∵(m−1)(n−1)=mn−(m+n)+1=−6,∴a−3+1=−6,解得:a=−4.8.C解:依题意可知,x、y可以看作是关于t的方程t2+2t−3=0的两个不相等的实数根,所以xy=−3.9.−1解:设方程的另一个根为m,根据题意得:−2+m=−3,解得:m=−1.10.2解:由题意可得:x1+x2=2.11.10解:根据题意得x1+x2=3,x1x2=−4,所以2x1+2x2−x1x2=2×3−(−4)=10.12.−2;2012解:∵α,β是方程x2+2x−2014=0的两个实数根,∴α+β=−2,α2+2α−2014=0,即α2+2α=2014,∴α2+3α+β=(α2+2α)+(α+β),=2014−2,=2012,13.−99解:∵x1,x2是一元二次方程x2+5x−1=0的两个根,∴x12=−5x1+1,x22=5x2+1,x1+x2=−5,∴x13−11x1−3x22−16=−5x12+x1−11x1−3(−5x2+1)−16=−5(−5x1+1)−10x1+15x2−3−16=15(x1+x2)−5−3−16=−99,14.−8解:根据题意得:α+β=2,αβ=−4,α2β+αβ2=αβ(α+β)=−4×2=−8.15.5解:设方程x2+kx+6=0的两根分别为a、b,则方程x2−kx+6=0的两根分别为a+5,b+5,根据题意得a+b=−k,a+5+b+5=k,所以10−k=k,解得k=5.16.(1)证明:Δ=b2−4ac=(−4)2−4×(−m2)=16+4m2.∵m2≥0,即4m2≥0,∴16+4m2>0,∴b2−4ac>0,∴该方程有两个不相等的实数根;(2)解:∵方程x2−4x−m2=0的两个实数根分别为x1、x2,∴x1+x2=4①,x1x2=−m2②.又∵x1+2x2=9③,∴联立①③,解得x1=−1,x2=5,∴x1x2=−5=−m2,解得m=±√5.故m的值为±√5.17.(1)解:设方程的另一根为t,根据题意得2+t=−a,2t=a−2,所以2+t+2t=−2,解得t=−43,所以a=−23;(2)证明:△=a2−4(a−2)=a2−4a+8=(a−2)2+4,∴△>0,∴不论a取何实数,该方程都有两个不相等的实数根.18.解:∵x1,x2是方程2x2−3x−1=0的两个根,∴x1+x2=− b a =32,x1x2= c a=−12,(1)原式==94+1=134;(2)原式=x1x2+2+1x1x2=−12+2−2=−12.。
第10讲 一元二次方程根与系数关系
题一: 求方程2320x x -+=的两根的和与两根的积.
题二: 求方程2350x x +-=的两根的和与两根的积.
题三: 已知方程27100x x -+=的一个根是2,不解方程求这个方程的另一个根.
题四: 已知一元二次方程270x mx ++=有一根为7,求这个方程的另一个根和m 的值.
题五: 已知x 1、x 2是方程22340x x +-=的两个根,利用根与系数的关系求值:
(1)x 1+x 2;(2)x 1x 2;(3)12
1
1x x +;(4)x 12+x 22
.
题六: 设x 1,x 2是方程22430x x +-=的两个根,利用根与系数的关系求值:
(1)(x 1+1)(x 2+1);(2)x 12
x 2+x 1x 22;(3)2
1
12
x
x x x +;(4)(x 1x 2)2
.
第10讲 一元二次方程根与系数关系
题一: 3,2.
详解:∵a =1,b =3-,c =2,
∴△=(3)2-4×1×2=1 > 0,
设一元二次方程2320x x -+=的两根为x 1、x 2,
根据韦达定理,得12123
2x x x x +=⎧⎨⋅=⎩,故两根的和为3,两根的积为2.
题二: 3,5.
详解:∵a =1,b =3,c =5-,
∴△=32-4×3×(5-)=69 > 0,
设一元二次方程2350x x +-=的两根为x 1、x 2,
根据韦达定理,得121235x x x x +=-⎧⎨⋅=-⎩,故两根的和为3,两根的积为5
.
题三: 5.
详解:设方程的另一个根为x 2,则根据题意,得
227x +=,解得25x =,
所以这个方程的另一个根是5.
题四: 1,8.
详解:设方程的另一个根为x 2,则根据题意,得
22777x m x +=-⎧⎨=⎩,解得218
x m =⎧
⎨=-⎩,
所以这个方程的另一个根是1,m 的值是8.
题五: 见详解.
详解:由题意利用一元二次方程根与系数的关系可得
(1)x 1+x 2=b
a -=3
2-,
(2)x 1x 2=c a =4
2-=2-, (3)121
1x x +=1212x x x x +=3
22--=3
4,
(4)x 12+x 22
= 2
2
12121222x x x x x x ++-=(x 1+x 2)2-2x 1x 2=9
(4)4--=25
4.
题六: 见详解.
详解:由题意,得x 1+x 2=2-,x 1x 2=32-,则
(1)原式=x 1x 2+(x 1+x 2)+1=52
-;
(2)原式=x 1x 2(x 1+x 2)=3; (3)原式=221212x x x x +=221212121222x x x x x x x x ++-=2121212()2x x x x x x +-=143
-; (4)原式=x 12+x 22-2x 1x 2=x 12+x 22+2x 1x 2-4x 1x 2=(x 1+x 2)2
-4x 1x 2=10.。