矿井通风阻力测定数据平差处理方法及应用
- 格式:pdf
- 大小:170.99 KB
- 文档页数:4
第15卷第10期2006年10月中国矿业CHINA MINING MAG AZINEVol.15,No.10October 2006矿井通风阻力测定数据平差处理方法及应用陈宙1赵恩平2蒋仲安1林建广1(11北京科技大学土木与环境工程学院教育部金属矿山高效开采与安全重点实验室・北京100083;21邯邢矿山管理局北铭河铁矿・邯郸056300摘要:本文论述了矿井通风阻力测定数据平差处理的两种方法:条件平差和间接平差,并基于通风网络和平差理论编制了相应的通风阻力测量数据平差软件,最后以西石门铁矿中区通风阻力实测数据为例,验证了该种分析方法的可靠性和及实用性。
关键词:通风阻力测量条件平差间接平差中图分类号:TD722文献标识码:B 文章编号:1004-4051(200610-0105-04DATA ADJUSTMENT METH OD OF RESISTANCE MEASUREMENT FOR MINE VENTI LATIONAN D ITS APPL ICATIONChen Zhou 1Zhao Enping 2Jiang Zhongan 1Lin Jianguang 1(11Civil and Environment Engineering School ,USTB ・Beijing 100083;21Beiminghe iron ore ,Hanxing Metallurgical Mine administration ・Handan 056300Abstract :Two kinds of mine ventilation resistance measurement data adjustment method :ConditionAdjustment and Indirect Adjustment ,are discussed in the article.The application about mine ventilation re 2sistance measurement data adjustment is developed on the basis of ventilation network and adjustment theo 2ry.Then ,taking Xishimen Iron ore ventilation resistance measurement data as an example ,the article veri 2fies the reliability and practicability of these analytical methods.K ey w ords :Mine ventilation Resistance Measurement Condition adjustment Indirect adjustment收稿日期:2006-04-17作者简介:陈宙(1982-男硕士研究方向:安全技术及工程1概述矿井通风阻力测定是矿井通风技术管理工作的重要内容之一,测量数据的好坏主要是由测量数据的误差大小来判断。
矿井通风阻力测定方法讲义简介矿井通风阻力是指空气在矿井中流动时所遇到的阻力,通风阻力的准确测定是矿井通风系统设计和调整的重要依据。
本讲义将介绍一些常用的矿井通风阻力测定方法,帮助读者掌握专业技能。
1. 测定方法一该方法通过测量系统压力和流量来求解矿井通风阻力。
1.1 测压方法在实际应用中,可以通过以下两种方法来测定矿井通风系统的压力:1.比压法:使用比压计测量压力差,计算通风系统的阻力。
2.静压法:使用静压计测量静态压力,进而计算通风系统的阻力。
平均流速法是常用的测定矿井通风系统流量的方法。
通过在通风系统内选择合适的截面,测量通过该截面的总流量,然后根据截面积计算平均流速,并推算得到整个系统的流量。
2. 测定方法二该方法通过测量系统压力和功率来求解矿井通风阻力。
2.1 压力-功率法在该方法中,通过测量通风系统的压力和功率,获取系统当量阻力,然后根据经验公式计算出通风阻力。
2.2 功率-风量法在该方法中,通过测量通风系统的功率和风量,反推计算通风阻力。
需要注意的是,该方法要求测量稳态条件下的功率和风量。
根据矿井通风系统的特点和实际情况,可以采用其他的测定方法。
3.1 风压法该方法通过测量风机进口和出口的压力差,计算风机系统的阻力。
需要注意的是,该方法适用于单机系统,且要求测量稳态条件下的压力。
3.2 引风机法该方法通过计算引风机出口的风量和压力,来估算整个系统的阻力。
需要注意的是,使用该方法时要确保引风机运行稳定。
4. 结论本讲义介绍了几种常用的矿井通风阻力测定方法,包括测压法、测流量方法、压力-功率法、功率-风量法、风压法和引风机法。
通过合理选择和应用这些方法,可以准确地测定矿井通风阻力,为矿井通风系统的设计和调整提供重要依据。
以上所述只是对矿井通风阻力测定方法的基本介绍,实际应用还需要根据具体情况进行调整和补充。
希望本讲义对读者在矿井通风阻力测定方面有所帮助!。
铭安煤矿矿井通风阻力测定方案1.概述1.1矿井通风系统现状矿井通风方式为分区式,矿井通风方法为机械抽出式通风。
新鲜风流由主平硐、11进风平洞进入,乏风通过11回风斜井排出。
回采工作面和各掘进工作面均采用独立通风,掘进工作面为压入式。
根据矿井开拓部署,本矿为平硐开拓方式,主平硐、11进风平硐进风,11回风斜井(专用)回风,构成中央并列式通风系统。
主扇为FBDCZNO.14/2*14轴流对旋式风机2台。
2台均在2010年进行了性能测定鉴定,风速范围25.5—51.5m/s,风压500—2030帕.1.2项目实施背景+1180水平11C11采面即将形成生产系统,下一步11C61准备做生产系统。
按照瓦斯剃度的原理进行推测,11C61的煤层瓦斯含量将远远大于11C11的瓦斯含量。
预计11C61形成生产系统,投产后,矿井的绝对瓦斯涌出量将大大提高,对矿井通风系统的改良势在必行。
因此在现在必须作好前期准备工作,进行矿井通风阻力测定。
2、铭安煤矿通风阻力实际测定、计算及分析2.1、通风阻力测定的目的矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于:(1)了解矿井通风系统的阻力分布情况;(2)为生产矿井通风系统优化和合理配风提供基础资料和参数;(3)为矿井井下灾害防治和风流调节提供必要的基础资料;(4)为保证矿井的正常生产和增产提效提供依据;(5)为矿井通风能力核定提供基础参数。
2.2、通风阻力测定的技术依据及方法2.2.1、测定的技术依据《煤矿安全质量标准化标准及考核评级办法》2010年《矿井通风阻力测定方法》《煤矿安全规程》(2009版)中规定:“新井投产前必须进行一次通风阻力测定,以后每三年至少测定一次,矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。
2.2.2、测定方法本次测定采用气压计基点测定法。
基点法是将一台气压计放在井上或井下某基点处,每隔一定时间测取气压读数并记录测定时间以监测地面大气压力的变化,进而对井下测定的气压数据进行校正;另一台气压计沿事先选好的路线逐点测定气压值并记录测定时间。
矿井通风阻力测定及优化分析作者:宋太师来源:《中国化工贸易·中旬刊》2019年第01期摘要:本文对于常用的矿井通风阻力测定方法、测定的时间、测定的路线以及相应的数据处理方式进行了优化分析,以期为矿井通风阻力测定工作提供一定的理论及技术指导。
关键词:煤矿;通风阻力测定;优化分析根据通风阻力测定的结果,分析巷道对应的风阻数据,对于矿井通风系统的优化以及进一步实现通风管理、矿井的安全生产都具有重要的意义。
1 矿井通风阻力测定方法现阶段关于矿井通风阻力测定的方法,主要有压差计法和气压计法两种。
压差计法具体的操作方式是在目标巷道的前后两个区域内分别设置一个测点,每个测点处均安装一个皮托管,通过特定的胶管将两个测点连接起来,两个测点之间的压差值通过压差计进行测定,目标测点的风速由风速表测定。
通过分析现场测得的风速计压差,可以分析得到目标巷道对应的阻力值。
气压计法一般适用于测量巷道前后两个测点之间的风流的绝对静压值,结合关于巷道的面积、湿度、风速以及高程差等相关数据,通过伯努利方程计算之后,便可以得到巷道中两测点之间对应的通风阻力值。
气压计法一般又可分为同步法与基点法两种。
其中,同步法需要两台气压计同时工作,在选定的两个测点同时进行读数,根据读数来计算测点之间的静压差,这种测定方法有效的避免了地面的大气压以及其他扰动因素的影响,提高了测量的精度。
基点法需要至少两台气压计才能完成测定工作,一台气压计置于相对较高的位置作为基点,另一台置于较低的位置,较高位置的气压计主要是为了实现数据的校正功能,测量过程应当从较低点沿设计路线逐步靠近较高点。
现阶段巷道风阻主要通过通风阻力测定的方法进行分析,当利用以上的方法进行通风阻力测定时应当严格按照操作规程进行相关操作,通过合理的方式有效降低误差,同时,应当根据现场实际情况的差异,选择较为适合的方法完成测定工作。
2 通风阻力测定方法优化2.1 合理选择测定方法利用压差法进行通风阻力测定时,得到的数据相对来说准确性较高,数据的整理也比较简单。
矿井通风测量数据处理方法的集成与应用摘要:矿井通风测量数据处理的方法有:双气压基点法、同步法、压差计-皮管法等,根据通风网络和测量平差理论,将这些方法有机地结合起来,研究出了风阻测量平差的新方法,而且还编制了通风阻力测量数据的综合处理软件,集测量数据处理、精度检验、平差处理这三者为一体。
关键词:矿井通风数据处理方法阻力测量测量平差随着通风测量仪表和矿井通风监测系统不断完善,矿井通风阻力的测量方法已有了很多种,但每种都会因为观测条件、测量仪器、环境、观测者等各种因素的影响,其结果都会有一定的误差。
所以,需要从带有误差的观测值中找出最佳估值,这个过程就是测量平差,也就是对测量数据进行调整。
一、矿井通风阻力测量数据的平差处理法在大多工程领域中,一般是偶然误差的观测占绝大多数,这是普遍存在的情况,也是测量平差处理的基础。
测量数据平差处理方法分为两种,条件平差和间接平差。
(一)条件平差在一般测量过程中,都会做必要观测和多余观测,做多余观测是为了检查错误和提高最后成果的精准度。
按测量平差理论,在一回路中,只需要测出其中任意一条n-1分支的风压就可以得出所以巷道的风压,其中这条n-1分支的风压就是必要观测。
但是,通常情况下需要观测n条分支的风压,因此第n条分支风压就是多余观测。
由于带有误差的观测值造成闭合回路风压之间的和不等于零,所以产生了不符值,这时就需要多个多余观测值产生出多个平差值条件的方程,来消除不符值,同时根据求条件极值的原理解算出平差值。
(二)间接平差间接平差与条件平差不同的是,它是通过选定t个能够解决某个平差问题的未知数,也就是说用t个必要观测数消除观测值之间的不符值,并且用求自由极值的方法,把未知参数的最或然值解算出来,从而求得平差值,因此,有多少观测值就有多少哥方程数,那么一般方程为:二、矿井通风阻力测量数据平差以分支数为n,节点数为S的风网为例,统一采用条件平差的方法进行测量计算。
(一)阻力平差当采用条件平差的方法时,根据回路风压的平衡原理,在包含有X条分支的回路中,测出回路的巷道数为X-1条,既而就可以算出其余的巷道风压。
矿井通风阻力测定方案1、通风阻力测定的目的矿井通风阻力测定是矿井通风与安全技术管理工作的重要内容之一,《煤矿安全规程》第一百一十九条规定:新井投产前应进行一次矿井通风阻力测定,以后每3年进行一次,在矿井转入新水平或改变一翼通风系统后,都必须重新进行矿井通风阻力测定。
通过阻力测定不仅可以了解矿井通风系统现状,系统中阻力的分布情况(阻力分布状况,主扇消耗情况等),测算摩擦阻力系数,实现矿井通风的科学管理,而且为矿井通风系统调整、优化以及各项安全技术措施的制定与实施提供可靠的技术基础资料。
2、资料准备2.1.矿井概况XXX煤矿由原延安市XXX煤矿经整合后扩大而成,属延安市市属企业。
井田位于陕北黄土高原腹地,属典型的黄土高原地貌景观。
区内沟壑纵横,地形为西南高东北低。
最高海拔高度+1519.0m,最低海拔高度+1121.2m。
井田采用斜井开拓方式,三条斜井分别为:主斜井井口标高+1189.80m,倾角为16。
,井底标高+1006.80m,斜长664m,井筒净宽4.8m,净断面积16.2m2;副斜井井口标高+1189.00m,井底标高+1002.3m,倾角为6。
,斜长2044m,井筒净宽5.5m,净断面积20.7m;回风斜井井口标高+1203.7m,井底标高+1006.70m,倾角为20。
,斜长为576m,井筒净宽5.5m,净断面积20.7m2。
矿井设计能力为400万T/a,产商品煤300万T/a,井田面积100.5612Km2,现开采5#煤层。
矿井设计安装FBDZ—10—N028 315kw轴流式主要扇风机两台。
矿井通风方式为中央并列式。
通风方法为抽出式。
矿井总排风量为7513 m 3/ min。
扇风机风量为7528 m 3/ min。
矿井负压为620m mH02。
矿井现有50101综采工作面一个,50103备采工作面一个,综掘工作面七个;分别是50102回风顺槽、50102胶带运输顺槽、50102辅助运输巷里段、50102辅助运输巷外段、5#煤中央运输大巷、50104辅助运输巷、50105辅助运输巷。
矿井通风阻力测定及优化分析矿井通风是煤矿生产中的重要环节,对于保证矿井安全和提高矿井生产效率具有重要作用。
通风阻力是指通风系统中空气流动受到的阻碍力,直接影响矿井通风效果和能耗。
为了准确测定通风阻力,首先需要对矿井中的各种通风设备进行检查和测试。
通风设备主要包括风机、风门、导风器、风道等。
通过检查设备的运行状态、密封性能和调节性能等,可以了解设备的工作情况和对通风流动的影响。
通风阻力测定主要包括两个方面,一是测定单一通风设备的阻力,二是测定整个通风系统的总阻力。
对于单一通风设备的阻力测定,可以通过实际操作或者模拟实验进行,通过测量设备的压力、流量和功率等参数,计算得到阻力。
对于整个通风系统的总阻力测定,需要将各个通风设备的阻力相加得到。
通风阻力的优化分析是为了减小通风系统的阻力,提高通风效果和节约能耗。
通过分析阻力的来源和影响因素,可以找出问题所在并采取相应的措施进行优化。
常见的通风阻力优化方法包括改善通风设备的设计和选用、控制通风系统中的风速和风量、优化通风系统的布置和风道的形状等。
改善通风设备的设计和选用是降低阻力的关键。
合理选择风机类型和型号、优化叶轮和泵叶设计,可以提高风机的效率和节能性能。
对于风门和导风器等通风附件的设计和选用也要注意减小阻力。
控制通风系统中的风速和风量是减小阻力的有效手段。
通过合理的调节风机的转速和风门的开度,控制通风系统中的风速和风量,可以达到最佳通风效果和能耗的平衡。
优化通风系统的布置和风道的形状也可以减小通风阻力。
合理布置通风设备和风道,减小通风系统中的阻力损失,提高通风效果。
矿井通风阻力测定及优化分析是保证矿井安全和提高矿井生产效率的重要工作。
通过准确测定通风阻力,找出问题所在并采取相应的优化措施,可以提高通风效果、节约能耗,为矿井生产提供有力支持。
气压计基点法测定矿井通风阻力的误差分析及基点位置的选择1 概述矿井通风阻力测定是生产矿井通风管理的一项重要内容。
目前,矿井阻力测定已基本淘汰了倾斜压差计测定法,大多采用省时省力,操作简单的气压计测定方法,特别是在大型矿井的全矿井阻力测定中更是如此。
采用气压计进行阻力测定时,测定方法又分为基点法和同步法2种。
同步法是将2台气压计分别安置在井巷的两侧,并约定时间同时读取风流的静压值。
而基点法则是用1台气压计监测基点气压的变化,另1台气压计沿测定线路逐步测定风流的静压。
由于同步法采用2台气压计同时读数,从而有效地避免了地面大气压力变化和其他扰动因素的影响。
测定精度主要受气压计性能本身的影响。
若采用2台相同精度和漂移性能的气压计,其测定精度易于保证。
但要求2台气压计同时读数,测定过程的联络和配合较困难,测定速度慢。
而基点法则相反,它是目前较为常用的测定方法。
本文试图从基点法测定的原理入手,对测定误差产生的原因、基点位置的确定等问题进行探讨,希望能为提高基点法在实际应用过程中的精度有所帮助。
2 基点法测定误差来源分析2.1 基点法测定原理采用基点法进行井巷通风阻力测定时,测定段的通风阻力计算公式为:式中K1、K2——移动气压计和基点监测气压计的校正系数;P1、P2——移动气压计在井巷进风测点和出风测点不同时刻的读数,Pa;P01、P02——在读取P1和P2时,基点气压计的读数,Pa;V1、V2——井巷进风测点和出风测点不同时刻的风速,m/s;Z1、Z2——井巷进风测点和出风测点的标高,m;ρ1、ρ2——井巷进风测点和出风测点处的风流密度,kg/m3;ρ1~2——测定段风流平均密度,kg/m3。
从形式上看,(1)式和描述井巷通风阻力的典型的伯努利能量方程类似,具有相同的物理意义,它们都表示任意井巷进、出2个断面上的能量差。
但是(1)式中的压力、风速和密度等物理量是气压计等仪器沿测定线路在测定段进出风测点不同时刻的测定值,如果地面大气压力和井下风流是严格的稳定流,并且在测定时间内不考虑地面大气压力滞后等因素的影响,(1)式就准确的反映了测定段的通风阻力。
矿井通风阻力测定及优化分析随着煤矿开采深度的不断增加,矿井通风阻力的问题日益突出,严重影响了矿井工作面的安全生产。
对矿井通风阻力的测定和优化分析显得尤为重要。
本文将围绕矿井通风阻力测定的方法和优化分析的过程展开讨论。
一、矿井通风阻力测定方法1. 风压法测定法风压法是通过实测矿井通风系统的总风压,再根据风道的尺寸和形状以及风机的性能参数计算得到通风网络的总阻力值。
该方法操作简单,不受环境条件的影响,适用于对通风系统总阻力的测定。
2. 等效阻力法测定等效阻力法是通过测定各个部分的阻力,再把每个部分的阻力值相加得到整个风道系统的总阻力。
这种方法相对于风压法更为精确,可以更准确地找到通风系统中存在的阻力点,是通风系统的优化提供了重要的依据。
3. 模型试验法测定模型试验法是通过建立矿井通风系统的物理模型,利用风洞实验等方法进行仿真,通过计算得到通风系统的阻力,该方法具有较高的精度和准确性,但是成本较高,周期较长。
以上三种方法在矿井通风阻力测定中各有所长,可以根据具体情况进行选择。
而在实际应用中,往往需要结合多种方法,进行多方面的测定和分析。
二、矿井通风阻力优化分析过程1. 数据收集首先需要收集矿井通风系统相关的数据,包括风道的尺寸和形状、风机的性能参数、风量、风压等信息。
通过对这些数据的收集和整理,能够为后续的优化分析提供有效的依据。
2. 阻力分析3. 优化方案制定在阻力分析的基础上,制定合理的优化方案,包括对通风系统的结构优化、风机的参数调整、风道的改造等措施,从而降低通风系统的阻力,提高其通风效率和安全性。
4. 优化效果评估实施优化措施后,需要对通风系统的性能进行评估,通过对通风量、风压、风速等指标的测定和比对,验证优化措施的效果,并进行必要的调整和改进。
在矿井通风阻力优化分析中,除了以上提到的过程之外,还需要对通风系统的运行状态进行实时监测和控制,及时发现并解决系统中存在的问题,保障通风系统的正常运行,确保矿井的安全生产。
矿井通风阻力测定及优化分析随着煤矿深部开采和煤矿井下开工面长度的增加,井下通风系统的阻力逐渐增加,通风系统的压力需求也相应增加,这对矿井的安全和生产造成了很大的影响。
矿井通风系统的阻力测定及优化分析是保障矿井安全生产和提高通风系统效率的关键工作。
本文将对矿井通风阻力测定及优化分析进行详细介绍。
一、矿井通风阻力测定方法1. 定量化测定方法通过使用风压表、风速仪等仪器对矿井通风系统的阻力进行定量化测定。
首先在矿井通风系统中安装风压表和风速仪,然后对不同通风系统元件的阻力进行测量。
通过测定不同通风系统元件的阻力,可以全面了解整个通风系统的阻力构成,为通风系统的优化提供依据。
2. 数值模拟方法利用计算机模拟软件对矿井通风系统进行数值模拟,通过模拟计算矿井通风系统中不同管道、风机、巷道等元件的阻力,得出通风系统的阻力分布情况。
通过数值模拟方法,可以较为准确地获取通风系统的阻力数据,为通风系统的优化提供科学依据。
二、矿井通风阻力优化分析1. 通风系统阻力分析通风系统的阻力主要由矿井内的巷道、风机、阀门、风门、支架等构成。
为了实现通风系统的最优化设计和运行,必须对通风系统的阻力进行深入分析。
通过上述定量化测定方法和数值模拟方法获取的阻力数据,可以进行全面的阻力分析,找出通风系统中阻力较大的部位,为后续的优化提供方向。
通过对通风系统阻力分析,可以找出通风系统中存在的瓶颈和问题,进而对通风系统进行阻力优化。
包括通过改善通风系统元件的结构设计,减少通风系统元件的局部阻力;合理调整通风系统的布局设计,减少总体阻力;对通风系统进行清洁和维护,减少阻力的堆积等措施,从而降低通风系统的阻力,提高通风系统的效率。
通风系统的阻力与通风系统的能量消耗成正比,通风系统的能量消耗是其运行成本的重要组成部分。
在通风系统阻力优化的过程中,需要对通风系统的能量消耗进行分析。
通过对通风系统能量消耗的分析,可以找出通风系统中存在的能量浪费和低效问题,为通风系统的节能优化提供依据。
矿井通风阻力测定及优化分析
矿井通风阻力是影响矿井通风效果的重要因素之一,其大小直接影响着矿井的通风能力和瓦斯的积聚情况。
为了实现矿井的安全、高效、可持续发展,必须对其通风系统进行优化管理,提高其通风效率,减少能耗和矿井爆炸火灾等事故的发生率。
矿井通风阻力测定是确定矿井通风阻力大小的方法。
测定矿井通风阻力可以通过实际测量和数值模拟两种方法进行。
其中,实际测量方法包括直接测量法、推算法和模型试验法。
直接测量法是指通过实际测量矿井主风筒、供风井、风道、支承、顶板、底板等部分的阻力,计算出矿井的总通风阻力。
推算法是指通过已知的矿井通风量和瓦斯浓度值,反推出矿井通风阻力的大小。
推算法适用于无法使用直接测量法进行测量的情况。
模型试验法是通过建立矿井通风仿真模型,在实验室中进行风阻实验,得出矿井总通风阻力大小。
矿井通风阻力优化分析是通过对矿井通风系统结构设计、通风设备选型、通风工艺调整等方面进行优化,降低矿井通风阻力,提高通风效率,保障矿井安全稳定运行的过程。
1. 合理设计通风系统结构。
根据矿井的地质条件、采矿工艺和生产规模等因素,合理选择通风井、风道、风机、支承等设备的位置和数量,减少矿井的通风阻力。
2. 优化通风设备选型。
选择符合矿井通风流量和功率要求的高效、低噪音、耐用的通风设备,减少矿井的通风电耗,提高通风效率。
3. 调整通风工艺。
通过调整矿井通风系统的启闭、防突、掘进序列等工艺参数,减少矿井的内阻,提高通风效率。
4. 加强通风系统管理。
建立完善的通风系统运行监测和管理制度,定期进行通风系统检查和维护,保障通风设备的正常运行。
浅析矿井通风测量数据处理方法的集成与应用摘要:本文介绍了矿井通风测量数据处理方法的集成与应用。
首先分析了矿井通风测量数据所需的准确性和可靠性,在此基础上,综合利用气象仪表数据、预测模型和仪表校准的工具,来完成矿井通风测量数据的精准获取和处理,其次分析了矿井通风测量数据处理技术的优势,如快速准确性、易于部署,可进行多角度检测,给矿井安全提供了有效保障,最后,探讨了未来矿井通风测量数据处理应用的发展前景。
关键词:矿井通风测量;数据处理;气象仪表;预测模型;仪表校准正文:矿井通风测量是矿井安全监控的重要组成部分,它能够准确检测矿井内的环境参数,保障矿井的安全运行。
但由于诸多原因,矿井通风测量数据的准确性和可靠性已成为矿井安全运行中的一大问题。
因此,开发一套完善的矿井通风测量数据处理方法,显得尤其重要。
针对这一问题,专家们综合利用气象仪表数据、预测模型和仪表校准的工具,来完成矿井通风测量数据的精准获取和处理。
首先,气象仪表能够高效精准地实时采集矿井空气温、湿度及空气流量等数据,以及通风机的运行、空气流速的变化等信息。
其次,预测模型能够分析矿井空气变化特征,帮助开发者快速掌握矿井环境参数的变化趋势,并采取相应的措施;最后,仪表校准的工具可以根据测量结果,对气象仪表进行精确调整,以确保矿井通风测量数据的准确性。
综上所述,矿井通风测量数据处理技术具有快速准确性、易于部署、可进行多角度检测等优势,为矿井安全提供了有效保障。
此外,未来矿井通风测量数据处理的应用将不断发展,比如研发新型气象仪表,推动自动化技术的应用,以及开发基于云的可视化系统等。
本文对矿井通风测量数据处理方法的集成与应用进行了浅析,综述了其技术特点及发展趋势,为进一步保障矿井安全提供了参考。
此外,在矿井通风测量数据处理方法的应用中,重要的一点是实施科学有效的管理措施。
首先,应结合日常工作安排,制定周期性、系统性的矿井空气测量,及时发现潜在的安全隐患;其次,定期对气象仪表进行检查维护,保证数据的准确性和可靠性;最后,应定期进行预警功能测试,检测矿井空气变化特征,避免发生安全事故。
矿井通风阻力测定方法
矿井通风阻力测定方法,也称为气流阻力测定。
是利用装置或机
械测量矿井的通风阻力,以便计算通风量。
它可以用于对矿井的气密
性和低效率进行病理分析。
矿井通风阻力测量涉及到空气压力、温度、空气流量、风速等参数。
具体方法如下:
(1)安装蒸汽涡轮压差计。
将蒸汽涡轮压差计安装在通风采样
管的两端,以检测定量空气的流动;
(2)通过气流计安装在通风采样管的入口和出口处,对气流量
进行测定;
(3)设置风速计,以测定风速;
(4)手持型温湿度计,对空气的温度和湿度进行测定;
(5)安装压力计,用于测定空气压力。
最后,通过计算压差、气流量、风速、温湿度和空气压力等记录
参数,就可以计算出矿井的通风阻力。
1.矿井通风阻力测定的概述1.1目的主要有:①了解通风系统中阻力分布情况,以便降阻增风;②提供实际的井巷摩擦阻力系统和风阻值,为通风设计、网络解算、通风系统改造、调节风压法控制火灾提供可靠的基础资料。
1.2矿井通风阻力测定的方法单管倾斜压差计单管倾斜压差计的外部结构和工作原理如图2-6所示。
它由一个大断面的容器1 0(面积为F1)和一个小断面的倾斜测压管8(面积为F2)及标尺等组成。
大容器10和测压管8互相连通,并在其中装有用工业酒精和蒸馏水配成的密度为0.81kg/m的工作液。
两断面之比(F1/F2)为250~300。
仪器固定在装有两个调平螺钉9和水准指示器2的底座1上,弧形支架3可以根据测量范围的不同将倾斜测压管固定在5个不同的位置上,刻在支架上的数字即为校正系数。
大容器通过胶管与仪器的“+”接头相通,倾斜测压管的上端通过胶皮管与仪器的“-”接头相连,当“+”接头的压力高于“-”接头的压力时,虽然大容器内液面下降甚微,但测压管端的液面上升十分明显,经过下式计算相对压力或压差h:h=LKg ,Pa (2-14)式中 L——倾斜测压管的读数,mm;K——仪器的校正系数(又称常数因子),测压时倾斜测压管在弧形支架上的相应数字。
图2-6 YYT—200型单管倾斜压差计结构1—底座;2—水准指示器;3—弧形支架;4—加液盖;5—零位调整旋钮;6—三通阀门柄;7—游标;8—倾斜测压管;9—调平螺钉;10—大容器;11—多向阀门仪器的操作和使用方法如下:(1)注入工作液。
将零位调整旋钮5调整到中间位置,测压管固定在弧形支架的适当位置,旋开加液盖4,缓缓注入预先配置好的密度为0.81 kg/m的工作液,直到液面位于倾斜测压管的“0”刻度线附近,然后旋紧加液盖,再用胶皮管将多向阀门11中间的接头与倾斜测量管的上端连通。
将三通阀门柄6拨在仪器的“测压”位置,用嘴轻轻从“+”端吹气,使酒精液面沿测压管缓慢上升,察看液柱内有无气泡,如有气泡,应反复吹吸多次,直至气泡消除为止。
矿井通风阻力测定实施方案1、阻力测定目标测定矿井各风路阻力值,并计算各种巷道阻力系数,为估算同类型巷道阻力做依据。
2、阻力测定理论依据3、测定仪器气压计、干湿球温度计、风表、尺子、秒表、钟表一组各需一套。
4、测定步骤(1)标定测点。
由于测风目的是测定各风流分支阻力及各种巷道阻力系数,故测点选定原则是在风流分叉、汇合处,及巷道断面、支护形式发生明显变化处选为测点,有调节风门、风窗等控风设施的,设施进回风侧各设一测点,另在进风井口各布测点一个。
测点选定后,对各测点进行无重复编号。
选定编号后,查找每个测点标高H i 及每段分支长度。
(2)校正各仪器读数。
测定前,校对各组所用气压计、干湿球温度计、风表等读数并记录。
各组所用钟表同步。
(3)测定。
入井前,每组携带测点分布图,保证测定时不漏掉测点,并保证所测数据与测点编号准确对照。
1)在井口处每隔5分钟测量气压P 1t 。
2)测量井下各测点时,先记录测量时间t i 、测点气压P i 及干湿球温度T i 干、T i 湿,后测量测点断面、风速,对于仅有巷道断面、支护形式发生变化的测点,需测量测点前后10米(避开风流紊乱区)以外处断面S i 、风速V i ,对风流交叉、汇合处的测点,测量距测点至少10米处各分支的断面S i 、风速V i ,并记录下各支路的支护形式。
5、数据分析支路上阻力计算:支路两端分别为1,2点,已知两点标高H 1,H 2,并测出各点气压P 1,P 2,干湿球温度T 1干,T 1湿,T 2干,T 2湿,断面S 1,S 2,风速V 1,V 2。
支路单位质量阻力h 1-2= 222221V V -+ 2211L P L P -+g (H 1—H 2) L1,L2为两点空气密度,可由两点干湿球温度根据干湿球温度对照表查出该状态下空气密度。
支路总阻力为h=m ·h 1-2m 为该支路每秒进风量,m=Q1·L1。
煤矿矿井通风阻力测定方案引言煤矿是我国能源工业的重要组成部分,矿井通风是煤矿生产中的关键环节。
保证矿井良好的通风状态,不仅可以保障作业人员的安全,同时也能提高煤炭的生产效率。
在线路设计和通风系统维护方面,通风阻力的精确测量和评估对保障矿井的正常生产与造价控制有着十分重要的作用。
本文将介绍煤矿矿井通风阻力测定方案的主要内容。
测量方法煤矿矿井通风阻力测定可采用两种方法,分别为经验法和试验法,下面将对两种方法的具体步骤进行介绍。
经验法经验法是利用煤矿矿井实际工作数据,根据经验公式计算出通风阻力的方法。
具体步骤如下:1.测量矿井的风量和静压,并记录下来。
2.计算出平均风速,用以下公式计算:V = Q / A其中,V为平均风速,Q为风量,A为矿井横截面积。
3.用以下公式计算阻力系数k1、k2:K1 = (dP1 * 100) / V^2K2 = (dP2 * 100) / V^2其中,dP1和dP2为两个不同监测点的静压差。
4.用以下公式计算出煤矿矿井的通风阻力:Delta P = (K1 - K2) * V^2 / 100其中,Delta P为煤矿矿井的通风阻力。
试验法试验法是指利用通风试验平台,按矿井实际情况模拟出实际工作状态进行测试的方法。
具体步骤如下:1.准备一台通风试验平台,并将其设置成与矿井实际情况相同的状态。
2.在试验平台上设置监测点,测量静压、风量等参数,并记录下来。
3.采用其他测量方法,如测定流量管法等,得出煤矿矿井的实际阻力系数。
4.用以下公式计算出煤矿矿井的通风阻力:Delta P = k1 * V^2 / 100其中,k1为煤矿矿井的阻力系数,V为平均风速。
注意事项在煤矿矿井通风阻力测定过程中,需要注意以下事项:1.测量前,应对测量仪器进行归零,并检查是否出现故障。
2.测量时应选择代表性区域进行测量,并在不同的区域、不同时段进行多次测量,以保证数据的可靠性和精确性。
3.注意安全,避免在高空或有毒有害气体的地区进行测量,必要时应采取安全防护措施。
煤矿矿井通风阻力测定摘要:矿井通风是保障矿井安全的最主要技术手段之一。
矿井通风阻力指的是由井筒、巷道及通风构筑物构成的通风网路所产生的通风总阻力,它是衡量矿井通风能力的重要指标,也是矿井通风技术管理的重要内容之一,了解和掌握矿井通风阻力大小和分布状况,是进行矿井通风科学管理、风量调节、通风设计及通风系统优化和改造的基本依据。
关键词:煤矿矿井;通风;阻力测定前言通风阻力测定是矿井通风技术的一项重要研究内容。
通过监测不同类型井巷的通风阻力和风量大小,评定矿井巷道通风特性的好坏,进而确定与之对应的风阻值和摩擦阻力系数(即井下平均空气密度值),将相关数据整理编集,为矿井通风技术管理提供参考。
为了明确井巷各路段通风阻力及风量情况,需连续测试某一路线各区段的通风阻力值,以便更好地掌握矿井的整体通风情况。
1、矿井概况斜沟煤矿位于山西省兴县县城北直距20km处,行政区划隶属于兴县魏家滩镇和保德县南河沟镇管辖。
矿井设计生产能力1500万t/a,实际年产量为1550万t/a,现开采8#、13#、6#煤层。
矿井采用分区式通风方式,机械抽出式通风方法。
共有进风井5个、回风井3个。
斜沟回风井安装有2台FBCDZ-8-№22型主要通风机,配套电机2×160kW;石吉塔沟回风斜井安装有2台FBCDZ-10-№34型主要通风机,配套电机2×800kW;石吉塔沟回风立井安装有2台FBCDZ-10-№34型主要通风机,配套电机2×800kW。
矿井2011年度鉴定为低瓦斯矿井。
2、矿井通风阻力测定2.1测定方法及测定时间的选择矿井通风阻力测定常用方法有气压计法和压差计法。
由于压差计法在现场铺设、收放胶皮管费时费力、工作量大、操作较繁琐,因此目前大多采用气压计法。
气压计法又分为基点法和同步法。
同步法的测定精度较高,但测定速度较慢,人员互相牵制,适用于井下局部区域阻力测定,不适合复杂矿井的全矿井阻力测定。
基点法测定方便,省时省力,数据处理工作简单,但是受标高影响大,误差较大,其测定结果能够满足一般性要求。