人教版九年级数学下圆同步练习含答案
- 格式:pdf
- 大小:151.30 KB
- 文档页数:11
数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
人教版数学九年级下册第29章29.1--29.3同步练习题(含答案)29.1《投影》一、选择题1.关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A.1 个B.2个C.3个D.4个2.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定3.如下图所示的四幅图中,灯光与影子的位置最合理的是( )4.如图,一个斜插吸管的盒装饮料的正投影是图中的( )5.如图所示,晚上小亮在路灯下散步,在小亮由A处走向B处的过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后再变长D.先变长后再变短6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )(A)①②③④. (B)④①③②. (C)④②③①. (D)④③②①.7.下列各种现象属于中心投影现象的是( )A.上午10点时,走在路上的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子8.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短9.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长10.下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D.物体在阳光照射下,影子的长度和方向都是固定不变的.11.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属于同一种投影的有( )A.L、KB.答案为:C;C.KD.L、K、C12.这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米二、填空题13.有下列投影:①阳光下遮阳伞的影子;②探照灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是________.(填序号)14.如图所示,此时树的影子是在(填太阳光或灯光)下的影子.15.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为____________m.16.如图所示是两棵小树在同一时刻的影子,可以断定这是________投影,而不是_______投影.17.如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径.在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的距离是10米(如示意图,AB=10米);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是米.18.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是 cm.三、解答题19.如图,已知AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.20.如图,晚上,小亮在广场上乘凉。
人教版数学九年级2020年中考同步训练:《圆的选择题》1.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8 C.D.22.如图,已知圆O的圆心在原点,半径OA=1(单位圆),设∠AOP=∠α,其始边OA与x 轴重合,终边与圆O交于点P,设P点的坐标P(x,y),圆O的切线AT交OP于点T,且AT=m,则下列结论中错误的是()A.sinα=y B.cosα=xC.tanα=m D.x与y成反比例3.如图,Rt△ABC的斜边BC=4,∠ABC=30°,以AB、AC为直径分别作圆.则这两圆的公共部分面积为()A.+B.﹣C.﹣D.﹣4.如图,在圆O上依次有A.B,C三点,BO的延长线交圆O于E,=,点C作CD ∥AB交BE的延长线于D,AD交圆O于点F,连接OA,OF,若∠AOF=3∠FOE,且AF=2,劣弧CF的长是()A.πB.πC.πD.π5.如图,正方形ABCD中,⊙O过点A,B交边AD于点E,连结CE交⊙O于点F,连结AF,若tan∠AFE=,则的值为()A.1 B.C.D.6.如图,点O为正六边形的中心,P,Q分别从点A(1,0)同时出发,沿正六边形按图示方向运动,点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,则第2020次相遇地点的坐标为()A.B.(1,0)C.D.(﹣1,0)7.如图,在圆内接五边形ABCDE中,AB=AE,BC=CD=DE,且∠D=100°,连接AC和EC.则∠ACE的度数为()A.30°B.35°C.40°D.48°8.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC的度数为()A.22°B.24°C.27°D.30°9.如图,在平面直角坐标系中.点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,四边形OCDB是平行四边形.则点C的坐标为()A.(1,7)B.(2,6)C.(2,7)D.(1,6)10.如图,AB是⊙O的直径,点C,点D是半圆上两点,连结AC,BD相交于点P,连结AD,OD.已知OD⊥AC于点E,AB=2.下列结论:①AD2+BC2=4;②sin∠DAC=;③若AC=BD,则DE=OE;④若点P为BD的中点,则DE=2OE.其中确的是()A.①②③B.②③④C.③④D.②④11.如图,圆心为M的量角器的直径的两个端点A,B分别在x轴,y轴正半轴上(包括原点O),AB=4.点P,Q分别在量角器60°,120°刻度线外端,连结MP.量角器从点A 与点Q重合滑动至点Q与点O重合的过程中,线段MP扫过的面积为()A.π+B.πC.π+2D.312.如图,△ABC内接于⊙O,且AB=AC.直径AD交BC于点E,F是AE的中点,连结CF,若AD=6.则CF的最大值为()A.6 B.5 C.4 D.313.如图,△ABC内接于⊙O,将沿BC翻折,交AC于点D,连接BD,若∠BAC=66°,则∠ABD的度数是()A.66°B.44°C.46°D.48°14.如图,半径为3的⊙O与五边形ABCDE的边相切于点A,C,连接OA交BC于点H,连接OB,AB.若∠D+∠E=240°,HC=3BH,则△ABO的面积为()A.3B.C.D.215.如图,点A,B,C是⊙O上三点,AC=BC,点M为⊙O上一点,CE⊥AM,垂足为点E,AE=2,BM=,CM=,则的长为()A.πB.πC.πD.π16.如图,在△ABC中,∠C=40°,∠A=60°.以B为圆心,适当长度为半径作弧,分别交AB,BC于点D,E;分别以D,E为圆心,大于DE长度为半径作弧,两弧交于点F;作射线BP,交AC于点P,过点P作PM⊥AB于M;以P为圆心,PM的长为半径作⊙P.则下列结论中,错误的是()A.∠PBA=40°B.PC=PBC.PM=MB D.⊙P与△ABC有4个公共点17.如图,在△ABC中,∠A=60°,AB=4,以BC的中点O为圆心作圆,分别与AB、AC相切于D、E两点,则的长是()A.πB.πC.πD.318.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣3πB.18﹣πC.32﹣16πD.18﹣9π19.如图,5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与AE交于H,则弧AH的弧长为()A.πB.πC.πD.π20.如图,△ACD内接于⊙O,AB是⊙O的切线,∠C=45°,∠B=30°.AD=4,则AB长为()A.4 B.C.D.参考答案1.解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.2.解:如图,过点P作PH⊥OA于H,由题意知,OA=OP=1,OH=x,PH=y,由切线的性质定理可知AT⊥OA,在Rt△POH中,∠AOP=∠α,∴sinα===y,cosα===x,故A,B正确;在Rt△TOA中,tanα===m,故C正确,在Rt△POH中,OH2+PH2=OP2,∴x2+y2=1,故D错误;故选:D.3.解:如图,设点E是两圆的公共点,连接AE,取AC,AB的中点G,H.在Rt△ABC中,∵∠CAB=90°,∠ABC=30°,BC=4,∴AC=2,AB=2,∠C=60°,∴∠AHE=60°,∠AGE=120°,∴S阴=S扇形HAE﹣S△AEH+S扇形GEA﹣S△AEG=﹣×()2+﹣×1×=﹣,故选:C.4.解:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴=,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形,∴BC∥AD,∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180﹣3x)=180,解得:x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=2,∴的长==π,故选:C.5.解:如图,设⊙O交BC于J,连接AJ,JF,EJ,过点F作FM⊥AD于M交BC于N.设AB =3a.∵四边形ABCD是正方形,∴∠ABC=∠BAD=∠BCD=90°,AD∥BC,AD=AB=BC=CD=3a,∴AJ是⊙O的直径,∴∠AFJ=∠AEJ=90°,∵FM⊥AD,AD∥CB,∴MN⊥BC,∴∠MNC=∠BCD=∠D=90°,∴四边形MNCD是矩形,四边形ABJE是矩形,∴MN=CD=3a,AE=BJ,∴=,∴∠BAJ=∠AFE,∴tan∠BAJ=tan∠AFE=,∴BJ=AE=a,JC=2a,∵∠JAF=∠JEC,∴tan∠JAF=tan∠JEC,∴==,∵∠AFM+∠JFN=90°,∠JFN+∠FJN=90°,∴∠AFM=∠FJN,∵∠AMF=∠FNJ=90°,∴△AMF∽△FNJ,∴===,设JN=2x,则FM=3x,∵AM=AE+EM=a+2x,∴FN=AM=(a+2x),∵FM+FN=3a,∴3x+(a+2x)=3a,∴9x+2a+4x=9a,∴x=a,∴CN=2a﹣2x=2a﹣a=a,∵EM∥CN,∴===,故选:B.6.解:∵A(1,0),O为正六边形的中心,∴OA=AB=1,连接OB,作BG⊥OA于点G,则AG=OA=,BG=,∴B(,),∴C(﹣,),E(﹣,﹣),∵正六边形的边长=1,∴正六边形的周长=6,∵点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,∴第1次相遇需要的时间为:6÷(1+2)=2(秒),此时点P的路程为1×2=2,点的Q路程为2×2=4,此时P,Q相遇地点的坐标在点C(﹣,),以此类推:第二次相遇地点在点E(﹣,﹣),第三次相遇地点在点A(1,0),…如此下去,∵2020÷3=673…1,∴第2020次相遇地点在点C,C的坐标为(﹣,).故选:A.7.解:∵DE=DC,∴∠DEC=∠DCE=(180°﹣100°)=40°,∵BC=CD,∴=,∴∠BAC=∠CED=40°,∵∠EAC+∠EDC=180°,∴∠EAC=180°﹣100°=80°,∴∠EAB=∠EAC+∠BAC=120°,∴∠ECB=180°﹣∠EAB=60°,∵AE=AB,∴=,∴∠ACE=∠ACB=∠ECB=30°,故选:A.8.解:∵四边形ABCD是菱形,∴DA=DC,∴∠DAC=∠DCA=(180°﹣78°)=51°,∵AD∥BC,∴∠ACE=∠DAC=51°,∵四边形AECD是⊙O的内接四边形,∴∠AEC=180°﹣78°=102°,∴∠EAC=180°﹣102°﹣51°=27°,故选:C.9.解:如图,连接OD,AD,DM,作DF⊥OA于F.∵A(20,0),B(16,0),∴OA=20,OB=16,∴AB=20﹣16=4,∵四边形ABCD是平行四边形,∴CD∥OB,CD=OB=16,OC=BD,∴∠CDO=∠DOA,∴=,∴OC=AD=BD,∵DF⊥BA,∴BF=FA=2,∴OF=18,∴在Rt△DMF中.DF===6,∴D(18,6),C(2,6),故选:B.10.解:∵AB是直径,∴∠ACB=90°,∴AC2+BD2=AB2=4,∵AC>AD,∴AD2+BC2<4,故①错误,∵∠DAC=∠CBD,∴sin∠DAC=sin∠CBD=,故②正确,∵AE⊥OE,假设DE=EO,则AD=AO=OD,∴△ADO是等边三角形,显然不符合题意,故③错误,∵∠DEP=∠BCP=90°,DP=PB,∠DPE=∠BPC,∴△PDE≌△PBC(AAS),∴DE=BC,∵OE∥BC,AO=OB,∴AE=EC,∴BC=2OE,∴DE=2OE,故④正确.故选:D.11.解:由题意可知,点M的运动轨迹是以O为圆心,2为半径,圆心角为60°的扇形,点P在第四象限内时,∠AOB是弧AP所对的圆周角,所以∠AOP=30°,点P在第二象限内时,∠BOP是弧BP所对的圆周角,所以∠BOP=60°,所以点P的运动路径是一条线段,当量角器从点A与O重合滑动至点Q与点O重合时,MP扫过的图形是如图所示的阴影部分,它是由两个边长为2的等边三角形与一个扇形组成,所以PM扫过的面积为:+2××22=π+2,故选:C.12.解:∵F是AE的中点,∴设AF=EF=x,则AE=2x,∴DE=6﹣2x,∵AB=AC,∴=,∵AD为⊙O的直径,∴BC⊥AD,∠ABD=90°∴BE=CE,∠ABE+∠DBE=∠DBE+∠D=90°,∴∠ABE=∠D,∵∠AEB=∠DEB=90°,∴△ABE∽△BDE,∴,∴BE2=AE•DE=2x(6﹣x),∴CE2=2x(6﹣x),在Rt△CEF中,CF2=EF2+CE2=x2+2x(6﹣x)=﹣3(x﹣2)2+36,∴当x=2时,CF的最大值为6,故选:A.13.解:∵将沿BC翻折,交AC与点D,∴∠BAC+∠BDC=180°,∵∠BAC=66°,∴∠BDC=114°,∴∠ADB=180°﹣∠BDC=66°,∴∠ABD=180°﹣66°﹣66°=48°,故选:D.14.解:连接OC,过点C,B分别作AO的垂线,垂足分别为M,N,∵半径为3的⊙O与五边形ABCDE的边相切于点A,C,∴∠OAE=∠OCD=90°,∵∠AOC+∠OCD+∠D+∠E+∠OAE=540°,∠D+∠E=240°,∴∠AOC=120°,∴∠MOC=180°﹣∠AOC=60°,∵OC=3,∴,∵CM⊥AO,BN⊥AO,∴CM∥BN,∴△HCM∽△HBN,∴,∴,∴,故选:C.15.解:在AE上截取AG=BM,连接CG,∵AC=BC,∠A=∠B,∴△ACG≌△BCM(SAS),∴CG=CM=,∵AE=2,AG=BM=,∴GE=,∵CE⊥AM,∴CE===2,∴tan∠A==,∴∠A=30°,∴∠COM=60°,连接OM,CO,∵OC=OM,∴△COM是等边三角形,∴OC=,∴的长==,故选:A.16.解:∵∠C=40°,∠A=60°,∴∠ABC=80°,由题意得,BP平分∠ABC,∴∠ABP=ABC=40°,故选项A正确;∵∠PBC=∠PBA=ABC=40°,∴∠C=∠PBC,∴PC=PB,故选项B正确;∵PM⊥AB,∴∠BMP=90°,∴∠BPM=50°,∴∠BPM≠∠MBP,∴PM≠BM,故C选项错误;∵点P在∠ABC的角平分线上,∴P到AB和BC的距离=PM=⊙P的半径,∴AB,BC与⊙P相切,∵PA>PM,PC>PM,∴⊙P与AC相交,∴⊙P与△ABC有4个公共点,故D选项正确,故选:C.17.解:连接OA,OE,OD,∵AB、AC与⊙O相切于D、E两点,∴∠OEC=∠ODB=∠AEO=∠ADO=90°,∵∠BAC=60°,∴∠DOE=120°,∵点O为BC的中点,∴OB=OC,∵OE=OD,∴Rt△OEC≌RtODB(HL),∴∠C=∠B,∴AC=AB=4,AO⊥BC,∴∠CAO=,∴AO=AC=2,∴OE=AO=,∴的长是=π,故选:C.18.解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°﹣60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=8×=4,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEG的面积=8×4﹣=32﹣16π.故选:C.19.解:连接EB,BH,AB,∵BE=AB==,AE==,∴BE2+AB2=AE2,∴∠ABE=90°,∴△ABE是等腰直角三角形,∵∠ACB=90°,∴AB是圆的直径,∴∠AHB=90°,∴BH⊥AH,∴∠ABH=∠BAH=45°,∴弧AH所对的圆心角为90°,∴的长==.故选:B.20.解:如图,连接OA、OD,∵∠C=45°.∴∠AOD=2∠C=90°.又∵OA=OD,AD=4,∴AD2=2OA2=16,则OA=2.又∵AB是⊙O的切线,∴∠OAB=90°.∵∠B=30°,OA=2,∴AB=OA=2.故选:D.。
人教版九年级数学下册圆测试习题及答案一、选择题1.如图,∠O=30°,C为OB上一点,且OC=6,以点C 为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.均有可能2.(贺州中考)已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2B.4C.6D.83.(兰州中考)如图,在⊙O中,若点C是AB的中点,∠A=50°,则∠BOC的度数为()A.40°B.45°C.50°D.60°4.(杭州中考)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EBB.2DE=EBC.3DE=DOD.DE=OB5.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB 上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是() A.60°B.120°C.60°或120°D.30°或150°6.(德州中考)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步7.(山西中考)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为()A.B.C.πD.2π328.(滨州中考)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤二、填空题9.(安顺中考)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=4.10.(齐齐哈尔中考)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=60度.略3.B解析:根据勾股定理得BE=√(25-9)=4,所以AE=5,AC=AB+BC=10+8=18,所以△ABC为等腰三角形,∠BAC=∠BCA=72°,所以∠ABC=36°,所以sin36°=AC/2R,解得R=9/sin36°.4.B解析:设圆的半径为r,则根据勾股定理得r2=82+62,所以r=√(64+36),所以圆的面积为πr2=100π.5.C解析:设AB=x,则BC=2x,所以AC=3x,又因为三角形ABC为等腰三角形,所以∠ABC=∠ACB=70°,所以sin70°=AB/BC,解得x=BCsin70°/sin20°,所以AC=3x =3BCsin70°/sin20°,所以sin50°=AD/AC,解得AD=ACsin50°=3BCsin70°sin50°/sin20°.11.略12.解析:设弦CD的长为x,则根据勾股定理得(x/2)2+182=(13)2,解得x=26/3.13.解析:根据勾股定理得BC=√(24×(24-18))=12,所以AB=2BC=24,所以三角形ABC为30°-60°-90°三角形,所以AC=2AB/√3=16√3,所以sinA=AH/AC=9/16,所以sinB=√(1-sin2A)=7/16,所以BC=ACsinB/sinA=28/3,所以AB=2BC=56/3.14.解析:根据勾股定理得OD=r/2,所以CD=r/2,所以△OCD为等边三角形,所以AC=r/2√3,所以当△OCD的面积最大时,AC=r/2√3为最大,所以r=2√3,所以AC=2.15.(1)解析:根据正弦定理得sin∠ECD=sin∠EAD,所以∠ECD=∠EAD,所以∠A=∠C,所以AB=AC.2)解析:根据正弦定理得CD/AD=BC/AB,所以CD=23/4.16.解析:(1)根据勾股定理得OB=√(OA2-AB2)=√(OA2-(2r)2),所以OA2=OB2+(2r)2=(r+3)2,所以OA=r+3.2)根据相似三角形得CE/CO=DE/OF,所以CE=r/2,所以阴影部分的面积为πr2/6-√3r2/4+πr2/12-πr2/3=πr2/12-√3r2/4.17.(1)解析:根据相似三角形得∠___∠CDA,所以∠___∠CBD,所以CD是⊙O的切线.2)解析:根据相似三角形得DE/CD=BD/BC,所以DE=CD×BD/BC=9/2,所以BE=BC-CE-DE=23/2-6-9/2=4.18.(1)解析:当P在直线AB上时,OP与y轴相交于点(0,-23),所以当P在AB上方时,OP在y轴上方,当P在AB下方时,OP在y轴下方,所以原点O与⊙P的位置关系取决于P在AB的上方还是下方.2)解析:当⊙P过点B时,由于AB垂直于y轴,所以⊙P被y轴所截得的劣弧的长为∠APB的度数,而∠APB的度数为90°,所以答案为π/2.3)解析:当⊙P与x轴相切时,设切点坐标为(x,y),则由于OP垂直于x轴,所以OP与x轴的夹角为90°,所以OP的斜率为-1/3,所以y=3x-23,且(x-1)2+y2=1,联立两式解得x=7/5,y=2/5,所以切点的坐标为(7/5,2/5).17.证明:连接OD。
人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。
第二十九章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分.下列各小题给出的四个选项中,只有一项符合题目要求)1.下列投影是正投影的是()A.(1)B.(2)C.(3)D.都不是2.小明在某天下午测量了学校旗杆的影子长度,按时间顺序排列正确的是()A.6 m,5 m,4 mB.4 m,5 m,6 mC.4 m,6 m,5 mD.5 m,6 m,4 m3.已知6个棱长为1的小正方体组成的一个几何体如图所示,则其俯视图的面积是()A.6B.5C.4D.34.一个水平放置的全封闭物体如图所示,则它的俯视图是()5.已知由4个大小相同的长方体搭成的立体图形的左视图如图所示,则这个立体图形的搭法不可能是()6.图①表示一个正五棱柱形状的高大建筑物,图②是它的俯视图.小健站在地面观察该建筑物,当他在图②中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为()A.30°B.36°C.45°D.72°7.已知一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()A.66B.48C.48√2+36D.578.已知一个由多个相同的小正方体堆积而成的几何体的俯视图如图所示,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()二、填空题(每小题4分,共24分)9.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6 m,他向墙壁走1 m 到B处时发现影子刚好落在点A,则灯泡与地面的距离CD=.10.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之间,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为. 11.如图,电视台的摄像机1,2,3,4在不同位置拍摄了四幅画面,则图象A是号摄像机所拍,图象B是号摄像机所拍,图象C是号摄像机所拍,图象D是号摄像机所拍.12.已知由四个相同的小正方体组成的立体图形的主视图和左视图如图所示,则原立体图形可能是.(把图中正确的立体图形的序号都填在横线上)13.已知三棱柱的三视图如图所示,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为cm.14.观察由棱长为1的小正方体摆成的图形(如图),寻找规律:如图①中:共有1个小正方体,其中1个看得见,0个看不见;如图②中:共有8个小正方体,其中7个看得见,1个看不见;如图③中:共有27个小正方体,其中19个看得见,8个看不见;……则第⑥个图中,看不见的小正方体有个.三、解答题(共44分)15.(10分)按规定尺寸作出如图所示几何体的三视图.16.(10分)如图,两幢楼高AB,CD为30 m,两楼间的距离AC为24 m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)17.(12分)已知一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)根据图中所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.18.(12分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12 m到达点Q时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6 m,两个路灯的高度都是9.6 m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?第二十九章测评一、选择题1.C2.B3.B4.C5.A6.B由题图可知∠MPN是由正五边形的两条边的延长线所夹的角,由正五边形的内角度数为108°,知∠MPN=36°.7.A8.D根据俯视图,可知这个几何体从左面看共有两列,其中左边一列最高有两个小正方体,右边一列最高有三个小正方体,因此其左视图应为D.二、填空题m10.上午8时11.234112.①②④9.641513.6如图,过点E作EQ⊥FG于点Q,由题意可得出EQ=AB.在Rt△EGQ中,∵EG=12 cm,∠×12=6(cm).EGF=30°,∴EQ=AB=1214.125通过分析:题图①中,1个小正方体,0个看不见;题图②中,共有8个小正方体,1个看不见;题图③中,共有27个小正方体,8个看不见,所以看不见的小正方体个数正好是上一个图形中小正方体的个数,所以第⑥个图中看不见的小正方体有53=125(个).三、解答题15.解如图.16.解延长MB交CD于点E,连接BD,因为AB=CD,所以NB和BD在同一条直线上.所以∠DBE=∠MBN=30°.因为四边形ABDC是矩形,所以BD=AC=24 m.在Rt△BED中,tan 30°=DEBD,DE=BD tan 30°=24×√33=8√3(m),所以CE=30-8√3≈16.14(m).即甲楼投在乙楼上的影子的高度约为16.14 m.17.解(1)圆锥.(2)S表=S侧+S底=πrl+πr2=12π+4π=16π(cm2).(3)如图将圆锥的侧面展开,线段BD为所求的最短路程.因为AB=6 cm,底面圆半径r=2 cm,设∠BAB'=n°,所以nπ×6180=2π×2,解得n=120,即∠BAB'=120°.由题易知C为弧BB'的中点,所以BD=3√3 cm.18.解(1)由对称性可知AP=BQ.设AP=BQ=x m.因为MP∥BD,所以△APM∽△ABD.所以MPBD =APAB,即1.69.6=x2x+12,解得x=3.所以AB=2x+12=2×3+12=18(m),即两个路灯之间的距离为18 m.(2)设王华走到路灯BD处,头的顶部为E,如图.连接CE,并延长交AB的延长线于点F,则BF即为此时他在路灯AC下的影子长,设BF=y m.因为BE∥AC,所以△FEB∽△FCA.所以BEAC =BFFA,即1.69.6=yy+18,解得y=3.6.故当王华同学走到路灯BD处时,他在路灯AC下的影子长是3.6 m.。
一、选择题1.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .6 2.如图,已知⊙O 的半径为5,弦,AB CD ⊥垂足为E ,且8AB CD ==,则OE 的长为( )A .3B .32C .4D .42 3.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒ 4.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=的是( )A .30B ∠=︒ B .60BAD ∠=︒C .23BD = D .23AB = 5.如图.PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,OB ,OP ,AB .若 OA =1,∠APB =60°,则△PAB 的周长为( )A .23B .4C .33D .23+2 6.如图,点A ,B ,C ,D 为O 上的四个点,AC 平分BAD ∠,AC 交BD 于点E ,4CE =,6CD =,则AC 的长为( )A .7B .8C .9D .10 7.已知O 的半径为8cm ,如果一点P 和圆心O 的距离为8cm ,那么点P 与O 的位置关系是( )A .点P 在O 内 B .点P 在O 上 C .点P 在O 外 D .不能确定 8.如图,O 的直径为10,弦AB 的长为6,P 为弦AB 上的动点,则线段OP 长的取值范围是( )A .35OP ≤≤B .45OP <<C .45OP ≤≤D .35OP <<9.图中的三块阴影部分由两个半径为1的圆及其外公切线分割而成,如果中间一块阴影的面积等于上下两块面积之和,则这两圆的公共弦长是( )A .52B .62C .21252π-D .21162π- 10.如图,ABC 中,10,8,4AB AC BC ===,以点A 为圆心,AB 为半径作圆,交BC 的延长线于点D ,则CD 长为( )A .10B .9C .45D .8 11.已知正六边形ABCDEF 内接于O ,若O 的直径为2,则该正六边形的周长是( )A .12B .63C .6D .3312.如图,四边形OABC 是平行四边形,以点O 为圆心,OA 为半径的⊙O 与BC 相切于点B ,CO 的延长线交⊙O 于点E ,连接AE ,若AB =2,则图中阴影的面积为( ).A .2πB .πC .22πD 2π二、填空题13.如图,一次函数3233y x =-+的图象与x 轴交于点A ,与y 轴交于点B ,若向ABO 的外接圆C 内随机抛掷一枚小针,则针尖落在阴影部分的概率是_____________.14.如图,有一圆形木制艺术品,记为⊙O ,其半径为12cm ,在距离圆心8cm 的点A 处发生虫蛀,现需沿过点A 的直线PQ 将圆形艺术品裁掉一部分,然后用美化材料沿PQ 进行粘贴,则美化材料(即弦PQ 的长)最少需要_____cm .15.如图,C 的半径为1,圆心坐标为()3,4C ,点()P m n ,是C 内或C 上的一个动点,则22m n +的最小值是__________.16.一个边长为4的正多边形的内角和是其外角和的2倍,则这个正多边形的半径_______.17.圆锥的表面展开图由一个扇形和一个圆组成,已知扇形的半径为9,圆心角为120°,则圆锥的底面圆的半径为__________.18.如图,在ABC 中,D 是边BC 上的一点,以AD 为直径的O 交AC 于点E ,连接DE .若O 与BC 相切,55ADE ∠=︒,则C ∠的度数为______19.如图,在平面直角坐标系中,D 是直线6y x =-+上的一个动点,O 的半径为2,过点D 作O 的切线,切点为A ,则AD 长度的最小值为____________.20.已知圆锥的母线长为10cm ,高为8cm ,则该圆锥的展开图(扇形)的弧长为______(结果保留π).三、解答题21.如图,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,点D 在BC 上,AD 的延长线交⊙O 于点E ,连接CE .(1)求证:∠ADC =∠ACE ;(2)若⊙O 的半径为23,AB 的度数为90°,DE =2,求AD 的长.22.已知,如图,在ABC 中,90C ∠=︒,D 为BC 边中点.(1)尺规作图:以AC 为直径作O ,交AB 于点E (保留作图痕迹,不需写作法); (2)连接DE ,求证:DE 为O 的切线. 23.如图,BD 为ABC 外接圆O 的直径,且BAE C ∠=∠.(1)求证:AE 与O 相切于点A ;(2)若//AE BC ,23BC =,2AC =,求O 的直径. 24.如图所示的网格由小菱形组成,每个小菱形的边长均为Ⅰ个单位长度,且较小的内角为60°,ABC 的顶点都在网格的格点上,将ABC 绕点C 按顺时针方向旋转60°,得到11A B C .(1)画出旋转后的11A B C ;(2)直接写出在旋转过程中,点B 旋转到点1B 所经过的路径长;25.如图,已知BC 是O 的直径,AC 切O 于点C ,AB 交O 于点D ,E 为AC 的中点,连接CD ,DE .(1)求证:DE 是O 的切线;(2)若8BD =,6CD =,求AC 的长.26.如图,在平面直角坐标系中,正方形网格中每个小正方形的边长是一个单位长度,其中点B 的坐标为()2,1.(1)在平面直角坐标系中画出OAB ∆先向左平移4个单位长度,再向下平移3个单位长度后得到111O A B ∆.并写出点1B 的坐标.(2)在平面直角坐标系中画出OAB ∆绕点O 逆时针旋转90︒得到22OA B ∆,并求出旋转过程中线段OA 所扫过的面积(结果保留π).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OA ,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB 是等边三角形,进一步得出结论.【详解】解:∵BD 是圆O 的直径,且BD=10∴OB=5连接OA ,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.2.B解析:B【分析】连接OB ,作OP ⊥AB 于E ,OF ⊥CD 于F ,根据弦、弧、圆心角、弦心距的关系定理得到OP=OF ,得到矩形PEFO 为正方形,根据正方形的性质得到OP=PC ,根据垂径定理和勾股定理求出OP ,根据勾股定理计算即可.【详解】解:连接OB ,作OP ⊥AB 于E ,OF ⊥CD 于F ,则BP=12AB=4,四边形PEFO 为矩形, ∵AB=CD ,OP ⊥AB ,OF ⊥CD ,∴OP=OF ,∴矩形PEFO 为正方形,∴OP=PC ,在Rt △OPB 中,222254OB BP --,∴OE=22OP PC +=32,故选:B .【点睛】本题考查了垂径定理以及勾股定理、矩形的判定与性质等知识,正确得出O 到AB ,CD 的距离是解题关键.3.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.4.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD 的度数,然后利用含30度的直角三角形三边的关系求出BD 、AB 的长即可.【详解】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A 、B 不符合题意,在Rt △ADB 中,3,3故选项C 符合题意,选项D 不符合题意,故选:C.【点睛】本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.5.C解析:C【分析】根据切线的性质和切线长定理证明△PAB是等边三角形,PA⊥AO,根据直角三角形性质求出PA,问题得解.【详解】解:∵PA,PB是⊙O的两条切线,∠APB=60°,∴PA=PB,∠APO=1∠APB=30°,PA⊥AO,2∴△PAB是等边三角形,∵PA⊥AO,∠APO==30°,∴OP=2OA=2,∴PA=∴△PAB的周长为故选:C【点睛】本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.6.C解析:C【分析】首先连接BC,由AC平分∠BAD,易证得∠BDC=∠CAD,继而证得△CDE∽△CAD,然后由相似三角形的对应边成比例求得AE的长,进而求出AC的长.【详解】解:∵AC平分∠BAD,∴∠BAC=∠CAD∴=BC CD,∴∠BDC=∠CAD,∵∠ACD=∠DCE,∴△CDE∽△CAD,∴CD:AC=CE:CD,∴CD2=AC•CE,∴62=4(4+AE),∴AE=5,∴AC=AE+CE=9,故选:C.【点睛】此题考查了圆周角定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.B解析:B【分析】根据点与圆的位置关系进行判断即可;【详解】∵圆的半径为8cm,P到圆心O的距离为8cm,即OP=8,∴点P在圆上故选:B.【点睛】本题考查了点与圆的位置关系,点与圆的位置关系有3种:设OO的半径为r,点P到圆心的距离OP=d,则有:点P在圆外→d>r;点P在圆上→d=r;点P在圆内→d<r;8.C解析:C【分析】由垂线段最短可知当OP⊥AB时最短,当OP是半径时最长.根据垂径定理求最短长度.【详解】解:如图,连接OA,作OP⊥AB于P,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OP⊥AB于P,∴AP=BP,∵AB=6,∴AP=3,在Rt△AOP中,OP=222594-=-=;OA AP此时OP最短,所以OP长的取值范围是4≤OP≤5.故选:C.【点睛】本题考查了垂径定理、勾股定理,解题的关键是确定OP 的最小值,所以求OP 的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式r 2=d 2+(2a )2成立,知道这三个量中的任意两个,就可以求出另外一个. 9.D解析:D【分析】由题意得到四边形ABCD 为矩形,BC=2,再根据中间一块阴影的面积等于上下两块面积之和,得到BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,可求出AB=2π,则OP=12AB=4π,在Rt △OEP 中,利用勾股定理可计算出EP ,即可得到两圆的公共弦长EF . 【详解】解:∵AB ,CD 为两等圆的公切线,∴四边形ABCD 为矩形,BC=2,设中间一块阴影的面积为S ,∵中间一块阴影的面积等于上下两块面积之和,∴BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,∴AB=2π. 如图,EF 为公共弦,PO ⊥EF ,OP=12AB=4π, ∴22OE OF -222161()4ππ--=, ∴21162π-. 故选:D .【点睛】本题考查了垂径定理、勾股定理,公切线,连心线的性质,熟练掌握相关知识是解题的关键.10.B解析:B【分析】如图,过点A作AE⊥BD于点E,连接AD,可得AD=AB=10,根据垂径定理可得DE=BE,得CE=BE-BC=DE-4,再根据勾股定理即可求得DE的长,进而可得CD的长.【详解】解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=10,根据垂径定理,得DE=BE,∴CE=BE-BC=DE-4,根据勾股定理,得AD2-DE2=AC2-CE2,102-DE2=82-(DE-4)2,解得DE=132,∴CD=DE+CE=2DE-4=9,故选:B.【点睛】本题考查了垂径定理,解决本题的关键是掌握垂径定理.11.C解析:C【分析】如图,连接OA、OB,由正六边形ABCDEF内接于O可得∠AOB=60°,即可证明△AOB 是等边三角形,根据O直径可得OA的长,进而可得正六边形的周长.【详解】如图,连接OA、OB,∵O的直径为2,∴OA=1,∵正六边形ABCDEF内接于O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=1,∴该正六边形的周长是1×6=6,故选:C .【点睛】本题考查正多边形和圆,正确得出∠AOB=60°是解题关键.12.A解析:A【分析】连接OB ,根据平行四边形的判定及平行线的性质得出2OF ⊥BE 于F ,根据=()OBE OEA OBE S S SS S ---阴扇扇OEA 求解即可.【详解】 解:连接OB ,∴OB=OE=OA ,∵BC 与⊙O 相切于B ,∴OB ⊥BC ,∵四边形ABCD 是平行四边形,∴BC ∥OA ,OC ∥AB ,∴∠BOA=∠OBC=90°,∵OB=OA ,AB=2,∴∠OAB=∠OBA=45°,2,即2作OF ⊥BE 于F ,∵OA ∥BC ,∴∠COB=∠OBA=45°,∴∠EOB=180°-∠COB=180°-45°=135°, ∴2135(2)33604OBE S ππ==扇形,112sin 22sin(135)222OBE S ab C ==︒=,2452)13604OEA S ππ==扇形, ∴=()OBE OEA OBE S S SS S ---阴扇扇OEA =32124242ππ--+=21=42ππ, 故选A .【点睛】本题考查了平行线的性质,平行四边形的判定与性质,解题的关键是正确作出辅助线.二、填空题13.【分析】利用一次函数解析式求出点AB 的坐标即可得由勾股定理求出求出则可得是等边三角形可得根据圆周角定理求出扇形圆心角的度数并由三角形中线将三角形可分为面积相等的两个三角形得可求出阴影部分的面积及圆的 解析:13【分析】利用一次函数解析式求出点A 、B 的坐标,即可得6OA =,3OB =2243AB OA OB +=,求出23BC OC AC ===OBC 是等边三角形,可得60OBA ∠=︒,根据圆周角定理求出扇形圆心角的度数,并由三角形中线将三角形可分为面积相等的两个三角形得OBC OAC SS =,可求出阴影部分的面积及圆的面积,利用面积比即可求出结论.【详解】解:∵一次函数3233y x =-+的图象与x 轴交于点A ,与y 轴交于点B , 令0y =,则6x =,∴()6,0A -,令0x =,则23y = ∴(0,23B ,∴6OA =,3OB =在Rt AOB 中,由勾股定理得:2243AB OA OB =+=, ∴23BC OC AC ===,∴BC OC OB ==, ∴OBC 是等边三角形,∴60OBA ∠=︒,∴120ACO ∠=︒,∵OC 是AB 边上的中线,∴OBC OAC S S =, ∴()2120=234360ACO S S ππ==阴影扇形, ()22312C S ππ==, ∴针尖落在阴影部分的概率41123P ππ==. 故答案为:13. 【点睛】 此题考查了几何概率,掌握几何概率的计算方法及求出阴影部分的面积是解题的关键. 14.8【分析】如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小利用勾股定理以及垂径定理求解即可【详解】解:如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小在Rt △OA解析:85【分析】如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.利用勾股定理以及垂径定理求解即可.【详解】解:如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.在Rt △OAQ ′中,AQ ′22OQ OA '-22128-=5cm ),∵OA ⊥P ′Q ′,∴AQ ′=AP ′,∴P ′Q ′=2AQ ′=5cm ),故答案为:5【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.15.16【分析】由于圆心C 的坐标为()点P 的坐标为利用勾股定理求出OC的长这样把理解为点P 到原点的距离的平方利用图形可以得到当点P 运动到线段OC 上时点P 离原点最近即最小然后求出此时的PC 长即可解答【详解 解析:16【分析】由于圆心C 的坐标为(3、4),点P 的坐标为(),m n 利用勾股定理求出OC 的长, 222OP m n =+,这样把22m n +理解为点P 到原点的距离的平方,利用图形可以得到当点P 运动到线段OC 上时点P 离原点最近,即 22m n +最小,然后求出此时的PC 长即可解答【详解】连接OC 交圆O 于点P '圆心C 的坐标为(3、4),点P 的坐标为(),m n22345OC ∴=+=,222OP m n =+∴22m n +是点P 到原点的距离的平方∴当点P 运动到线段OC 上时,即P '处,点P 离原点最近,即 22m n +最小此时514OP OC PC =-=-=∴2216m n +=故答案为:16.【点睛】本题考查了点与圆的位置关系,以及勾股定理和坐标与图形的关系,熟练掌握点与圆的位置关系是解题关键.16.【分析】先求出正多边形边数为6再根据正六边形性质即可求解【详解】解:设正多边形的边数为n 由题意得解得n=6∴正多边形为正六边形∵边长为4的正六边形可以分成六个边长为4的正三角形∴该正多边形的半径等于 解析:4【分析】先求出正多边形边数为6,再根据正六边形性质即可求解.【详解】解:设正多边形的边数为n ,由题意得()21803602n -︒=︒⨯,解得 n=6∴正多边形为正六边形,∵边长为4的正六边形可以分成六个边长为4的正三角形,∴该正多边形的半径等于4.故答案为:4【点睛】本题考查了正多边形的相关概念,和正六边形的性质,熟知相关概念是解题关键.17.3【分析】根据弧长公式求出扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长再利用圆周长的公式求解即可【详解】扇形的半径为9圆心角为120°扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆解析:3【分析】根据弧长公式求出扇形的弧长,圆锥侧面展开扇形的弧长等于圆锥底面圆的周长,再利用圆周长的公式求解即可【详解】扇形的半径为9,圆心角为120°∴扇形的弧长12096 180180n rlπππ⨯===圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆锥底面圆的半径为r26rππ∴=3r∴=故答案为:3.【点睛】本题考查了圆锥侧面展开图与底面圆之间的关系,弧长的计算,解题关键是熟知圆锥侧面展开扇形的弧长等于圆锥底面圆的周长.18.55°【分析】由直径所对的圆周角为直角得∠AED=90°由切线的性质得∠ADC=90°然后由同角的余角相等得∠C=∠ADE=55°【详解】解:∵AD为的直径∴∠AED=90°∴∠ADE+∠DAE=9解析:55°【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质得∠ADC=90°,然后由同角的余角相等得∠C=∠ADE=55°.【详解】解:∵AD为O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°,∵O与BC相切,∴∠ADC=90°,∴∠DAE+∠C=90°,∴∠C=∠ADE=55°.故答案为55°.【点睛】本题考查了切线的性质,圆的相关概念及性质,互余关系等知识点.掌握圆的相关性质是解题的关键.19.4【分析】当OD 与直线y=-x+6垂直时连接AOAD 此时OD 最小AD 也最小根据等腰直角三角形的性质得到OD 根据勾股定理即可得到结论【详解】解:如图∵DA 为切线∴OA ⊥DAOA=∴当OD 最小时AD 的值解析:4【分析】当OD 与直线y=-x+6垂直时,连接AO ,AD ,此时OD 最小,AD 也最小,根据等腰直角三角形的性质得到OD ,根据勾股定理即可得到结论.【详解】解:如图∵DA 为切线,∴OA ⊥DA ,2∴当OD 最小时,AD 的值最小.∴当OD 与直线y=−x+6垂直时,AD 的值最小,如图,设y=−x+6交x ,y 轴于B ,C ,B(6,0),C(0,6),∴OB=OC=6.∵∠BOC= 90°,∴△OBC 为等腰直角三角形,∴22OB OC +2 ,∴OD=122 即OD 的最小值为2在Rt △OAD 中,AD 最小值22OD OA -()()22322164-==故答案为:4【点睛】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.20.【分析】根据勾股定理先求出圆锥的底面圆的半径然后根据圆锥的展开图为扇形其弧长等于圆锥底面圆的周长利用圆的周长公式即可计算【详解】设圆锥底面圆的半径为:由勾股定理得:圆锥底面圆的周长为:圆锥的展开图为 解析:12π【分析】根据勾股定理先求出圆锥的底面圆的半径,然后根据圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,利用圆的周长公式即可计算.【详解】设圆锥底面圆的半径为:r ,由勾股定理得:6r ==,∴圆锥底面圆的周长为:22612r πππ=⨯⨯=,圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,∴该圆锥展开图的弧长为:12π,故答案为:12π.【点睛】本题考查了圆锥的计算,要掌握圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,利用勾股定理求出圆锥底面圆的半径是解题关键.三、解答题21.(1)见详解;(2)AD=4【分析】(1)由题意易得AEC ACD ∠=∠,然后可得△ACD ∽△AEC ,进而根据相似三角形的性质可求证;(2)由(1)得△ACD ∽△AEC ,则有2AC AD AE =⋅,进而可得△ABC 是等腰直角三角形,BC 为⊙O 的直径,然后可得AC =AD=x ,则由DE=2可得AE=2+x ,最后问题可求解.【详解】(1)证明:∵AB=AC ,∴AB AC =,∴AEC ACD ∠=∠,∵∠EAC=∠EAC ,∴△ACD ∽△AEC ,∴∠ADC=∠ACE ;(2)解:由题意可得如图所示:由(1)得△ACD ∽△AEC , ∴AC AD AE AC=,即2AC AD AE =⋅, ∵AB 的度数为90°,∴45ACB ∠=︒,∵AB=AC ,∴45ACB ABC ∠=∠=︒,∴90BAC ∠=︒,∴△ABC 是等腰直角三角形,BC 为⊙O 的直径,∵⊙O 的半径为3 ∴43BC = ∴26AC =设AD=x ,则由DE=2可得AE=2+x ,∴()224x x +=,解得:124,6x x ==-,∴AD=4.【点睛】本题主要考查圆的基本性质及相似三角形的性质与判定,熟练掌握圆的基本性质及相似三角形的性质与判定是解题的关键.22.(1)作图见解析;(2)见解析.【分析】(1)先作AC 的中垂线,找到AC 的中点O ,然后以AC 为直径作圆,与AB 的交点即为所求;(2)由题意可知DE 为Rt BEC △斜边BC 上的中线,从而得到CD=DE ,即=∠∠ECD DEC ,由OC=OE 得到OEC OCE ∠=∠,再由90ACB ∠=︒即可得到OE ⊥DE ,即可得证.【详解】(1)作图如图所示.(2)证明:如上图,连结OE ,CE , AC 为直径,90AEC ∴∠=︒, D 为BC 边中点,DE ∴为Rt BEC △斜边BC 上的中线,12DE DC DB BC ∴===, ECD DEC ∴∠=∠,OC OE =,OEC OCE ∴∠=∠,90OED OEC CED OCE DCE ACB ∴∠=∠+∠=∠+∠=∠=︒OD DE ∴⊥,DE ∴为O 的切线.【点睛】本题考查了尺规作图以及切线的判定,正确找到垂直条件是判断切线的关键. 23.(1)见解析;(2)14【分析】(1)连接OA ,根据圆周角定理、等腰三角形的性质和已知求出∠DAO=∠BAE ,∠DAB=90°,求出OAE=90,根据切线的判定得出即可;(2)根据垂径定理求出BF ,根据勾股定理求出AF ,再根据勾股定理求出OB 即可.【详解】(1)连接OA ,交BC 于点F .∴OA OD =.∴D DAO ∠=∠.∵D C ∠=∠,∴C DAO ∠=∠.∵BAE C ∠=∠,∴BAE DAO ∠=∠.∵BD 是O 的直径,∴90BAD ∠=︒,即90DAO BAO ∠+∠=︒,∴90BAE BAO ∠+∠=︒,即90OAE ∠=︒,∴AE OA ⊥.又∵OA 为O 的半径, ∴AE 与O 相切于点A .(2)∵//AE BC ,AE OA ⊥,∴OA BC ⊥,∴AB AC =,12FB BC =,AB AC =. ∵27BC =22AC = ∴7BF =22AB =∴在Rt ABF 中,()()22222271AF AB BF =-=-=, ∴在Rt OFB △中,()222OB BF OB AF =+-,∴4OB =,∴8BD =,∴在Rt △ABD 中,2264856214AD BD AB =--= 【点睛】本题考查了三角形的外接圆与外心,切线的判定,勾股定理,等腰三角形的性质,平行线的性质,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键. 24.(1)见解析;(2)23π 【分析】(1)根据旋转的性质,作出与点A 、B 、C 相对应的点A 1、B 1、C 1依次连接即可 (2)结合题意直接用弧长公式求解即可【详解】(1)画图(2)点B 旋转到点B 1所经过的路径长为:60221801803n r l πππ⨯⨯=== 【点睛】 本题考查了作图——=旋转变换,等边三角形的判定与性质,弧长公式,菱形的性质,以及点运动的轨迹,综合运用以上知识是解题关键.25.(1)证明见解析;(2)152 【分析】(1)连接OD ,根据切线的性质和直角三角形斜边的中线以及等腰三角形的性质得出,EDC ECD ∠=∠,ODC OCD ∠=∠,然后利用等量代换即可得出DE OD ⊥,从而证明结论;(2)首先根据勾股定理求出BC 的长度,然后证明BCD BAC ∽△△,最后利用CD BD AC BC=求解即可. 【详解】(1)证明:连接OD ,如图,∵BC 是O 的直径,∴90BDC ∠=︒,∴90ADC ∠=︒,∵E 为AC 的中点,∴12DE EC AC ==,∴EDC ECD ∠=∠,∵OD OC = ,∴ODC OCD ∠=∠,∵AC 切O 于点C ,∴AC OC ⊥,∴90EDC ODC ECD OCD ∠+∠=∠+∠=︒,∴DE OD ⊥,∴DE 是O 的切线;(2)解:在Rt BCD 中,∵8BD =,6CD =,∴10BC ==∵90BDC BCA ∠=∠=︒,B B ∠=∠,∴BCD BAC ∽△△, ∴CD BD AC BC=, 即6810AC =, ∴152AC =. 【点睛】 本题主要考查圆的综合问题,掌握切线的判定及性质,相似三角形的判定及性质是解题的关键.26.(1)见详解;(2)134π,图形见详解 【分析】(1)分别画出OAB ∆各个顶点的对应点,再顺次连接起来,即可;(2)分别画出OAB ∆各个顶点绕点O 逆时针旋转90︒后的对应点,再顺次连接起来,最后利用扇形的面积公式,即可求解.【详解】(1)111O A B ∆如图所示,点1B 的坐标为(-2,-2),(2)22OA B ∆如图所示,∵,∴线段OA 所扫过的面积=290360π⨯=134π,【点睛】本题主要考查平移和旋转变换以及扇形的面积公式,掌握扇形的面积公式,是解题的关键.。
2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 若一个扇形的圆心角为,半径为,则该扇形的面积为( ) A.B.C.D.2. 若圆锥的侧面展开图的弧长为,则此圆锥底面的半径为 .A.B.C.D.3. 扇形的半径为,圆心角为,此扇形的弧长是 A.B.C.D.4. 如图,将半径为,圆心角为的扇形绕点逆时针旋转,点,的对应点分别为点,,则阴影部分的面积为( )90∘63π6π9π24πcm ()cm 66π1212π3cm 120∘()2cmπcm2πcm 6πcm290∘BAC A 60∘B C D EA.B.C.D.5. 一个几何体的三视图如图所示,该几何体的侧面积为( )A.B.C.D.6. 如图,有一圆心角为,半径长为的扇形,若将、重合后围成一圆锥侧面,那么圆锥的高是( )A.B.C.D.7. 如图,在四边形中,的半径为,则图中阴影部分的面积是( )+3–√π3−3–√π3π3π−3–√2πcm 24πcm 28πcm 216πcm 2120∘6cm OA OB 4cm2–√cm 35−−√2cm6–√2cm3–√ABCD ∠B =,⊙C 60∘3A.B.C.D.8. 一个圆锥的底面半径,高,则这个圆锥的侧面积是( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 在平面直角坐标系中,已知点的坐标为 ,一次函数 与轴交于点,为一次函数上一点(不与点 重合),且 的面积为,则点的坐标为________.10. 如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为,弧长是,那么围成的圆锥的高度是________.11. 已知扇形的弧长为,圆心角为,则它的半径为________.12. 如图,点是面积为的等边的两条中线的交点,以为一边,构造等边(点,,按逆时针方向排列),称为第一次构造;点是的两条中线的交点,再以为一边,构造等边(点,,按逆时针方向排列),称为第二次构造;以此类推,当第次构造出的等边的边与等边的边第一次重合时,构造停止.则的面积是________,构造出的最后一个三角形的面积是________.π2π3π6πr =10h =201003–√π2003–√π1005–√π2005–√πA (−5,0)y =−x−332xB P B △ABP 6P 5cm 6πcm cm 2π60∘B 11△OBA OB 1△OB 1A 1O B 1A 1B 2△OB 1A 1OB 2△OB 2A 2O B 2A 2n △OB n A n OA n △OBA OB △OB 1A 1三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,是的直径,,为上的一点,,延长交的延长线于点.求证:为的切线;若,,,求图中阴影部分的面积.(结果保留) 14. 解下列方程:;.15. 如图, 三个顶点的坐标分别为 .请画出 关于轴对称的 ,并写出点 的坐标;画出 绕原点按顺时针方向旋转 后的 ,并求出点旋转到点 所经过的路线长(结果保留).16. 在正方形中,,点分别为的中点,分别与相交于点与相交于点,求的长.AB ⊙O AC ⊥AB E ⊙O AC=EC CE AB D (1)CE ⊙O (2)OF ⊥AE AE =43–√∠OAF=30∘π(1)−2x−2=x 20(2)(x−1)(x−3)=8△ABC A(2,4),B(1,1),C(4,3)(1)△ABC x △A 1B 1C 1A 1(2)△ABC O 90∘△A 2B 2C 2C C 2πABCD AB =2E,F,H AB,BC,AD AF DE,BD M,N,FH ED O AM,MN参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】扇形面积的计算【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】圆锥的计算弧长的计算【解析】利用扇形的弧长等于圆锥的底面周长列出等式求得圆锥的底面半径即可.【解答】解:设圆锥的底面半径为,∵圆锥的侧面展开图的弧长为,∴,解得:,故选.3.r 24πcm 2πr =24πr =12C【答案】C【考点】弧长的计算【解析】此题暂无解析【解答】解:∵扇形的半径为,圆心角为,∴此扇形的弧长是.故选.4.【答案】A【考点】扇形面积的计算旋转的性质【解析】本题考察了扇形面积的计算.【解答】解:如图,连接,过作于,由旋转得,,∴是等边三角形,∴,则,∴3cm 120∘=2π(cm)120π×3180C BD B BN ⊥AD N ∠BAD =60∘AB =AD =2△ABD ∠ABD =60∘∠ABN =,∴AN =AD =1,∴BN =30∘123–√=−=−S 阴影S 扇形ADE S 弓形AD S 扇形ABC S 弓形AD.故选.5.【答案】B【考点】圆锥的计算由三视图判断几何体【解析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,进而得出圆锥的高以及母线长和底面圆的半径,再利用圆锥侧面积公式求出即可.【解答】依题意知母线=,底面半径==,则由圆锥的侧面积公式得===.6.【答案】A【考点】弧长的计算勾股定理【解析】本题已知扇形的圆心角及半径就是已知圆锥的底面周长,能求出底面半径,底面半径,圆锥的高,母线长即扇形半径,构成直角三角形,课以利用勾股定理解决.【解答】由圆心角为、半径长为,可知扇形的弧长为,即圆锥的底面圆周长为,则底面圆半径为,已知=,=−(−×2×)90π×436060π×4360123–√=π−(π−)=+233–√π33–√A l 4cm r 2÷21S πrl π×1×44πcm 2120∘6cm =4πcm 2π⋅634πcm 2cm OA 6cm7.【答案】C【考点】扇形面积的计算【解析】【解答】解:∵在▱中,,的半径为,∴,∴图中阴影部分的面积是:.故选.8.【答案】C【考点】圆锥的计算【解析】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.【解答】解:这个圆锥的母线长为:,则这个圆锥的侧面积为:.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】或ABCD ∠B =60∘⊙C 3∠C =120∘=3π120×π×32360C =10+102202−−−−−−−−√5–√×2π×10×10=125–√1005–√πC (−,4)143(,−4)23一次函数图象上点的坐标特点三角形的面积【解析】此题暂无解析【解答】解:∵一次函数 与轴交于点,∴,∴.∴.解得.当时,代入直线方程解得,即;当时,代入直线方程解得,即.故答案为:或.10.【答案】【考点】圆锥的计算【解析】已知弧长即已知围成的圆锥的底面半径的长是,这样就求出底面圆的半径.扇形的半径为就是圆锥的母线长是.就可以根据勾股定理求出圆锥的高.【解答】解:设底面圆的半径是,则,∴,∴圆锥的高.故答案为:.11.【答案】【考点】y =−x−332x B B(−2,0)AB =3=×3×||=6S △ABP 12y P =±4y P =4y P =−x P 143P(−,4)143=−4y P =x P 23P(,−4)23(−,4)143(,−4)2346πcm 5cm 5cm r 2πr =6πr =3cm ==4cm −5232−−−−−−√46【解析】根据弧长公式直接解答即可.【解答】解:设半径为,根据弧长公式,得,解得:.故答案为:.12.【答案】,【考点】三角形的面积规律型:图形的变化类锐角三角函数的定义相似三角形的性质【解析】【解答】解:点是面积为的等边的两条中线的交点,∴点是的重心,也是内心,∴,是等边三角形,∴.每构造一次三角形,边与边的夹角增加,还需要,即一共次构造后等边的边与等边的边第一次重合,构造出的最后一个三角形为等边,如图,过点作于点,r ×π×r =2π60180r =66131310∵B 11△OBA B 1△OBA ∠BO =B 130∘△OB 1A 1∠OB =+=A 160∘30∘90∘∵OB i OB 30∘∴(360−90)÷30=91+9=10△OB n A n OA n △OBA OB ∴△OB 10A 10B 1M ⊥OB B 1M, ,即.,即,同理,可得,即……,,即构造出的最后一个三角形的面积是.故答案为:;.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】证明:连接,∵,,∴,,∵,∴,∴,∴,即,∴,∴为的切线;解:∵,,∴.cos ∠OM =cos ==B 130∘OM OB 13–√2===OB OB 12OM OB 123–√23–√=OB 1OB 13–√∴==S △OB 1A 1S △OBA ()OB 1OB 213==S △OB 1A 113S △OBA 13==S △OB 2A 2S △OB 1A 1()OB 2OB 1213===S △OB 2A 213S △OB 1A 1()132132=S △OB 10A 1013S △OB 9A 9=13101310131310(1)OE AC=EC OA=OE ∠CAE=∠CEA ∠FAO=∠FEO AC ⊥AB ∠CAD=90∘∠CAE+∠EAO =90∘∠CEA+∠AEO =90∘∠CEO=90∘OE ⊥CD CE ⊙O (2)OF ⊥AE AE =43–√AF =23–√∵,设,∴,∴,解得:,∴,∴..∵,,∴,∴.【考点】扇形面积的计算切线的判定垂径定理勾股定理【解析】(1)连接,根据等腰三角形的性质得到=,=,根据余角的性质得到=,由切线的判定定理即可得到结论;(2)根据直角三角形的性质得到=;求得即;根据三角形和扇形的面积公式即可得到结论.【解答】证明:连接,∵,,∴,,∵,∴,∴,∴,即,∴,∴为的切线;解:∵,,∴.∵,设,∴,∠OAF=30∘OF =x OA=2OF =2x (2+=43–√)2x 2x 2x =2OA =4=4×2×=4S △EAO 3–√123–√∠AOE=120∘OA=4==S 扇形EAO 120×π×1636016π3=−4S 阴影16π33–√OE ∠CAE ∠CEA ∠FAO ∠FEO ∠CEA 90∘AO 2AF =3–√AE =23–√(1)OE AC=EC OA=OE ∠CAE=∠CEA ∠FAO=∠FEO AC ⊥AB ∠CAD=90∘∠CAE+∠EAO =90∘∠CEA+∠AEO =90∘∠CEO=90∘OE ⊥CD CE ⊙O (2)OF ⊥AE AE =43–√AF =23–√∠OAF=30∘OF =x OA=2OF =2x (2+=4–√)222∴,解得:,∴,∴.∵,,∴,∴.14.【答案】解:,,,,,.原方程变形为:,,,.【考点】解一元二次方程-配方法解一元二次方程-因式分解法【解析】(1)利用配方法解方程;(2)利用因式分解法解出方程.【解答】解:,,,,,.原方程变形为:,,,.15.【答案】解:如图所示,即为所求,的坐标为;如图所示,即为所求,(2+=43–√)2x 2x 2x =2OA =4=4×2×=4S △EAO 3–√123–√∠AOE=120∘OA=4==S 扇形EAO 120×π×1636016π3=−4S 阴影16π33–√(1)−2x−2=x 20−2x+1=x 23(x−1=)23x−1=±3–√=+1x 13–√=−+1x 23–√(2)−4x−5=x 20(x−5)(x+1)=0=x 15=x 2−1(1)−2x−2=x 20−2x+1=x 23(x−1=)23x−1=±3–√=+1x 13–√=−+1x 23–√(2)−4x−5=x 20(x−5)(x+1)=0=x 15=x 2−1(1)△A 1B 1C 1A 1(2,−4)(2)△A 2B 2C 2由已知得,,∴.【考点】弧长的计算作图-旋转变换作图-轴对称变换【解析】此题暂无解析【解答】解:如图所示,即为所求,的坐标为;如图所示,即为所求,由已知得,,∴.16.【答案】解:在正方形中,点分别为,,的中点,.OC ==5+3242−−−−−−√==πl CC 290×π×518052(1)△A 1B 1C 1A 1(2,−4)(2)△A 2B 2C 2OC ==5+3242−−−−−−√==πl CC 290×π×518052ABCD ∵E,F,H AB BC AD ∴FH =AB =2,BF =AH =1,FC =HD =1AF ===−−−−−−−−−−√+22−−−−−−√.,...,...,,...【考点】相似三角形的性质相似三角形的判定勾股定理【解析】此题暂无解析【解答】解:在正方形中,点分别为,,的中点,..,.∴AF ===F +A H 2H 2−−−−−−−−−−√+2212−−−−−−√5–√∵OH//AE∴==HO AE DH AD 12∴OH =AE =1212∴OF =FH−OH =2−=1232∵AE//FO ∴△AME ∼△FMO ∴==AM FM AE OF 23∴AM =AF =2525–√5∵AD//BF ∴△AND ∼△FNB ∴==2AN FN AD BF ∴AN =2NF =AF =2325–√3∴MN =AN −AM =−=25–√325–√545–√15ABCD ∵E,F,H AB BC AD ∴FH =AB =2,BF =AH =1,FC =HD =1∴AF ===F +A H 2H 2−−−−−−−−−−√+2212−−−−−−√5–√∵OH//AE ∴==HO AE DH AD 12OH =AE =11.., ...,,...∴OH =AE =1212∴OF =FH−OH =2−=1232∵AE//FO ∴△AME ∼△FMO ∴==AM FM AE OF 23∴AM =AF =2525–√5∵AD//BF ∴△AND ∼△FNB ∴==2AN FN AD BF ∴AN =2NF =AF =2325–√3∴MN =AN −AM =−=25–√325–√545–√15。
一、选择题1.如图,AB 是半圆的直径,CD 为半圆的弦,且CD//AB ,∠ACD=26°,则∠B 等于( )A .26°B .36°C .64°D .74°2.将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .25C .35D .233.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .24.如图,矩形ABCD 中,10AB =,4=AD ,点P 是CD 上的动点,当90APB ∠=︒时,线段DP 的长应是( )A .2B .6C .2或6D .2或85.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D E 、,则CDE △面积的最小值为( )A .2B .2.5C .3D .346.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM 相交于点C ,D ,52AB =,作OE CD ⊥于E ,3OB OE =,则弦CD 的长是( )A .22B .23C .4D .267.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =; ③若BE 平分ABC ∠,则32FG =;④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③B .③④C .①②④D .①②③④8.如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的个数有( )①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PCB ∽△△;⑤CF CP ⋅为定值 A .2个 B .3个C .4个D .5个9.已知正六边形ABCDEF 内接于O ,若O 的直径为2,则该正六边形的周长是( ) A .12B .63C .6D .3310.如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则cos ∠ADC 的值为( )A .21313B .1313C .31313D .2311.如图,在扇形BOC 中,∠BOC =60°,点D 为弧BC 的中点,点E 为半径OB 上一动点,若OB =2,则阴影部分周长的最小值为( )A .2+6π B .323+3π C .322+6πD .2+3π 12.如图,AB 为⊙0的直径,点C 在⊙0上,且CO ⊥AB 于点O ,弦CD 与AB 相交于点E ,若∠BEC= 68°,则∠ABD 的度数为( )A .20°B .23°C .25°D .34°二、填空题13.如图,ABC 在中,125BIC ∠=︒,I 是内心,O 是外心,则BOC ∠=__________.14.如图,正方形ABCD 的边AB =2,P 是边AB 上一动点,过B 点作直线CP 的垂线,垂足为Q ,当点P 从点A 运动到点B 时,点Q 的运动路径长为_____.15.如图,把一只篮球放在高为16cm 的长方体纸盒中,发现篮球的一部分露出盒,其截图如图所示.若量得EF =24cm ,则该篮球的半径为_____cm .16.如图平面直角坐标系中,⊙O 的半径5AB 的长为4,过点O 做OC ⊥AB 于点C ,⊙O 内一点D 的坐标为(﹣4,3),当弦AB 绕点O 顺时针旋转时,点D 到AB 的距离的最小值是_____.17.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,8AB =,将Rt ABC △绕点C 顺时针旋转,使斜边A B ''过B 点,则线段CA 扫过的面积为______.18.如图,半径为2的O 中有弦AB ,以AB 为折痕对折,劣弧恰好经过圆心O ,则弦AB 的长度为__________.19.点E 在正方形ABCD 的内部,BCE 是以EC 为底边的等腰三角形,1AB =,则DE 的最小值为_________.20.如图,在△ABC 中,BC =9,AC =12,AB =15,D 为直线AB 上方一点,连接AD ,BD ,且∠ADB =90°,过D 作直线BC 的垂线,垂足为E ,则线段BE 的长度的最大值为_____.三、解答题21.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠P =44°.(1)如图①,若点C 为优弧AB 上一点,求∠ACB 的度数;(2)如图②,在(1)的条件下,若点D 为劣弧AC 上一点,求∠PAD +∠C 的度数. 22.如图,AB 是O 的弦,半径OE AB ⊥,交AB 于点,G P 为AB 延长线上一点,PC 与O 相切于点,C CE 与AB 交于点F .(1)求证:PC PF =;(2)连接,OB BC ,若3//,32,tan 4OB PC BC P ==,求FB 的长.23.如图,在ABC 中,90C ∠=︒,ABC ∠的平分线BE 交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,O 是BEF 的外接圆,BC 与O 交于点D .(1)求证:AC 是O 的切线;(2)过点E 作EH AB ⊥于点H ,求证:CD HF =.24.如图,ABC 中,D 为AB 边上一点,连接CD ,BD CD =.以AC 为直径作O ,过点O 作OE AC ⊥ 交BC 于点E ,连接DE ,BDE CDE ∠=∠.(1)求证:AB 为O 的切线;(2)若16AB =,8AC =,求BD 的长. 25.如图,已知BC 是O 的直径,AC 切O 于点C ,AB 交O 于点D ,E 为AC 的中点,连接CD ,DE .(1)求证:DE 是O 的切线;(2)若8BD =,6CD =,求AC 的长.26.(概念认识)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)如图1,已知在垂等四边形ABCD 中,对角线AC 与BD 交于点E ,若AB AD ⊥,4AB =cm ,4cos 5ABD ∠=,求AC 的长度,(数学理解)(2)在探究如何画“圆内接垂等四边形”的活动中,小李与同学讨论出了如下方法:如图2,在O 中,已知AB 是O 的弦,只需作OD OA ⊥,OC OB ,分别交O 于点D和点C ,即可得到垂等四边形ABCD ,请你写出证明过程. (问题解决) (3)如图3,已知A 是O 上一定点,B 为O 上一动点,以AB 为一边作出O 的内接垂等四边形(A 、B 不重合且A 、B 、O 三点不共线),对角线AC 与BD 交于点E ,O 的半径为2,当点E 到AD 3AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用平行线的性质,得∠ACD=∠CAB=26°,根据直径上的圆周角为直角,得∠ACB=90°,利用直角三角形的性质计算即可. 【详解】∵CD //AB ,∠ACD=26°,∴∠ACD=∠CAB=26°, ∵AB 是半圆的直径, ∴∠ACB=90°, ∴∠B=64°, 故选C . 【点睛】本题考查了平行线的性质,圆周角的原理,直角三角形的性质,熟练掌握性质,并灵活运用是解题的关键.2.A解析:A 【分析】算出白色区域的面积与整个图形的面积之比即为所求概率. 【详解】解:如图,过点A 作AG BF ⊥于点G∵ 六边形ABCDEF 为正六边形,∴BAF=120∠︒,=60FAG ∠︒ 设正六边形的边长为a ,则3232a a AG FG a ==⨯=,BF=2∴ 空白部分的面积为:2133333224ABF a a S S a ==⨯⨯⨯=△空白 正六边形的面积为:223336S a a =⨯=六 ∴飞镖落在白色区域的概率为:2233a 14=233S P S a ==空白六 故选:A【点睛】本题考查概率的求解,确定白色区域面积占整个图形面积的占比是解题的关键.3.B解析:B 【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可. 【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒, ∴AB 和BC 所对的圆心角都是60︒, ∵AD 是直径,∴CD 所对的圆心角也是60︒, ∴30CAD ∠=︒,在Rt ACD △中,3cos308432AC AD =⋅︒=⨯=. 故选:B . 【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法.4.D解析:D 【分析】以AB 的中点O 为圆心,AB 的一半5为半径作圆,交CD 于点P ,点P 即为所求;设PC=x ,则PD=10-x ,证△ADP ∽△PCB ,对应边成比例列方程,解之可得答案. 【详解】如图,以AB 的中点O 为圆心,AB 的一半5为半径作圆,交CD 于点P ,点P 即为所求;设PC= x ,则PD= 10- x , ∵四边形A BCD 是矩形, ∴∠D=∠C= 90° ∴∠DAP+∠APD= 90° ∵∠APB= 90°, ∴∠APD +∠BPC= 90° ∴∠DAP=∠CPB , ∴△ADP ∽△PCB ,∴AD DPPC CB = 即4104x x -=, 解得: x = 2或8, PD= 10-x= 2或8, 即PD = 2或8. 故选: D. 【点睛】本题主要考查圆周角定理和相似三角形的判定与性质及矩形的性质,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.5.A解析:A【分析】连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,先证明点C 的运动轨迹是以点(1,0)M 为圆心,1为半径的M ,设M 交MN 于点C ',解得直线DE 与坐标轴的交点,即可解得OD OE 、的长,再由勾股定理解得DE 的长,接着证明DNM DOE 解得MN 的长,最后当点C 与点C '重合时, 此时CDE △面积的最小值,据此解题.【详解】解:如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,,AC CB AM OM ==112MC OB ∴== C ∴的运动轨迹是以点(1,0)M 为圆心、半径为1的圆,设M 交MN 于点C ', 直线DE 的解析式为334y x =-, 令0x =,得3y =- (0,3)E ∴-令0y =,得4x =(4,0)D ∴3,4,OE OD ∴==3DM =22345DE ∴+=,MDN ODE MND DOE ∠=∠∠=∠DNM DOE ∴MN DM OE DE ∴= 335MN ∴= 95MN ∴= 94155C N '∴=-= 当点C 与点C '重合时,此时CDE △面积的最小值11452225DE C N '=⋅=⨯⨯= 故选:A .【点睛】本题考查圆的综合题,涉及一次函数与坐标轴的交点、勾股定理、相似三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 6.C解析:C【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,AB =∴BF=3,∠AFB=60°,∠FOE=30°,设EF=x ,则OF=2x ,, ∵OB =, ∴OB=3x ,∴BF=OB+OF=5x ,∴,∴ ∴,,∵OE CD ⊥,∴在直角三角形OCE 中,CE=2262-=-=2,OC OE根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.7.D解析:D【分析】先证明∆BAE≅ ∆CAD,再证明∆ABG≅ ∆ACG,得AF是∠BAC的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G到∆ABC的三边距离都相等,结合“等积法”即可判断③;先证明B,C,D,E在以点F为圆心的圆上,进而即可判断④.【详解】∵AB=AC,∠BAE=∠CAD,AE=AD,∴∆BAE≅ ∆CAD,∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC-∠ABE=∠ACB-∠ACD,即:∠GBC=∠GCB,∴BG=CG,∴∆ABG≅ ∆ACG,∴∠BAG=∠CAG,即AF是∠BAC的平分线,=,故①正确;∴BF CF⊥,∵BE AC∴∠CEB=90°,由①可知:BD=CE,∠ABC=∠ACB,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴AF=22AB BF -= 22534-=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.8.B解析:B【分析】①连接AC ,并延长AC ,与BD 的延长线交于点H ,若PD=PB ,得出P 为AM 的中点,与实际不符,即可判定正误;②先求出∠BOC ,再由弧长公式求得BC 的长度,进而判断正误;③由∠BOC=60°,得△OBC 为等边三角形,再根据三线合一性质得∠OBE ,再由角的和差关系得∠DBE ,便可判断正误;④证明∠CPB=∠CBF=30°,∠PCB=∠BCF ,可得△BCF ∽△PCB 相似;⑤由等边△OBC 得BC=OB=4,再由相似三角形得CF•CP=BC 2,便可判断正误.【详解】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1,∵M ,C 是半圆上的三等分点,∴∠BAH=30°,∵BD 与半圆O 相切于点B .∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP ,∠ACP=∠DCH ,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°-∠ABP ,若∠PDB=∠PBD ,则∠ABP+60°=90°-∠ABP ,∴∠ABP=15°,∴P 点为AM 的中点,这与P 为AM 上的一动点不完全吻合,∴∠PDB 不一定等于∠ABD ,∴PB 不一定等于PD ,故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC=13×180°=60°, ∵直径AB=8,∴OB=OC=4, ∴BC 的长度=41806043ππ⨯=, 故②正确;③∵∠BOC=60°,OB=OC ,∴∠ABC=60°,OB=OC=BC ,∵BE ⊥OC ,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M、C是AB的三等分点,∴∠BPC=30°,∵∠CBF=30°,∠PCB=∠BCF,∴△BCF∽△PCB故④正确;⑤∵∠CBF=∠CPB=30°,∠BCF=∠PCB,∴△BCF∽△PCB,∴CB CF,CP CB∴CF•CP=CB2,∵CB=OB=OC=1AB=4,2∴CF•CP=16,故⑤正确.故选:B.【点睛】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用.9.C解析:C【分析】如图,连接OA、OB,由正六边形ABCDEF内接于O可得∠AOB=60°,即可证明△AOB 是等边三角形,根据O直径可得OA的长,进而可得正六边形的周长.【详解】如图,连接OA、OB,∵O的直径为2,∴OA=1,∵正六边形ABCDEF内接于O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=1,∴该正六边形的周长是1×6=6,故选:C .【点睛】本题考查正多边形和圆,正确得出∠AOB=60°是解题关键.10.C解析:C【分析】根据圆周角定理得到ADC ABC ∠=∠,再根据余弦的定义计算即可;【详解】由图可知ADC ABC ∠=∠,在Rt △ABC 中,2AC =,3BC =, ∴223213AB +=∴cos ∠ADC 3313cos 1313BC ABC AB =∠===; 故答案选C .【点睛】本题主要考查了圆周角定理、余弦定理、勾股定理,准确计算是解题的关键. 11.D解析:D【分析】作点C 关于OB 对称点点A ,连接AD 与OB 的交点即为E ,此时CE+ED 最小,进而得到阴影部分的周长最小,再由勾股定理求出AD 的长,由弧长公式求出弧CD 的长.【详解】解:阴影部分的周长=CE+ED+弧CD 的长,由于C 和D 均为定点,E 为动点,故只要CE+ED 最小即可,作C 点关于OB 的对称点A ,连接DA ,此时即为阴影部分周长的最小值,如下图所示:∵A 、C 两点关于OB 对称,∴CE=AE ,∴CE+DE=AE+DE=AD ,又D 为弧BC 的中点,∠COB=60°,∴∠DOA=∠DOB+∠BOA=30°+60°=90°,在Rt △ODA 中,2222=+=DA OD OA ,弧CD 的长为302=1803ππ⨯⨯, ∴阴影部分周长的最小值为22+3π,故选:D .【点睛】 本题考查了轴对称图形求线段的最小值,弧长公式,勾股定理等,本题的关键是找出阴影部分周长最小值时点E 的位置进而求解.12.B解析:B【分析】连接OD ,可得∠ODC=∠OCD=22°,从而可求得∠AOD=46°,结合圆周角定理,即可求解.【详解】连接OD ,∵CO ⊥AB ,∠BEC= 68°,∴∠OCD=90°-68°=22°,∵CO=CD ,∴∠ODC=∠OCD=22°,∴∠COD=180°-22°-22°=136°,∴∠AOD=136°-90°=46°,∴∠ABD=12∠AOD=23°, 故选B .【点睛】本题主要考查圆周角定理以及等腰三角形的性质,掌握“同弧或等弧所对的圆周角等于圆心角的一半”,是解题的关键. 二、填空题13.140°【分析】根据三角形的内心得出根据三角形内角和定理求出进而可求得的度数根据圆周角定理即可求得∠BOC 【详解】解:在△ABC 中∠BIC=125°I 是内心∴∴∴∴∵O 是外心∴故答案为:140°【点解析:140°【分析】 根据三角形的内心得出11,22IBC ABC ICB ACB ∠=∠∠∠=,根据三角形内角和定理求出55IBC ICB ∠+∠=︒,进而可求得A ∠的度数,根据圆周角定理即可求得∠BOC .【详解】解:在△ABC 中,∠BIC =125°,I 是内心, ∴11,22IBC ABC ICB ACB ∠=∠∠∠=, ∴18055IBC ICB BIC ︒∠+∠=-∠=︒,∴222()110,ABC ACB IBC ICB IBC ICB ∠+∠=∠+∠=∠∠=︒+∴180()70A ABC ACB ∠=︒-∠+∠=︒,∵O 是外心,∴2140BOC A ∠=∠=︒,故答案为:140°.【点睛】本题考查了三角形的内切圆和三角形的外接圆,圆周角定理,三角形的内角和定理等知识点.正确识别图中相关角是解题关键.14.【分析】如图连接ACBD 交于点G 连接OG 首先说明点P 从点A 运动到点B 时点Q 的运动路径长为求出圆心角半径即可解决问题【详解】解:如图取BC 的中点O 连接ACBD 交于点G 连接OG ∵BQ ⊥CP ∴∠BQC=9 解析:2π 【分析】如图,连接AC 、BD 交于点G ,连接OG .首先说明点P 从点A 运动到点B 时,点Q 的运动路径长为BG ,求出圆心角,半径即可解决问题.【详解】解:如图,取BC 的中点O ,连接AC 、BD 交于点G ,连接OG .∵BQ ⊥CP ,∴∠BQC=90°,∴点Q 的运动轨迹在以边长BC 为直径的⊙O 上,当点P 从点A 运动到点B 时,点G 的运动路径长为BG ,∵四边形ABCD 是正方形,∴AB=BC=CD=AD=2,∵∠ABC=90°,∴∠BCG=45°,∴∠BOG=90°,∴BG 的长9011820ππ⨯⨯==. 故答案为:2π. 【点睛】本题考查了正方形的性质、弧长公式等知识,解题的关键是正确寻找点Q 的运动轨迹,属于中考常考题型. 15.5【分析】取EF 的中点M 作MN ⊥AD 于点M 取MN 上的球心O 连接OF 设OF=x 则OM=16-xMF=12在Rt △MOF 中利用勾股定理求得OF 的长即可【详解】取EF 的中点M 作MN ⊥AD 于点M 取MN 上的球解析:5【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=16-x ,MF=12,在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16cm,设OF=x cm,则ON=OF,∴OM=MN-ON=16-x,MF=12cm,在Rt△MOF中,OM2+MF2=OF2,即:(16-x)2+122=x2,解得:x=12.5 (cm),故答案为:12.5.【点睛】本题主考查垂径定理、矩形的性质及勾股定理的应用,正确作出辅助线构造直角三角形是解题的关键.16.6【分析】连接OB如图利用垂径定理得到AC=BC=2则利用勾股定理可计算出OC=11利用垂线段最短当OC经过点D时点D到AB的距离的最小然后计算出OD的长从而得到点D到AB的距离的最小值【详解】解:解析:6【分析】连接OB,如图,利用垂径定理得到AC=BC=2,则利用勾股定理可计算出OC=11,利用垂线段最短,当OC经过点D时,点D到AB的距离的最小,然后计算出OD的长,从而得到点D到AB的距离的最小值.【详解】解:连接OB,如图,∵OC⊥AB,∴AC=BC=1AB=2,2在Rt △OBC 中,11==,当OC 经过点D 时,点D 到AB 的距离最小,∵,∴点D 到AB 的距离的最小值为11-5=6.故答案为6.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.17.【分析】线段CA 形成的是以C 为圆心以C 为半径的扇形求出其圆心角按照扇形面积公式计算即可【详解】∵∴BC=4CA==;根据旋转的性质得∴△是等边三角形∴∴∴∴=8π故答案为:8π【点睛】本题考查了旋转解析:8π.【分析】线段CA 形成的是以C 为圆心,以C 为半径的扇形,求出其圆心角,按照扇形面积公式计算即可.【详解】∵90ACB ∠=︒,30A ∠=︒,8AB =,∴BC=4,根据旋转的性质,得60B '∠=︒,CB CB '=,∴△CBB '是等边三角形,∴60B CB '∠=︒,∴30BCA '∠=︒,∴60A CA '∠=︒,∴22n r 60=360360S ππ⨯⨯=扇形=8π. 故答案为:8π.【点睛】本题考查了旋转问题,扇形面积问题,勾股定理,熟练掌握旋转的性质,灵活运用公式是解题的关键.18.【分析】如果过O 作OC ⊥AB 于D 交折叠前的于C 根据折叠后劣弧恰好经过圆心O 根据垂径定理及勾股定理即可求出AD 的长进而求出AB 的长【详解】解:如图过O 作OC ⊥AB 于D 交折叠前的于C ∵的半径为又∵折叠后解析:【分析】如果过O 作OC ⊥AB 于D ,交折叠前的AB 于C ,根据折叠后劣弧恰好经过圆心O ,根据垂径定理及勾股定理即可求出AD 的长,进而求出AB 的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB于C,∵O的半径为2,又∵折叠后劣弧恰好经过圆心O,∴OA=OC=2,∴OD=CD=1,在Rt△OAD中,∵OA=2,OD=1,∴2222OA OD-=-213AB=2AD=3故答案为:3【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.19.-1【分析】根据△BCE是以CE为底边的等腰三角形推出点E在以B为圆心AB长为半径的圆弧AC上根据圆的基本性质得到DE最小时点E的位置从而利用BD-BE计算出结果【详解】解:如图正方形ABCD中∵△2-1【分析】根据△BCE是以CE为底边的等腰三角形推出点E在以B为圆心,AB长为半径的圆弧AC 上,根据圆的基本性质得到DE最小时点E的位置,从而利用BD-BE计算出结果.【详解】解:如图,正方形ABCD中,∵△BCE是以CE为底边的等腰三角形,∴BE=BC,∴点E在以B为圆心,AB长为半径的圆弧AC上,连接BD,与弧AC交于点E,则此时DE最小,∵AB=1,∴BE=1,22+2,11∴2-1,故答案为:2-1.【点睛】本题考查了圆的基本性质,正方形的性质,等腰三角形的性质,解题的关键是根据题意得到点E 在弧AC 上.20.【分析】依题意得所以是直角三角形又因为∠ADB =90°所以点ADCB 在以AB 为直径的圆上依题意可知当时BE 最大据此求解即可【详解】解:在△ABC 中BC =9AC =12AB =15∵∠ADB =90°共圆取解析:【分析】依题意得222BC AC AB +=,所以ABC 是直角三角形,又因为∠ADB =90°,所以点A 、D 、C 、B 在以AB 为直径的圆上,依题意可知当//OD BC 时,BE 最大,据此求解即可.【详解】解:在△ABC 中,BC =9,AC =12,AB =15,22281,144,225BC AC AB ===,222BC AC AB ∴+=,90C ∴∠=︒,∵∠ADB =90°,A C DB ∴、、、共圆取AB 的中点O 连接DO ,过点O 作OF EB ⊥于点F如图,当//OD BC 时, BE 最大,此时OD AC ⊥,OD DE ⊥ ,119//,,9222OF AC OF OD BF BC ∴⊥==⨯=,∴四边形ODEF 是矩形, 111515222EF OD AB ∴===⨯=, 9151222BE BF EF ∴=+=+=, 故答案为:12.【点睛】本题考查了四点共圆,平行线的判定,垂径定理,矩形的判定和性质等知识,判定四点共圆是解题的关键.三、解答题21.(1)68°;(2)248°【分析】(1)根据切线的性质得到∠OAP =90°,∠OBP =90°,根据圆周角定理即可得到结论; (2)连接AB ,根据切线长的性质得到PA =PB ,得到∠PAB =∠PBA =68°,再根据圆内接四边形定理可求.【详解】解:(1)∵PA 、PB 是⊙O 的切线,∴∠OAP =90°,∠OBP =90°,∴∠AOB =360°﹣∠OAP ﹣∠OBP ﹣∠P =360°﹣90°﹣90°﹣44°=136°,∴∠ACB =12∠AOB =68°; (2)连接AB ,∵PA 、PB 是⊙O 的切线,∴PA =PB ,∵∠P =44°, ∴∠PAB =∠PBA =12(180°﹣44°)=68°, ∵∠DAB +∠C =180°,∴∠PAD +∠C =∠PAB +∠DAB +∠C =180°+68°=248°.【点睛】本题考查了切线长定理、切线的性质和圆周角定理,解题关键是熟练运用圆的有关知识,恰当的连接辅助线,建立角与角之间的联系.22.(1)见解析;(2)2FB =【分析】(1)由切线的性质可得∠OCP=90°,由等腰三角形的性质可得∠E=∠OCE ,可得∠CFP=∠FCP ,可得PC=PF ;(2)过点B 作BH ⊥PC ,垂足为H ,由题意可证四边形OCHB 是正方形,由勾股定理可得BH=CH=3,可求PH ,BP 的长,即可求BF 的长.【详解】解:(1)连接OC .OE AB ⊥,90EGF ∴∠=︒. PC 与C 相切于点C ,90OCP ∠=︒,90E EFG OCF PCF ∴∠+∠=∠+∠=︒.OE OC =,E OCF ∴∠=∠,EFG PCF ∴∠=∠.EFG PFC ∠=∠,PCF PFC ∴∠=∠,PC PF ∴=.(2)过点B 作BH PC ⊥于点H .//,90OB PC OCP ∠=︒,90BOC ∴∠=︒.OB OC =,∴四边形OCHB 是正方形,∴BH=CH ,∵BH 2+CH 2=BC 2,BC=32∴BH=CH=3,在Rt BHP 中,4tan BH PH P==,∴PF=PC=3+4=7,5BP =,752FB ∴=-=.【点睛】本题考查了切线的性质,勾股定理,等腰三角形的性质,正方形的判定与性质,平行线的性质,以及锐角三角函数等知识,需要学生灵活运用所学知识.23.(1)见解析;(2)见解析【分析】(1)连接OE ,根据角平分线证OE BC ∥,得90AEO C ∠=∠=︒,可证; (2)连接DE ,证CDE HFE △≌△即可.【详解】证明:(1)BE EF ⊥,90BEF ∴∠=︒,BF ∴是O 的直径.如图,连接OE , BE 平分ABC ∠,CBE OBE ∴∠=∠.OB OE =,OBE OEB ∴∠=∠.OEB CBE ∴∠=∠.OE BC ∴.90AEO C ∴∠=∠=︒,∴OE ⊥AC ,AC ∴是O 的切线.(2)如图,连接DECBE OBE ∠=∠,EC BC ⊥于C ,EH AB ⊥于H ,EC EH ∴=.180CDE BDE ∠∠+=︒,180HFE BDE ∠+∠=︒,CDE HFE ∴∠=∠.在CDE △与HFE 中,90CDE HFE C FHE EC EH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩CDE HFE ∴△≌△,CD HF ∴=.【点睛】本题考查了切线的判定、角平分线的性质、全等三角形的判定与性质,解题关键是恰当的作辅助线,准确的应用切线的判定定理和全等三角形的判定定理进行证明.24.(1)见解析;(2)10【分析】(1)根据等腰三角形的性质可证点E为BC的中点,在结合三角形中位线定理,证明OE AB,即可得到结论//△中利用勾股定理,列出关于x的方程即可求解(2)设BD=CD=x,在Rt ACD【详解】=(1)BD CD∴是等腰三角形BDC∠=∠.又BDE CDE∴=,BE EC=AO OC∴为ABC的中位线OE//∴,OE AB∴∠=∠BAC EOC⊥,OE ACBAC EOC∴∠=∠=︒90∴⊥,AB ACAC为O的直径,∴是O的切线AB=,(2)设BD x∴==,CD BD xAB=,16∴=-16AD xAC=在Rt ADC中,222+=,8AD AC DC()222∴-+=,x x168x=,解得:10∴=10BD【点睛】本题考查了圆切线的判定,等腰三角形的性质,以及勾股定理,解题关键是熟练掌握圆切线的判定定理,和等腰三角形性质的应用.25.(1)证明见解析;(2)152 【分析】(1)连接OD ,根据切线的性质和直角三角形斜边的中线以及等腰三角形的性质得出,EDC ECD ∠=∠,ODC OCD ∠=∠,然后利用等量代换即可得出DE OD ⊥,从而证明结论;(2)首先根据勾股定理求出BC 的长度,然后证明BCD BAC ∽△△,最后利用CD BD AC BC=求解即可. 【详解】(1)证明:连接OD ,如图,∵BC 是O 的直径,∴90BDC ∠=︒,∴90ADC ∠=︒,∵E 为AC 的中点,∴12DE EC AC ==, ∴EDC ECD ∠=∠, ∵OD OC = , ∴ODC OCD ∠=∠,∵AC 切O 于点C ,∴AC OC ⊥,∴90EDC ODC ECD OCD ∠+∠=∠+∠=︒,∴DE OD ⊥,∴DE 是O 的切线;(2)解:在Rt BCD 中,∵8BD =,6CD =,∴2210BC BD CD =+=∵90BDC BCA ∠=∠=︒,B B ∠=∠,∴BCD BAC ∽△△,∴CD BD AC BC=, 即6810AC =, ∴152AC =. 【点睛】 本题主要考查圆的综合问题,掌握切线的判定及性质,相似三角形的判定及性质是解题的关键.26.(1)5;(2)见解析;(3)【分析】(1)根据垂等四边形的定义列式求解即可;(2)连结AC ,DB 并相交于点E ,证明AC BD ⊥,得到AOC △≌BOD ,证明AC BD =,即可得到结果;(3)方法一:连接DO ,AO ,根据已知条件求出AD ,DE ,再根据相似三角形的性质列式计算即可;方法二:通过已知条件证明Rt AOD 和Rt ABE △是等腰直角三角形,在根据条件计算即可;【详解】(1)由垂等四边形的定义得AC BD =,又∵AB AD ⊥, ∴5cos AB DB ABD==∠, ∴5AC BD ==.(2)如图1,连结AC ,DB 并相交于点E ,∵OC OB ,OD OA ⊥, ∴1452ACD AOD ∠=∠=︒,1452BDC BOC ∠=∠=︒, ∴90DEC ∠=︒,即AC BD ⊥,∵AO DO =,BO CO =,AOC DOB ∠=∠,∴AOC △≌BOD ,∴AC BD =.∵AC BD =,AC BD ⊥,∴四边形ABCD 是垂等四边形.(3)方法一:连接DO ,AO ,由(2)可得等腰Rt AOD , ∴4AD =-,作EF AD ⊥,易证得Rt DFE △∽Rt EFA △,∴2FE DF AF =⋅,设DF x =,4AF x =-,可得方程()43-=x x ,解得11x =(如图2),23x =(如图3),∴2DE =或23, 作OG AB ⊥,∵12AOG AOB EDF ∠=∠=∠, ∴Rt DFE △∽Rt OGA , ∴AO AG DE EF=, ∴6AO EF AG DE⋅==或2, ∴226AB AG ==(如图2)或22(如图3).方法二:∵AC BD =且AC BD ⊥, ∴AC BD =,∴AD BC =,∴()1180452ABE BAE AEB ∠=∠=︒-∠=︒, ∴90AOD ∠=︒,∴Rt AOD 和Rt ABE △是等腰直角三角形,∴24AD ==由方法一得2DE =或322AE AD DE =-AE 23=2, ∴226AB AE =22【点睛】本题主要考查了圆的综合应用,结合相似三角形的判定与性质、三角函数的应用和四边形综合知识的计算是解题的关键.。
九年级下册数学圆练习题1、已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是A.相离B.外切C.相交D.内切2、如图所示,在⊙O中,,∠A=30°,则∠B=A.150°B.75°C.60°D.15°3、用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于A.3 B.C.2 D.4、在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=A.5 B.C.D.65、如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA6、如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是A.米2B.米2C.米2D.米27、如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=A.28°B.42°C.56°D.84°8、已知⊙O1与⊙O2相交,它们的半径分别是4,7,则圆心距O1O2可能是A.2 B.3 C.6 D.129、如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为A.B.C.D.10、若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是A.l=2r B.l=3r C.l=r D.11、如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为A.B.C.D.12、下列说法错误的是A.若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B.与互为倒数C.若a>|b|,则a>bD.梯形的面积等于梯形的中位线与高的乘积的一半13、如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为A.135°B.122.5°C.115.5°D.112.5°14、将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为A.B.C.D.15、如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为A.B.C.D.16、如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为A.B.C.D.17、如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是A.35° B.140° C.70°D.70°或140°18、已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是A.30cm2B.30πcm2C.15cm2D.15πcm219、如图,Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于A.4 B.3.5 C.3 D.2.520、用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为A.3cm B.5cm C.6cm D.8cm21、如图,在△ABC中,AB=4,AC=6,∠BAC=60º,∠BAC的角平分线交△ABC的外接圆⊙O 于点E,则AE的长为 .22、如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.23、如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=°.24、已知正方体的棱长为3,以它的下底面的外接圆为底、上底面对角线的交点为顶点构造一个圆锥体,那么这个圆锥体的体积是(π=3.14).25、已知扇形的半径是30cm,圆心角是60°,则该扇形的弧长为cm(结果保留π).26、如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s 的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)27、高为4,底面半径为3的圆锥,它的侧面展开图的面积是.28、如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是.29、如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为.30、如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角∠O=120°,半径OA=3,则弧AB 的长度为(结果保留π).31、如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN= .32、如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为.33、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.34、如图,将⊙O沿弦AB折叠,使经过圆心O,则∠OAB= °.35、如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)36、已知圆锥的底面周长是10π,其侧面展开后所得扇形的圆心角为90°,则该圆锥的母线长是.37、已知⊙O1与⊙O2相切,两圆半径分别为3和5,则圆心距O1O2的值是.38、点O在直线AB上,点A1,A2,A3,……在射线OA上,点B1,B2,B3,……在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为秒.39、如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB= º.40、如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=.41、如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cosE的值.42、如图,OA=OB,AB交⊙O于点C、D,AC与BD是否相等?为什么?43、如图,AB是⊙O的直径,C是⊙O上一点,AC平分∠BAD;AD⊥ CD,垂足为D.(1)求证:CD是⊙O的切线(2)若⊙O的直径为5,CD=2.求AC的长.44、(本题满分12分)如图,I是△ABC的内心,∠BAC的平分线与△ABC的外接圆相交于点D。
第三章 圆单元测试一、选择题(每小题4分,共40分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A 、正方形B 、菱形C 、矩形D 、等腰梯形2、若⊙A 的半径为5,圆心A 的坐标是(3,4),点P 的坐标是(5,8),你认为点P 的位置为( )A 、在⊙A 内B 、在⊙A 上C 、在⊙A 外D 、不能确定3、下列所述图形中对称轴最多的是( )A 、圆B 、正方形C 、正三角形D 、线段4、下列四个命题中正确的是( )①与圆有公共点的直线是该圆的切线 ②垂直于圆的半径的直线是该圆的切线 ③到圆心的距离等于半径的直线是该圆的切线 ④过圆直径的端点,垂直于此直径的直线是该圆的切线A 、①②B 、②③C 、③④D 、①④5、过⊙O 外一点P 作⊙O 的两条切线P A 、PB ,切点为A 和B ,若AB =8,AB的弦心距为3,则P A 的长为( )A 、5B 、320C 、325D 、86、如图1,P A 切⊙O 于A ,AB ⊥OP 于B ,若PO =8 cm ,BO =2 cm ,则P A 的长为( )A 、16 cmB 、48 cmC 、3 cmD 、43 cmBO P O 1 O 2 A B C A'C ' 图1 图2 图37、如图2,半径为1的四个圆两两相切,则图中阴影部分的面积为( )A 、4-πB 、8-πC 、(4-π)D 、4-2π8、如图3,一块边长为8 cm 的正三角形木板ABC ,在水平桌面上绕点B 按顺时针方向旋转至A ′BC ′的位置时,顶点C 从开始到结束所经过的路径长为(点A 、B 、C ′在同一直线上)( )A 、16πB 、38πC 、364πD 、316π 9、如图4,△ABC 是正三角形,曲线ABCDEF …叫做“正三角形的渐开线”,其中 、、 … 圆心依次按A 、B 、C 循环,它们依次相连接,如果AB =1,那么曲线CDEF 的长是( )A 、8πB 、6πC 、4πD 、2πABC D E F AB C DE m n O图4 图5 图6 图710、一个圆台形物体的上底面积是下底面积的41.如图5,放在桌面上,对桌面的压强是200 帕,翻过来放,对桌面的压强是( )A 、50帕B 、80帕C 、600帕D 、800帕二、填空题(每小题3分,共30分)11、如果⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:①点P 在⊙O 外,则______;②,则d =r ;③______,则d <r .12、两个同心圆的直径分别为5 cm 和3 cm ,则圆环部分的宽度为_____ cm.13、如图6,已知⊙O ,AB 为直径,AB ⊥CD ,垂足为E ,由图你还能知道哪些正确的结论?请把它们一一写出来. .14、已知,⊙O 的直径为10 cm ,点O 到直线a 的距离为d :①若a 与⊙O 相切,则d =______;②若d =4 cm ,则a 与⊙O 有_____个交点;③若d =6 cm ,则a 与⊙O 的位置关系是_____.15、两个同心圆的半径分别为3 cm 和4 cm ,大圆的弦BC 与小圆相切,则DE EFBC=_____ cm.16、如图7,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC交于D,连结BD,若BC=5-1,则AC=_____.17、要修一段如图8所示的圆弧形弯道,它的半径是48 m,圆弧所对的圆心角是60°,那么这段弯道长_____________________m(保留π).图8 图9 图10 图11 18、如图9,两个半圆中,长为6的弦CD与直径AB平行且与小半圆相切,那么图中阴影部分的面积等于_____________.19、要制造一个圆锥形的烟囱帽,如图10,使底面半径r与母线l的比r∶l=3∶4,那么在剪扇形铁皮时,圆心角应取_____.20、将一根长24 cm的筷子,置于底面直径为5 cm,高为12 cm的圆柱形水杯中(如图11).设筷子露在杯子外面的长为h cm,则h的取值范围是_____.三、解答题(每小题10分,共30分)21、(10分)如图12,小虎牵着小狗上街,小虎的手臂与绳长共为2.5 m(手臂与拉直的绳子在一条直线上)手臂肩部距地面1.5 m.当小虎站立不动时,小狗在平整的地面上活动的最大区域是多少?并画出平面图.图1222、(10分)已知:三角形ABC 内接于⊙O ,过点A 作直线EF .(1)如图13,AB 为直径,要使得EF 是⊙O 的切线,只需保证∠CAE =∠_____,并证明之;(2)如图14,AB 为⊙O 非直径的弦,(1)中你所添出的条件仍成立的话,EF 还是⊙O 的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.A BC E FO图13 图1423、(10分)中华民族的科学文化历史悠久、灿烂辉煌,我们的祖先几千年前就能在生产实践中运用数学.1300多年前,我国隋代建筑的赵州石拱桥的桥拱是圆弧形(如图15).经测量,桥拱下的水面距拱顶6 m 时,水面宽34.64 m ,已知桥拱跨度是37.4 m ,运用你所学的知识计算出赵州桥的大致拱高.(运算时取37.4=147,34.64=203)图15参考答案一、选择题 1、C ;2、A ;3、A ;4、C ;5、B ;6、D ;7、A ;8、D ;9、C ;10、D.二、填空题 1、d >r 点P 在⊙O 上 点P 在⊙O 内;2、1;3、C E =ED ,,AC AD CmB DmB ==;4、①5 cm ②两 ③外离;5、27;6、2;7、16π;8、29π;9、270°;10、11≤h ≤12. 三、解答题21、解:小狗在地平面上环绕跑圆的半径为225.15.2-=2.0(m).小狗活动的区域是以2.0 m 为半径的圆,如右图.22、(1)ABC 证明:∵AB 为⊙O 直径, ∴∠ACB =90°.∴∠BAC +∠ABC =90°.若∠CAE =∠ABC .∴∠BAC +∠CAE =90°,即∠BAE =90°,OA ⊥AE . ∴EF 为⊙O 的切线.(2)证明:连接AO 并延长交⊙O 于点D ,连接CD , ∴∠ADC =∠ABC .∵AD 为⊙O 的直径, ∴∠DAC +∠ADC =90°.∵∠CAE =∠ABC =∠ADC , ∴∠DAC +∠CAE =90°. ∴∠DAE =90°,即OA ⊥EF ,EF 为⊙O 的切线.23、解:如图,设圆弧所在圆的圆心为O ,AB =37.4=147 m, CD =34.6=203 m, GE =6 m.在Rt △OCE 中, OE =OC -6, CE =103.∵OC 2=CE 2+OE 2, ∴OC 2=(103)2+(OC -6)2.∴OC =28(m) . ∴OA =28.在Rt △OAF 中,AF =77, ∴)m (21)77(282222=-=-=AF OA OF .∴拱高GF =28-21=7(m) .∴F A =FN +NM -AM =82+1.6-42=42+1.6≈7.26.BS 四边形ADEF =21(AF +DE )·EN =21(7.26+1.6)×5.66≈25.07(m 2). V 体积=S 四边形ADEF ×96=25.07×96=2.4×103(m 3). 答:完成这一工程需2.4×103 m 3的土方.。
圆与三角函数1.已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF⊥BC 于点F,交⊙O 于点E,AE 与BC 交于点H,点 D 为OE 的延长线上一点,且∠ODB=∠AEC.(1)求证:BD 是⊙O 的切线;(2)求证:CE2=EH•EA;(3)若⊙O 的半径为5,sinA=,求BH 的长.2.如图,已知AB 是⊙O 的直径,C 是⊙O 上任一点(不与A,B 重合),AB⊥CD 于E,BF 为⊙O 的切线,OF∥AC,连结AF,FC,AF 与CD 交于点G,与⊙O 交于点H,连结CH.(1)求证:FC 是⊙O 的切线;(2)求证:GC=GE;(3)若cos∠AOC= ,⊙O 的半径为r,求CH 的长.3.已知⊙O 是以AB 为直径的△ABC 的外接圆,OD∥BC 交⊙O 于点D,交AC 于点E,连接AD、BD,BD 交AC 于点F.(1)求证:BD 平分∠ABC;(2)延长AC 到点P,使PF=PB,求证:PB 是⊙O 的切线;(3)如果AB=10,cos∠ABC=,求AD.4.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD、AC 分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O 的半径.5.如图,AB 是⊙O 的直径,D、E 为⊙O 上位于AB 异侧的两点,连接BD 并延长至点C,使得CD=BD,连接AC 交⊙O 于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF 的度数;(3)设DE 交AB 于点G,若DF=4,cosB= ,E 是的中点,求EG•ED的值.6.AB,CD 是⊙O 的两条弦,直线AB,CD 互相垂直,垂足为点E,连接AD,过点B 作BF⊥AD,垂足为点F,直线BF 交直线CD 于点G.(1)如图1,当点E 在⊙O 外时,连接BC,求证:BE 平分∠GBC;(2)如图2,当点E 在⊙O 内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO 并延长交AD 于点H,若BH 平分∠ABF,AG=4,tan∠D= ,求线段AH 的长.7.如图,已知AB 是⊙O 的直径,BP 是⊙O 的弦,弦CD⊥AB 于点F,交BP 于点G,E 在CD 的延长线上,EP=EG,(1)求证:直线EP 为⊙O 的切线;(2)点P 在劣弧AC 上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O 的半径为3,sinB=.求弦CD 的长.8.如图,在Rt△ABC 中,∠ACB=90°,AO 是△ABC 的角平分线.以O 为圆心,OC 为半径作⊙O.(1)求证:AB 是⊙O 的切线.(2)已知AO 交⊙O 于点E,延长AO 交⊙O 于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O 的半径为3,求AB 的长.9.如图,四边形ABCD 内接于⊙O,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E,点F 为CE 的中点,连接DB,DC,DF.(1)求∠CDE 的度数;(2)求证:DF 是⊙O 的切线;(3)若AC=2DE,求tan∠ABD 的值.10.如图,已知在△ABP 中,C 是BP 边上一点,∠PAC=∠PBA,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,且交BP 于点E.(1)求证:PA 是⊙O 的切线;(2)过点C 作CF⊥AD,垂足为点F,延长CF 交AB 于点G,若AG•AB=12,求AC 的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O 的半径及sin∠ACE 的值.11.已知Rt△ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D,且AD=DC,延长CB 交⊙O于点E.(1)图1 的A、B、C、D、E 五个点中,是否存在某两点间的距离等于线段CE 的长?请说明理由;(2)如图2,过点E 作⊙O 的切线,交AC 的延长线于点F.①若CF=CD 时,求sin∠CAB 的值;②若CF=aCD(a>0)时,试猜想sin∠CAB 的值.(用含 a 的代数式表示,直接写出结果)12.如图,在Rt△ABC 中,∠C=90°,以BC 为直径的⊙O 交斜边AB 于点M,若H 是AC 的中点,连接MH.(1)求证:MH 为⊙O 的切线.(2)若MH=,tan∠ABC= ,求⊙O 的半径.(3)在(2)的条件下分别过点A、B 作⊙O 的切线,两切线交于点D,AD 与⊙O 相切于N 点,过N 点作NQ⊥BC,垂足为E,且交⊙O 于Q 点,求线段NQ 的长度.13.如图,⊙O 的半径r=25,四边形ABCD 内接于圆⊙O,AC⊥BD 于点H,P 为CA 延长线上的一点,且∠PDA=∠ABD.(1)试判断PD 与⊙O 的位置关系,并说明理由;(2)若tan∠ADB=,PA= AH,求BD 的长;(3)在(2)的条件下,求四边形ABCD 的面积.14.如图,PA 为⊙O 的切线,A 为切点,直线PO 交⊙O 与点E,F 过点A 作PO 的垂线AB 垂足为D,交⊙O 与点B,延长BO 与⊙O 交与点C,连接AC,BF.(1)求证:PB 与⊙O 相切;(2)试探究线段EF,OD,OP 之间的数量关系,并加以证明;(3)若AC=12,tan∠F= ,求cos∠ACB 的值.15.如图,在⊙O 中,弦AB 与弦CD 相交于点G,OA⊥CD 于点E,过点B 的直线与CD 的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF 是⊙O 的切线;(2)若tan∠F=,CD=a,请用a 表示⊙O 的半径;(3)求证:GF2﹣GB2=DF•GF.16.如图,在⊙O 中,直径AB⊥CD,垂足为E,点M 在OC 上,AM 的延长线交⊙O 于点G,交过C 的直线于F,∠1=∠2,连结CB 与DG 交于点N.(1)求证:CF 是⊙O 的切线;(2)求证:△ACM∽△DCN;(3)若点M 是CO 的中点,⊙O 的半径为4,cos∠BOC=,求BN 的长.17.如图所示,在Rt△ABC 与Rt△OCD 中,∠ACB=∠DCO=90°,O 为AB 的中点.(1)求证:∠B=∠ACD.(2)已知点E 在AB 上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE 的长;(ii)试判定CD 与以A 为圆心、AE 为半径的⊙A 的位置关系,并请说明理由.18.如图,AB 为⊙O 的直径,直线CD 切⊙O 于点M,BE⊥CD 于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM= ,求线段AM 的长.19.如图,线段AB 是⊙O 的直径,弦CD⊥AB 于点H,点M 是上任意一点,AH=2,CH=4.(1)求⊙O 的半径r 的长度;(2)求sin∠CMD;(3)直线BM 交直线CD 于点E,直线MH 交⊙O 于点N,连接BN 交CE 于点F,求HE•HF 的值.20.已知AB、CD 是⊙O 的两条弦,直线AB、CD 互相垂直,垂足为E,连接AC,过点B 作BF⊥AC,垂足为F,直线BF 交直线CD 于点M.(1)如图1,当点E 在⊙O 内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E 在⊙O 外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E 在⊙O 外时,∠ABF 的平分线与AC 交于点H,若tan∠C=,求tan∠ABH 的值.2018 年01 月10 日金博初数2 的初中数学组卷参考答案与试题解析一.解答题(共25 小题)1.已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF⊥BC 于点F,交⊙O 于点E,AE 与BC 交于点H,点 D 为OE 的延长线上一点,且∠ODB=∠AEC.(1)求证:BD 是⊙O 的切线;(2)求证:CE2=EH•EA;(3)若⊙O 的半径为5,sinA=,求BH 的长.【分析】(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD 是⊙O 的切线;(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH 即可.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD 是⊙O 的切线;(2)证明:连接AC,如图1 所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2 所示:∵AB 是⊙O 的直径,∴∠AEB=90°,∵⊙O 的半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA= ==8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH= =,在Rt△BEH 中,BH= ==.【点评】本题是圆的综合题目,考查了切线的判定、圆周角定理、圆心角、弧、弦之间的关系定理、勾股定理、三角函数、相似三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形相似和运用三角函数、勾股定理才能得出结果.2.如图,已知AB 是⊙O 的直径,C 是⊙O 上任一点(不与A,B 重合),AB⊥CD 于E,BF为⊙O 的切线,OF∥AC,连结AF,FC,AF 与CD 交于点G,与⊙O 交于点H,连结CH.(1)求证:FC 是⊙O 的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O 的半径为r,求CH 的长.【分析】(1)首先根据OF∥AC,OA=OC,判断出∠BOF=∠COF;然后根据全等三角形判定的方法,判断出△BOF≌△COF,推得∠OCF=∠OBF=90°,再根据点 C 在⊙O 上,即可判断出FC 是⊙O 的切线.(2)延长AC、BF 交点为M.由△BOF≌△COF 可知:BF=CF 然后再证明:FM=CF,从而得到BF=MF,因为DC∥BM,所以△AEG∽△ABF,△AGC∽△AFM,然后依据相似三角形的性质可证GC=GE;(3)因为cos∠AOC=,OE= ,AE= .由勾股定理可求得EC=.AC= .因为EG=GC,所以EG=.由(2)可知△AEG∽△ABF,可求得CF=BF= .在Rt△ABF 中,由勾股定理可求得AF=3r.然后再证明△CFH∽△AFC,由相似三角形的性质可求得CH的长.【解答】(1)证明:∵OF∥AC,∴∠BOF=∠OAC,∠COF=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,在△BOF 和△COF 中,,∴△BOF≌△COF,∴∠OCF=∠OBF=90°,又∵点 C 在⊙O 上,∴FC 是⊙O 的切线.(2)如下图:延长AC、BF 交点为M.由(1)可知:△BOF≌△COF,∴∠OFB=∠CFO,BF=CF.∵AC∥OF,∴∠M=∠OFB,∠MCF=∠CFO.∴∠M=∠MCF.∴CF=MF.∴BF=FM.∵DC∥BM,∴△AEG∽△ABF,△AGC∽△AFM.∴,.∴又∵BF=FM,∴EG=GC.(3)如下图所示:∵cos∠AOC= ,∴OE= ,AE= .在Rt△EOC 中,EC= =.在Rt△AEC 中,AC= = .∵EG=GC,∴EG= .∵△AEG∽△ABF,∴,即.∴BF= .∴CF= .在Rt△ABF 中,AF===3r.∵CF 是⊙O 的切线,AC 为弦,∴∠HCF=∠HAC.又∵∠CFH=∠AFC,∴△CFH∽△AFC.∴,即:.∴CH= .【点评】本题主要考查的是圆的综合应用,同时还涉及了勾股定理,锐角三角形函数,相似三角形的性质和判定,全等三角形的性质和判定,证得BF=FM 是解答本题的关键.3.已知:⊙O 上两个定点A,B 和两个动点C,D,AC 与BD 交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD 是⊙O 的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O 到AD 的距离为2,求BC 的长.【分析】(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB 交AC 于点F 由B 是弧AC 的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO 并延长交⊙O 于F,连接DF 得到AF 为⊙O 的直径于是得到∠ADF=90°,过O 作OH⊥AD 于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.【解答】(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB 交AC 于点F∵B 是弧AC 的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD 为⊙O 直径,∴∠ABD=90°,又∠CFB=90°.∴△CBF∽△DAB.∴,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO 并延长交⊙O 于F,连接DF,∴AF 为⊙O 的直径,∴∠ADF=90°,过O 作OH⊥AD 于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.【点评】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.4.已知⊙O 是以AB 为直径的△ABC 的外接圆,OD∥BC 交⊙O 于点D,交AC 于点E,连接AD、BD,BD 交AC 于点F.(1)求证:BD 平分∠ABC;(2)延长AC 到点P,使PF=PB,求证:PB 是⊙O 的切线;(3)如果AB=10,cos∠ABC= ,求AD.【分析】(1)先由OD∥BC,根据两直线平行内错角相等得出∠D=∠CBD,由OB=OD,根据等边对等角得出∠D=∠OBD,等量代换得到∠CBD=∠OBD,即BD 平分∠ABC;(2)先由圆周角定理得出∠ACB=90°,根据直角三角形两锐角互余得到∠CFB+∠CBF=90°.再由PF=PB,根据等边对等角得出∠PBF=∠CFB,而由(1)知∠OBD=∠CBF,等量代换得到∠PBF+∠OBD=90°,即∠OBP=90°,根据切线的判定定理得出PB 是⊙O 的切线;(3)连结AD.在Rt△ABC 中,由cos∠ABC===,求出BC=6,根据勾股定理得到AC==8.再由OD∥BC,得出△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,根据相似三角形对应边成比例求出AE=4,OE=3,那么DE=OD﹣OE=2,然后在Rt△ADE 中根据勾股定理求出AD==2.【解答】(1)证明:∵OD∥BC,∴∠D=∠CBD,∵OB=OD,∴∠D=∠OBD,∴∠CBD=∠OBD,∴BD 平分∠ABC;(2)证明:∵⊙O 是以AB 为直径的△ABC 的外接圆,∴∠ACB=90°,∴∠CFB+∠CBF=90°.∵PF=PB,∴∠PBF=∠CFB,由(1)知∠OBD=∠CBF,∴∠PBF+∠OBD=90°,∴∠OBP=90°,∴PB 是⊙O 的切线;(3)解:连结AD.∵在Rt△ABC 中,∠ACB=90°,AB=10,∴cos∠ABC= ==,∴BC=6,AC= =8.∵OD∥BC,∴△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,∴= = ,= = ,∴AE=4,OE=3,∴DE=OD﹣OE=5﹣3=2,∴AD= ==2 .【点评】本题是圆的综合题,其中涉及到平行线的性质、等腰三角形的性质、圆周角定理、直角三角形两锐角互余的性质、切线的判定定理、锐角三角函数的定义、勾股定理、相似三角形的判定和性质等知识,综合性较强,难度适中.本题中第(2)问要证某线是圆的切线,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线是常用的方法,需熟练掌握.5.如图1,△ABC 内接于⊙O,∠BAC 的平分线交⊙O 于点D,交BC 于点E(BE>EC),且BD=2.过点D 作DF∥BC,交AB 的延长线于点F.(1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,DE= ,求图中阴影部分的面积;(3)若= ,DF+BF=8,如图2,求BF 的长.【分析】(1)连结OD,如图1,由角平分线定义得∠BAD=∠CAD,则根据圆周角定理得到=,再根据垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是根据切线的判定定理即可判断DF 为⊙O 的切线;(2)连结OB,OD 交BC 于P,作BH⊥DF 于H,如图1,先证明△OBD 为等边三角形得到∠ODB=60°,OB=BD=2 ,易得∠BDF=∠DBP=30°,根据含30 度的直角三角形三边的关系,在Rt△DBP 中得到PD=BD= ,PB= PD=3,接着在Rt△DEP 中利用勾股定理计算出PE=2,由于OP⊥BC,则BP=CP=3,所以CE=1,然后利用△BDE∽△ACE,通过相似比可得到AE=,再证明△ABE∽△AFD,利用相似比可得DF=12,最后根据扇形面积公式,利用S=S△BDF﹣S 弓形BD=S△BDF﹣(S 扇形BOD﹣S△BOD)进行计算;阴影部分(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,由= 得到CD=BD=2 ,先证明△BFD∽△CDA,利用相似比得到xy=4,再证明△FDB∽△FAD,利用相似比得到16﹣4y=xy,则16﹣4y=4,然后解方程易得BF=3.【解答】证明:(1)连结OD,如图1,∵AD 平分∠BAC 交⊙O 于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF 为⊙O 的切线;(2)连结OB,连结OD 交BC 于P,作BH⊥DF 于H,如图1,∵∠BAC=60°,AD 平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,OB=BD=2 ,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP 中,PD=BD= ,PB= PD=3,在Rt△DEP 中,∵PD=,DE= ,∴PE= =2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:,∴AE=∵BE∥DF,∴△ABE∽△AFD,∴=,即= ,解得DF=12,在Rt△BDH 中,BH=BD= ,∴S 阴影部分=S△BDF﹣S 弓形BD=S△BDF﹣(S 扇形BOD﹣S△BOD)﹣= •12•+ •(2 )2=9﹣2π;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,∵=,∴CD=BD=2 ,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴=,即=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD ,而∠DFB=∠AFD,∴△FDB∽△FAD,∴=,即=,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF 的长为3.【点评】本题考查了圆的综合题:熟练掌握垂径定理、圆周角定理和切线的判定定理;会计算不规则几何图形的面积;会灵活运用相似三角形的判定与性质计算线段的长.6.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD、AC 分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan∠ACB= ,BC=2,求⊙O 的半径.【分析】(1)连接OE.欲证直线CE 与⊙O 相切,只需证明∠CEO=90°,即OE⊥CE 即可;(2)在直角三角形ABC 中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE 中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r 的值;方法二、过点O 作OM⊥AE 于点M,在Rt△AMO 中,根据三角函数的定义可以求得r 的值.【解答】解:(1)直线CE 与⊙O 相切.…(1 分)理由如下:∵四边形ABCD 是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE 是⊙O 的半径,∴直线CE 与⊙O 相切.…(5 分)(2)∵tan∠ACB= =,BC=2,∴AB=BC•tan∠ACB= ,∴AC= ;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB= ,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE 中,CE==,连接OE,设⊙O 的半径为r,则在Rt△COE 中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O 作OM⊥AE 于点M,则AM=AE=在Rt△AMO 中,OA==÷=…(9 分)【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图,在Rt△ABC 中,∠ABC=90°,AC 的垂直平分线分别与AC,BC 及AB 的延长线相较于点D,E,F,且BF=BC,⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G,交⊙O 于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD 与⊙O 的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.【分析】(1)由垂直的定义可得∠EBF=∠ADF=90°,于是得到∠C=∠BFE,从而证得△ABC≌△EBF;(2)BD 与⊙O 相切,如图1,连接OB 证得∠DBO=90°,即可得到BD 与⊙O 相切;(3)如图2,连接CF,HE,有等腰直角三角形的性质得到CF=BF,由于DF 垂直平分AC,得到AF=CF=AB+BF=1+BF=BF,求得BF=,有勾股定理解出EF= ,推出△EHF 是等腰直角三角形,求得HF=EF= ,通过△BHF∽△FHG,列比例式即可得到结论.【解答】(1)证明:∵∠ABC=90°,∴∠EBF=90°,∵DF⊥AC,∴∠ADF=90°,∴∠C+∠A=∠A+∠AFD=90°,∴∠C=∠BFE,在△ABC 与△EBF 中,,∴△ABC≌△EBF;(2)BD 与⊙O 相切,如图1,连接OB证明如下:∵OB=OF,∴∠OBF=∠OFB,∵∠ABC=90°,AD=CD,∴BD=CD,∴∠C=∠DBC,∵∠C=∠BFE,∴∠DBC=∠OBF,∵∠CBO+∠OBF=90°,∴∠DBC+∠CBO=90°,∴∠DBO=90°,∴BD 与⊙O 相切;(3)解:如图2,连接CF,HE,∵∠CBF=90°,BC=BF,∴CF= BF,∵DF 垂直平分AC,∴AF=CF=AB+BF=1+BF= BF,∴BF= ,∵△ABC≌△EBF,∴BE=AB=1,∴EF= =,∵BH 平分∠CBF,∴,∴EH=FH,∴△EHF 是等腰直角三角形,∴HF= EF= ,∵∠EFH=∠HBF=45°,∠BHF=∠BHF,∴△BHF∽△FHG,∴,∴HG•HB=HF2=2+ .【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.8.如图,AB 是⊙O 的直径,D、E 为⊙O 上位于AB 异侧的两点,连接BD 并延长至点C,使得CD=BD,连接AC 交⊙O 于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF 的度数;(3)设DE 交AB 于点G,若DF=4,cosB= ,E 是的中点,求EG•ED的值.【分析】(1)直接利用圆周角定理得出AD⊥BC,再利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB 的长,即可求出AE 的长,再判断△AEG∽△DEA,求出EG•ED 的值.【解答】(1)证明:连接AD,∵AB 是⊙O 的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD 垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF 是⊙O 的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD 中,cosB=,BD=4,∴AB=6,∵E 是的中点,AB 是⊙O 的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3 ,∵E 是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴= ,即EG•ED=AE2=18.【点评】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB 的长是解题关键.9.AB,CD 是⊙O 的两条弦,直线AB,CD 互相垂直,垂足为点E,连接AD,过点B 作BF⊥AD,垂足为点F,直线BF 交直线CD 于点G.(1)如图1,当点E 在⊙O 外时,连接BC,求证:BE 平分∠GBC;(2)如图2,当点E 在⊙O 内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO 并延长交AD 于点H,若BH 平分∠ABF,AG=4,tan∠D= ,求线段AH 的长.【分析】(1)利用圆内接四边形的性质得出∠D=∠EBC,进而利用互余的关系得出∠GBE=∠EBC,进而求出即可;(2)首先得出∠D=∠ABG,进而利用全等三角形的判定与性质得出△BCE≌△BGE(ASA),则CE=EG,再利用等腰三角形的性质求出即可;(3)首先求出CO 的长,再求出tan∠ABH===,利用OP2+PB2=OB2,得出a 的值进而求出答案.【解答】(1)证明:如图1,∵四边形ABCD 内接于⊙O,∴∠D+∠ABC=180°,∵∠ABC+∠EBC=180°,∴∠D=∠EBC,∵GF⊥AD,AE⊥DG,∴∠A+∠ABF=90°,∠A+∠D=90°,∴∠ABF=∠D,∵∠ABF=∠GBE,∴∠GBE=∠EBC,即BE 平分∠GBC;(2)证明:如图2,连接CB,∵AB⊥CD,BF⊥AD,∴∠D+∠BAD=90°,∠ABG+∠BAD=90°,∴∠D=∠ABG,∵∠D=∠ABC,∴∠ABC=∠ABG,∵AB⊥CD,∴∠CEB=∠GEB=90°,在△BCE 和△BGE 中,∴△BCE≌△BGE(ASA),∴CE=EG,∵AE⊥CG,∴AC=AG;(3)解:如图3,连接CO 并延长交⊙O 于M,连接AM,∵CM 是⊙O 的直径,∴∠MAC=90°,∵∠M=∠D,tanD= ,∴tanM= ,∴=,∵AG=4,AC=AG,∴AC=4,AM=3,∴MC= =5,∴CO= ,过点H 作HN⊥AB,垂足为点N,∵tanD= ,AE⊥DE,∴tan∠BAD= ,∴=,设NH=3a,则AN=4a,∴AH= =5a,∵HB 平分∠ABF,NH⊥AB,HF⊥BF,∴HF=NH=3a,∴AF=8a,cos∠BAF= ==,∴AB= =10a,∴NB=6a,∴tan∠ABH= ==,过点O 作OP⊥AB 垂足为点P,∴PB= AB=5a,tan∠ABH= = ,。
2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,从热气球处测得地面、两点的俯角分别为、,如果此时热气球处的高度为,点、、在同一直线上,,则、两点的距离是( )A.B.C.D.2. 如图,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与环相切,将这个游戏抽象为数学问题,如图②,已知铁环的半径为 ,设铁环中心为,铁环钩与铁环相切的点为,铁环与地面接触点为,且,若人站立点与点的水平距离等于,则铁环钩的长度为( )A.B.C.D.3. 如图,为了量山坡护坡石坝的坡度,把一根长的竹竿斜靠在石坝旁,量出竿长处的点离地面的高度,又量得竿底与坝脚的距离,则石坝的坡度为( )C A B 30∘45∘C CD 100m A D B CD ⊥AB A B 200m200m3–√200(+1)m3–√100(+1)m3–√26cm O M A ∠AOM =αtanα=512C A AC 46cm MF 36cm39cm40cm42cm5m AC 1m D DE =0.6m AB =3mA.B.C.D.4. 如图,我国某段海防线上有、两个观测站,观测站在观测站的正东方向上.上午点,发现海面上处有一可疑船只,立刻测得该船只在观测站的北偏东方向,在观测站的北偏东的方向上,已知、两点之间的距离是海里,则此时可疑船只所在处与观测点之间的距离是( )A.海里B.海里C.海里D.海里5. 小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆的高度与拉绳的长度相等,小明先将拉到的位置,测得=(为水平线),测角仪的高度为米,则旗杆的高度为( )3:43:13:54:1A B B A 9C A 45∘B 30∘A C 502–√C B 253–√1003–√32550PA PB PB PB ′∠PB C ′αB C ′B D ′1PAA.米 B.米 C.米 D.米6. 如图,是电杆的一根拉线,现测得米,,,则拉线的长为( )米A.B.C.D.7. 如图,传送带和地面成一斜坡,它把物体从地面送到离地面米高的地方,物体所经过路程是米,那么斜坡的坡度为( )A.B.C.D.8. 如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在处接到指挥部通知,在他们AC AB BC =6∠ABC =90∘∠ACB =52∘AC 6sin52∘6tan52∘6cos52∘6−cos52∘5131:2.61:5131:2.41:512A8. 如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在处接到指挥部通知,在他们东北方向距离海里的处有一艘捕鱼船,正在沿南偏东方向以每小时海里的速度航行,稽查队员立即乘坐巡逻船以每小时海里的速度沿北偏东某一方向出发,在处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是( )A.小时B.小时C.小时D.小时二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知点位于点北偏东方向,点位于点北偏西方向,且==千米,那么=________千米.10. 如图,某兴趣小组用无人机进行航拍测高,无人机从号楼和号楼的地面正中间点垂直起飞到高度为米的处,测得号楼顶部的俯角为,测得号楼顶部的俯角为.已知号楼的高度为米,则号楼的高度为________米(结果保留根号).11. 如图,要在宽为米的瓯海大道两边安装路灯,路灯的灯臂与灯柱成角,灯罩的轴线与灯臂垂直,当灯罩的轴线通过公路路面的中心线(即为的中点)时照明效果最佳,若米,则路灯的灯柱高度应该设计为________米.12. 小明沿着坡度为的坡面向下走了米的路,那么他竖直方向下降的高度为________.A 12B 75∘1014C 1234B A 30∘C A 30∘AB AC 8BC 12B 50A 1E 60∘2F 45∘1202AB 20CD BC 120∘DO CD DO O AB CD =3–√BC 1:3–√2012. 小明沿着坡度为的坡面向下走了米的路,那么他竖直方向下降的高度为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 为了计算湖中小岛上凉亭到岸边公路的距离,某数学兴趣小组在公路上的点处,测得凉亭在北偏东的方向上;从处向正东方向行走米,到达公路上的点处,再次测得凉亭在北偏东的方向上,如图所示.求凉亭到公路的距离.(结果保留整数,参考数据:,)14. “南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.年月日,“南天一柱”正式命名.如图,航拍无人机以的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在处测得“南天一柱”底部的俯角为,继续飞行到达处,这时测得“南天一柱”底部的俯角为,已知“南天一柱”的高为,问这架航拍无人机继续向正东飞行是否安全?(参考数据:,,)15. 某数码产品专卖店的一块摄像机支架如图所示,将该支架打开立于地面上,主杆与地面垂直,调节支架使得脚架与主杆的夹角=,这时支架与主杆的夹角恰好等于,若主杆最高点到调节旋钮的距离为.支架的长度为,旋转钮是脚架的中点,求脚架的长度和支架最高点到地面的距离.(结果保留根号)16. 如图,某商店营业大厅自动扶梯的倾斜角为,的长为米,求大厅两层之间的距离的长.(结果精确到米)(参考数据:,,)1:√20P l l A P 60∘A 200l B P 45∘P l ≈1.1412–√≈1.7323–√20101259m/s A C 37∘6s B C 45∘150m sin ≈0.6037∘cos ≈0.8037∘tan ≈0.7537∘MN AC BE AC ∠CBE 45∘CD AC ∠BCD 60∘A B 40cm CD 30cm D BE BE A AB 31∘AB 12BC 0.1sin =0.51531∘cos =0.85731∘tan =0.6031∘参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】解直角三角形的应用-仰角俯角问题【解析】先根据从热气球处测得地面、两点的俯角分别为、可求出与的度数,再由直角三角形的性质求出与的长,根据即可得出结论.【解答】解:∵从热气球处测得地面、两点的俯角分别为、,∴,,∵,,∴是等腰直角三角形,∴,在中,∵,,∴,∴.故选.2.【答案】B【考点】解直角三角形的应用【解析】此题暂无解析C A B 30∘45∘∠BCD ∠ACD AD BD AB =AD+BD C A B 30∘45∘∠BCD =−=90∘45∘45∘∠ACD =−=90∘30∘60∘CD ⊥AB CD =100m △BCD BD =CD =100m Rt △ACD CD =100m ∠ACD =60∘AD =CD ⋅tan =100×=100m 60∘3–√3–√AB =AD+BD =100+1003–√=100(+1)(m)3–√D【解答】略3.【答案】B【考点】解直角三角形的应用-坡度坡角问题勾股定理【解析】先过作于,根据,可得,进而得出,根据勾股定理可得的长,根据和的长可得石坝的坡度.【解答】解:如图,过作于,则,∴,即,解得,∴中,.又∵,∴,∴石坝的坡度为.故选.4.【答案】B【考点】解直角三角形的应用-方向角问题【解析】C CF ⊥AB F DE//CF =AD AC DE CF CF =3AF CF BF C CF ⊥AB F DE//CF =AD AC DE CF =150.6CF CF =3m Rt △ACF AF ==4m −5232−−−−−−√AB =3m BF =4−3=1m =CF BF 31B作于点,首先得出,,,求出的长,进而求出的长.【解答】解:作于点.由题意可得:海里,,,则(海里),故(海里).故选.5.【答案】C【考点】解直角三角形的应用-仰角俯角问题【解析】设旗杆的高度为米,根据正弦的定义列出方程,解方程得到答案.【解答】设旗杆的高度为米,则=米,在中,=,则=,解得,=,6.【答案】C【考点】解直角三角形的应用【解析】CD ⊥AB D ∠CAD =45∘∠CBD =60∘DC BC CD ⊥AB D AC =502–√∠CAD =45∘∠CBD =60∘DC =50⋅sin =502–√45∘BC =DC ÷sin =50÷=60∘3–√21003–√3B PA x PA x PB'x Rt △PB'C sinαx−1x ⋅sinαx ∠ACB =BC C =BC根据,得出,再把,代入即可.【解答】解:∵,∴,∵米,∴米;故选.7.【答案】C【考点】解直角三角形的应用-坡度坡角问题【解析】根据题意作出合适的辅助线,由坡度的定义可知,坡度等于坡角对边与邻边的比值,根据题目中的数据可以得到坡度,本题得以解决.【解答】如图,根据题意知=、=,则,∴斜坡的坡度=,8.【答案】B【考点】解直角三角形的应用-方向角问题【解析】cos ∠ACB =BC AC AC =BC cos ∠ACBBC =6∠ACB =52∘cos ∠ACB =BC ACAC =BC cos ∠ACB BC =6∠ACB =52∘AC =6cos52∘C AB 13AC 5BC ===12A −A B 2C 2−−−−−−−−−−√1−3252−−−−−−−√i tan ∠ABC ===1:2.4AC BC 512设巡逻船从出发到成功拦截所用时间为小时,由题意得出=,=,=,=,过点作的延长线于点,在中,由三角函数得出、的长度,得出=.在中,由勾股定理得出方程,解方程即可.【解答】设巡逻船从出发到成功拦截所用时间为小时;如图所示,由题意得:==,=,=,=,过点作的延长线于点,在中,=,==,∴==,==,∴=.在中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为小时.故选:.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】解直角三角形的应用-方向角问题【解析】(方法一)由=、=可得出=,结合=即可得出为等边三角形,根据等边三角形的性质即可得出的长度;(方法二)在中,通过解含度角的直角三角形可得出的长度,同理可得出的长度,再根据=即可得出结论.【解答】依照题意画出图形,如图所示.(方法一)∵=,=,∴==.又∵=,x ∠ABC 120∘AB 12BC 10x AC 14x A AD ⊥CB D Rt △ABD BD AD CD 10x+6Rt △ACD x ∠ABC +45∘75∘120∘AB 12BC 10x AC 14x A AD ⊥CB D Rt △ABD AB 12∠ABD +(−)45∘90∘75∘60∘BD AB ⋅cos =AB 60∘126AD AB ⋅sin60∘63–√CD 10x+6Rt △ACD (14x =(10x+6+(6)2)23–√)2=2,=−x 1x 2342B 8∠BAD 30∘∠CAD 30∘∠BAC 60∘AB AC △ABC BC Rt △ABD 30BD CD BC BD+CD ∠BAD 30∘∠CAD 30∘∠BAC ∠BAD+∠CAD 60∘AB AC∴为等边三角形,∴==千米.故答案为:.(方法二)在中,=,=千米,∴=千米.同理,=千米,∴==千米.故答案为:.10.【答案】【考点】解直角三角形的应用-仰角俯角问题【解析】过点作于,过点作于,可得四边形,是矩形,在中,根据三角函数求得,在中,根据三角函数求得,再根据线段的和差关系即可求解.【解答】过点作于,过点作于,则四边形,是矩形,∴==,=,∵为的中点,∴===,由已知得:==,=.在中,===米,∴==米,在中,==米,∴===(米).答:号楼的高度为米.故答案为:.△ABC BC AC 88Rt △ABD ∠BAD 30∘AB 8BD 4CD 4BC BD+CD 88(50−10)3–√E EG ⊥AB G F FH ⊥AB H ECBG HBDF Rt △AEG EG Rt △AHP AH E EG ⊥AB G F FH ⊥AB H ECBG HBDF EC GB 20HB FD B CD EG CB BD HF ∠EAG −90∘60∘30∘∠AFH 45∘Rt △AEG AG AB−GB 50−2030EG AG ⋅tan30∘30×=103–√33–√Rt △AHP AH HF ⋅tan45∘103–√FD HB AB−AH 50−103–√2(50−10)3–√(50−10)3–√11.【答案】【考点】解直角三角形的应用【解析】出现有直角的四边形时,应构造相应的直角三角形,利用相似求得、,再相减即可求得长.【解答】如图,延长,交于点.∵,,米,米,∴在直角中,,(米),∵,,∴,∴,∴(米),∴(米).12.【答案】米【考点】解直角三角形的应用-坡度坡角问题【解析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.83–√PB PC BC OD BC P ∠ODC =∠B =90∘∠P =30∘OB =10CD =3–√△CPD DP =DC ⋅tan =3m 60∘PC =CD÷(sin )=230∘3–√∠P =∠P ∠PDC =∠B =90∘△PDC ∽△PBO =PD PB CD OB PB ===10PD ∗OB CD 3×103–√3–√BC =PB−PC =10−2=83–√3–√3–√10【解答】解:∵坡度,∴,∴下降高度坡长(米).故答案为:米.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:作于.设,则.∵,∴.在中,∵,∴,∴.在中,∵,∴,即,解得:,∴(米).答:凉亭到公路的距离为米.【考点】勾股定理的应用解直角三角形的应用-方向角问题【解析】此题暂无解析【解答】解:作于.tanα==1:铅直高度水平距离3–√α=30∘=×sin =20×=1030∘1210PD ⊥AB D BD =x AD =x+200∠EAP =60∘∠PAB =−=90∘60∘30∘Rt △BPD ∠FBP =45∘∠PBD =∠BPD =45∘PD =DB =x Rt △APD ∠PAB =30∘PD =tan ⋅AD 30∘DB =PD =tan ⋅AD =x =(200+x)30∘3–√3x ≈273.2PD =273P l 273PD ⊥AB D设,则.∵,∴.在中,∵,∴,∴.在中,∵,∴,即,解得:,∴(米).答:凉亭到公路的距离为米.14.【答案】解:设无人机距地面,直线与南天一柱相交于点,由题意得,.在中,∵,∴.在中,∵,∴.∵,∴,∴,∵,∴这架航拍无人机继续向正东飞行安全.【考点】解直角三角形的应用-仰角俯角问题BD =x AD =x+200∠EAP =60∘∠PAB =−=90∘60∘30∘Rt △BPD ∠FBP =45∘∠PBD =∠BPD =45∘PD =DB =x Rt △APD ∠PAB =30∘PD =tan ⋅AD 30∘DB =PD =tan ⋅AD =x =(200+x)30∘3–√3x ≈273.2PD =273P l 273xm AB D ∠CAD =37∘∠CBD =45∘Rt △ACD tan ∠CAD ==≈0.75CD AD x AD AD =x 43Rt △BCD tan ∠CBD ===1CD BD x BD BD =x AD−BD =AB x−x =439×6x =162162>150【解析】设无人机距地面,直线与南天一柱相交于点,根据=列方程求出的值,与南天一柱的高度比较即可.【解答】解:设无人机距地面,直线与南天一柱相交于点,由题意得,.在中,∵,∴.在中,∵,∴.∵,∴,∴,∵,∴这架航拍无人机继续向正东飞行安全.15.【答案】过点作于点,延长交于点,则,在中,根据,得=,在中,根据,得,∵为的中点,∴==,在中,根据,得=,xm AB D AD−BD AB x xm AB D ∠CAD =37∘∠CBD =45∘Rt △ACD tan ∠CAD ==≈0.75CD AD x AD AD =x 43Rt △BCD tan ∠CBD ===1CD BD x BD BD =x AD−BD =ABx−x =439×6x =162162>150D DG ⊥BC G AC MN H AH ⊥MN Rt △DCG sin ∠GCD =DG CD DG CD ⋅sin ∠GCD =30×=153–√23–√Rt △BDG sin ∠GBD =DG BD BD ===15DG sin ∠GBD 153–√2–√26–√D BE BE 2BD 306–√Rt △BHE cos ∠HBE =BH BE BH BE ⋅cos ∠HBE =30×=306–√2–√23–√40+30–√∴==,∴脚架的长度为,支架最高点到地面的距离为.【考点】解直角三角形的应用【解析】过点作于点,根据三角函数、勾股定理进行解答即可.【解答】过点作于点,延长交于点,则,在中,根据,得=,在中,根据,得,∵为的中点,∴==,在中,根据,得=,∴==,∴脚架的长度为,支架最高点到地面的距离为.16.【答案】过作地平面的垂线段,垂足为.在中,∵,∴(米).即大厅两层之间的距离的长约为米.【考点】解直角三角形的应用-坡度坡角问题【解析】过作地平面的垂线段,垂足为,构造直角三角形,利用正弦函数的定义,即可求出的长.AH AB+BH 40+303–√BE 30cm 6–√A (40+30)cm 3–√D DG ⊥BC G D DG ⊥BC G AC MN H AH ⊥MN Rt △DCG sin ∠GCD =DG CD DG CD ⋅sin ∠GCD =30×=153–√23–√Rt △BDG sin ∠GBD =DG BD BD ===15DG sin ∠GBD 153–√2–√26–√D BE BE 2BD 306–√Rt △BHE cos ∠HBE =BH BE BH BE ⋅cos ∠HBE =30×=306–√2–√23–√AH AB+BH 40+303–√BE 30cm 6–√A (40+30)cm 3–√B BC C Rt △ABC ∠ACB =90∘BC =AB ⋅sin ∠BAC =12×0.515≈6.2BC 6.2B BC C BC【解答】过作地平面的垂线段,垂足为.在中,∵,∴(米).即大厅两层之间的距离的长约为米.B BC C Rt △ABC ∠ACB =90∘BC =AB ⋅sin ∠BAC =12×0.515≈6.2BC 6.2。
专项训练六 圆一、选择题1.如图,∠O =30°,C 为OB 上一点,且OC =6,以点C 为圆心,半径为3的圆与OA 的位置关系是( )A .相离B .相交C .相切D .均有可能第1题图 第3题图 第4题图2.(贺州中考)已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )A .2B .4C .6D .83.(兰州中考)如图,在⊙O 中,若点C 是AB ︵的中点,∠A =50°,则∠BOC 的度数为( ) A .40° B .45° C .50° D .60°4.(杭州中考)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB =3∠ADB ,则( )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB第5题图 第6题图 第7题图5.如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP ≤2,则弦AB 所对的圆周角的度数是( )A .60°B .120°C .60°或120°D .30°或150°6.(德州中考)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A .3步B .5步C .6步D .8步7.(山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( )A.π3B.π2C .πD .2π8.(滨州中考)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED ,其中一定成立的是( )A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤第8题图 第9题图 第10题图二、填空题9.(安顺中考)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,CD =6,则BE =________. 10.(齐齐哈尔中考)如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C =________度.11.(贵港中考)如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,将△ABC 绕点A 逆时针旋转60°后得到△ADE .若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是________(结果保留π).12.(呼和浩特中考)在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为________.13.(成都中考)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =________.第11题图 第13题图 第14题图14.如图,在扇形OAB 中,∠AOB =60°,扇形半径为r ,点C 在AB ︵上,CD ⊥OA ,垂足为D ,当△OCD 的面积最大时,AC ︵的长为________.三、解答题15.(宁夏中考)如图,已知△ABC ,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED =EC .(1)求证:AB =AC ;(2)若AB =4,BC =23,求CD 的长.16.(新疆中考)如图,在⊙O 中,半径OA ⊥OB ,过OA 的中点C 作FD ∥OB 交⊙O 于D 、F 两点,且CD =3,以O 为圆心,OC 为半径作弧CE ,交OB 于E 点.(1)求⊙O 的半径OA 的长; (2)计算阴影部分的面积.17.(西宁中考)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD . (1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,BC =6,AD BD =23,求BE 的长.18.★如图,在平面直角坐标系xOy中,直线y=3x-23与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案与解析1.C 2.D 3.A 4.D 5.C6.C 解析:根据勾股定理得斜边为82+152=17,则该直角三角形能容纳的圆形(内切圆)半径r =8+15-172=3(步),即直径为6步.7.C 解析:连接OE 、OF .∵CD 是⊙O 的切线,∴OE ⊥CD ,∴∠OED =90°.∵四边形ABCD 是平行四边形,∠C =60°,∴∠A =∠C =60°,∠D =120°.∵OA =OF ,∴∠A =∠OF A =60°,∴∠DFO =120°,∴∠EOF =360°-∠D -∠DFO -∠DEO =30°,∴FE ︵的长=30π·6180=π.8.D 解析:①∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BD ,∴①正确;②∵∠AOC 是⊙O 的圆心角,∠AEC 是⊙O 的圆内部的角,∴∠AOC ≠∠AEC ,∴②错误;③∵OC ∥BD ,∴∠OCB =∠DBC .∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠DBC ,∴CB 平分∠ABD ,∴③正确;④∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BD .∵OC ∥BD ,∴∠AFO =90°.∵点O 为圆心,∴AF =DF ,∴④正确;⑤由④有AF =DF ,∵点O 为AB 中点,∴OF 是△ABD 的中位线,∴BD =2OF ,∴⑤正确;⑥∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,∴⑥错误.9.4-7 解析:连接OC .∵弦CD ⊥AB 于点E ,CD =6,∴CE =ED =12CD =3.在Rt △OEC中,∠OEC =90°,CE =3,OC =4,∴OE =42-32=7,∴BE =OB -OE =4-7.10.45 解析:连接OD .∵CD 是⊙O 的切线,∴OD ⊥CD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD =90°.∵OA =OD ,∴∠A =∠ADO =45°,∴∠C =∠A =45°.11.π2解析:由题意可得△ABC ≌△ADE .∵∠C =90°,∠BAC =60°,AC =1,∴AB =2.∵∠DAE =∠BAC =60°,∴S 扇形BAD =60×π×22360=2π3,S 扇形△CAE =60π×12360=π6,∴S 阴影=S 扇形DAB +S △ABC -S △ADE-S 扇形ACE =2π3-π6=π2.12.24 解析:如图,设AB 与⊙O 相切于点F ,连接OF ,OD ,延长FO 交CD 于点E .∵2πR =26π,∴R =13,∴OF =OD =13.∵AB 是⊙O 的切线,∴OF ⊥AB .∵AB ∥CD ,∴EF ⊥CD ,即OE ⊥CD ,∴CE =ED .∵EF =18,OF =13,∴OE =5.在Rt △OED 中,∵∠OED =90°,OD =13,OE =5,∴ED =OD 2-OE 2=12,∴CD =2ED =24.13.392解析:作直径AE ,连接CE ,∴∠ACE =90°.∵AH ⊥BC ,∴∠AHB =90°,∴∠ACE =∠AHB .又∵∠B =∠E ,∴△ABH ∽△AEC ,∴AB AE =AH AC ,∴AB =AH ·AEAC.∵AC =24,AH =18,AE=2OC =26,∴AB =392.14.14πr 解析:∵OC =r ,CD ⊥OA ,∴DC =OC 2-OD 2=r 2-OD 2,∴S △OCD =12OD ·r 2-OD 2,∴()S △OCD 2=14OD 2·(r 2-OD 2)=-14OD 4+14r 2OD 2=-14(OD 2-r 22)2+r 416,∴当OD 2=r 22,即OD =22r时,△OCD 的面积最大,∴∠OCD =45°,∴∠COA =45°,∴AC ︵的长=45πr 180=14πr .15.(1)证明:∵ED =EC ,∴∠EDC =∠C .∵∠B +∠ADE =180°,∠EDC +∠ADE =180°,∴∠B =∠EDC ,∴∠B =∠C ,∴AB =AC ;(2)解:连接AE .∵AB 为直径,∴AE ⊥BC .由(1)知AB =AC ,∴AC =4,BE =CE =12BC = 3.∵∠C=∠C ,∠EDC =∠B ,∴△EDC ∽△ABC ,∴CE AC =CDBC,即CE ·BC =CD ·AC ,∴3·23=4CD ,∴CD=32.16.解:(1)连接OD .∵OA ⊥OB ,∴∠AOB =90°.∵CD ∥OB ,∴∠OCD =90°.在Rt △OCD 中,∵C 是AO 的中点,CD =3,∴OD =2OC .设OC =x ,∴x 2+(3)2=(2x )2,∴x =1,∴OD =2,∴⊙O 的半径为2;(2)∵sin ∠CDO =OC OD =12,∴∠CDO =30°.∵FD ∥OB ,∴∠DOB =∠CDO =30°,∴S 阴影=S △CDO+S 扇形OBD -S 扇形OCE =12×1×3+30π×22360-90π×12360=32+π12.17.(1)证明:连接OD .∵OB =OD ,∴∠OBD =∠BDO .∵∠CDA =∠CBD ,∴∠CDA =∠ODB .又∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°,∴∠ADO +∠CDA =90°,即∠CDO =90°,∴OD ⊥CD .∵OD 是⊙O 的半径,∴CD 是⊙O 的切线;(2)解:∵∠C =∠C ,∠CDA =∠CBD ,∴△CDA ∽△CBD ,∴CD BC =AD BD .∵AD BD =23,BC =6,∴CD=4.∵CE ,BE 是⊙O 的切线,∴BE =DE ,BE ⊥BC ,∴BE 2+BC 2=EC 2,即BE 2+62=(4+BE )2,解得BE =52.18.解:(1)原点O 在⊙P 外.理由如下:∵直线y =3x -23与x 轴、y 轴分别交于A ,B 两点,∴点A 的坐标为(2,0),点B 的坐标为(0,-23).在Rt △OAB 中,tan ∠OBA =OA OB =223=33,∴∠OBA =30°.如图①,过点O 作OH ⊥AB 于点H ,在Rt △OBH 中,OH =OB ·sin ∠OBA = 3.∵3>1,∴原点O 在⊙P 外;(2)如图②,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB =PC ,∴∠PCB =∠OBA =30°,∴⊙P被y 轴所截的劣弧所对的圆心角的度数为180°-30°-30°=120°,∴弧长为120°×π×1180=2π3;同理:当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为2π3.∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧的长为2π3;(3)如图③,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,作PD ⊥x 轴,∴PD ∥y轴,∴∠APD =∠ABO =30°.在Rt △DAP 中,AD =DP ·tan ∠DP A =1×tan30°=33,∴OD =OA -AD =2-33,∴此时点D 的坐标为⎝⎛⎭⎫2-33,0;当⊙P 与x 轴相切时,且位于x 轴上方时,根据对称性可以求得此时切点的坐标为⎝⎛⎭⎫2+33,0.综上所述,当⊙P 与x 轴相切时,切点的坐标为⎝⎛⎭⎫2-33,0或⎝⎛⎭⎫2+33,0.。
24. 1.1圆知识点 1 圆的定义1.圆的形成定义:在一个平面内,线段绕它固定的一个端点旋转________,另一个端点所形成的图形叫做圆.圆的集合定义:圆心为O、半径为r 的圆可以看成是所有到定点O 的距离等于 ________的点的集合.2.下列条件中,能确定圆的是( )A.以已知点O 为圆心B.以1 cm 长为半径C.经过已知点A,且半径为 2 cmD.以点O 为圆心, 1 cm 长为半径则点3.如图 24- 1- 1 所示,以坐标原点B的坐标是 ()O 为圆心的圆与y 轴交于点A, B,且OA= 1,图 24-1- 1A. (0, 1) B . (0,-1)C. (1, 0) D. (- 1,0)4.如图 24- 1- 2 所示,若 BD, CE 都是△ ABC 的高.求证: B, C, D, E 四点在同一个圆上.图 24-1- 2知识点2与圆有关的概念5.如图 24- 1- 3 所示,在⊙ O 中, ________是直径, ________是弦,劣弧有________,优弧有 ________.图 24-1- 36.如图 24- 1- 4,在⊙ O 中,点 A, O, D 以及点 B, O,C 分别在一条直线上,图中弦的条数是()图 24-1- 4A. 2 B.3 C.4D. 57.下列命题中是真命题的有()①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的两个圆是等圆;⑤直径是圆中最长的弦.A.2个B.3 个C.4 个D.5 个8.若圆的半径为3,则弦 AB 的长度的取值范围是__________ .9.已知:如图24- 1-5, OA, OB 为⊙ O 的半径, C, D 分别为 OA, OB 的中点.求证: AD= BC.图 24-1- 510.已知:如图24- 1-6,在⊙ O 中, AB 为弦, C, D 两点在弦AB 上,且 AC=BD .求证:△ OAC≌△ OBD.图 24-1- 611. 如图 24-1- 7, AB 是⊙ O 的直径 ,点 D , C 在⊙ O 上,AD ∥OC ,∠DAB =60°,连接 AC ,则∠ DAC 等于 ( )图 24-1- 7A .15°B . 30°C . 45°D . 60°︵ 12. 如图 24-1- 8 所示 , AB , MN 是⊙ O 中两条互相垂直的直径 AM,点 P 在上,且︵AM上移动时 ,不与点 A ,M 重合,过点 P 作 AB ,MN 的垂线,垂足分别是 D ,C.当点 P 在 矩形 PCOD 的形状、大小随之变化,则 PC 2+ PD 2 的值 ()图 24-1- 8A.逐渐变大B.逐渐变小C.不变D.不能确定13.如图 24-1- 9,已知 P 是⊙ O 外一点, Q 是⊙ O 上的动点,线段 PQ 的中点为M ,连接 OP, OM. 若⊙ O 的半径为2,OP= 4,则线段 OM 的最小值是 ()图 24-1- 9A.0 B.1 C. 2 D.314.如图 24 -1- 10,在 Rt△ ABC 中,以点 C 为圆心, BC 长为半径的圆交AB 于点D,交 AC 于点 E,∠ BCD = 40°,则∠ A = ________°.图 24- 1-1015.如图 24-1- 11, C 是以点 O 为圆心, AB 为直径的半圆上一点,且CO⊥AB,在 OC 两侧分别作矩形OGHI 和正方形ODEF ,且点 I, F 在 OC 上,点 H ,E 在半圆上,可证: IG= FD. 小云发现连接图中已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是________和 ________.图 24- 1-111 16.⊙O1与⊙ O2的半径分别是 r1, r2,且 r1和 r2是关于 x 的方程 x2- ax+4= 0 的两个根.若⊙ O1与⊙ O2是等圆,则 a2019的值为 ________.17.如图 24-1- 12 所示, AB 是⊙ O 的弦,半径 OC, OD 分别交 AB 于点 E,F,且AE = BF,请你指出线段OE 与 OF 的数量关系,并给予证明.图 24- 1-1218.在⊙ O 中,直径 AB =6,BC 是弦,∠ABC = 30°,点 P 在 BC 上,点 Q 在⊙ O 上,且 OP⊥ PQ.(1)如图 24-1- 13①,当 PQ∥ AB 时,求 PQ 的长;(2)如图 24-1- 13②,当点 P 在 BC 上移动时,求 PQ 长的最大值.图 24- 1-13教师详解详析1.一周 定长 r2. D [ 解析 ] ∵圆心和半径都确定后才可以确定圆 ,只有 D 选项中具备这两个条件 ,∴ D 选项正确.3. B [解析 ] ∵圆的半径都相等, ∴OB = OA = 1,∴点 B 的坐标是 (0, -1) .故选 B.4. 证明: 如图,取 BC 的中点 F ,连接 DF , EF.∵ BD ,CE 都是△ ABC 的高 ,∴△ BCD 和△ BCE 都是直角三角形 ,∴ DF , EF 分别是 Rt △ BCD 和 Rt △ BCE 斜边上的中线 , ∴ DF = EF = BF = CF ,∴ B , C , D , E 四点在以点 F 为圆心 ,BF 的长为半径的圆上.︵︵︵︵5. ADACCDADCCADAD ,AC ,,6. B [解析 ] 图中的弦有 AB , BC , CE ,共 3 条.7. A [解析 ]等弧是完全重合的弧 ,故①③错误;直径把圆分成两条相等的弧,即两个半圆 ,故②错误;半径相等的圆可以完全重合 ,是等圆 ,故④正确;直径是圆中最长的弦,故⑤正确.故选 A.8. 0<AB ≤ 69.证明: ∵OA ,OB 为⊙ O 的半径, ∴OA = OB.∵ C , D 分别为 OA , OB 的中点 ,∴ OC =OD.在△ AOD 和△ BOC 中,OA = OB,{∠O=∠O,)∵OD= OC,∴△ AOD ≌△ BOC( SAS),∴AD = BC.10.证明:∵ OA= OB ,∴∠ A=∠ B.在△ OAC 和△ OBD 中,OA=OB,{∠A=∠B,)∵AC= BD ,∴△ OAC ≌△ OBD( SAS).11.B [解析 ] ∵OA=OC,∴∠ CAO =∠ ACO.∵AD ∥ OC,∴∠ DAC =∠ ACO ,∴∠ DAC =∠ CAO.1∵∠ DAB =60°,∴∠ DAC = 2∠ DAB = 30°.12. C [解析 ]连接OP.∵四边形PCOD是矩形,∴PC= OD ,∴ PC2+ PD2= OD 2+ PD2= OP2,为一定值.故选 C.13.B [解析 ] 设 OP 与⊙ O 交于点 N,连接 MN ,OQ,如图.∵OP= 4,ON = 2,∴N 是 OP 的中点.又∵M 是 PQ的中点,∴MN 为△ POQ 的中位线,1 1∴MN =2OQ=2× 2= 1,∴点 M 在以点 N 为圆心, 1 为半径的圆上,∴当点 M 在 ON 上时, OM 的值最小,最小值为 1.故选 B.14. 20 [解析 ] ∵ CB=CD ,∴∠ B=∠ CDB.∵∠ B+∠ CDB +∠ BCD =180°,1 1∴∠ B= 2(180° -∠ BCD) = 2(180° -40° )= 70°.又∵∠ ACB = 90°,∴∠ A =90°-∠ B=20° .15. OH OE [解析 ] 连接 OH, OE,如图所示.∵在矩形 OGHI 和正方形 ODEF 中, IG= OH , OE=FD,又∵ OH= OE,∴IG= FD.116. 1 [解析 ] ∵⊙ O1与⊙ O2是等圆,∴ r1= r2,即方程 x2- ax+ 4=0 有两个相等的实数根,1∴Δ= b2- 4ac= a2- 4×4= 0,即 a2= 1,∴ a=±1.又∵ r1= r2>0, a= r1+ r2,∴ a=1,∴a2019=12019=1.17.解: OE= OF.证明:连接OA, OB.∵OA= OB,∴∠ A =∠ B.又∵ AE= BF,∴△ OAE ≌△ OBF ,∴OE=OF.18.解: (1)连接 OQ.∵PQ∥ AB ,PQ⊥ OP,∴ OP⊥ AB.∵AB =6,∴ OB =3.∵∠ ABC = 30°,∴PB= 2OP.在 Rt△PBO 中,由勾股定理,得 PB2= OP2+ OB 2. 设 OP= x,则 PB= 2x ,则 (2x) 2=x2+32,解得 x= 3(负值已舍去 ),∴ OP= 3.在 Rt△OPQ 中,由勾股定理,得 PQ= OQ2- OP2=32-(3)2= 6.(2)连接 OQ,由勾股定理得PQ= OQ2-OP2= 9- OP2.要使 PQ 取最大值,需 OP 取最小值,此时 OP⊥ BC. ∵∠ ABC = 30°,1 3∴OP= 2OB= 2,9 39-3.此时 PQ 最大值=4= 2。
人教版数学九年级2020年中考同步训练:《圆的选择题》1.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8 C.D.22.如图,已知圆O的圆心在原点,半径OA=1(单位圆),设∠AOP=∠α,其始边OA与x 轴重合,终边与圆O交于点P,设P点的坐标P(x,y),圆O的切线AT交OP于点T,且AT=m,则下列结论中错误的是()A.sinα=y B.cosα=xC.tanα=m D.x与y成反比例3.如图,Rt△ABC的斜边BC=4,∠ABC=30°,以AB、AC为直径分别作圆.则这两圆的公共部分面积为()A.+B.﹣C.﹣D.﹣4.如图,在圆O上依次有A.B,C三点,BO的延长线交圆O于E,=,点C作CD ∥AB交BE的延长线于D,AD交圆O于点F,连接OA,OF,若∠AOF=3∠FOE,且AF=2,劣弧CF的长是()A.πB.πC.πD.π5.如图,正方形ABCD中,⊙O过点A,B交边AD于点E,连结CE交⊙O于点F,连结AF,若tan∠AFE=,则的值为()A.1 B.C.D.6.如图,点O为正六边形的中心,P,Q分别从点A(1,0)同时出发,沿正六边形按图示方向运动,点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,则第2020次相遇地点的坐标为()A.B.(1,0)C.D.(﹣1,0)7.如图,在圆内接五边形ABCDE中,AB=AE,BC=CD=DE,且∠D=100°,连接AC和EC.则∠ACE的度数为()A.30°B.35°C.40°D.48°8.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC的度数为()A.22°B.24°C.27°D.30°9.如图,在平面直角坐标系中.点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,四边形OCDB是平行四边形.则点C的坐标为()A.(1,7)B.(2,6)C.(2,7)D.(1,6)10.如图,AB是⊙O的直径,点C,点D是半圆上两点,连结AC,BD相交于点P,连结AD,OD.已知OD⊥AC于点E,AB=2.下列结论:①AD2+BC2=4;②sin∠DAC=;③若AC=BD,则DE=OE;④若点P为BD的中点,则DE=2OE.其中确的是()A.①②③B.②③④C.③④D.②④11.如图,圆心为M的量角器的直径的两个端点A,B分别在x轴,y轴正半轴上(包括原点O),AB=4.点P,Q分别在量角器60°,120°刻度线外端,连结MP.量角器从点A 与点Q重合滑动至点Q与点O重合的过程中,线段MP扫过的面积为()A.π+B.πC.π+2D.312.如图,△ABC内接于⊙O,且AB=AC.直径AD交BC于点E,F是AE的中点,连结CF,若AD=6.则CF的最大值为()A.6 B.5 C.4 D.313.如图,△ABC内接于⊙O,将沿BC翻折,交AC于点D,连接BD,若∠BAC=66°,则∠ABD的度数是()A.66°B.44°C.46°D.48°14.如图,半径为3的⊙O与五边形ABCDE的边相切于点A,C,连接OA交BC于点H,连接OB,AB.若∠D+∠E=240°,HC=3BH,则△ABO的面积为()A.3B.C.D.215.如图,点A,B,C是⊙O上三点,AC=BC,点M为⊙O上一点,CE⊥AM,垂足为点E,AE=2,BM=,CM=,则的长为()A.πB.πC.πD.π16.如图,在△ABC中,∠C=40°,∠A=60°.以B为圆心,适当长度为半径作弧,分别交AB,BC于点D,E;分别以D,E为圆心,大于DE长度为半径作弧,两弧交于点F;作射线BP,交AC于点P,过点P作PM⊥AB于M;以P为圆心,PM的长为半径作⊙P.则下列结论中,错误的是()A.∠PBA=40°B.PC=PBC.PM=MB D.⊙P与△ABC有4个公共点17.如图,在△ABC中,∠A=60°,AB=4,以BC的中点O为圆心作圆,分别与AB、AC相切于D、E两点,则的长是()A.πB.πC.πD.318.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣3πB.18﹣πC.32﹣16πD.18﹣9π19.如图,5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与AE交于H,则弧AH的弧长为()A.πB.πC.πD.π20.如图,△ACD内接于⊙O,AB是⊙O的切线,∠C=45°,∠B=30°.AD=4,则AB长为()A.4 B.C.D.参考答案1.解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.2.解:如图,过点P作PH⊥OA于H,由题意知,OA=OP=1,OH=x,PH=y,由切线的性质定理可知AT⊥OA,在Rt△POH中,∠AOP=∠α,∴sinα===y,cosα===x,故A,B正确;在Rt△TOA中,tanα===m,故C正确,在Rt△POH中,OH2+PH2=OP2,∴x2+y2=1,故D错误;故选:D.3.解:如图,设点E是两圆的公共点,连接AE,取AC,AB的中点G,H.在Rt△ABC中,∵∠CAB=90°,∠ABC=30°,BC=4,∴AC=2,AB=2,∠C=60°,∴∠AHE=60°,∠AGE=120°,∴S阴=S扇形HAE﹣S△AEH+S扇形GEA﹣S△AEG=﹣×()2+﹣×1×=﹣,故选:C.4.解:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴=,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形,∴BC∥AD,∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180﹣3x)=180,解得:x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=2,∴的长==π,故选:C.5.解:如图,设⊙O交BC于J,连接AJ,JF,EJ,过点F作FM⊥AD于M交BC于N.设AB =3a.∵四边形ABCD是正方形,∴∠ABC=∠BAD=∠BCD=90°,AD∥BC,AD=AB=BC=CD=3a,∴AJ是⊙O的直径,∴∠AFJ=∠AEJ=90°,∵FM⊥AD,AD∥CB,∴MN⊥BC,∴∠MNC=∠BCD=∠D=90°,∴四边形MNCD是矩形,四边形ABJE是矩形,∴MN=CD=3a,AE=BJ,∴=,∴∠BAJ=∠AFE,∴tan∠BAJ=tan∠AFE=,∴BJ=AE=a,JC=2a,∵∠JAF=∠JEC,∴tan∠JAF=tan∠JEC,∴==,∵∠AFM+∠JFN=90°,∠JFN+∠FJN=90°,∴∠AFM=∠FJN,∵∠AMF=∠FNJ=90°,∴△AMF∽△FNJ,∴===,设JN=2x,则FM=3x,∵AM=AE+EM=a+2x,∴FN=AM=(a+2x),∵FM+FN=3a,∴3x+(a+2x)=3a,∴9x+2a+4x=9a,∴x=a,∴CN=2a﹣2x=2a﹣a=a,∵EM∥CN,∴===,故选:B.6.解:∵A(1,0),O为正六边形的中心,∴OA=AB=1,连接OB,作BG⊥OA于点G,则AG=OA=,BG=,∴B(,),∴C(﹣,),E(﹣,﹣),∵正六边形的边长=1,∴正六边形的周长=6,∵点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,∴第1次相遇需要的时间为:6÷(1+2)=2(秒),此时点P的路程为1×2=2,点的Q路程为2×2=4,此时P,Q相遇地点的坐标在点C(﹣,),以此类推:第二次相遇地点在点E(﹣,﹣),第三次相遇地点在点A(1,0),…如此下去,∵2020÷3=673…1,∴第2020次相遇地点在点C,C的坐标为(﹣,).故选:A.7.解:∵DE=DC,∴∠DEC=∠DCE=(180°﹣100°)=40°,∵BC=CD,∴=,∴∠BAC=∠CED=40°,∵∠EAC+∠EDC=180°,∴∠EAC=180°﹣100°=80°,∴∠EAB=∠EAC+∠BAC=120°,∴∠ECB=180°﹣∠EAB=60°,∵AE=AB,∴=,∴∠ACE=∠ACB=∠ECB=30°,故选:A.8.解:∵四边形ABCD是菱形,∴DA=DC,∴∠DAC=∠DCA=(180°﹣78°)=51°,∵AD∥BC,∴∠ACE=∠DAC=51°,∵四边形AECD是⊙O的内接四边形,∴∠AEC=180°﹣78°=102°,∴∠EAC=180°﹣102°﹣51°=27°,故选:C.9.解:如图,连接OD,AD,DM,作DF⊥OA于F.∵A(20,0),B(16,0),∴OA=20,OB=16,∴AB=20﹣16=4,∵四边形ABCD是平行四边形,∴CD∥OB,CD=OB=16,OC=BD,∴∠CDO=∠DOA,∴=,∴OC=AD=BD,∵DF⊥BA,∴BF=FA=2,∴OF=18,∴在Rt△DMF中.DF===6,∴D(18,6),C(2,6),故选:B.10.解:∵AB是直径,∴∠ACB=90°,∴AC2+BD2=AB2=4,∵AC>AD,∴AD2+BC2<4,故①错误,∵∠DAC=∠CBD,∴sin∠DAC=sin∠CBD=,故②正确,∵AE⊥OE,假设DE=EO,则AD=AO=OD,∴△ADO是等边三角形,显然不符合题意,故③错误,∵∠DEP=∠BCP=90°,DP=PB,∠DPE=∠BPC,∴△PDE≌△PBC(AAS),∴DE=BC,∵OE∥BC,AO=OB,∴AE=EC,∴BC=2OE,∴DE=2OE,故④正确.故选:D.11.解:由题意可知,点M的运动轨迹是以O为圆心,2为半径,圆心角为60°的扇形,点P在第四象限内时,∠AOB是弧AP所对的圆周角,所以∠AOP=30°,点P在第二象限内时,∠BOP是弧BP所对的圆周角,所以∠BOP=60°,所以点P的运动路径是一条线段,当量角器从点A与O重合滑动至点Q与点O重合时,MP扫过的图形是如图所示的阴影部分,它是由两个边长为2的等边三角形与一个扇形组成,所以PM扫过的面积为:+2××22=π+2,故选:C.12.解:∵F是AE的中点,∴设AF=EF=x,则AE=2x,∴DE=6﹣2x,∵AB=AC,∴=,∵AD为⊙O的直径,∴BC⊥AD,∠ABD=90°∴BE=CE,∠ABE+∠DBE=∠DBE+∠D=90°,∴∠ABE=∠D,∵∠AEB=∠DEB=90°,∴△ABE∽△BDE,∴,∴BE2=AE•DE=2x(6﹣x),∴CE2=2x(6﹣x),在Rt△CEF中,CF2=EF2+CE2=x2+2x(6﹣x)=﹣3(x﹣2)2+36,∴当x=2时,CF的最大值为6,故选:A.13.解:∵将沿BC翻折,交AC与点D,∴∠BAC+∠BDC=180°,∵∠BAC=66°,∴∠BDC=114°,∴∠ADB=180°﹣∠BDC=66°,∴∠ABD=180°﹣66°﹣66°=48°,故选:D.14.解:连接OC,过点C,B分别作AO的垂线,垂足分别为M,N,∵半径为3的⊙O与五边形ABCDE的边相切于点A,C,∴∠OAE=∠OCD=90°,∵∠AOC+∠OCD+∠D+∠E+∠OAE=540°,∠D+∠E=240°,∴∠AOC=120°,∴∠MOC=180°﹣∠AOC=60°,∵OC=3,∴,∵CM⊥AO,BN⊥AO,∴CM∥BN,∴△HCM∽△HBN,∴,∴,∴,故选:C.15.解:在AE上截取AG=BM,连接CG,∵AC=BC,∠A=∠B,∴△ACG≌△BCM(SAS),∴CG=CM=,∵AE=2,AG=BM=,∴GE=,∵CE⊥AM,∴CE===2,∴tan∠A==,∴∠A=30°,∴∠COM=60°,连接OM,CO,∵OC=OM,∴△COM是等边三角形,∴OC=,∴的长==,故选:A.16.解:∵∠C=40°,∠A=60°,∴∠ABC=80°,由题意得,BP平分∠ABC,∴∠ABP=ABC=40°,故选项A正确;∵∠PBC=∠PBA=ABC=40°,∴∠C=∠PBC,∴PC=PB,故选项B正确;∵PM⊥AB,∴∠BMP=90°,∴∠BPM=50°,∴∠BPM≠∠MBP,∴PM≠BM,故C选项错误;∵点P在∠ABC的角平分线上,∴P到AB和BC的距离=PM=⊙P的半径,∴AB,BC与⊙P相切,∵PA>PM,PC>PM,∴⊙P与AC相交,∴⊙P与△ABC有4个公共点,故D选项正确,故选:C.17.解:连接OA,OE,OD,∵AB、AC与⊙O相切于D、E两点,∴∠OEC=∠ODB=∠AEO=∠ADO=90°,∵∠BAC=60°,∴∠DOE=120°,∵点O为BC的中点,∴OB=OC,∵OE=OD,∴Rt△OEC≌RtODB(HL),∴∠C=∠B,∴AC=AB=4,AO⊥BC,∴∠CAO=,∴AO=AC=2,∴OE=AO=,∴的长是=π,故选:C.18.解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°﹣60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=8×=4,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEG的面积=8×4﹣=32﹣16π.故选:C.19.解:连接EB,BH,AB,∵BE=AB==,AE==,∴BE2+AB2=AE2,∴∠ABE=90°,∴△ABE是等腰直角三角形,∵∠ACB=90°,∴AB是圆的直径,∴∠AHB=90°,∴BH⊥AH,∴∠ABH=∠BAH=45°,∴弧AH所对的圆心角为90°,∴的长==.故选:B.20.解:如图,连接OA、OD,∵∠C=45°.∴∠AOD=2∠C=90°.又∵OA=OD,AD=4,∴AD2=2OA2=16,则OA=2.又∵AB是⊙O的切线,∴∠OAB=90°.∵∠B=30°,OA=2,∴AB=OA=2.故选:D.。
24.1.1 圆
知识点1 圆的定义
1.圆的形成定义:在一个平面内,线段绕它固定的一个端点旋转________,另一个端点所形成的图形叫做圆.圆的集合定义:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于________的点的集合.
2.下列条件中,能确定圆的是( )
A.以已知点O为圆心
B.以1 cm长为半径
C.经过已知点A,且半径为2 cm
D.以点O为圆心,1 cm长为半径
3.如图24-1-1所示,以坐标原点O为圆心的圆与y轴交于点A,B,且OA=1,则点B的坐标是( )
图24-1-1
A.(0,1) B.(0,-1)
C.(1,0) D.(-1,0)
4.如图24-1-2所示,若BD,CE都是△ABC的高.求证:B,C,D,E四点在同一个圆上.
图24-1-2
知识点2 与圆有关的概念
5.如图24-1-3所示,在⊙O中,________是直径,________是弦,劣弧有
________,优弧有________.
图24-1-3
6.如图24-1-4,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数是( )
图24-1-4
A.2 B.3 C.4 D.5
7.下列命题中是真命题的有( )
①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的两个圆是等圆;⑤直径是圆中最长的弦.
A.2个B.3个C.4个D.5个
8.若圆的半径为3,则弦AB的长度的取值范围是__________.
9.已知:如图24-1-5,OA,OB为⊙O的半径,C,D分别为OA,OB的中点.求证:AD=BC.
图24-1-5
10.已知:如图24-1-6,在⊙O中,AB为弦,C,D两点在弦AB上,且AC=BD.
求证:△OAC≌△OBD.
图24-1-6
11.如图24-1-7,AB 是⊙O 的直径,点D ,C 在⊙O 上,
AD ∥OC ,∠DAB =60°,连接AC ,则∠DAC 等于( )
图24-1-7
A .15°
B .30°
C .45°
D .60°
12.如图24-1-8所示,AB ,MN 是⊙O 中两条互相垂直的直径,点P 在上,且
AM ︵ 不与点A ,M 重合,过点P 作AB ,MN 的垂线,垂足分别是D ,C.当点P 在上移动时,
AM ︵ 矩形PCOD 的形状、大小随之变化,则PC 2+PD 2的值( )
图24-1-8
A .逐渐变大
B .逐渐变小
C .不变
D .不能确定
13.如图24-1-9,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM.若⊙O 的半径为2,OP =4,则线段OM 的最小值是( )
图24-1-9
A .0
B .1
C .2
D .3
14.如图24-1-10,在Rt △ABC 中,以点C 为圆心,BC 长为半径的圆交AB 于点D ,交AC 于点E ,∠BCD =40°,则∠A =________°.
图24-1-10
15.如图24-1-11,C 是以点O 为圆心,AB 为直径的半圆上一点,且CO ⊥AB ,在OC 两侧分别作矩形OGHI 和正方形ODEF ,且点I ,F 在OC 上,点H ,E 在半圆上,可证:IG =FD.小云发现连接图中已知点得到两条线段,便可证明IG =FD.
请回答:小云所作的两条线段分别是________和________.
图24-1-11
16.⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是关于x 的方程x 2-ax +=0的两个14根.若⊙O 1与⊙O 2是等圆,则a 2019的值为________.
17.如图24-1-12所示,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且
AE=BF,请你指出线段OE与OF的数量关系,并给予证明.
图24-1-12
18.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O 上,且OP⊥PQ.
(1)如图24-1-13①,当PQ∥AB时,求PQ的长;
(2)如图24-1-13②,当点P在BC上移动时,求PQ长的最大值.
图24-1-13
教师详解详析
1.一周 定长r
2.D [解析] ∵圆心和半径都确定后才可以确定圆,只有D 选项中具备这两个条件,∴D 选项正确.
3.B [解析] ∵圆的半径都相等,∴OB =OA =1,
∴点B 的坐标是(0,-1).故选B .
4.证明:如图,取BC 的中点F ,连接DF ,EF.
∵BD ,CE 都是△ABC 的高,
∴△BCD 和△BCE 都是直角三角形,
∴DF ,EF 分别是Rt △BCD 和Rt △BCE 斜边上的中线,
∴DF =EF =BF =CF ,
∴B ,C ,D ,E 四点在以点F 为圆心,BF 的长为半径的圆上.
5.AD AD ,AC , ,AC ︵ CD ︵ ADC ︵ CAD ︵
6.B [解析] 图中的弦有AB ,BC ,CE ,共3条.
7.A [解析] 等弧是完全重合的弧,故①③错误;直径把圆分成两条相等的弧,即两个半圆,故②错误;半径相等的圆可以完全重合,是等圆,故④正确;直径是圆中最长的弦,故⑤正确.故选A .
8.0<AB ≤6
9.证明:∵OA ,OB 为⊙O 的半径,∴OA =OB.
∵C ,D 分别为OA ,OB 的中点,
∴OC =OD.
在△AOD 和△BOC 中,
∵{OA =OB ,
∠O =∠O ,
OD =OC ,)
∴△AOD ≌△BOC(SAS ),
∴AD =BC.
10.证明:∵OA =OB ,
∴∠A =∠B.
在△OAC 和△OBD 中,
∵{OA =OB ,
∠A =∠B ,
AC =BD ,)
∴△OAC ≌△OBD(SAS ).
11.B [解析] ∵OA =OC ,
∴∠CAO =∠ACO.
∵AD ∥OC ,∴∠DAC =∠ACO ,
∴∠DAC =∠CAO.
∵∠DAB =60°,∴∠DAC =∠DAB =30°.
1212.C [解析] 连接OP.∵四边形PCOD 是矩形,∴PC =OD ,∴PC 2+PD 2=OD 2+PD 2=OP 2,为一定值.故选C .
13.B [解析] 设OP 与⊙O 交于点N ,连接MN ,OQ ,
如图.
∵OP =4,ON =2,
∴N 是OP 的中点.
又∵M 是PQ 的中点,
∴MN 为△POQ 的中位线,
∴MN =OQ =×2=1,
1212∴点M 在以点N 为圆心,1为半径的圆上,
∴当点M 在ON 上时,OM 的值最小,最小值为1.
故选B .
14.20 [解析] ∵CB =CD ,∴∠B =∠CDB.
∵∠B +∠CDB +∠BCD =180°,
∴∠B =(180°-∠BCD)=(180°-40°)=70°.又∵∠ACB =90°,∴∠A =90°1212-∠B =20°.
15.OH OE [解析] 连接OH ,OE ,如图所示.
∵在矩形OGHI 和正方形ODEF 中,IG =OH ,OE =FD ,
又∵OH =OE ,
∴IG =FD.
16.1 [解析] ∵⊙O 1与⊙O 2是等圆,∴r 1=r 2,即方程x 2-ax +=0有两个相等的实14数根,
∴Δ=b 2-4ac =a 2-4×=0,即a 2=1,∴a =±1.
14又∵r 1=r 2>0,a =r 1+r 2,∴a =1,
∴a 2019=12019=1.
17.解:OE =OF.证明:连接OA ,OB.
∵OA =OB ,∴∠A =∠B.
又∵AE =BF ,
∴△OAE ≌△OBF ,
∴OE =OF.
18.解:(1)连接OQ.
∵PQ ∥AB ,PQ ⊥OP ,∴OP ⊥AB.
∵AB =6,∴OB =3.
∵∠ABC =30°,
∴PB =2OP.
在Rt △PBO 中,由勾股定理,得PB 2=OP 2+OB 2.
设OP =x ,则PB =2x ,则(2x)2=x 2+32,
解得x =(负值已舍去),∴OP =.
33在Rt △OPQ 中,由勾股定理,得PQ ===.
OQ 2-OP 232-(3)26(2)连接OQ ,由勾股定理得
PQ ==.
OQ 2-OP 29-OP 2要使PQ 取最大值,需OP 取最小值,此时OP ⊥BC.
∵∠ABC =30°,
∴OP =OB =,
1232此时PQ 最大值== .9-943
23。