高考数学一轮复习第五章数列课时分层作业三十二等比数列及其前n项和理
- 格式:doc
- 大小:759.50 KB
- 文档页数:7
5.3 等比数列及其前n 项和[基础送分 提速狂刷练]一、选择题1.(2018·邢台摸底)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .27答案 B解析 依题意得a 27=a 5·a 9=81,又注意到a 7a 5=q 2>0(其中q 为公比),因此a 5,a 7的符号相同,故a 7=9.故选B.2.(2018·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12 D .2答案 D解析 由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.故选D.3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里答案 B解析 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里.故选B.4.(2018·浙江温州十校联考)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m =( )A .3B .4C .5D .6答案 C解析 由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =a m +1a m=-2.又S m =a 1-a m q 1-q=-11,故a 1=-1.又a m =a 1·q m -1=-16,故(-1)×(-2)m -1=-16,求得m =5.故选C.5.(2017·福建漳州八校联考)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .33答案 D解析 设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33.故选D.6.(2017·安徽六校素质测试)在各项均为正数的等比数列{a n }中,a 2,a 4+2,a 5成等差数列,a 1=2,S n 是数列{a n }的前n 项的和,则S 10-S 4=( )A .1008B .2016C .2032D .4032答案 B解析 由题意知2(a 4+2)=a 2+a 5,即2(2q 3+2)=2q +2q 4=q (2q 3+2),得q =2,所以a n =2n,S 10=-2101-2=211-2=2046,S 4=-241-2=25-2=30,所以S 10-S 4=2016.故选B.7.(2018·上海黄浦模拟)已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )A.158或4 B.4027或4 C.4027 D.158答案 C解析 设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84,S 6=6,两者不相等,因此不合题意. 当q ≠1时,由28S 3=S 6及首项为1,得-q 31-q=1-q 61-q,解得q =3. 所以数列{a n }的通项公式为a n =3n -1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为1+13+19+127=4027.8.(2018·衡水模拟)已知S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3·…·a n ,则使T n 取最小值时n 的值为( )A .3B .4C .5D .6答案 C解析 设等比数列{a n }的公比为q ,由9S 3=S 6知,q ≠1,故-q 31-q=1-q 61-q,解得q =2,又a 1=120,所以a n =a 1qn -1=2n -120. 因为T n =a 1a 2a 3·…·a n ,故当T n 取最小值时a n ≤1,且a n +1≥1,即⎩⎪⎨⎪⎧2n -120≤1,2n20≥1,得n =5.故选C.9.(2018·河南洛阳模拟)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9答案 D解析 ∵a ,b 是函数f (x )=x 2-px 十q (p >0,q >0)的两个不同的零点,∴a +b =p ,ab =q .∵p >0,q >0,∴a >0,b >0.又a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,∴⎩⎪⎨⎪⎧2b =a -2,ab =4①或⎩⎪⎨⎪⎧ 2a =b -2,ab =4,②解①得⎩⎪⎨⎪⎧a =4,b =1,解②得⎩⎪⎨⎪⎧a =1,b =4.∴p =a +b =5,q =1×4=4. ∴p +q =9.故选D.10.(2017·广东清远一中一模)已知正项等比数列{a n }满足:a 3=a 2+2a 1,若存在两项a m ,a n ,使得a m a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256 D .不存在答案 A解析 ∵正项等比数列{a n }满足:a 3=a 2+2a 1, ∴a 1q 2=a 1q +2a 1,即q 2=q +2,解得q =-1(舍)或q =2, ∵存在两项a m ,a n ,使得a m a n =4a 1, ∴a m a n =16a 21, ∴(a 1·2m -1)·(a 1·2n -1)=16a 21,∴a 21·2m +n -2=16a 21,∴m +n =6,∴1m +4n =⎝ ⎛⎭⎪⎫1m +4n ⎣⎢⎡⎦⎥⎤16m +n =16⎝⎛⎭⎪⎫5+n m +4m n ≥16⎝ ⎛⎭⎪⎫5+2n m ·4m n =32(当且仅当n =2m 时取等), ∴1m +4n 的最小值是32.故选A. 二、填空题11.(2014·天津高考)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 S 1=a 1,S 2=2a 1-1,S 4=4a 1-6.故(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.12.(2014·广东高考)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.答案 50解析 因为等比数列{a n }中,a 10·a 11=a 9·a 12,所以由a 10a 11+a 9a 12=2e 5,可解得a 10·a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln (a 1·a 2·…·a 20) =ln (a 10·a 11)10=10ln (a 10·a 11)=10ln e 5=50.13.(2017·广东潮州二模)已知S n 为数列{a n }的前n 项和,a n =2×3n -1(n ∈N *),若b n =a n +1S n S n +1,则b 1+b 2+…+b n =________. 答案 12-13n +1-1解析 由a n =2×3n -1可知数列{a n }是以2为首项,3为公比的等比数列,所以S n =-3n1-3=3n-1,则b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,则b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=12-13n +1-1. 14.一正数等比数列前11项的几何平均数为32,从这11项中抽去一项后所余下的10项的几何平均数为32,那么抽去的这一项是第________项.答案 6解析 由于数列的前11项的几何平均数为32,所以该数列的前11项之积为3211=255. 当抽去一项后所剩下的10项之积为3210=250, ∴抽去的一项为255÷250=25.又因a 1·a 11=a 2·a 10=a 3·a 9=a 4·a 8=a 5·a 7=a 26, ∴a 1·a 2·…·a 11=a 116.故有a 116=255,即a 6=25. ∴抽出的应是第6项. 三、解答题15.(2017·海淀区模拟)已知{a n }是等差数列,满足a 1=2,a 4=14,数列{b n }满足b 1=1,b 4=6,且{a n -b n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)若∀n ∈N *,都有b n ≤b k 成立,求正整数k 的值. 解 (1)设{a n }的公差为d ,则d =a 4-a 13=4,∴a n =2+(n -1)×4=4n -2,故{a n }的通项公式为a n =4n -2(n ∈N *). 设c n =a n -b n ,则{c n }为等比数列.c 1=a 1-b 1=2-1=1,c 4=a 4-b 4=14-6=8,设{c n }的公比为q ,则q 3=c 4c 1=8,故q =2. 则c n =2n -1,即a n -b n =2n -1.∴b n =4n -2-2n -1(n ∈N *).故{b n }的通项公式为b n =4n -2-2n -1(n ∈N *).(2)由题意,b k 应为数列{b n }的最大项. 由b n +1-b n =4(n +1)-2-2n-4n +2+2n -1=4-2n -1(n ∈N *).当n <3时,b n +1-b n >0,b n <b n +1,即b 1<b 2<b 3;当n =3时,b n +1-b n =0,即b 3=b 4;当n >3时,b n +1-b n <0,b n >b n +1,即b 4>b 5>b 6>…. 综上所述,数列{b n }中的最大项为b 3和b 4. 故存在k =3或4,使∀n ∈N *,都有b n ≤b k 成立.16.(2015·广东高考)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式. 解 (1)∵4S n +2+5S n =8S n +1+S n -1, ∴n =2时,4S 4+5S 2=8S 3+S 1,∴4(a 1+a 2+a 3+a 4)+5(a 1+a 2)=8(a 1+a 2+a 3)+a 1,∴4×⎝ ⎛⎭⎪⎫1+32+54+a 4+5×⎝ ⎛⎭⎪⎫1+32=8×( 1+32+54 )+1,解得a 4=78.(2)证明:∵n ≥2时,4S n +2+5S n =8S n +1+S n -1, ∴4(S n +2-S n +1)-2(S n +1-S n ) =2⎣⎢⎡⎦⎥⎤S n +1-S n -12S n -S n -1,∴(S n +2-S n +1)-12(S n +1-S n )=12⎣⎢⎡⎦⎥⎤S n +1-S n -12S n -S n -1, ∴a n +2-12a n +1=12⎝ ⎛⎭⎪⎫a n +1-12a n .又a 3-12a 2=12⎝⎛⎭⎪⎫a 2-12a 1,∴⎩⎨⎧⎭⎬⎫a n +1-12a n 是首项为1,公比为12的等比数列.(3)由(2)知⎩⎨⎧⎭⎬⎫a n +1-12a n 是首项为1,公比为12的等比数列,∴a n +1-12a n =⎝ ⎛⎭⎪⎫12n -1,两边同乘以2n +1,得a n +1·2n +1-a n ·2n=4.又a 2·22-a 1·21=4,∴{a n ·2n}是首项为2,公差为4的等差数列, ∴a n ·2n =2+4(n -1)=2(2n -1), ∴a n =n -2n =2n -12n -1.。
5.3 等比数列及其前n 项和[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(2017届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(2017届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(2018届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(2017届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(2017届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n。
第五章 数列 5.3 等比数列及其前n 项和练习 理[A 组·基础达标练]1.[2016·邢台摸底]已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .27答案 B解析 依题意得a 27=a 5·a 9=81,又注意到a 7a 5=q 2>0(其中q 为公比),因此a 5,a 7的符号相同,故a 7=9,选B.2.[2015·唐山期末]设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2 B.73 C.310 D .1或2答案 B解析 设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,S 4=3k ,∴S 6S 4=7k 3k =73,故选B.3.[2014·重庆高考]对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列答案 D解析 不妨设公比为q ,则a 23=a 21q 4,a 1·a 9=a 21q 8,a 2·a 6=a 21·q 6,当q ≠±1时,A 、B 均不正确;又a 24=a 21q 6,a 2·a 8=a 21q 8,同理,C 不正确;由a 26=a 21q 10,a 3·a 9=a 21q 10,知D 正确.4.[2015·太原一模]在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2 D .2 2答案 B解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,设其公比为q ,∴a 2=2,a 4=12,∴q 2=a 4a 2=14,∴q =12,a 1=a 2q=4.5.[2015·洛阳模拟]已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 答案 D解析列出方程组⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=-8,即⎩⎪⎨⎪⎧a 1q 3+a 1q 6=2,a 21q 9=-8,即⎩⎪⎨⎪⎧a 1q 31+q 3=2, ①a 21q 9=-8. ②①2÷②得 1+q 3 2q 3=-12, 解得q 3=-2或q 3=-12.当q 3=-2时,a 1=1,a 10=-8, 则a 1+a 10=-7;当q 3=-12时,a 1=-8,a 10=1,则a 1+a 10=-7.6.[2016·南昌调研]已知等比数列{a n }的前n 项和为S n ,则下列说法中一定成立的是( )A .若a 3>0,则a 2015<0B .若a 4>0,则a 2014<0C .若a 3>0,则S 2015>0D .若a 4>0,则S 2014>0 答案 C解析 等比数列{a n }的公比q ≠0.对于A ,若a 3>0,则a 1q 2>0,所以a 1>0,所以a 2015=a 1q 2014>0,所以A 不正确;对于B ,若a 4>0,则a 1q 3>0,所以a 1q >0,所以a 2014=a 1q2013>0,所以B 不正确;对于C ,若a 3>0,则a 1=a 3q 2>0,所以当q =1时,S 2015>0,当q ≠1时,S 2015=a 1 1-q 2015 1-q>0(1-q 与1-q2015同号),所以C 正确,同理可知D 错误,故选C.7.[2016·山西四校联考]等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( )A .31B .36C .42D .48答案 A解析 由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1q =2,所以S 5=1× 1-251-2=31,故选A.8.[2016·郑州一检]已知等比数列{a n },其前n 项和为S n ,a 1+a 2=34,a 4+a 5=6,则S 6=________.答案634解析 记等比数列{a n }的公比为q ,则有q 3=a 4+a 5a 1+a 2=8,q =2,S 6=(a 1+a 2)+q 2(a 1+a 2)+q 4(a 1+a 2)=21(a 1+a 2)=634. 9.[2013·江苏高考]在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.答案 12解析 设等比数列的首项为a 1,公比为q >0,由 ⎩⎪⎨⎪⎧a 1·q 4=12,a 1·q 5+a 1·q 6=3,得a 1=132,q =2.由a 1+a 2+…+a n >a 1a 2…a n ,得2n-1>2 n -1 n -102 .检验知n =12时,212-1>211;n =13时,213-1<218,故满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值是12.10.[2016·兰州诊断]数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n,若b 10b 11=2015 110,则a 21=________.答案 2015 解析 由b n =a n +1a n ,且a 1=1,得b 1=a 2a 1=a 2;b 2=a 3a 2,a 3=a 2b 2=b 1b 2;b 3=a 4a 3,a 4=a 3b 3=b 1b 2b 3;……;b n -1=a na n -1,a n =b 1b 2…b n -1,∴a 21=b 1b 2…b 20.∵数列{b n }为等比数列,∴a 21=(b 1b 20)(b 2b 19)…(b 10b 11)=(b 10b 11)10=(2015110 )10=2015.11.[2015·洛阳期末]已知等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式; (2)设b n =-log3a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解 (1)设数列{a n }的公比为q ,由a 23=9a 2a 6得a 23=9a 24,∴q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,∴a 1=13.故数列{a n }的通项公式为a n =13n .(2)∵a n =13n ,∴b n =-log3 13n =2n ,从而1b n b n +1=14n n +1 =14⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =14⎝⎛⎭⎪⎫1-1n +1=n 4 n +1 . 12.[2015·山东高考]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解 (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13.当n >1时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n >1时,T n =b 1+b 2+b 3+…+b n =13+[1×3-1+2×3-2+…+(n -1)×31-n],所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n .经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n .[B 组·能力提升练]1.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln |x |. 则其中是“保等比数列函数”的f (x )的序号为( )A .①②B .③④C .①③D .②④ 答案 C解析 验证①f a n +1 f a n =a 2n +1a 2n =q 2,③f a n +1 f a n =|a n +1||a n |=|q |,∴①③为“保等比数列函数”,故选C.2.[2016·泰安模拟]在如图所示的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x +y +z 的值为( )A .1B .2C .3D .4 答案 B解析 由题知表格中第三纵列中的数成首项为4,公比为12的等比数列,故有x =1.根据每横行成等差数列得第四列前两个数字依次为5,52,故第四列的公比为12.所以y =5×⎝ ⎛⎭⎪⎫123=58,同理z =6×⎝ ⎛⎭⎪⎫124=38,因此x +y +z =2. 3.[2015·沈阳一模]数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.答案323(1-4-n) 解析 设等比数列{a n }的公比为q ,由等比数列的性质知a 5=a 2q 3,求得q =12,所以a 1=4.a 2a 3=⎝ ⎛⎭⎪⎫12a 1⎝ ⎛⎭⎪⎫12a 2=14a 1a 2,a n a n +1=⎝ ⎛⎭⎪⎫12a n -1⎝ ⎛⎭⎪⎫12a n =14a n -1a n (n ≥2).设b n =a n a n +1,可以得出数列{b n }是以8为首项,以14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1为数列{b n }的前n项和,由等比数列前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).4.[2015·临沂模拟]在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1,a 5的等比中项为16.(1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N *恒成立,若存在,求出正整数k 的最小值;若不存在,请说明理由.解 (1)设数列{a n }的公比为q ,由题意可得a 3=16, 因为a 3-a 2=8,则a 2=8, 所以q =2,a 1=4, 所以a n =2n +1.(2)因为b n =log 42n +1=n +12,所以S n =b 1+b 2+…+b n =n n +34.因为1S n=4n n +3 =43⎝ ⎛⎭⎪⎫1n -1n +3,所以1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3=43⎝ ⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3=43×116-43×⎝ ⎛⎭⎪⎫1n +1+1n +2+1n +3=229-43×⎝ ⎛⎭⎪⎫1n +1+1n +2+1n +3当n =1时,1S 1=1<2<229当n ≥2时,1S 1+1S 2+…+1S n=229-43⎝ ⎛⎭⎪⎫1n +1+1n +2+1n +3<229<3.故存在k =3时,对任意的n ∈N *都有1S 1+1S 2+1S 3+…+1S n<3.。
第五章第三节等比数列及其前n项和一、选择题1.如果等比数列{a n}中,a3·a4·a5·a6·a7=4错误!,那么a5=A.2C.±2 D.±错误!2.设数列{a n},{b n}分别为等差数列与等比数列,且a1=b1=4,a4=b4=1,则以下结论正确的是A.a2>b2B.a3<b3C.a5>b5D.a6>b63.设a1,a2,a3,a4成等比数列,其公比为2,则错误!的值为D.14.已知等比数列{a n}中,a n>0,a10a11=e,则n a1+n a2+…+n a20的值为A.12 B.10C.8 D.e5.若等比数列{a n}满足a n a n+1=16n,则公比为A.2 B.4C.8 D.166.a1,a2,a3,a4是各项不为零的等差数列且公差d≠0,若将此数列删去某一项得到的数列按原来的顺序是等比数列,则错误!的值为A.-4或1 B.1C.4 D.4或-1二、填空题7.已知{a n}是递增等比数列,a2=2,a4-a3=4,则此数列的公比q=________8.已知数列{a n}的前n项和S n=2n-3,则数列{a n}的通项公式为________.9.设{a n}是公比为q的等比数列,|q|>1,令b n=a n+1n=1,2,…,若数列{b n}有连续四项在集合{-53,-23,19,37,82}中,则6q=________三、解答题10.设等比数列{a n}的前n项和为S n·已知a2=6,6a1+a3=30,求a n和S n·11.已知等比数列{a n}中,a1=错误!,公比q=错误!1S n为{a n}的前n项和,证明:S n=错误!;2设b n=og3a1+og3a2+…+og3a n,求数列{b n}的通项公式.12.已知两个等比数列{a n},{b n},满足a1=aa>0,b1-a1=1,b2-a2=2,b3-a3=31若a=1,求数列{a n}的通项公式;2若数列{a n}唯一,求a的值.详解答案一、选择题1.解析:依题意得a错误!=252,a5=错误!答案:B2.解析:设等差数列的公差为d,等比数列公比为q,由a1=b1=4,a4=b4=1,得d=-1,q=错误!,于是a2=3>b2=2错误!答案:A3.解析:由题意得a2=2a1,a3=4a1,a4=8a1∴错误!=错误!=错误!答案:A4.解析:n a1+n a2+…+n a20=n[a1a20·a2a19…a10a11]=ne10=10答案:B5.解析:由a n a n+1=16n,得a n+1·a n+2=16n+1,两式相除得,错误!=错误!=16,∴q2=16∵a n a n+1=16n,可知公比为正数,∴q=4答案:B6.解析:若删去a1或a4,知数列既为等差也为等比时,公差d=0,由条件知不成立.若删去a2,则a1+2d2=a1a1+3d,若删去a3,则a1+d2=a1a1+3d,解得错误!=-4或1答案:D二、填空题7.解析:由题意得2q2-2q=4,解得q=2或q=-1又{a n}单调递增,得q>1,∴q=2 答案:28.解析:当n≥2时,a n=S n-S n-1=2n-1,当n=1时,a1=S1=-1,所以a n=错误!答案:a n=错误!9.解析:∵b n=a n+1,∴a n=b n-1,而{b n}有连续四项在集合{-53,-23,19,37,82}中,∴{a n}有连续四项在集合{-54,-24,18,36,81}中.∵{a n}是公比为q的等比数列,|q|>1,∴{a n}中的连续四项为-24,36,-54,81∵q=-错误!=-错误!,∴6q=-9答案:-9三、解答题10.解:设{a n}的公比为q,由题设得错误!解得错误!或错误!当a1=3,q=2时,a n=3×2n-1,S n=3×2n-1;当a1=2,q=3时,a n=2×3n-1,S n=3n-111.解:1证明:因为a n=错误!×错误!n-1=错误!,S n=错误!=错误!,所以S n=错误!2因为b n=og3a1+og3a2+…+og3a n=-1+2+…+n=-错误!所以{b n}的通项公式为b n=-错误!12.解:1设数列{a n}的公比为q,则b1=1+a=2,b2=2+aq=2+q,b3=3+aq2=3+q2,由b1,b2,b3成等比数列得2+q2=23+q2.即q2-4q+2=0,解得q1=2+错误!,q2=2-错误!所以数列{a n}的通项公式为a n=2+错误!n-1或a n=2-错误!n-12设数列{a n}的公比为q,则由2+aq2=1+a3+aq2,得aq2-4aq+3a-1=0*,由a>0得Δ=4a2+4a>0,故方程*有两个不同的实根.由数列{a n}唯一,知方程*必有一根为0,代入*得a=错误!。
2018年高考数学一轮复习 第五章 数列 课时达标30 等比数列及其前n 项和 理[解密考纲]主要考查等比数列的通项公式,等比中项及其性质,以及前n 项和公式的应用,三种题型均有涉及.一、选择题1.等比数列x,3x +3,6x +6,…的第四项等于( A ) A .-24 B .0C .12D .24解析:由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.已知等比数列{a n }的前n 项和为S n =x ·3n -1-16,则x 的值为( C ) A .13B .-13C .12D .-12解析:当n =1时,a 1=S 1=x -16,①当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎪⎫x ·3n -1-16-⎝ ⎛⎭⎪⎫x ·3n -2-16=x ·(3n -1-3n -2)=2x ·3n -2, 因为{a n }是等比数列,所以a 1=a 2q =2x ·32-23=2x3,②由①②得x -16=2x 3,解得x =12.3.(2017·云南昆明模拟)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( B )A .-2B .- 2C .± 2D . 2解析:根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0,由a 3a 7=a 25,所以a 5=-a 3a 7=- 2.4.已知等比数列{a n }中的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( D )A .4n -1B .4n-1C .2n -1D .2n-1解析:∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n ,∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n -1,选D . 5.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( B )A .12B .10C .8D .2+log 35解析:由题意可知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18得a 5a 6=a 4a 7=9,而log3a 1+log3a 2+…+log3a 10=log3(a 1·a 2·…a 10)=log3(a 5a 6)5=log395=log3310=10.6.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( B )A .16B .8C .2 2D .4解析:由题意知a 4>0,a 14>0,a 4·a 14=8,a 7>0,a 11>0,则2a 7+a 11≥22a 7·a 11=22a 4·a 14=216=8,当且仅当⎩⎪⎨⎪⎧a 7·a 11=8,2a 7=a 11,即a 7=2,a 11=4时取等号,故2a 7+a 11的最小值为8,故选B .二、填空题7.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是4. 解析:设公比为q ,则由a 8=a 6+2a 4,得a 1q 7=a 1q 5+2a 1q 3,q 4-q 2-2=0,解得q 2=2(q 2=-1舍去),所以a 6=a 2q 4=4.8.等比数列的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由等比数列的性质可知a 1a 5=a 2a 4=a 23,于是,由a 1a 5=4得a 3=2,故a 1a 2a 3a 4a 5=32,则log2a 1+log2a 2+log2a 3+log2a 4+log2a 5=log2(a 1a 2a 3a 4a 5)=log232=5.9.(2017·江苏徐州模拟)若等比数列{a n }满足:a 2+a 4=20,a 3+a 5=40,则公比q =2;前n 项和S n =2n +1-2.解析:由a 2+a 4=20,a 3+a 5=40,得⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40,即⎩⎪⎨⎪⎧a 1q+q2=20,a 1q 2+q2=40,解得q =2,a 1=2,所以S n =a 1-qn1-q=-2n1-2=2n +1-2.三、解答题10.已知递增的等比数列{a n }的前n 项和为S n ,a 6=64 ,且a 4,a 5的等差中项为3a 3. (1)求数列{a n }的通项公式; (2)设b n =na 2n -1,求数列{b n }的前n 项和T n .解析:(1)设等比数列{a n }的公比为q (q >0),由题意,得⎩⎪⎨⎪⎧a 1q 5=64,a 1q 3+a 1q 4=6a 1q 2,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=-6435,q =-3,(舍去),所以a n=2n.(2)因为b n =na 2n -1=n22n -1,所以T n =12+223+325+427+…+n22n -1,14T n =123+225+327+…+n -122n -1+n22n +1, 所以34T n =12+123+125+127+…+122n -1-n 22n +1=12⎝ ⎛⎭⎪⎫1-141-14-n 22n +1=23-4+3n 3×22n +1,故T n =89-16+12n 9×22n +1=89-4+3n 9×22n -1.11.(2017·天津模拟)已知等比数列{a n }的前n 项和为S n ,若S 1 ,2S 2,3S 3成等差数列,且S 4=4027.(1)求数列{a n }的通项公式; (2)求证:S n <32.解析:(1)设等比数列{a n }的公比为q ,因为S 1,2S 2,3S 3成等差数列,所以4S 2=S 1+3S 3, 即4(a 1+a 2)=a 1+3(a 1+a 2+a 3),所以a 2=3a 3,所以q =a 3a 2=13.又S 4=4027,即a 11-q 41-q=4027,解得a 1=1,所以 a n =⎝ ⎛⎭⎪⎫13n -1.(2)证明:由(1)得S n =a 11-q n1-q=1-⎝ ⎛⎭⎪⎫13n 1-13=32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .因为n ∈N *,所以0<⎝ ⎛⎭⎪⎫13n <1,所以0<1-⎝ ⎛⎭⎪⎫13n<1,所以S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n <32.12.(2017·湖北华中师大附中期中)已知数列{a n }是等差数列,{b n }是等比数列,且a 1=b 1=2,b 4=54,a 1+a 2+a 3=b 2+b 3.(1)求数列{a n }和{b n }的通项公式;(2)数列{c n }满足c n =a n b n ,求数列{c n }的前n 项和S n . 解析:(1)设{a n }的公差为d ,{b n }的公比为q ,由b 4=b 1q 3,得q 3=b 4b 1=542=27,从而q =3,b n =2·3n -1.又∵a 1+a 2+a 3=3a 2=b 2+b 3=6+18=24, ∴a 2=8,d =a 2-a 1=8-2=6,∴a n =a 1+(n -1)d =2+6(n -1)=6n -4. ∴a n =6n -4,b n =2·3n -1.(2)c n =a n b n =4(3n -2)·3n -1.令S n =4[1×30+4×31+7×32+…+(3n -5)×3n -2+(3n -2)×3n -1],则3S n =4[1×31+4×32+7×33+…+(3n -5)×3n -1+(3n -2)×3n].两式相减得-2S n=4[1+3×31+3×32+…+3×3n -1-(3n -2)×3n],∴-2S n =4[1+32+33+ (3)-(3n -2)×3n] =2[(7-6n )·3n-7].∴S n =7+(6n -7)·3n.。
等比数列及其前n 项和【考纲传真】1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.【知识扫描】知识点1 等比数列的有关概念1.定义;如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,公比的表达式为a n +1a n=q . 2.等比中项;如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab . 知识点2 等比数列的有关公式1.通项公式:a n =a 1q n -1=a m q n -m .2.前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-q n 1-q=a 1-a n q 1-q ,q ≠1.1.必会结论;等比数列的性质 (1)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },{|a n |},⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.(5)若等比数列{a n }共2k (k ∈N *)项,则S 偶S 奇=q . 2.必清误区(1)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,与等差数列不同.(2)由a n +1=qa n (q ≠0)并不能断言{a n }是等比数列,还要验证a 1≠0.【学情自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)数列a ,a ,a ,…(a ∈R )必为等比数列.( )(2)当q <0时,等比数列{a n }为递减数列.( )(3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }是等比数列.( )2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A .-12B .-2C .2 D.12 3.(2015·广东高考)若三个正数a ,b ,c 成等比数列,其中a =5+26,c =5-26,则b =________.4.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.5.(2014·重庆高考)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .参考答案1【解析】 (1)错误.a =0时不能构成等比数列.(2)错误.当q <0时,{a n }为摆动数列.(3)错误.G 2=abD ⇒/G 为a ,b 的等比中项.(4)错误.若a 1=0,则{a n }不是等比数列.【答案】 (1)× (2)× (3)× (4)× 2【解析】 由题意知q 3=a 5a 2=18,∴q =12. 【答案】 D3【解析】 ∵a ,b ,c 成等比数列,∴b 2=a ·c =(5+26)(5-26)=1.又b >0,∴b =1.【答案】 14【解析】 设等比数列{a n }的公比为q ,因为8a 2+a 5=0,所以8a 1q +a 1q 4=0.∴q 3+8=0,∴q =-2,∴S5S 2=a 1-q 51-q ·1-q a 1-q 2=1-q 51-q 2=1--51-4=-11.【答案】 -115【解】 (1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n a 1+a n 2=n +2n -2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0,所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1-q n1-q =23(4n -1).。
第五章 数列授课提示:对应学生用书第293页[A 组 基础保分练]1.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案:A2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578 D .558答案:A3.(2021·西安模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5D .159.5 解析:因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.答案:C4.正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2答案:D5.(2021·南宁统一考试)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:等比数列{a n }为递增数列的充要条件为⎩⎪⎨⎪⎧a 1>0,q >1,或⎩⎪⎨⎪⎧a 1<0,0<q <1.答案:D6.已知数列{a n }是各项均为正数的等比数列,S n 是其前n 项和,若S 2+a 2=S 3-3,则a 4+3a 2的最小值为( )A .12B .9C .16D .18解析:因为S 3-S 2=a 3,所以由S 2+a 2=S 3-3,得a 3-a 2=3,设等比数列{a n }的公比为q ,则a 1=3q q -1,由于{a n }的各项为正,所以q >1.a 4+3a 2=a 1q 3+3a 1q =a 1q (q 2+3)=3q q -1q (q 2+3)=3q 2+3q -1=3(q -1+4q -1+2)≥18,当且仅当q -1=2,即q =3时,a 3+3a 2取得最小值18.答案:D7.已知等比数列{a n }的前n 项和为S n (n ∈N *),若S 6S 3=65,则数列{a n }的公比为________.答案:48.(2021·安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________. 答案:29.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.10.已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.解析:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n+1,∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2,∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).[B 组 能力提升练]1.(多选题)如图,在每个小格中填上一个数,使得每一行的数依次成等差数列,每一列的数依次成等比数列,则( )A.x =1 C .z =3D .x +y +z =2解析:因为每一列成等比数列,所以第一列的第3,4,5个小格中的数分别是12,14,18,第三列的第3,4,5个小格中的数分别是1,12,14,所以x =1.又每一行成等差数列,所以y =14+3×12-142=58,z -18=2×18,所以z =38,所以x +y +z =2.故A ,D 正确;B ,C错误. 答案:AD2.已知等比数列{a n }满足a 4+a 6a 1+a 3=18,a 5=4,记等比数列{a n }的前n 项积为T n ,则当T n取最大值时,n =( ) A .4或5 B .5或6 C .6或7D .7或8答案:C3.已知正项等比数列{a n }满足a 2·a 27·a 2 020=16,则a 1·a 2·…·a 1 017=( ) A .41 017 B .21 017 C .41 018 D .21 018答案:B4.(多选题)已知数列{a n }是等差数列,{b n }是等比数列,a 1=1,b 1=2,a 2+b 2=7,a 3+b 3=13.记c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,数列{c n }的前n 项和为S n ,则( ) A .a n =2n -1 B .b n =2nC .S 9=1 409D .S 2n =2n 2-n +43(4n-1)解析:设数列{a n }的公差为d ,数列{b n }的公比为q (q ≠0),依题意有⎩⎪⎨⎪⎧1+d +2q =7,1+2d +2q 2=13,得⎩⎪⎨⎪⎧d =2,q =2,故a n =2n -1,b n =2n ,故A ,B 正确;则c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n ,所以数列{c n }的前2n 项和S 2n =(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n )=n 1+4n -32+41-4n 1-4=2n 2-n +43(4n -1),S 9=S 8+a 9=385,故C 错误,D 正确. 答案:ABD5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________. 答案:2n +1-26.(2021·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.答案:317.(2021·山东德州模拟)给出以下三个条件:①数列{a n }是首项为2,满足S n +1=4S n +2的数列;②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a n 与S n 满足________,记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .注:如果选择多个条件分别解答,则按第一个解答计分. 解析:选条件①.由已知S n +1=4S n +2,可得当n ≥2时,S n =4S n -1+2, 两式相减,得a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n (n ≥2),当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,解得a 2=8,满足a 2=4a 1, 故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1, 所以b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,所以c n =n 2+n b n b n +1=n n +1n 2n +12=1n n +1=1n -1n +1. 故T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.选条件②.由已知3S n =22n +1+λ,可得当n ≥2时,3S n -1=22n -1+λ,两式相减,得3a n =22n +1-22n -1=3·22n -1,即a n =22n -1(n ≥2),当n =1时,a 1=2满足a n =22n -1,故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1. 以下同选条件①. 选条件③.由已知3S n =a n +1-2,可得当n ≥2时,3S n -1=a n -2, 两式相减,得3a n =a n +1-a n ,即a n +1=4a n (n ≥2),当n=1时,3a1=a2-2,又a1=2,所以a2=8,满足a2=4a1,故数列{a n}是以2为首项,4为公比的等比数列,所以a n=22n-1.以下同选条件①.[C组创新应用练]1.(多选题)设数列{a n}(n∈N*)是各项均为正数的等比数列,q是其公比,K n是其前n 项的积,且K5<K6,K6=K7>K8,则下列选项中正确的是( )A.0<q<1B.a7=1C.K9>K5D.K6与K7均为K n的最大值解析:若K6=K7,则a7=K7K6=1,故B正确;由K5<K6可得a6=K6K5>1,则q=a7a6∈(0,1),故A正确;由数列{a n}是各项为正数的等比数列且q∈(0,1),可得数列{a n}单调递减,则有K9<K5,故C错误;结合K5<K6,K6=K7>K8,可得D正确.答案:ABD2.(2021·湖南常德模拟)某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防.规定每人每天早晚八时各服一次,现知每次药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%.某人上午八时第一次服药,至第二天上午八时服完药时,这种药在他体内还残留( )A.220毫克B.308毫克C.123.2毫克D.343.2毫克解析:设第n次服药后,药在体内的残留量为a n毫克,则a1=220,a2=220+a1×(1-60%)=220×1.4=308,a3=220+a2×(1-60%)=343.2.答案:D3.设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是( )A.{a n}是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 答案:D。
高考数学一轮复习第5章数列第3节等比数列及其前n 项和教学案含解析理第三节 等比数列及其前n 项和[考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=a b.2.等比数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.(5)当q ≠-1时,数列S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列.[常用结论]1.“G 2=ab ”是“a ,G ,b 成等比数列”的必要不充分条件.2.若q ≠0,q ≠1,则S n =k -kq n(k ≠0)是数列{a n }成等比数列的充要条件,此时k =a 11-q.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列. ( ) (2)G 为a ,b 的等比中项⇔G 2=a b.( )(3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a. ( )[答案] (1)× (2)× (3)× (4)×2.(教材改编)等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36C.812D .54C [公比q =a 4a 3=1812=32,则a 6=a 4q 2=18×⎝ ⎛⎭⎪⎫322=812.]3.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为__________.27,81 [设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.]4.在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=________.4 [由题意知⎩⎪⎨⎪⎧a 3=a 1q 2=1,a 2+a 4=a 1q +a 1q 3=52,消去a 1得1q +q =52,解得q =12或q =2.又0<q <1,故q =12,此时a 1=4.]5.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =__________. 6 [∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列.又∵S n=126,∴21-2n1-2=126,解得n=6.]等比数列基本量的运算1.(2019·太原模拟)已知公比q≠1的等比数列{a n}的前n项和为S n,若a1=1,S3=3a3,则S5=( )A.1 B.5 C.3148D.1116D[由S3=3a3得a1+a2=2a3,∴1+q=2q2,解得q=-12或q=1(舍).∴S5=1-⎝⎛⎭⎪⎫-1251-⎝⎛⎭⎪⎫-12=23×3332=1116,故选D.]2.(2017·江苏高考)等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=74,S6=634,则a8=________.32[设{a n}的首项为a1,公比为q,则⎩⎪⎨⎪⎧a11-q31-q=74,a11-q61-q=634,解得⎩⎪⎨⎪⎧a1=14,q=2,所以a8=14×27=25=32.]3.(2018·全国卷Ⅲ)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.[解](1)设{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故a n=(-2)n-1或a n=2n-1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m=64,解得m =6.综上,m =6.[规律方法] 解决等比数列有关问题的两种常用思想 方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q (1-q n)(q <1)或S n =a 1q -1(qn-1)(q >1).等比数列的判定与证明【例1】 (2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解] (1)由条件可得a n +1=2n +1na n .将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[规律方法] 等比数列的判定方法 1定义法:若q 为非零常数,n ∈N *,则{a n }是等比数列.2等比中项法:若数列{a n }中,a n ≠0,且a \o\al(2,n +1)=a n ·a n +2n ∈N*,则数列{a n }是等比数列.3通项公式法:若数列通项公式可写成a n =c ·qnc ,q 均是不为0的常数,n ∈N *,则{a n }是等比数列.4前n 项和公式法:若数列{a n }的前n 项和S n =kq n-k k 为常数且k ≠0,q ≠0,1,则{a n }是等比数列.说明:前两种方法是证明等比数列的常用方法,后两种方法常用于选择题、填空题中的判定.(2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.[解] (1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.等比数列性质的应用►考法1 【例2】 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________. (1)50 (2)31 [(1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5. 所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×1-251-2=31.]►考法2 等比数列前n 项和的性质【例3】 (1)等比数列{a n }中,前n 项和为48,前2n 项和为60,则其前3n 项和为________. (2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式a n =________.(1)63 (2)12×⎝ ⎛⎭⎪⎫13n -1[(1)法一:设数列{a n }的前n 项和为S n .因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 11-q n1-q=48,①a 11-q 2n1-q=60,②②÷①,得1+q n =54,所以q n=14.③将③代入①,得a 11-q=64. 所以S 3n =a 11-q 3n 1-q =64×⎝ ⎛⎭⎪⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =S 2n -S n2S n+S 2n =60-48248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q nS n ,所以q n=S 2n -S n S n =14, 所以S 3n =S 2n +q 2nS n =60+⎝ ⎛⎭⎪⎫142×48=63.(2)设此数列{a n }的公比为q ,由题意,知S 奇+S 偶=4S 偶,所以S 奇=3S 偶,所以q =S 偶S 奇=13. 又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64, 所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝ ⎛⎭⎪⎫13n -1.][规律方法] 应用等比数列性质解题时的两个关键点1在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.(1)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( )A.12B.22C. 2 D .2(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50(1)B (2)B [(1) a 5·a 7=a 26=4a 24, ∴a 6=2a 4,则a 6a 4=q 2=2. ∴q =2,从而a 1=12=22,故选B. (2)S 12=(a 1+a 2+a 3)+(a 4+a 5+a 6)+(a 7+a 8+a 9)+(a 10+a 11+a 12)=4+8+16+32=60.]等差、等比数列的综合问题【例4】 (1)已知等比数列{a n }的各项都为正数,且a 3,2a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12 C.3-52D.3+52A [设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),由a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 31+q2a 41+q2=1q=25+1=25-15+15-1=5-12,故选A.] (2)(2018·北京高考)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. ①求{a n }的通项公式; ②求e a 1+e a 2+…+e a n . [解] ①设{a n }的公差为d . 因为a 2+a 3=5ln 2, 所以2a 1+3d =5ln 2. 又a 1=ln 2,所以d =ln 2. 所以a n =a 1+(n -1)d =n ln 2. ②因为e a 1=eln 2=2,==eln 2=2,所以数列{e a n }是首项为2,公比为2的等比数列. 所以e a 1+e a 2+…+e a n =2×1-2n1-2=2(2n-1).[规律方法] 等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a 1,d q 充分运用方程、函数、转化等数学思想方法,合理调用相关知识,就不难解决这类问题.在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . [解] (1)设等差数列{a n }的公差为d ,则依题意有⎩⎪⎨⎪⎧a 1=1,a 1+3d 2=a 1+d a 1+7d ,解得d =1或d =0(舍去), ∴a n =1+(n -1)=n . (2)由(1)得a n =n , ∴b n =2n,∴b n +1b n=2, ∴{b n }是首项为2,公比为2的等比数列, ∴T n =21-2n1-2=2n +1-2.1.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C.12D.18C [法一:∵a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12,故选C.法二:∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1), 将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12,故选C.]2.(2014·全国卷Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.n n +12D.n n -12A [由a 2,a 4,a 8成等比数列,得a 24=a 2a 8,即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2.∴S n=2n +n n -12×2=2n +n 2-n =n (n +1).]3.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. -8 [设等比数列{a n }的公比为q , ∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1,① a 1(1-q 2)=-3.②②÷①,得1-q =3,∴q =-2. ∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8.]4.(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.[解] 设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0. 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。
第三讲 等比数列及其前n 项和知识梳理·双基自测知识梳理知识点一 等比数列的概念 (1)等比数列的定义如果一个数列__从第2项起,每一项与它的前一项的比等于同一常数(不为零)__,那么这个数列叫做等比数列,这个常数叫做等比数列的__公比__,通常用字母__q __表示.符号语言:__a n +1a n=q __(n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么__G __叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=__ab __.注意:任意两数的等差中项都唯一存在;但只有两个数满足ab >0时,a 、b 才有等比中项,且有互为相反数的两个.知识点二 等比数列的有关公式(1)通项公式:a n =__a 1q n -1__=__a m q n -m __.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧__na 1__,q =1,__a 1(1-q n )1-q __(__a 1-a n q1-q __),q ≠1. 知识点三 等比数列的主要性质设数列{a n }是等比数列,S n 是其前n 项和.(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N *,特别地,若2s =p +r ,则a p a r=a 2s ,其中p ,s ,r ∈N *.(2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n (其中b ,p ,q 是非零常数)也是等比数列.(4)当q ≠-1或q =-1且k 为奇数时,S k ,S 2k -S k ,S 3k -S 2k ,…是等比数列.当q =-1且k 为偶数时,S k ,S 2k -S k ,S 3k -S 2k ,…不是等比数列.(5)等比数列{a n }的单调性①满足⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列.②满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.③当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.④当q <0时,{a n }为摆动数列.归纳拓展1.等比数列的概念的理解(1)等比数列中各项及公比都不能为零.(2)由a n +1=qa n (q ≠0),并不能断言{a n }为等比数列,还要验证a 1≠0. (3)等比数列中奇数项的符号相同,偶数项的符号相同.(4)S m +n =S n +q n S m =S m +q m S n ;若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .(5)若{a n }是等比数列,且a n >0(n ∈N *),则{log a a n }(a >0且a ≠1)成等差数列,反之亦然. (6)若{a n }是等差数列,则{aa n }(a >0,a ≠1)成等比数列,反之亦然.(7)三个数成等比数列可设三数为bq ,b ,bq ,四个数成等比数列且公比大于0时,可设四个数为b q 3,bq,bq ,bq 3.2.等比数列前n 项和公式的推导方法__错位相减法__.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × )(2)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (3)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × ) (4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( × )(5)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × ) 题组二 走进教材2.(必修5P 46T4改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( D )A .-12B .-2C .2D .12[解析] 由题意知q 3=a 5a 2=18,即q =12.3.(必修5P 54A 组T8改编)在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为__12,48__.[解析] 设该数列的公比为q ,由题意知,192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48.4.(必修5P 62B 组T2改编)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则{a n }的通项公式a n =__-⎝⎛⎭⎫-12n -1__. [解析] 因为S 10S 5=3132,所以S 10-S 5S 5=-132,因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,则a n =-1×⎝⎛⎭⎫-12n -1=-⎝⎛⎭⎫-12n -1. 题组三 走向高考5.(2020·课标Ⅰ,10,5分)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( D )A .12B .24C .30D .32[解析] 设等比数列{a n }的公比为q , 故a 2+a 3+a 4=q (a 1+a 2+a 3),又a 2+a 3+a 4=2,a 1+a 2+a 3=1,∴q =2, ∴a 6+a 7+a 8=q 5(a 1+a 2+a 3)=25=32,故选D .6.(2018·北京,5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( D )A .32fB .322f C .1225fD .1227f[解析]本题主要考查等比数列的概念和通项公式,数学的实际应用.由题意知十三个单音的频率依次构成首项为f,公比为122的等比数列,设此数列为{a n},则a8=1227f,即第八个单音的频率为1227f,故选D.7.(2019·全国卷Ⅰ)记S n为等比数列{a n}的前n项和.若a1=13,a24=a6,则S5=__1213__.[解析]解法一:设等比数列{a n}的公比为q,因为a24=a6,所以(a1q3)2=a1q5,所以a1q =1,又a1=13,所以q=3,所以S5=a1(1-q5)1-q=13×(1-35)1-3=1213.解法二:设等比数列{a n}的公比为q,因为a24=a6,所以a2a6=a6,所以a2=1,又a1=13,所以q=3,所以S5=a1(1-q5)1-q=13×(1-35)1-3=1213.考点突破·互动探究考点一等比数列的基本运算——自主练透例1 (1)(2015·新课标全国Ⅱ,9)已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2=(C)A.2 B.1C.12D.18(2)(2019·全国卷Ⅰ)记S n为等比数列{a n}的前n项和.若a1=1,S3=34,则S4=__58__.(3)(2020·课标Ⅱ,6,5分)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215-25,则k=(C)A.2 B.3C.4 D.5(4)(2020·课标Ⅱ,6,5分)记S n为等比数列{a n}的前n项和.若a5-a3=12,a6-a4=24,则S na n=(B)A.2n-1 B.2-21-nC.2-2n-1D.21-n-1[解析] (1)设等比数列{a n }的公比为q ,由a 1=14,a 3a 5=4(a 4-1),知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝⎛⎭⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,即q 3=8,∴q =2,∴a 2=12,故选C .(2)解法一:设等比数列{a n }的公比为q ,由a 1=1及S 3=34,易知q ≠1.把a 1=1代入S 3=a 1(1-q 3)1-q =34,得1+q +q 2=34,解得q =-12,所以S 4=a 1(1-q 4)1-q =1×⎣⎡⎦⎤1-⎝⎛⎭⎫-1241-⎝⎛⎭⎫-12=58. 解法二:设等比数列{a n }的公比为q ,因为S 3=a 1+a 2+a 3=a 1(1+q +q 2)=34,a 1=1,所以1+q +q 2=34,解得q =-12,所以a 4=a 1·q 3=⎝⎛⎭⎫-123=-18,所以S 4=S 3+a 4=34+⎝⎛⎭⎫-18=58. 解法三:设等比数列{a n }的公比为q ,由题意易知q ≠1.设数列{a n }的前n 项和S n =A (1-q n )(其中A 为常数),则a 1=S 1=A (1-q )=1 ①,S 3=A (1-q 3)=34 ②,由①②可得A =23,q=-12.所以S 4=23×⎣⎡⎦⎤1-⎝⎛⎭⎫-124=58. (3)由a m +n =a m a n ,令m =1可得a n +1=a 1a n =2a n ,∴数列{a n }是公比为2的等比数列,∴a n=2×2n -1=2n,则a k +1+a k +2+…+a k +10=2k +1+2k +2+…+2k +10=2k +1(1-210)1-2=2k +11-2k +1=215-25,∴k =4.故选C .(4)设等比数列{a n }的公比为q ,则a 6-a 4a 5-a 3=a 5·q -a 3·q a 5-a 3=q =2412=2,∴S na n =a 1(1-2n )1-2a 1×2n -1=2-21-n .故选B .名师点拨等比数列基本量的求法等比数列的计算涉及五个量a 1,a n ,q ,n ,S n ,知其三就能求其二,即根据条件列出关于a 1,q 的方程组求解,体现了方程思想的应用.特别提醒:在使用等比数列的前n 项和公式时,q 的值除非题目中给出,否则要根据公比q 的情况进行分类讨论,切不可忽视q 的取值而盲目用求和公式.考点二 等比数列的判定与证明——师生共研例2 (2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n+1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.[解析] (1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.名师点拨等比数列的判定方法(1)定义法:若a n +1a n=q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.提醒:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中. 〔变式训练1〕已知数列{a n }的首项a 1>0,a n +1=3a n 2a n +1(n ∈N *),且a 1=23.(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等比数列,并求出{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n .[解析] (1)记b n =1a n-1,则b n +1b n =1a n +1-11a n -1=2a n +13a n -11a n-1=2a n +1-3a n3-3a n =1-a n 3(1-a n )=13,又b 1=1a 1-1=32-1=12,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为12,公比为13的等比数列.所以1a n -1=12·⎝⎛⎭⎫13n -1,即a n =2·3n -11+2·3n -1. 所以数列{a n }的通项公式为a n =2·3n -11+2·3n -1. (2)由(1)知,1a n -1=12·⎝⎛⎭⎫13n -1,即1a n =12·⎝⎛⎭⎫13n -1+1. 所以数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =12⎝⎛⎭⎫1-13n 1-13+n =34⎝⎛⎭⎫1-13n +n . 考点三 等比数列性质的应用——多维探究角度1 等比数列项的性质的应用例3 (1)(2021·洛阳市第一次联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的两根,则a 2a 16a 9的值为( B )A .-2+22B .- 2C . 2D .-2或 2(2)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=__5__.[解析] (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=- 2.故选B .(2)由题意知a 1a 5=a 23=4,因为数列{a n }的各项均为正数,所以a 3=2.所以a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25.所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.名师点拨(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,m 、n 、p 、q ∈N *,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.角度2 等比数列前n 项和的性质例4 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =__2__.(2)(2021·浙江丽水模拟)已知各项都是正数的等比数列{a n },S n 为其前n 项和,且S 3=10,S 9=70,则S 12=( A )A .150B .-200C .150或-200D .400或-50[分析] (2)可将S 3,S 9用a 1和公比q (显然q ≠1)表示,解方程组求出a 1、q 进而可求S 12;但利用S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列运算简便;注意到S n =a 1(1-q n )1-q (q ≠1)=a 11-q-a 11-q·q n ,故可设S n =A -Aq n 求解. [解析] (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160所以q =S 偶S 奇=-160-80=2.(2)解法一:设等比数列的公比为q ,显然q ≠1, 又S n =a 1(1-q n )1-q,∴S 9S 3=1-q 91-q 3=q 6+q 3+1=7.∴q 3=2或-3(舍去). 又S 12S 3=1-q121-q 3=1-(q 3)41-q 3=15. ∴S 12=15S 3=150.故选A .解法二:∵S 9=(a 1+a 2+a 3)+(a 4+a 5+a 6)+(a 7+a 8+a 9) =S 3+q 3S 3+q 6S 3=S 3(1+q 3+q 6), ∴10(q 6+q 3+1)=70,∴q 3=2或-3(舍去), ∴S 12=S 9+q 9S 3=70+80=150.故选A .解法三:由等比数列的性质知S 3、S 6-S 3、S 9-S 6、S 12-S 9是等比数列,∴(S 6-10)2=10(70-S 6),解得S 6=30或-20(舍去),又(S 9-S 6)2=(S 6-S 3)(S 12-S 9),即402=20(S 12-70),解得S 12=150.故选A .解法四:设等比数列前n 项和为S n =A -Aq n ,则⎩⎪⎨⎪⎧A (1-q 9)=70,A (1-q 3)=10,两式相除得1+q 3+q 6=7, 解得q 3=2或-3(舍去),∴A =-10. ∴S 12=-10(1-24)=150.故选A .[引申]本例(2)中若去掉条件“各项都是正数”,结果如何?[解析] 由本例解法一知q 3=2或-3, 当q 3=2时,S 12=S 9+q 9S 3=70+80=150;当q 3=-3时,S 12=S 9+q 9S 3=70-270=-200.故选C .名师点拨(1)等比数列前n 项和的性质主要是:若S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列. (2)利用等比数列的性质可以减少运算量,提高解题速度.解题时,根据题目条件,分析具体的变化特征,即可找到解决问题的突破口.(3)注意等比数列前n 项和公式的变形.当q ≠1时,S n =a 1(1-q n )1-q =a 11-q -a 11-q ·q n,即S n=A -Aq n (q ≠1).(4)S 2n =S n (1+q n ),S 3n =S n (1+q n +q 2n ),…. 〔变式训练2〕(1)(角度1)在等比数列{a n }中,若a 3=4,a 9=1,则a 6=__±2__,若a 3=4,a 11=1,则a 7=__2__.(2)(角度1)(2021·安徽省江淮十校月考)已知等比数列{a n }的公比q =-12,该数列前9项的乘积为1,则a 1等于( B )A .8B .16C .32D .64(3)(角度2)(2021·吉林统考)设S n 为等比数列{a n }的前n 项和,S 12=7S 4,则S 8S 4=( C )A .13B .13或12C .3D .3或-2[解析] (1)设数列{a n }的公比为q ,则a 3,a 6,a 9组成的新数列的公比为q 3. 若a 3=4,a 9=1,则a 26=4,a 6=±2,符合题意; a 3,a 7,a 11组成的新数列的公比为q 4,由a 3=4,a 11=1,得a 27=4,当a 7=2时,q 4=12,合题意,当a 7=-2时,q 4=-12,不合题意,舍去.(2)由已知a 1a 2…a 9=1,又a 1a 9=a 2a 8=a 3a 7=a 4a 6=a 25,所以a 95=1,即a 5=1,所以a 1⎝⎛⎭⎫-124=1,a 1=16.故选B .(3)不妨设S 4=1,则S 12=7, ∵S 4,S 8-S 4,S 12-S 8成等比数列, ∴(S 8-1)2=7-S 8,解得S 8=3或-2, 又S 8=(1+q 4)S 4>0,∴S 8=3,∴S 8S 4=3.故选C .另解:由题意S 12S 4=(1+q 4+q 8)S 4S 4=1+q 4+q 8=7即q 8+q 4-6=0,∴q 4=2或-3(舍去),∴S 8S 4=(1+q 4)S 4S 4=1+q 4=3,故选C .名师讲坛·素养提升等差、等比数列的综合运用例5 (2021·重庆巴蜀中学期中)已知等差数列{a n }中,a 1=1,前n 项和为S n ,{b n }为各项均为正数的等比数列,b 1=2,且b 2+S 2=7,a 2+b 3=10.(1)求a n 与b n ;(2)定义新数列{C n }满足C n =⎩⎪⎨⎪⎧a n ,(n 为奇数)b n ,(n 为偶数)(n ∈N *),求{C n }前20项的和T 20.[分析] (1)用等差、等比数列基本公式求解. (2)分组求和即可.[解析] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q >0),则由题意有⎩⎪⎨⎪⎧ 2q +2+d =7,1+d +2q 2=10,解得⎩⎪⎨⎪⎧ q =2d =1或⎩⎪⎨⎪⎧q =-1d =7(舍去),∴a n =a 1+(n -1)d =n ,b n =b 1q n -1=2n . (2)由题意知C n =⎩⎪⎨⎪⎧n (n 为奇数),2n (n 为偶数).∴T 20=C 1+C 2+C 3+C 4+…+C 19+C 20 =1+22+3+24+…+19+220 =(1+3+…+19)+(22+24+…+220) =10(1+19)2+4(1-410)1-4=100+43(410-1).[引申](1)本例中数列{C n}的前n 项和T n=__⎩⎨⎧n 24+43(2n-1)(n 为偶数),(n +1)24+43(2n -1-1)(n 为奇数).__.(2)本例中若C n =a n ·b n ,则{C n }的前n 项和T n =__(n -1)·2n +1+2__.[解析] (1)当n 为偶数时T n =+=n 24+4(1-4n2 )1-4=n 24+43(2n -1).当n 为奇数时T n =+=(n +1)24+4(1-4n -12 )1-4=(n +1)24+43(2n -1-1).∴T n=⎩⎨⎧n 24+43(2n-1)(n 为偶数),(n +1)24+43(2n -1-1)(n 为奇数).(2)T n =1×2+2×22+3×23+…+(n -1)2n -1+n ·2n ① 则2T n =1×22+2×23+…+(n -1)2n +n ·2n +1② ①-②得-T n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=(1-n )2n +1-2,∴T n =(n -1)·2n +1+2.名师点拨(1)若{a n },{b n }分别为等差、等比数列,则求{a n ·b n }前n 项和时用“错位相减法”. (2)求奇数项与偶数项表达式不同的数列的前n 项和一般用分组求和法.(注意当n 为偶数时,奇数项、偶数项都是n2项;当n 为奇数时,奇数项有n +12项,偶数项为n -12项)需对n 进行分类讨论求解.〔变式训练3〕(理)(2021·吉林调研)已知数列{a n }是等比数列,a 1=1,a 4=8,{b n }是等差数列,b 1=3,b 4=12.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和S n .(文)(2019·课标Ⅱ,18,12分)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.[解析] (理)(1)设数列{a n }的公比为q ,由a 4=a 1q 3得8=1×q 3,所以q =2,所以a n =2n-1.设{b n }的公差为d ,由b 4=b 1+3d 得12=3+3d ,所以d =3,所以b n =3n . (2)因为数列{a n }的前n 项和为a 1(1-q n )1-q =1×(1-2n )1-2=2n -1,数列{b n }的前n 项和为b 1n +n (n -1)2d =3n +n (n -1)2×3=32n 2+32n ,所以S n =2n -1+32n 2+32n . (文)(1)设{a n }的公比为q ,由题设得2q 2=4q +16,即q 2-2q -8=0,解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1,因此数列{b n }的前n 项和为1+3+…+(2n -1)=n 2.。
第3课时等比数列及其前n项和考纲索引1.等比数列的概念及其性质.2.等比数列的通项公式与前n项和公式.课标要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中,识别数列的等比数列,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.知识梳理1.等比数列的定义如果一个数列从第项起,每一项与它的前一项的比等于常数,那么这个数列叫做等比数列,这个常数叫做等比数列的,通常用字母表示.2.等比数列的通项公式设等比数列{a n}的首项为a1,公比是q,则它的通项a n= .3.等比中项若,那么G叫做a与b的等比中项.4.等比数列的常用性质5.等比数列的前n项和公式等比数列{a n}的公比为q(q≠0),其前n项和为S n.当q=1时,S n= ;当q≠1时,S n= = .基础自测指点迷津◆一个常数◆两种防范(1)由a n+1=qa n,q≠0并不能立即断言{a n}为等比数列,还要验证a1≠0.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.◆等比中项的存在情况(1)任何两个数不一定有等比中项G2=ab>0(a,b同号),如-1,1之间无等比中项.(2)两个数之间可能有一个或者两个等比中项.如:2,3之间等比中项可为,-(之一或之二).考点透析考向一等比数列的基本计算例1(2014·江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.【审题视点】利用等比数列的定义求得q,进而求得a6.【方法总结】等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,a n,S n一般可以“知三求二”,通过列方程(组)可迎刃而解.变式训练1. (2014·全国大纲)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6等于().A. 31B. 32C. 63D. 64考向二等比数列的判定或证明【审题视点】构造a n+1+1与a n+1的关系,并断定a1+t,故讨论t的取值.变式训练考向三等比数列的性质及应用A. 3B. 9C. 27D. 81【审题视点】利用等比数列的性质或等比中项求解.【方法总结】求解数列问题,利用其性质可使求解过程简单.涉及到等比数列的“两项积”时,可考虑性质的应用.3. (2014·广东)等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5= .真题体验2. (2014·福建)在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.参考答案与解析知识梳理1.二同一个公比q2.a1·q n-13.a,G,b成等比数列4.(1)q n-m(2)a k·a l=a m·a n(4)q n5.na1基础自测考点透析变式训练经典考题真题体验。
分层作业三十二等比数列及其前n项和
一、选择题(每小题5分,共25分)
1.(2018·重庆模拟)已知各项均为正数的等比数列{a n}的前n项和为S n,且S3=14,a3=8,则a6= ( )
A.16
B.32
C.64
D.128
解析选C.由题意得,等比数列的公比为q,由S3=14,a3=8,则解得a1=2,q=2,所以a6=a1q5=2×25=64,故选C.
2.(2017·全国卷Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为
( )
A.24
B.-3
C.3
D.8
解析选A.设等差数列的公差为d,d≠0,=a2·a6,即(12d)2=(1d)(15d),
d2=2d(d≠0),所以d=2,所以S6=6×1×(2)=24.
3.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是
上一层灯数的2倍,则塔的顶层共有灯导学号12560576 ( )
A.1盏
B.3盏
C.5盏
D.9盏
解析选B.设塔的顶层共有灯x盏,则各层的灯数构成一个公比为2的等比数列,由=381可得x=3.
4.(2018·临沂模拟)已知等比数列{a n}的前n项和为S n=a·2n1,则a的值为
( )
A. B. C. D.
解析选A.当n≥2时,a n=S n S n1=a·2n1a·2n2=a·2n2,当n=1时,a1=S1=a,又因为{a n}是等比数列,所以a=,所以a=.
5.在公比为的等比数列{a n}中,若sin(a1a4)=,则cos(a2a5)的值是( )
A. B. C. D.
解析选B.由等比数列的通项公式可知a2a5=(a1a4)q2=2(a1a4),cos(a2a5)=1
2sin2(a1a4)=12×=.
二、填空题(每小题5分,共15分)
6.(2017·北京高考)若等差数列{a n}和等比数列{b n}满足a1=b1=1,a4=b4=8,则=______.
解析设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由题意得13d=
q3=8⇒d=3,q=2⇒==1.
答案:1
7.已知数列{a n}是等比数列,a2=2,a5=,则a1a2a3a2a3a4…a n a n1a n2=________.
解析设数列{a n}的公比为q,则q3==,解得q=,a1==4.易知数列{a n a n1a n2}是首项为a1a2a3=4×2×
1=8,公比为q3=的等比数列,所以a1a2a3a2a3a4…a n a n1a n2==(1-2-3n).
答案:(1-2-3n)
8.(2015·湖南高考)设S n为等比数列的前n项和,若a1=1且3S1,2S2,S3成等差数列,则
a n=__________.
解题指南由3S1,2S2,S3成等差数列,可求得公比q=3,然后求a n.
解析因为3S1,2S2,S3成等差数列,
所以2×2(a1a2)=3a1a1a2a3⇒a3=3a2⇒q=3,
所以a n=a1q n1=3n1.
答案:3n1
三、解答题(每小题10分,共20分)
9.(2018·烟台模拟)已知等差数列{a n}中,a1=1,且a1,a2,a42成等比数列.
(1)求数列{a n}的通项公式及其前n项和S n.
(2)设b n=,求数列{b n}的前2n项和T2n.
解析(1)设等差数列{a n}的公差为d,因为a1=1,且a1,a2,a42成等比数列.所以=a1·(a42),
即(1d)2=1×(13d2),解得d=2或1.
其中d=1时,a2=0,舍去.
所以d=2,可得a n=12(n1)=2n1.
S n==n2.
(2)b n==.
所以当n为偶数时,==16.当n为奇数时,==.
所以数列{b n}的奇数项是以为首项,为公比的等比数列偶数项是以8为首项,16为公比的等比数列.
所以数列{b n}的前2n项和T2n=(b1b3…b2n1)(b2b4…
b2n)==(16n16n).
10.(2015·高考改编)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n25S n=8S n1S n1.
(1)求a4的值.
(2)证明:为等比数列.
解析(1)当n=2时,4S45S2=8S3S1,
即45
=81,解得a4=.
(2)由4S n25S n=8S n1S n1(n≥2),
4S n24S n1S n S n1=4S n14S n(n≥2),
即4a n2a n=4a n1(n≥2).
因为4a3a1=4×1=6=4a2,
所以4a n2a n=4a n1,
所以=
===,
所以数列是以a2a1=1为首项,为公比的等比数列.
1.(5分)(2018·福州模拟)已知数列{a n}满足log3a n1=log3a n1(n∈N*),且a2a4a6=9,则lo(a5a7a9)的值是
( )
A.5
B.
C.5
D.
解析选A.因为log3a n1=log3a n1,所以a n1=3a n.
所以数列{a n}是公比q=3的等比数列,
所以a2a4a6=a2(1q2q4)=9.
所以a5a7a9=a5(1q2q4)=a2q3(1q2q4)=35.
所以lo35=5.
变式备选等比数列{a n}满足a n>0,n∈N*,且a3·a2n3=n(n≥2),则当n≥1时,log2a1log2a2…
log2a2n1=________.
解析由等比数列的性质,得a3·a2n3==n,从而得a n=2n.所以log2a1log2a2…
log2a2n1=log2[(a1a2n1)·(a2a2n2)·…·(a n1a n1)a n]=log n(2n1)=n(2n1)=2n2n.
答案:2n2n
2.(5分)已知数列{a n}为等比数列,若a4a6=10,则a7(a12a3)a3a9的值为( )
A.10
B.20
C.100
D.200
解析选C.a7(a12a3)a3a9=a7a12a7a3a3a9=2a4a6=(a4a6)2=102=100.
3.(5分)(2016·全国卷Ⅰ)设等比数列{a n}满足a1a3=10,a2a4=5,则a1a2…a n的最大值为________.
解析由于{a n}是等比数列,设a n=a1q n1,其中a1是首项,q是公比.
所以⇒
解得:
故a n=,
所以a1·a2·…·a n=
==.
当n=3或4时,取到最小值6,
此时取到最大值26=64.
所以a1·a2·…·a n的最大值为64.
答案:64
4.(12分)(2016·全国卷Ⅲ)已知数列{a n}的前n项和S n=1λa n,其中λ≠0.
(1)证明{a n}是等比数列,并求其通项公式.
(2)若S5=,求λ.
解析(1)由题意得a1=S1=1λa1,故a1=,
由S n=1λa n,S n1=1λa n1得a n1=λa n1λa n,所以=,
因此数列{a n}是以a1=为首项,以为公比的等比数列,a n=.
(2)由(1)得S n=1,又因为S5=,
所以=1,即=,解得λ=1.
5.(13分)(2018·郑州模拟)已知数列{a n}满足a1=5,a2=5,a n1=a n6a n1(n≥2).
(1)求证:{a n12a n}是等比数列.
(2)求数列{a n}的通项公式.
解析(1)因为a n1=a n6a n1(n≥2),
所以a n12a n=3a n6a n1=3(a n2a n1)(n≥2).
因为a1=5,a2=5,
所以a22a1=15,
所以a n2a n1≠0(n≥2),
所以=3(n≥2),
所以数列{a n12a n}是以15为首项,3为公比的等比数列.
(2)由(1)得a n12a n=15×3n1=5×3n,
则a n1=2a n5×3n,
所以a n13n1=2(a n3n).
又因为a13=2,所以a n3n≠0,
所以{a n3n}是以2为首项,2为公比的等比数列.
所以a n3n=2×(2)n1,
即a n=2×(2)n13n.。