2018秋九年级数学上册 实际问题与二次函数第2课时二次函数与利润问题习题课件
- 格式:ppt
- 大小:3.20 MB
- 文档页数:23
22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。
22.3 实际问题与二次函数(2)-利润问题3.某种商品每件的进价为20元,售价为每星期可卖出300件,市场调查反映:思考:这是一个什么函数?自变量取值范围是什么?这个函数有最大值吗?问题2:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:设每件 x 元,用含有x 的式子填写列表格问题3:某商品现在的售价为每件 60 元,每星期可卖出300件.市场调查反映:如调整价格,每涨价 1 元,每星期要少卖出 10 件;每降价 1 元,每星期可多卖出 20 件.已知商品的进价为每件 40元,如何定价才能使利润最大? 三、巩固训练1.某商品成本为20元,售价为30元,卖出200件,①若价格每上涨1元,销售量减少10件,现售价定为x元,则销售量为件,则利润为y与x的函数关系式为。
当售价= 时,利润y最大= ;②若价格每下降1元,销售量增加20件,现价格下降x元,,则销售量为件,则利润为y与x的函数关系式为,当降价x= 时,利润y最大= ;2.某超市经销一种销售成本为每件40元的商品。
据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件。
设销售单价为x元(x≥50),一周的销售量为y件。
(1)写出y与x的函数关系式(标明x的取值范围);(2)设一周的销售利润为S,写出S与x的函数关系式,求出S的最大值,并确定当单价在什么范围内变化时,利润随单价的增大而增大?(3)若超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少元?四、拓展延伸1.某商场销售一批名牌衬衫,平均每天可售出30件,每件盈利50元,为了扩大销售、增加盈利,尽快减少库存......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,每件衬衫应降价多少时平均每天盈利最大?2.某宾馆有50个房客供游客居住,当每个房间的定价为每天180元时,房间会全部住满,当每个房间的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?五、课堂小结__________________________________。
人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案一. 教材分析本节课是人教版九年级数学上册第22.3节实际问题与二次函数的第2课时,主要内容是销售利润问题。
教材通过引入实际问题,让学生理解和掌握二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣和积极性。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题的解决上,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生运用二次函数解决实际问题的能力。
三. 教学目标1.理解销售利润问题的背景和意义,掌握销售利润问题的解决方法。
2.能够将二次函数知识应用于解决实际问题,提高学生的数学应用能力。
3.培养学生的团队协作能力和问题解决能力,提高学生的数学素养。
四. 教学重难点1.重点:掌握销售利润问题的解决方法,能够将二次函数应用于实际问题的解决。
2.难点:如何引导学生将二次函数与实际问题相结合,提高学生的问题解决能力。
五. 教学方法本节课采用问题驱动的教学方法,通过引入实际问题,引导学生运用二次函数知识进行解决。
同时,采用小组合作学习的方式,鼓励学生积极参与讨论,提高学生的团队协作能力和问题解决能力。
六. 教学准备1.准备相关的实际问题,用于引导学生进行思考和讨论。
2.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的销售利润问题,如商品打折、促销活动等,引导学生关注销售利润问题,激发学生的学习兴趣。
2.呈现(10分钟)呈现一个具体的销售利润问题,如某商品原价为100元,售价为80元,求商品的利润。
引导学生运用二次函数知识进行解决。
3.操练(10分钟)学生分组讨论,每组选取一个销售利润问题进行解决。
教师巡回指导,解答学生的问题,引导学生运用二次函数知识进行解决。
26.3.1实际问题与二次函数(二次函数与最大利润问题) 学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题;3.体会数学知识的现实价值,提高学习数学的兴趣。
学习重难点:能用二次函数解决实际中的利润问题。
学习过程:一、复习旧知,预习导学1、二次函数y =a(x -h)2+k 的图象是一条 ,它的对称轴是 ,顶点坐标是 。
2、二次函数 的对称轴是 , 顶点坐标是 ,当x= 时,y 的最 值是 。
3、二次函数 的对称轴是 ,顶点坐标是 ,当x= 时,y 的最 值是 。
4、二次函数 的图象是一条 ,它的对称轴是 ,顶点坐标是 。
当a>0时,开口向 ,有最 点,函数有最 值,是 。
当a<0时,开口向 ,有最 点,函数有最 值,是 。
5、二次函数 的对称轴是 ,顶点坐标是 ,当x= 时,y 的最 值是 。
6、关于销售问题的一些等量关系:(单件商品)利润=售价—进价 总利润=单件商品利润×销售量7、填空:某商品成本为20元,售价为30元,卖出200件,则利润为 元, ①若价格上涨x 元,则利润为 元;②若价格下降x 元,则利润为 元;③若价格每上涨1元,销售量减少10件,现价格上涨x 元,则销售量为 件,利润为 元; ④若价格每下降1元,销售量增加20件,现价格下降x 元,则销售量为 件,利润为 元; 22(3)5y x =-+23(3)1y x =-+-2y ax bx c =++2289y x x =-+二、探究在日常生活中存在着许许多多的与数学知识有关的实际问题。
如繁华的商业城中很多人在买卖东西。
如果你去买商品,你会选买哪一家的?如果你是商场经理,如何定价才能使商场获得最大利润呢?问题一:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元,所得利润y=根据上面的函数,填空:当x= 时,y最大,也就是说,在涨价的情况下,涨价元,即定价元时,利润最大,最大利润是。
人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教学设计一. 教材分析人教版九年级数学上册第22.3节实际问题与二次函数第2课时《销售利润问题》,主要让学生通过解决实际问题,掌握二次函数在销售利润中的应用。
教材通过引入一个具体的销售利润问题,让学生探究利润与销售数量、销售价格之间的关系,引导学生利用二次函数模型解决问题,培养学生的数学建模能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,可能会对将实际问题转化为数学模型感到困难,对利润、成本等概念在实际问题中的运用还不够熟练。
因此,在教学过程中,需要帮助学生建立数学与实际问题之间的联系,提高学生解决实际问题的能力。
三. 教学目标1.理解销售利润问题的实际背景,掌握利用二次函数解决销售利润问题的方法。
2.能够将实际问题转化为二次函数模型,提高数学建模能力。
3.培养学生的数据分析、逻辑推理和解决问题的能力。
四. 教学重难点1.重点:理解销售利润问题的实际背景,掌握利用二次函数解决销售利润问题的方法。
2.难点:将实际问题转化为二次函数模型,求解最优化问题。
五. 教学方法1.情境教学法:通过引入一个具体的销售利润问题,激发学生的学习兴趣,引导学生主动探究。
2.案例分析法:分析具体案例,让学生了解销售利润问题在实际生活中的应用,培养学生解决实际问题的能力。
3.小组合作学习:鼓励学生分组讨论,共同解决问题,提高学生的团队协作能力。
六. 教学准备1.准备相关案例材料,用于引导学生分析实际问题。
2.准备多媒体教学设备,用于展示案例和教学过程。
七. 教学过程1.导入(5分钟)利用多媒体展示一个实际的销售利润问题,引导学生思考利润与销售数量、销售价格之间的关系。
2.呈现(10分钟)呈现具体案例,让学生分析利润与销售数量、销售价格之间的关系。
引导学生运用二次函数模型解决问题。
22.3实际问题与二次函数第二课时 二次函数与最大利润问题一、 教学目标知识与技能:通过探究实际问题与二次函数的关系,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。
过程与方法:通过研究生活中实际问题,让学生体会建立数学建模的思想;通过学习和探究“销售利润”问题,渗透转化及分类的数学思想方法。
情感态度与价值观:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣。
二、 教学重点及难点教学重点:用二次函数的知识分析解决有关利润的实际问题。
教学难点:通过问题中的数量变化关系列出函数解析式。
三、学情分析我班学生已经学习了二次函数的定义、图象和性质,在此之前也学习了列代数式、列方程解应用题,所以学生具备了一定的建模能力,但我班学生的理解能力较弱,对应用题具有恐惧感,然而应用二次函数的知识解决实际问题需要很强的灵活应用能力,对学生而言建模难度很大。
三、 教学过程(一) 复习引入 (1)商家进了一批杯子,进货价是10元/个 ,以a 元/个的价格售出,则商家所获利润为()10a -元。
(2)某种商品的进价是400元,标价为600元,卖出3x 件,为了减少库存,商家采取打八折促销,卖出了(65)x +件,则商家所获利润为(1080400)x +元 。
利润问题主要用到的关系式是:利润=售价-进价 总利润=单件利润 ⨯ 销售数量(二)创设情境问题(合作交流)童装的进价40元/件,售价60元/件,每星期可卖出300件。
如果调整价格,每涨价1元,每星期要少卖出10件。
要想获得7200元的利润,该商品应定价为多少元?分析:没调价之前商场一周的利润为 6000 元;设销售单价上调了x 元,那么每件商品的利润可表示为 (60-40+x ) 元,每周的销售量可表示为(300-10x ) 件,一周的利润可表示为(60-40+x )(300-10x )元,要想获得6090元利润可列方程 (60-40+x)(300-10x)=7200 。