2018-2019学年最新苏科版七年级数学上册《一元一次方程》单元综合测试卷及答案-精编试题
- 格式:docx
- 大小:48.70 KB
- 文档页数:9
一、初一数学一元一次方程解答题压轴题精选(难)1.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
(2)A 根据进价加利润等于甲和乙的售价,列出方程B 先求出甲乙的部数,表示出甲乙的标价,列出关系式,50部甲×甲的标价+10部甲×甲标价的八折+40部乙×乙的标价=利润率乘以成本,即可解出结果。
2.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。
绝密★启用前 2018--2019学年度第一学期苏科版 七年级数学单元测试题第四章一元一次方程 一、单选题(计30分) 1.(本题3分)若代数式的值是2,则x 等于 A . 2 B . C . 6 D . 2.(本题3分)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A . 100元 B . 105元 C . 110元 D . 120元 3.(本题3分)已知关于的方程的解是,则的值是( ) A . -6 B . 2 C . -2 D . 6 4.(本题3分)若方程的解与关于x 的方程的解相同,则a 的值为 A . 2 B . C . 1 D . 5.(本题3分)某车间有26名工人,每人每天可以生产800个螺栓或1000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x 名工人生产螺母,则下面所列方程正确的是( ) A . 2×800(26﹣x )=1000x B . 800(13﹣x )=1000x C . 800(26﹣x )=2×1000x D . 800(26﹣x )=1000x 6.(本题3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题: 一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁. 意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人7.(本题3分)如图,为做一个试管架,在acm长的木条上钻4个圆孔,每个孔的直径为2cm,则x等于()A.B.C.D.8.(本题3分)把方程去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.18x+2(2x﹣1)=18﹣3(x+1)9.(本题3分)如果3ab2m-1与ab m+1是同类项,那么m等于( )A.2B.1C.-1D.010.(本题3分)下面是一个被墨水污染过的方程:2x-21=21x-,答案显示此方程的解是x=35,被墨水遮盖的是一个常数,则这个常数是( )A.2B.-2C.-21D.21二、填空题(计32分)11.(本题4分)方程3x+20=4x-25的解为____.12.(本题4分)某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;则该校运动员人数为_____人.13.(本题4分)有一个两位数,个位数字是十位数字的一半,将两个数字位置交换后,所得的新数比原数小36,则原数是_____ . 14.(本题4分)已知关于x 的方程x +k =1的解为x =5,则-|k +2|=________. 15.(本题4分)已知三个连续奇数的和是,则中间的那个数是_______. 16.(本题4分)某班有男生25人,比女生的2倍少17人,这个班有女生多少人?设女生人数为x .则可得方程___________. 17.(本题4分)父亲和女儿现在年龄之和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿年龄是父亲现在年龄的13,女儿现在年龄是_____岁. 18.(本题4分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元,如果购买甲、乙两种奖品共花费了650元,设购买了甲种奖品x 件,依题意列方程得______. 三、解答题(计58分) 19.(本题8分)解方程:(1)2(3x -1)=16; (2) 41+x -1=612+x . 20.(本题8分)某城市实施阶梯燃气费的收费方式,当用户使用的燃气量不超过60立方米时,按每立方米3元收费;如果超过60立方米,超过部分按每立方米3.5元收费,已知某单位6月份燃气费平均每立方米费用为3.125元,求该单位6月份燃气的使用量.21.(本题8分)春节期间,某超市出售的荔枝和芒果,单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元,请问李叔叔购买这两种水果各多少千克?22.(本题8分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?23.(本题8分)把正整数1,2,3,4,2016排列成如图所示的形式.(1)用一个矩形随意框住4个数,把其中最小的数记为,另三个数用含式子表示出来,当被框住的4个数之和等于418时,值是多少?(2)被框住的4个数之和能否等于724?如果能,请求出此时x 值;如果不能,请说明理由.24.(本题9分)一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地,A,B 两地间的路程是多少?25.(本题9分)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?本卷由系统自动生成,请仔细校对后使用,参考答案1.B【解析】【分析】由已知可得=2,解方程可得.【详解】由已知可得=2,解得x=-2。
苏科版七年级数学上册一元一次方程单元测试卷一、选择题(共10小题;共50分)1. 下列各数是方程的解的是A. B. C. D.2. 已知方程,则整式的值为A. B. C. D.3. 下列方程是一元一次方程的是A. B. C.4. 将方程变形,用含的代数式表示,那么等于A. B. C. D.5. 下列等式变形正确的是A. 若,则B. 若,则C. 若,则D. 若,则6. 下列以为解的方程是A. B.C. D.7. 下列方程中是一元一次方程的是A. B. C. D.8. 如图表示的数表,数表每个位置所对应的数都是,或.定义为数表中第行第列的数.例如,数表第行第列所对应的数是,所以.若,则的值为A. ,B. ,C. ,D. ,9. 如图,甲、乙两动点分别从正方形的顶点,同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在边上,请问它们第2015次相遇在边上.A. B. C. D.10. 某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中A. 亏了10元钱B. 赚了10钱C. 赚了20元钱D. 亏了20元钱二、填空题(共6小题;共30分)含有未知数的代数式是方程.12. 由表格信息可知,若的值为时,代数式的值为,为常数,则的值为,的值为,的值为.13. 将方程变形成用含的代数式表示的形式,则.14. 已知关于的方程是一元一次方程,则.15. 使方程等号左右两边相等的叫做方程的解;求的过程叫做解方程.16. 一件服装的标价为元,打八折销售后可获利,则该件服装的成本价是元.三、解答题(共8小题;共104分)17. 列等式表示:(1)的倍等于;(2)比的倍大的数等于;(3)的一半与的和等于的倍.18. 根据下列条件列出方程:(1)的倍比的相反数大;(2)的比它的倒数小.19. 由,得,这一变形的依据是什么?有条件限制吗?那么由,得呢?20. 检验下列各方程后面括号里的数是不是它的解:(1);(2).21. 用等式的性质求未知数的值:(1);(2;(3);(4).22. 解下列方程:(1);(2);(3);(4);(5);(6).23. 暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来张人民币,共计元的零钞用于顾客付款时找零.细心的小明清理了一下,发现其中面值为元的有张,面值为元的有张,剩下的均为元和元的钞票.你能否用所学的数学方法算出元和元的钞票各有多少张吗?24. 为了让市民树立起“珍惜水,保护水”的用水概念,某市从年月起,居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费自来水费用污水处理费用)已知小李家年月份用水吨,交水费元,月份用水吨,交水费元.(1)求表中,的值;(2)小李家月份的水费正好是小李家庭月收入的,已知小李家的月收入为元,试求小李家月份的用水量.答案第一部分1. D2. A3. B 【解析】A选项未知数的最高次数是;C选项中有两个未知数;D选项分母中含有未知数,故A,C,D都不符合一元一次方程的定义,只有B符合.4. A 【解析】方程,移项得:.5. D【解析】A选项:若,则,故A错.B选项:若,则,故B错.C,则,故C错.D选项:若,则,故D正确.6. D7. A 【解析】A选项:为一元一次方程,故A正确;B选项:为二元一次方程,故B错误;C选项:为一元二次方程,故C错误;D选项:为分式方程,故D错误.8. C 【解析】,,,.9. C 【解析】【分析】设出正方形的边长,甲的速度是乙的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【解析】解:设正方形的边长为,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;②第二次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;③第三次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;④第四次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;⑤第五次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;四次一个循环,因为,所以它们第2015次相遇在边上.故选:.【点评】本题主要考查行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.10. A【解析】【分析】根据题意可以列出相应的方程,求出两件商品的进价,然后用总的售价减去总的进价即可解答本题.【解析】解:设一件的进件为元,另一件的进价为元,则%,%,解得,,,,这家商店这次交易亏了10元,故选:.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出形应的方程.第二部分11.12. ,【解析】由题可知:当时,,当时,,解得,即,当时,,,则有,解得,即.13.【解析】方程移项,得,两边同乘,得.14.15. 未知数的值,方程的解16.第三部分17. (1)(2)(3)18. (1)(2)19. 依据等式性质;有条件限制,;依据等式性质;因为此时,可取任意数.20. (1)是方程的解,不是方程的解.(2)是方程的解,不是方程的解.21. (1).(2).(3).(4).22. (1)移项,得合并同类项,得系数化为,得(2)去括号,得移项,得合并同类项,得系数化为,得(3)去分母,得去括号,得移项,得合并同类项,得系数化为,得(4)去括号,得移项,得合并同类项,得系数化为,得(5)去分母,得移项、合并同类项,得系数化为,得(6)去分母,得去括号,得移项,得合并同类项,得系数化为,得23. 解:设面值为元的有张,设面值为元的有张.依题意得解得答:面值为元的有张,面值为元的有张.24. (1)(2),用吨水要交水费元,用吨水要交水费:答:小李家月份用水吨.。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
第四章《一元一次方程》复习卷(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.下列结论不能由a+b=0得到的是( )A.a2=-a b B.a=b C.a =0,b =0 D.a2=b22.若代数式x+4的值是2,则x等于( )A.2 B.-2 C.6 D.-6 3.若关于x的方程2 x-a-5=0的解是x=-2,则a的值为( ) A.1 B.-1 C.9 D.-94.在解方程12x--233x+=1时,去分母正确的是( )A.3(x-1)-2(2+3x)=1 B.3(x-1)+2(2x+3)=1C.3(x-1)+2(2+3x)=6 D.3(x-1)-2(2x+3)=65.小明在做解方程作业时,不小心将方程中的一个常数污染了,看不清楚,被污染的方程是2y-12=12y-怎么办呢? 小明想了一想,便翻看书后答案,此方程的解是y=-53,于是很快就补好了这个常数,你能补出这个常数吗? 它应是( )A.4 B.3 C.2 D.16.小明在日历的某月上圈出五个数,呈十字框形,若它们的和是55,则中间的数是( )A.9 B.10 C.11 D.127.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍.小郑今年的年龄是( )A.7岁B.8岁C.9岁D.10岁8.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元.”小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买的面包个数是( )A.38 B.39 C.40 D.41二、填空题(每题2分,共20分)9.若3x-5=0,则5x-3= .10.当m= 时,方程2x+m=x+l的解为x=-4.11.若4x2m-1 y n与-13xy2是同类项,则m+n= .12.当y= 时,代数式2(3y+4)的值比5 (2y-7) 的值大3.13.在如图所示的运算程序中,若输出的数y=7,则输入的数x= .14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,那么正好送完.设敬老院有x位老人,依题意可列方程为.15.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.16.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m3,则每立方米收费2元;若用水超过20 m3,则超过部分每立方米加收1元.若小明家5月份交水费64元,则他家该月用水m3.17.图1是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.18.某公路一侧原有路灯106盏,相邻两盏灯的距离为36 m,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54 m,则需更换新型节能灯盏.三、解答题(共64分)19.(本题8分) 解下列方程:(1) 5-15x+=x;(2)13(x-1)=17(2x-3);(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.20.(本题5分) 设a:b,c,d为有理数,现规定一种新的运算:a bc d=ad-b c,求满足等式13221xx+=1的x的值.21.(本题5分) 当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2 ?22.(本题5分) 如果代数式34a+的值比237a-的值多1,求a-2的值.23.(本题5分) 若关于x的方程23kx a+=2+6x bk-无论k为何值,方程的解总是x=1,求a,b的值.24.(本题6分) 把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?25.(本题8分) 某一天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40 kg 到菜市场去卖.黄瓜和土豆这一天的批发价和零售价(单位:元/kg)如下表所示:(1) 他当天购进了黄瓜和土豆各多少千克?(2) 如果黄瓜和土豆全部卖完,他能赚多少钱?26.(本题8分) 李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15 min,如果他骑自行车的平均速度是每分钟250 m,推车步行的平均速度是每分钟80 m,他家离学校的路程是2900 m,求他推车步行的时间.27.(本题12分) 某景区内的环形路是边长为800 m的正方形ABCD,如图1和图2所示.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车逆时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1号车、2号车在左半环线离出口A的路程y1,y2 (m),并求出当两车相距的路程是400 m时t的值;(2) 求当t 为何值时,1号车第三次恰好经过景点C ,并直接写出这一段时间内它与2号车相遇过的次数.[发现] 如图2,游客甲在BC 上的一点K (不与点B ,C 重合) 处候车,准备乘车到出口A . 设CK =x m .情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)参考答案一、选择题1.C 2.B 3.D 4.D 5.B 6.C 7.A 8.B二、填空题9.16310.5 11.3 12.10 13.27或28 14.2x +16=3x 15.20 16.28 17.1000 18.71三、解答题19.(1) x =4 (2) x =-2 (3) x =2919(4) x =2 20.由题意得2x -13x +×2=1,则x =-10 21.方程5m +3x =1+x 的解是x =152m -,方程2x +m =3m 的解是x =m .由题意可知152m --m =2,解得m =-37,即当m =-37时,关于x 的方程5m +3x =1+x 的解比关于x 的方程2x +m =3m 的解大222.由题意得34a +-237a -=1,解得a =5,则a -2的值为3 23.方程两边同时乘以6得4kx +2a =12+x -bk ,即(4k -1) x +2a +bk -12=0 ①.因为无论k 为何值时,它的解总是1,所以把x =1代入①,得4k -1+2a +bk -12=k (4+b )-13+2a =0,所以4+b =0,-13+2a =0,即b =-4,a =13224.设这个班有x 名学生,根据题意得3x +20=4x -25,解得x =45.答:这个班共有45名学生25.(1) 设购进黄瓜x kg ,则购进土豆(40-x ) kg ,根据题意得2.4x +3(40-x )=114,解得x =10,则40-x =30.答:他购进黄瓜10 kg ,购进土豆30 kg (2) 他能赚10×(4-2.4)+30×(5-3)=76 (元)26.设他推车步行了x min ,依题意得80x +250(15-x )=2900,解得x =5.答:他推车步行了5 min27.(1) y 1=200t (0≤t ≤8) y 2=1600-200t (0≤t ≤8) 当两车相距路程为400 m 时,应分两种情况:①当未相遇前,两车相距路程为400 m ,则有200t +200t +400=2×800,解得t =3.即当t =3时,两车相距的路程为400 m. ②当相遇之后,两车相距路程为400 m ,则有200t +200t =2×800+400,解得t =5.即当t =5时,两车相距的路程为400 m 综上所得,当t =3或5时,两车相距的路程为400 m (2) 当1号车第三次恰好经过景点C 时,它已经从A 点开始绕正方形2圈半,则可知2×800×4+800×2=200t ,解得t =40.即t =40时,1号车第三次恰好经过景点C ,且这段时间内它与2号车相遇了5次.[发现]情况一:若他刚好错过2号车,便搭乘即将到来的1号车时,从开始等车到到达出口A ,所用时间为 (16002200x -+1600200x +) min ,即(16-200x ) min ;情况二:若他刚好错过1号车,便搭乘即将到来的2号车时,从开始等车到到达出口A ,所用时间为 (16002200x ++1600200x -) min .即(16+200x ) min 因为16-200x <16+200x ( x >0),所以情况二用时较多。
一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.3.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。
苏科版初一数学上册《一元一次方程》单元测试卷及答案解析一、选择题1、解方程步骤如下:去括号,得移项,得合并同类项,得化系数为1,从哪一步开始出现错误A.①B.②C.③D.④2、某商品的标价为 300 元,打 8 折销售仍可获利 20%,则商品进价为()元.A.140 B.120 C.160 D.2003、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.B.C.D.4、方程=x,△处被墨水盖住了,已知方程的解x=2,那么△处的数字是( ) A.2 B.3 C.4 D.65、一元一次方程x-1=2的解表示在数轴上,是图中数轴上的哪个点( )A.D点B.C点C.B点D.A点6、方程-2x+3=0的解是( )A.x=B.x=-C.x=D.x=-7、3-去分母,得().A.3-2(5x+7)=-(x+17)B.12-2(5x+7)=-x+17C.12-2(5x+7)=-(x+17)D.12-10x+14=-(x+17)8、若方程:的解互为相反数,则a的值为()A.B.C.D.-19、一个两位数,十位数是个位数字的2倍,将个位数字与十倍数字调换,得到一个新的两位数,这两个两位数的和是132,则原来的两位数为()A.48 B.84 C.36 D.63二、填空题10、已知m1=3y+1,m2=5y+3,当y=________时,m1=m2.11、当______时,代数式的值与代数式的值互为相反数.12、已知y1=x+3,y2=2-x,当x=_________时,y1比y2大5.13、已知x=1是方程的解,则a=________.14、某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为 .15、下列不是方程的是________.(填序号)①1+2=3;②2x+1;③2m+15=3;④x2-6=0;⑤3x+2y=9;⑥3a+9>15.16、王强参加3 000米长跑,他以6米/秒的速度跑了一段路程后,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,求他以6米/秒的速度跑了多少米?设他以6米/秒的速度跑了x米,则列出的方程是 .17、某地居民生活用电基本价格为0.53元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,小敏家在11月份用电90度,共交电费53元,则a=___度.18、。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,(1)求,的值;(2)若线段以每秒3个单位的速度,向右匀速运动,当 ________时,点与点重合,当 ________时,点与点重合;(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.【答案】(1)解:由题意得:∵∴,∴,(2)8;(3)解:秒后,点表示的数为,点表示的数为∵重合∴解得 .∴线段从开始运动到完全通过所需要的时间是6秒(4)解:①当点在的左侧时∵∴解得②当点在的右侧时∵∴解得:所以当或时,【解析】【解答】(2)若线段以每秒3个单位的速度,则A点表示为-10+3t, B点表示为-8+3t,点与点重合时,-10+3t=14解得t=8点与点重合时,-8+3t=20解得t=故填:8;;【分析】(1)由与|d−20|互为相反数,求出c与d的值;(2)用含t的式子表示A,B两点,根据题意即可列出方程求解;(2)用含t的式子表示A,D两点,根据题意即可列出方程求解;(3)分两种情况,①当点在的左侧时②当点在的右侧时,然后分别表示出BC、AD的长度,建立方程,求解即可.2.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?【答案】(1)解:由题意得:y=80+2x,答:弹簧的长度是(80+2x)厘米(2)解:∵y=80+2x,∴当x=6时,y=80+2×6=92,答:弹簧的长度是92厘米(3)解:∵y=80+2x,∴当y=120时,120=80+2x,∴x=20,答:所挂物体的质量是20千克。
七年级上册数学单元测试卷-第4章一元一次方程-苏科版(含答案)一、单选题(共15题,共计45分)1、在解方程=1-时,去分母后正确的是()A.5x=1﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=15﹣3(x﹣1) D.5x=3﹣3(x﹣1)2、下列方程是一元一次方程的是()A.x-y=6B.x–2=xC.x 2+3x=1D.1+x=33、下列变形中,错误的是()A.由得到B.由得到C.由得到 D.由得到4、为节约能源,优化电力资源配置,提高电力供应的整体效益,国家实行了错峰用电.某地区的居民用电,按白天时段和晚间时段规定了不同的单价.某户5月份白天时段用电量比晚间时段用电量多,6月份白天时段用电量比5月份白天时段用电量少,结果6月份的总用电量比5月份的总用电量多,但6月份的电费却比5月份的电费少,则该地区晚间时段居民用电的单价比白天时段的单价低的百分数为()A. B. C. D.5、下列运用等式的性质,变形正确的是()A.若x=y,则x-5=y+5B.若a=b,则ac=bcC.若,则2a=3b D.若x=y,则6、已知3x=2y ,那么下列式子中一定成立的是()A.x+y=5B.C.D.7、方程(m-1)x|m|+1-2x=3是关于x的一元二次方程,则有()A. m=1B. m=-1C. m=±1D. m≠±18、若方程2x=8与方程ax+2x=4的解相同,则a的值A.1B.-1C.±1D.09、已知a+ =b﹣= =2001,且a+b+c=2001k,那么k的值为()A. B.4 C.﹣ D.﹣410、已知关于x的方程5x+3k=21与5x+3=0的解相同,则k的值是()A.﹣10B.7C.﹣9D.811、若|x|+2=8,则x的值是()A.6B.﹣6C.6或﹣6D.不确定12、下列说法正确的是()A.若,则B.若,则C.若,则 D.若,则13、将方程3- =x去分母得( )A.3-3x-5=2xB.3-3x+5=2xC.6-3x+5=2xD.6-3x-5=2x14、下列方程的变形中正确的是()A.由x+5=6x﹣7得x﹣6x=7﹣5B.由﹣2(x﹣1)=3得﹣2x﹣2=3C.由得D.由得2x=615、若关于的方程的解为,则的值为()A.-5B.5C.-7D.7二、填空题(共10题,共计30分)16、如果a﹣3与a+1互为相反数,那么a= ________17、若(x+2)(x﹣a)=x2+bx﹣10,则ab的值为________.18、已知代数式8x﹣7与6﹣2x的值互为相反数,那么x的值等于________.19、若x=1是关于x的方程mx-3m=2的解,则m的值为________.20、若(a﹣1)x|a|+3=6是关于x的一元一次方程,则a=________.21、已知x=3是关于x的方程2m-x=5的解,则m=________.22、关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为________.23、已知单项式3a2b m﹣1与3a n b的和仍为单项式,则m+n=________.24、若x﹣3与1互为相反数,则x=________.25、如关于x的方程的解是,则a的值是________.三、解答题(共5题,共计25分)26、已知不等式的正整数解是方程2x﹣1=ax的解,试求出不等式组的解集.27、已知a、b、c是的三边,且满足,试判断的形状.阅读下面解题过程:解:由得:①②即③∴为Rt△.④试问:以上解题过程是否正确:________.若不正确,请指出错在哪步?________(填代号)不正确原因是________.本题的结论应为________.28、当a等于什么数时,2a与1﹣a互为相反数.29、根据下列条件列方程并利用等式的性质求解.a的相反数与4的差是5,求a的值.30、当x为何值时,代数式2(x+1)与代数式1﹣x的值互为相反数?参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、B6、C7、B9、B10、D11、C12、A13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、。
第3章《一元一次方程》单元检测题一、选择题(每小题3分,共36分)1.(2018泰安)已知x k+1+2=0是关于x的一元一次方程,则k的值是()A.-1 B.1 C.0 D.-2 2.(2018凉山州)x=1是关于x的方程2x-a=0的解,则a的值是()A.-2 B.2 C.-1 D.1 3.根据下列条件,能列出方程的是()A.一个数的2倍比它小B.a与1的差的14为5C.甲数的3倍与乙数的12的和D.a与b的和的354.当x=2时,代数式3x2-5ax+10的值为2,则a等于()A.2 B.-2 C.1 D.-1 5.已知代数式5x-7与6-2x的值互为相反数,那么x的值等于()A.-3 B.-13C.3 D.136.设P=2y-2,Q=y-3,有P+Q=1,则y的值是()A.2 B.4 C.-0.4 D.-2.57.一份数学试卷,只有25个选择题,做对一题得4分,做错或不做一题倒扣2分,某同学做了全部试卷,得了70分,他一共做对了()题.A.17道B.18道C.19道D.20道8.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使林地面积是旱地面积的5倍.设把x公顷旱地改为林地,则可列方程()A.5(54-x)=108+x B.108-x=5(54+x)C.54+x=5×162 D.54-x=5(108+x)9.(2018资阳)“黄商购物中心”在国庆节期间举行优惠活动,规定一次购物不超过200元不优惠;超过200元的,全部按8折优惠.小丽买了一件服装,付款180元,这件服装的标价是()A.180元B.200元C.225元D.180元或225元10.学校组织全国文明城市知识问答,共设有20道选择题,各题分值相同,每题必答.下表记录了A,B,D三名参赛学生的得分情况,则参赛学生E的得分可能是()A.66 D.87二、填空题(每小题3分,共18分)11.(2018茂名)等式2x-y=10变形为-4x+2y=-20的依据是等式的性质,它是将等式的两边.12.有一个密码系统,其原理为下面的框图所示:当输出结果为10时,则输入的x=.13.若5x-3的值与1-x的值互为相反数,那么x等于.14.规定a※b=ab+a+b,若3※x=27,则x的值是.15.(2018贵港)已知4a-5b=2a-7b+8,代数式2b a m-+的值比b-a+m的值多2,则m的值是.16.一食堂需要购买盒子存放食物,盒子有A、B两种型号,单个盒子的容量和价格如表格所示.现有15升食物需要存放且要求每个盒子都要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则该食堂购买盒子所需的最少费用是元.17.(8分)根据下列条件列方程:(1)一个数比它的相反数小5;(2)一个数与3的差的2倍比这个数大8;(3)某数比它的15倍小2;(4)某数的13与2的和比该数的2倍还多3.18.(8分)解下列方程:(1)6x+5=4x+1;(2)x-56x+=13x-+3.19.(8分)已知A种品牌的文具比B种品牌的文具单价少1元,小明买了2个A种品牌的文具和3个B种品牌的文具,一共花了28元,求A种品牌的文具单价.20.(8分)已知方程(3m-4)x2-(5-3m)x-4m=-2m是关于x的一元一次方程.(1)求m和x的值;(2)若n满足关系式|2n+m|=1,求n的值.21.(8分)快车每小时行144km,慢车每小时行120km,它们分别从甲、乙两站同时相向而行,相遇前慢车因故修车1.5小时.相遇时,快车所走的路程恰好为慢车的3倍,求甲、乙两站的距离.22.(10分)某水果批发市场苹果的价格如下表:(1)216元,小明第一次购买苹果千克,第二次购买千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)23.(10分)某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/小时.其他主要参考数据如下:(1)A市之间的路程是多少千米吗?请你列方程解答.(2)如果A市与B市之间的路程为s千米,且知道火车与汽车在路上需临时停车耽误的时间分别为2小时和3.1小时.你若是A市水果批发部门的经理,要想将这批水果从A市运往B市销售,你认为选择哪种运输方式比较合算?24.(12分)如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,C点在-10所对应的点处,求此时B点的位置.1-5CBBAD 6-10ADADC11.2 同时乘-212. 213.1 214. 615.-416. 2 9设购买A种型号盒子x个,购买盒子所需要费用为y元,①当0≤x<3时,y=5x+1523x-×6=x+30,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+1523x-×6-4=26+x,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.17.设这个数为x,(1)x=-x-5;(2)2(x-3)=x+8;(3)x=15x-2;(4)13x+2=2x+3.18.解:(1)x=-2;(2)x=7.19.解:设购买A种品牌的文具单价为x元,2x+3(x+1)=28,x=5.答:A种品牌的文具单价为5元.20.解:(1)因为方程(3m-4)x2-(5-3m)x-4m=-2m是关于x的一元一次方程,所以3m-4=0,且5-3m≠0.解得m=43·将m=43代入方程,得-x-163=-83,解得x=-43;(2)将m=43入代|2n+m1=1,得|2n+43|=1,所以2n+43=1或2n+43=-1,解得n=-16或n=-76.21.解:设相遇时快车行了x小时,则144x=3×120(x-1.5),x=2.5,那么甲、乙两站的距离为144×2.5+120×1=480(千米)22.解:(1)16,24;(2)设第一次购买x千克苹果,第二次购买(100-x)千克苹果,分三种情况考虑:1°:当笫一次购买苹果不超过20千克,第二次苹果超过20千克以上但不超过40千克的时候,显然不够100千克,不成立.2°:当笫一次购买苹果不超过20千克,第二次购买苹果超过40千克,6x+4(100-x)=432,解得:x=16,100-16=84(千克)3°:第一次苹果20千克以上但不超过40千克,第二次购买的苹果超过40千克,5x+4(100-x)=432,解得:x=32,100-32=68(千克)答:第一次购买16千克,第二次购买84千克或者第一次购买32千克,第二次购买68千克..23.解:(1)设路程为x 千米,则选择火车用的钱数为(200100x +15x +2000)元,选择汽车用的钱数为(20080x+20x +900)元,200100x +15x +2000=20080x+20x +900-1100,解得x =400; (2)选择火车用的钱数为(100s+2)×200+15s +2000=(17s +2400)元,选择汽车用的钱数为(80s+3.1)×200+20s +900=(22.5s +1520)元,当两种运输方式所用钱数相同时,即17s +2400=22.5s +1520,解得s =160. 所以当s 等于160时,两种运输方式所用钱数一样;当s 小于160时,选择汽车运输比较合算; 当S 大于160时,选择火车运输比较合算.24.解:(1)设B 点的运动速度为x 个单位长度/秒,列方程为82x =4.解得x =1. 答:点B 的速度为1个单位长度/秒;(2)设两点运动t 秒时相距6个单位长度,列方程为: ①当A 点在B 点左侧时,2t -t =(4+8)-6,解得t =6, ②当A 点在B 点右侧时,2t -t =(4+8)+6,解得t =18. 答:6秒或18秒时,两点相距6个单位长度;(3)设C 点运动的速度为y 个单位长度/秒,始终有CB :CA =1:2,则列方程得2-y =2(y -1). 解得y =3.当C 点停留在一10所对应的点处时,所用的时间为1043=152 (秒),。
2018-2019年七年级数学上一元一次方程综合测试题含答案解析一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.若2a与1﹣a互为相反数,则a=.2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为.2a﹣23.如果3x﹣4=0是关于x的一元一次方程,那么a=.4.在等式中,已知S=800,a=30,h=20,则b=.5.(3分)将1000存入银行2年,年利息为5%,扣除20%的利息税,到期可取得本息和为.6.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是岁.7.(3分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需小时才能完成工作.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.下列方程中,是一元一次方程的是()2A.x+x﹣3=x(x+2)B.x+(4﹣x)=0C.x+y=1D.10.与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2xB.x=2x+1C.x=2x﹣1D.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bc C.若=则2a=3bD.若x=y,则=12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九13.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:12y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1B.2C.3D.4 14.把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1B.3x﹣2(x﹣1)=6C.3x﹣2x﹣2=6D.3x+2x﹣2=615.如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A.a<c<bB.a<b<cC.c<b<aD.b<a<c16.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).18.已知y=6﹣x,y=2+7x,若①y=2y,求x的值;②当x取何值时,y比y小﹣3;③当x取121212何值时,y与y互为相反数?1219.老师在黑板上出了一道解方程的题=1﹣,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2)①8x﹣4=1﹣3x﹣6②8x+3x=l﹣6+4③11x=﹣1④x=﹣⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第2步(填编号);然后,你自己细心地解下面方程:+=1,相信你,一定能做对.20.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.22.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.23.小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?24.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案与试题解析3一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.若2a与1﹣a互为相反数,则a=﹣1.【考点】解一元一次方程;相反数.【专题】计算题.【分析】本题考查列一元一次方程和解一元一次方程的能力,因为2a与1﹣a互为相反数,所以可得方程2a+1﹣a=0,进而求出a值.【解答】解:由题意得:2a+1﹣a=0,解得:a=﹣1.故填:﹣1.【点评】根据题意列方程要注意题中的关键词的分析理解,只有正确理解题目所述才能列出方程.2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为5.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于a的方程,即可求得a的值.【解答】解:把x=2代入方程得:4+a﹣9=0,解得:a=5.故答案是:5.【点评】本题考查了方程的解得定义,理解定义是关键.2a﹣23.如果3x﹣4=0是关于x的一元一次方程,那么a=.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.据此即可得到一个关于a 的方程,从而求解.【解答】解:根据题意,得2a﹣2=1,解得:a=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.4.在等式中,已知S=800,a=30,h=20,则b=50.【考点】解一元一次方程.【专题】计算题.【分析】将S=800,a=30,h=20,代入中,求出b的值即可.【解答】解:把S=800,a=30,h=20,代入中,800=,解得b=50.故答案为50.【点评】本题比较简单,只是考查一元一次方程的解法.45.(3分)将1000存入银行2年,年利息为5%,扣除20%的利息税,到期可取得本息和为1080元.【考点】有理数的混合运算.【专题】应用题.【分析】由于利息=本金×利率×年份,本息和=本金+利息,利用这些关系式即可求解.【解答】解:依题意得1000+1000×5%×(1﹣20%)×2=1000+1000×5%×80%×2=1000+80=1080(元).故到期可取得本息和为1080元.故答案为:1080元.【点评】此题主要考查了有理数的混合运算在实际问题中的应用,解题的关键是利用利息=本金×利率×年份,本息和=本金+利息解决问题.6.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是7岁.【考点】一元一次方程的应用.【分析】设小郑今年的年龄是x岁,则今年妈妈的年龄是5x 岁,根据小郑的年龄比妈妈小28岁列出方程解答即可.【解答】解:设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,由题意得5x﹣x=28,解得:x=7.答:小郑今年的年龄是7岁.故答案为:7.【点评】此题考查一元一次方程的实际运用,找出题目蕴含的数量关系:妈妈的年龄﹣小郑的年龄=28是解决问题的关键.7.(3分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需小时才能完成工作.【考点】一元一次方程的应用.【分析】把整个工作看作单位“1”,设甲、乙一起做还需x小时才能完成工作,根据甲先做30分钟,然后甲、乙一起做,完成的工作总量为1列出方程解答即可.【解答】解:设甲、乙一起做还需x小时才能完成工作,由题意得+(+)x=1,解得:x=.小时才能完成工作.答:甲、乙一起做还需故答案为:.【点评】此题考查一元一次方程的实际运用,掌握工作总量、工作效率、工作时间三者之间的关系是解决问题的关键.58.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是738.【考点】一元一次方程的应用.【专题】数字问题.【分析】设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,根据这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,列出方程解答即可.【解答】解:设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,由题意得100(3x﹣1)+10x+(2x+1)=100(2x+1)+10x+(3x﹣1)+99解得:x=3,则2x+1=7,3x﹣1=8,所以原来的三位数为738.故答案为:738.【点评】此题考查一元一次方程的实际运用,掌握数的计数方法,找出题目蕴含的数量关系是解决问题的关键.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.下列方程中,是一元一次方程的是()2A.x+x﹣3=x(x+2)B.x+(4﹣x)=0C.x+y=1D.【考点】一元一次方程的定义.【专题】计算题.【分析】根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0),进行选择.2【解答】解:A、x+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2xB.x=2x+1C.x=2x﹣1D.【考点】同解方程.【分析】求出已知方程的解,再把求出的数代入每个方程,看看左、右两边是否相等即可.【解答】解:x﹣1=2x,解得:x=﹣1,A、把x=﹣1代入方程得:左边≠右边,故本选项错误;B、把x=﹣1代入方程得:左边=右边,故本选项正确;C、把x=﹣1代入方程得:左边≠右边,故本选项错误;D、把x=﹣1代入方程得:左边≠右边,故本选项错误;6。
2018-2019学年度第一学期苏科版七年级数学上册第四章一元一次方程单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.若是方程的解,则的值为()A. B. C. D.2.解方程时,去分母正确的是()A. B.C. D.3.一天晚上停电了,小明同时点上两支粗细不同的新蜡烛看书,若干分钟后电来了,小明将两支蜡烛同时熄灭,已知粗的新蜡烛可燃烧小时,细的新蜡烛可燃烧小时,开始时两根蜡烛一样长,熄灭时粗蜡烛长是细蜡烛的倍,则停电时间为()分钟.A. B. C. D.4.关于的方程是一元一次方程,则的值是()A. B. C. D.5.方程的解是()A. B. C. D.6.某粮食专业户今年生产粮食千克,今年比去年增产,设去年的产量为千克,则可列方程为()A. B.C. D.7.下列各方程,解是的是()A. B.C. D.8.方程和是同解方程,则值为()A. B. C. D.9.下列变形正确的是()A.若,则B.若,则C.若,则D.若,则10.某服装厂生产某种定型冬装,月份销售每件冬装的利润是出厂价的(每件冬装的利润出厂价一成本),月份将每件冬装的出厂价调低(每件冬装的成本不变),销售件数比月份增加,那么该厂月份销售这种冬装的利润总额比月份的利润总额增长()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.方程的解是________;11.若是关于的方程的解,则________.12.下列说法:①等式是方程;②是方程的解;③和都是方程的解.其中说法正确的是________.(填序号)13.关于的方程的解是,则________.14.某校准备为毕业班学生制作一批纪念册,甲公司提出:每册收材料费元,另收设计费元;乙公司提出:每册收材料费元,不收设计费.张老师经过计算,发现两家公司收费一样,则该校今年毕业生有________人.15.已知方程是关于一元一次方程,则方程的解________.16.若,则________.17.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的倍多人.设到雷锋纪念馆的人数为人,可列方程为________.18.已知关于的方程与的解相同,则________.19.如果与的值相等,则________.20.公元前年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于.”此问题中“它”的值为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.解方程:.22.解方程:.23.汽车从甲地到乙地,若每小时行驶千米,就要延误分钟到达;若每小时行驶千米,那就可以提前分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?24.甲、乙两地相距,一列快车和一列慢车分别从甲、乙两地出发,相向而行.已知慢车每小时行,快车每小时行,如果慢车先开,问慢车开出后几小时两车相遇?25.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价元,乒乓球每盒定价元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的折优惠.该班需球拍副,乒乓球若干盒(不少于盒).问:当购买乒乓球多少盒时,两种优惠办法付款一样?当购买盒、盒乒乓球时,去哪家商店购买更合算?26.阅读理解:若、、为整数,且三次方程有整数解,则将代入方程得:,移项得:,即有:,由于与及都是整数,所以是的因数.上述过程说明:整数系数方程的整数解只可能是的因数.例如:方程中的因数为和,将它们分别代入方程进行验证得:是该方程的整数解,,,不是方程的整数解.解决问题:根据上面的学习,请你确定方程的整数解只可能是哪几个整数?方程是否有整数解?若有,请求出其整数解;若没有,请说明理由.答案1.B2.B3.B4.B5.C6.A7.D8.C9.B10.B11.;.12 ③13.14.15.16.17.18.19.20.21.解:去括号得:,移项,合并得:,解得:;去分母得:,去括号得:,移项,合并得:.22.解:.去分母得:,去括号得:,移项得:,合并同类项得:,系数化为得:23.甲、乙两地的距离是千米,原计划行使小时.24.慢车开出后小时两车相遇.25.解:设该班购买乒乓球盒,则甲:,乙:,当甲乙,,解得;买盒时:甲元,乙元,选甲;买盒时:甲元,乙元,选乙.26.解:由阅读理解可知:该方程如果有整数解,它只可能是的因数,而的因数只有:,,,这四个数.该方程有整数解.方程的整数解只可能是的因数,即,,,,将它们分别代入方程进行验证得:是该方程的整数解.。
2018-2019年七年级上册数学单元测试卷-一元一次方程(考试时间:120分钟 总分:150分)一、选择题(共10小题,每小题4分,共40分) 1.已知x =1是方程x+2a=-1的解,那么a 的值是( ) A .-1 B .0 C .1 D .2 2.下列方程变形过程正确的是( )A.由x+2=7,得x=7+2B.由5x=3,得x=53C.由x-3=2,得x=-3-2D.由15x=0,得x=0. 3.小华想找一个解为x=-6的方程,那么他可以选择下面哪一个方程 ( ) A 、2x-1=x+7 B 、131x 21-=xC 、()x x --=+452D 、232-=x x 4.如果3ab2m -1与abm +1是同类项,那么m 等于( )A .2B .1C .-1D .05.下列方程变形正确的是( )A.由-2x=3得x=-32B.由3321+=-+x x x 得x+3(x-1)=2(x+3)C.由-2(x-1)=3得-2x+2=3D.由5.02.05.13.03.1=--x x 得521015313=--xx 6.当3x =时,代数式23510x ax -+的值为7,则a 等于( ).A.2B.-2C.1D.-17.一艘轮船航行在A 、B 两地之间,已知该船在静水中每小时航行12千米,轮船顺水航行需用6小时,逆水航行需用10小时,则水流速度和A 、B 两地间的距离分别为( ) A . 2千米/小时,50千米 B . 3千米/小时,30千米 C . 3千米/小时,90千米 D . 5千米/小时,100千米8.刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就 45岁了.”王老师今年___岁.( )A.42 B.31 C.21 D.179.某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是( ) A.9,7, B.8,8 C.7,9 D.10,610.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是:2x -12=12x -,而此方程的解是x =53,被墨水遮盖的是一个常数,则这个常数是( )A .2B .-2C .-12D .12二、填空题(共6小题,每小题4分,共24分)11.已知方程是关于一元一次方程,则方程的解________.12.当x=________时,代数式4x -5与212-x 的值相等. 13.若4a-9与3a-5互为相反数,则a 2-2a+1的值为_________. 14.规定:*为一种新运算,对任意的有理数a ,b ,有a*b=32b a +,若6*x=32,则x=________. 15.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x 个人,则可列方程是___________________________. 16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.三、解答题(共86分)17.解方程:(每题6分,共12分)(1) )1(16)12(32+-=-+x x x (2) 0.170.210.70.03--=x x班级: 学校: 姓名: 学号:考生答题 不得超过此线18.(8分)阅读题:课本上有这样一道例题:“解方程:)7(3121)15(51--=+x x ” 解:去分母得:6(x+15)=15-10(x-7) ① 6x+90=15-10x+70 ②16x=-5 ③ x=-165④ 请回答下列问题:(1)得到①式的依据是___________________;(2)得到②式的依据是_____________________; (3)得到③式的依据是___________________;(4)得到④式的依据是_____________________。
一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.3.甲、乙两班学生到集市上购买苹果,苹果的价格如下:苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.4.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:袋数2132●合计与标准质量的差值+0.5+0.8+0.6﹣0.4﹣0.7+1.4(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.【答案】(1)解:设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2(2)解:[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元【解析】【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.5.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏.①同学1心里想好的数是2, 则同学3的“传数”是________;②这三个同学的“传数”之和为17,则同学1心里先想好的数是________.(2)若有个同学(n为大于1的偶数)做“传数”游戏,这个同学的“传数”之和为,求同学1心里先想好的数是多少.【答案】(1)5;3(2)解:设同学1心里先想好的数为x,由题意得:同学1的“传数”是2x+1同学2的“传数”是同学3的“传数”是2x+1同学4的“传数”是x……同学n(n为大于1的偶数)的“传数”是x于是∵n为大于1的偶数∴n≠0∴解得:故同学1心里先想好的数是13.【解析】【解答】解:(1)①由题意得:故同学3的“传数”是5;②设同学1想好的数是a,则解得:故答案为:3【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n为大于1的偶数)的“传数”是x,得,化简得,根据n为大于1的偶数,即可得出答案.6.一般情况下不成立,但有些数可以使得它成立,例如:.我们称使得成立的一对数,为“相伴数对”,记为 .(1)若是“相伴数对”,求的值;(2)若是一个“相伴数对”,请将所满足的等式化为,其中均为整数的形式(如);(3)若是“相伴数对”,求代数式的值.【答案】(1)解:根据题意得:,解得b=;(2)解:根据题意得:,即,∴,∴;(3)解:∵是“相伴数对”,∴,∴,∴原式.【解析】【分析】(1)根据“相伴数对”的定义列出方程求解即可;(2)根据“相伴数对”的定义列出等式,然后去分母,化简即可;(3)由(2)可得,变形得,然后对所求式子进行化简,代入计算即可.7.光华中学在运动会期间准备为参加前导队的同学购买服装(前导队包括花束队、彩旗队和国旗队)其中花束队有60名同学,彩旗队有30名同学,国旗队有10名同学,已知花束队的服装与彩旗队的服装单价比为4:3,国旗队的服装单价比彩旗队的服装单价多5元。
江苏GSJY 七年级数学(上)《一元一次方程》单元测试卷(附答案)(时间:120分钟满分:150分)一、选择题(27分)1、在方程23y x ,021xx,2121x,0322x x中一元一次方程的个数为()A .1个B .2个C .3个D .4个2、解方程3112x x时,去分母正确的是()A .2233x x B .2263x xC .1263x xD .1233x x 3、方程x x22的解是()A .1xB .1xC .2=x D .0x 4、对432x ,下列说法正确的是()A .不是方程B .是方程,其解为1 C .是方程,其解为3D .是方程,其解为1、35、方程17.0123.01x x 可变形为()A.17102031010x xB.171203110x x C.1071203110x x D.107102031010x x 6、x 增加2倍的值比x 扩大5倍少3,列方程得()A .352xx B .352x x C .353x x D .353xx7、A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =()A .3B .5C .2D .48、某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为().A .80元B .85元C .90元D .95元9、某原料供应商对购买其原料的顾客实行如下优惠:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元给九折优惠;(3)一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在供应商购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为()元.A.1460B.1540C.1560D.2000 二、填空题(27分)10、代数式12a 与a 21互为相反数,则a.11、如果06312a x是一元一次方程,那么a,方程的解为x.。
一、初一数学一元一次方程解答题压轴题精选(难)1.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.2.(公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元1)班人数较少,不足50人,(2)班超过50人,但不足100人。
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【答案】(1)解:设七(1)班有x人,由题意可知:七(2)班的人数应不足64人,且多于54人则根据题意,列方程得:13x+11(104-x)=1240解得:x=48.即七(1)班48人,七(2)班56人;(2)解:1240-104×9=304,所以可省304元钱(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票,51×11=561,48×13=624>561,∴ 48人买51人的票可以更省钱【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.3.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.【答案】(1)③(2)解:解不等式3x-6>4-x,得:>,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为<x≤3,解:2x-k=2,得:x= ,∴<≤3,<,解得:3<k≤4;(3)解:解方程:2x+4=0得,解方程:得:,解关于x的不等式组当<时,不等式组为:,此时不等式组的解集为:>,不符合题意,所以:>所以得不等式的解集为:m-5≤x<1,∵2x+4=0,都是关于x的不等式组的“子方程”,∴,解得:2<m≤3.【解析】【解答】解:(1)解方程:3x-1=0得:解方程:得:,解方程:得:x=3,解不等式组:得:2<x≤5,所以不等式组的“子方程”是③.故答案为:③;【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其解集,解方程求出x= ,根据“子方城”的定义列出关于k的不等式组,解之可得;(3)先求出方程的解和不等式组的解集,分<与>讨论,即可得出答案.4.阅读下列例题,并按要求回答问题:例:解方程.解:①当时,,解得;②当时,,解得.所以原方程的解是或.(1)以上解方程的方法采用的数学思想是________.(2)请你模仿上面例题的解法,解方程:.【答案】(1)分类讨论(2)解:①当时,,解得,②当时,,解得,∴原方程的解是或.【解析】【分析】(1)材料中是分①、②两种情况来解答题目,明确的体现了“分类讨论”的数学思想;(2)模仿例题,分两种情况分别求解即可.5.已知线段AB=60cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,问经过几秒后P、Q相遇?(2)在(1)的条件下,几秒钟后,P、Q相距12cm?(3)如图2,AO=PO=10厘米,∠POB=40°,点P绕着点O以10度/秒的速度顺时针旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.【答案】(1)解:设经过t秒后P、Q相遇,由题意得:2t+4t=60,解得t=10,答:经过10秒钟后P、Q相遇(2)解:设经过x秒P、Q相距12cm,当相遇前相距12cm时,由题意得:2x+4x+12=60,解得:x=8,当相遇后相距12cm时,由题意得:2x+4x-12=60,解得:x=12,答:经过8秒钟或12秒钟后,P、Q相距12cm(3)解:设点Q运动的速度为ycm/s,∵点P,Q只能在直线AB上相遇,∴点P第一次旋转到直线AB上的时间为:40÷10=4s,若此时相遇,则4y=60-20,解得:y=10,点P第二次旋转到直线AB上的时间为:(40+180)÷10=22s,若此时相遇,则22y=60,解得:y=,答:点Q运动的速度为10cm/s或 cm/s.【解析】【分析】(1)根据相遇问题中的等量关系列方程求解即可;(2)分相遇前相距12cm和相遇后相距12cm,分别列方程求解即可;(3)由于点P,Q只能在直线AB上相遇,所以可先求出点P两次旋转到直线AB上的时间,然后分别列出方程求解即可.6.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.【答案】(1)解:设钢笔的单价为x元,则毛笔的单价为(x+6)元.由题意得:30x+20(x+6)=1070解得:x=19则x+6=25.答:钢笔的单价为19元,毛笔的单价为25元.(2)解:①设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支.根据题意,得19y+25(60-y)=1322解之得:y≈29.7(不符合题意).所以王老师肯定搞错了.②2或8.【解析】【解答】(2)②设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得19z+25(60-z)=1322-a.即:6z=178+a,因为a、z都是整数,且178+a应被6整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,6z=180,z=30,符合题意;当a=4时,6z=182,z≈30.3,不符合题意;当a=6时,6z=184,z≈30.7,不符合题意;当a=8时,6z=186,z=31,符合题意.所以签字笔的单价可能2元或8元.【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元.根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设单价为19元的钢笔为y支,所以单价为25元的毛笔则为(60-y)支,求出方程的解不是整数则说明算错了;②设单价为19元的钢笔为z支,单价为25元的毛笔则为(60-y)支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.7.已知,如图A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为80.(1)请写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,①你知道经过几秒两只电子蚂蚁相遇?②点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距15个单位长度?【答案】(1)解:M点的数值为:;(2)解:①设所用时间为t,依题意得:3t﹢2t=100,解得:t=20;②依题意得:点C位置为: 80-2t=80-2×20=40;③设所用时间为x,依题意得:3x+2x=100-15或3x+2x=100+15,解得:x=17或x=23;∴当x=17或x=23时,两个电子蚂蚁再数轴上相距15个单位长度.【解析】【分析】(1)由AM=BM,结合两点间的距离公式,即可求出AB的中点;(2)①根据时间=路程÷速度,即可求出相遇的时间;②结合相遇的时间,即可求出点C;③根据题意,两个电子蚂蚁在数轴上相距15,可分为:相遇前相距15和相遇后相距15,两种情况进行讨论.8.郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师有1000元,他计划为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?【答案】(1)解:设每个书包的价格为x元,则每本词典的价格为(x-8)元.根据题意,得3x+2(x-8)=124.解得x=28.∴x-8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设购买书包y个,则购买词典(40-y)本.根据题意,得解得10≤y≤12.5.因为y取整数,所以y的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.【解析】【分析】(1)设每个书包的价格为x元,则每本词典的价格为(x-8)元,由“用124元恰好可以买到3个书包和2本词典”可列方程求解即可;(2)设购买书包y 个,则购买词典(40-y)本,根据“ 余下不少于100元且不超过120元的钱购买体育用品”可列不等式组,求解不等式组的正整数解集即可。
一、初一数学一元一次方程解答题压轴题精选(难)1.(公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元1)班人数较少,不足50人,(2)班超过50人,但不足100人。
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【答案】(1)解:设七(1)班有x人,由题意可知:七(2)班的人数应不足64人,且多于54人则根据题意,列方程得:13x+11(104-x)=1240解得:x=48.即七(1)班48人,七(2)班56人;(2)解:1240-104×9=304,所以可省304元钱(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票,51×11=561,48×13=624>561,∴ 48人买51人的票可以更省钱【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.2.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.(1)数轴上点A表示的数为________.(2)将长方形EFGH沿数轴所在直线水平移动.①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?【答案】(1)6(2)①3或9②如图所示:据题意得出D所表示的数为,点E表示数为:,当D、E两点在数轴上表示的数时互为相反数时:则解得:,当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.【解析】【解答】解:(1)根据题意可得:A表示数为的长,故答案为:6.( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;故答案为:3或9.【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为,当D、E两点在数轴上表示的数时互为相反数时点E表示数为:,则,解出答案即可.3.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。
七年级数学一元一次方程单元测试卷班级姓名一、选择题1.把方程变形为x=2,其依据是()A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质12.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.23.方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣34.关于x的方程3x+5=0与3x+3k=1的解相同,则k=()A.﹣2 B.C.2 D.﹣5.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x元,以下方程正确的是()A.20x•13%=2340B.20x=2340×13%C.20x(1﹣13%)=2340 D.13%•x=23406.x是一个两位数,y是一个三位数,把x放在y的左边构成一个五位数,则这个五位数的表达式是()A.xy B.10x+y C.1000x+y D.100x+1000y7.某试卷由26道题组成,答对一题得8分,答错一题倒扣5分.今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有()A.10道B.15道C.20道D.8道8.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔 B.赚9元C.赔18元D.赚18元9.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)10.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A.6x+6(x﹣2000)=150000 B.6x+6(x+2000)=150000C.6x+6(x﹣2000)=15 D.6x+6(x+2000)=15二、填空题11.方程x+2=7的解为.12.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为.13.请你写出一个解为﹣2的一元一次方程.14.(4分)已知|x﹣y|=y﹣x,|x|=3,|y|=4,则(x+y)3= .15.已知关于x的方程3a﹣x=+3的解是4,则﹣a2﹣2a= .16.甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好比乙仓库的一半多1吨,设乙仓库原有x吨,则可列方程为.17.(4分)减去2﹣x等于3x2﹣x+6的整式是.18.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为.三、解方程19.解下列方程(1)x﹣4=2﹣5x (2)(3)解方程:.(4)y﹣=2﹣.(5).四、解答题20.如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.21.展开你想象的翅膀,尽可能多地从方程中猜想出它可能会是哪种类型的实际问题,将其编写出来,并解答之.22.某校七(1)班马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只看到:“甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请将这道作业题补充完整.23.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a= .(2)若该用户九月份的平均电费为0.36元,则九月份共用电千瓦时,应交电费是元.24.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?25.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?26.有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.27.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,求这一天有几名工人加工甲种零件.28. 某地区居民生活用电基本价格为每千瓦时0.4元,若每月用电量超过千瓦时,则超过部分按基本电价的收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费多少元?一、选择题1.B 2.B 3. D 4.C 5.A 6. C 7. A .8. C 9. B 9. B 10.A 二、填空题11.x=5.12.1.13. x+2=014.343或1.15.﹣15.16.2x﹣5=(x+5)+1.17.3x2﹣2x+8.18.2x+56=589﹣x.三、解方程(1)移项合并得:6x=6,解得:x=1;(2)去分母得:12﹣2(2x﹣5)=3(3﹣x),去括号得:12﹣4x+10=9﹣3x,移项合并得:﹣x=﹣13,解得:x=13;(3)解:整理,得,去分母,得6(4x+9)﹣10(3+2x)=15(x﹣5),去括号,得24x+54﹣30﹣20x=15x﹣75,移项,得24x﹣20x﹣15x=﹣75﹣54+30,合并,得﹣11x=﹣99,系数化为1,得x=9.(4)解:去分母得:10y﹣5(y+1)=20﹣2(y+2),去括号得:10y﹣5y﹣5=20﹣2y﹣4,移项得:10y﹣5y+2y=20﹣4+5,合并同类项得:7y=21,解得:y=3.(5)解:去分母得,4(2t﹣6)﹣3(2t﹣4)=24,去括号得,8t﹣24﹣6t+12=24,移项得,8t﹣6t=24+24﹣12,合并同类项得,2t=36,系数化为1得,t=18.四、解答题20.解:解方程,2(x﹣4)﹣48=﹣3(x+2),2x﹣8﹣48=﹣3x﹣6,5x=50,得:x=10.把x=10代入方程4x﹣(3a+1)=6x+2a﹣1,得:4×10﹣(3a+1)=6×10+2a﹣1,解得:a=﹣4,∴可得:=.21.例如:一项工程,甲独做10小时完成,乙独做15小时完成.现在首先由乙先做2小时,再由甲乙合作,还需几小时就能完成?解:设还需x小时就能完成,则有方程:,解得:x=5.2即5小时12分.22.解:如:两车同时从甲地出发到乙地,摩托车比运货汽车先到几小时?23.解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×90=32.40(元).答:九月份共用电90千瓦时,应交电费32.40元.24.解:(1)若王老师获得的稿费为2400元,则应纳税224元,若王老师获得的稿费为4000元,则应纳税440元;(2)因为王老师纳税420元,所以由(1)可知王老师的这笔稿费高于800元,而低于4000元,设王老师的这笔稿费为x元,根据题意得:14%(x﹣800)=420x=3800元.答:王老师的这笔稿费为3800元.25.解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.26.解:设第一座铁桥的长为米,那么第二座铁桥的长为米,过完第一座铁桥所需要的时间为分,过完第二座铁桥所需要的时间为分.依题意,可列出方程解方程得所以答:第一座铁桥长100米,第二座铁桥长150米.27.解:设这一天有名工人加工甲种零件,则这一天加工甲种零件个,乙种零件个.根据题意,得,解得答:这一天有6名工人加工甲种零件.28. 解:(1)由题意,得,解得(2)设九月份共用电千瓦时,则解得所以0.36×90=32.4(元).答:九月份共用电90千瓦时,应交电费32.4元.。