新人教版八年级上数学-第11章《全等三角形》单元测试题[1]
- 格式:doc
- 大小:473.25 KB
- 文档页数:7
新人教版八年级数学上册《第11章三角形》单元测试考试分值:120分;考试时间:100分钟一.选择题(共10小题,满分30分,每小题3分)1.六边形共有几条对角线()A.6 B.7 C.8 D.92.已知线段AC=3,BC=2,则线段AB的长度()A.一定是5 B.一定是1 C.一定是5或1 D.以上都不对3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④ C.①④ D.①②④4.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为()A.2 B.3 C.4 D.65.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是()A.n2+4n+2 B.6n+1 C.n2+3n+3 D.2n+46.下列叙述正确的是()①三角形的中线、角平分线都是射线②三角形的三条高线交于一点③三角形的中线就是经过一边中点的线段④三角形的三条角平分线交于一点⑤三角形的中线将三角形分成面积相等的两个小三角形.A.②④⑤ B.①②④ C.②④ D.④7.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A. B.C. D.8.一个三角形的三个内角的度数之比为1:2:3,这个三角形一定是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法判定9.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二.填空题(共8小题,满分16分,每小题2分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.如图,∠CAD和∠CBD的平分线相交于点P.设∠CAD、∠CBD、∠C、∠D的度数依次为a、b、c、d,用仅含其中2个字母的代数式来表示∠P的度数:.13.一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为,α=度.14.如图所示:在△AEC中,AE边上的高是.15.如果一个多边形的内角和等于1800°,则这个多边形是边形;如果一个n边形每一个内角都是135°,则n= ;如果一个n边形每一个外角都是36°,则n= .16.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为.17.已知三角形的三边长都是整数,最长边长为8,则满足上述条件的互不全等的三角形的个数为.18.一个正多边形的每个外角为60°,那么这个正多边形的内角和是.三.解答题(共2小题,满分8分,每小题4分)19.(4分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?20.(4分)已知:三角形的两个外角分别是α°,β°,且满足(α﹣50)2=﹣|α+β﹣200|.求此三角形各角的度数.四.解答题(共3小题,满分15分,每小题5分)21.(5分)如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E= °;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH 满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.22.(5分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.23.(5分)如图,△ABC 中,AB=AC ,且AC 上的中线BD 把这个三角形的周长分成了12cm 和6cm 的两部分,求这个三角形的腰长和底边的长.五.解答题(共3小题,满分21分,每小题7分)24.(7分)如图:∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE平分∠ACD ,且BE 、CE 交于点E ,求证:∠E=∠A .25.(7分)已知a ,b ,c 是△ABC 的三边长,a=4,b=6,设三角形的周长是x .(1)直接写出c 及x 的取值范围; (2)若x 是小于18的偶数 ①求c 的长;②判断△ABC 的形状.26.(7分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?六.解答题(共3小题,满分30分,每小题10分)27.(10分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.28.(10分)(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.29.(10分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.参考答案一.选择题1.D.2.D.3.C.4.A.5.B.6.A.7.C.8.A.9.D.10.B.二.填空题11.3.12..13.六;120.14.CD.15.十二,8,10.16.2cm.17.20.18.720°.三.解答题19.解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.20.解:∵(α﹣50)2=﹣|α+β﹣200|,∴α﹣50=0,α+β﹣200=0,∴α=50,β=150°,∴与∠α,∠β相邻的三角形的内角分别是130°,30°,∴三角形另一内角的度数=180°﹣130°﹣30°=20°.四.解答题21.解:(1)如图1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案为:45;(2)①如图2所示,②如图2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y ①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如图3,设∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.22.解:(1)由正n边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n边形的每一个内角为:60°,90°,108°,120°,…(n﹣2)•180°÷n;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)如:正方形和正八边形(如图),设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m•90°+n•135°=360°的正整数解.即2m+3n=8的正整数解,只有m=1,n=2一组,∴符合条件的图形只有一种.23.解:设AD=CD=x,AB=AC=2x,BC=y,当AB+AD=12时,,解得;当AB+AD=6时,,解得(不合题意,舍去).答:这个三角形的腰长是8,底边长是2.五.解答题(共3小题,满分21分,每小题7分)24.证明:∵∠ACD=∠A+∠ABC,∴∠3=(∠A+∠ABC).又∵∠4=∠E+∠2,∴∠E+∠2=(∠A+∠ABC).∵BE平分∠ABC,∴∠2=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.26.解:当点A、P、Q、B共线时,即点P、Q在△OAB的边AB上,两侧开挖的隧道在同一条直线上,∵∠A+∠B+∠AOB=180°,∴∠B=180°﹣28°﹣100°=52°,即∠QBO应等于52度才能确保BQ与AP在同一条直线上.六.解答题(共3小题,满分30分,每小题10分)27.解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.28.解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)如图,由三角形的外角性质,∠A+∠D=∠1,∵∠1+∠DBE+∠C+∠E=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°;(3)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(4)如图,延长CE与AD相交,由三角形的外角性质,∠A+∠C=∠1,∠B+∠E=∠2,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.29.解:(1)如图,连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠DPE=∠α=50°,∠C=90°,∴∠1+∠2=50°+90°=140°,故答案为:140°;(2)连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠C=90°,∠DPE=∠α,∴∠1+∠2=90°+∠α;(3)如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.。
八年级数学上册《第十一章全等三角形》单元测试题一、选择题:*1. 如图,在①AB=AC,②AD=AE,③∠B=∠C,④BD=CE四个条件中,能根据“SSS”证明△ABD与△ACE全等的条件顺序是()A. ①②③B. ②③④C. ①②④D. ①③④*2. 如图,AC、BD交于点O,BO=DO,AO=CO,那么下列判断中正确的是()A. 只能证明△AOB≌△CODB. 只能证明△AOD≌△COBC. 只能证明△ABD≌△CBDD. 能证明四对三角形全等3. 在下列条件中,不能判定直角三角形全等的是()A. 两条直角边分别对应相等B. 斜边和一个锐角分别对应相等C. 两个锐角分别对应相等D. 斜边和一条直角边分别对应相等4. 如图,已知AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,则图中的全等三角形有()A. 1对B. 2对C. 3对D. 4对5. 如图18,已知△ABC的六个元素如图所示,则甲、乙、丙三个三角形中和△ABC全等的是()A. 甲、乙B. 乙、丙C. 只有乙D. 只有丙二、填空题:6. 如图,AB=AC ,BE=CD ,要使△ABE ≌△ACD ,依据“SSS ”,则还需添加条件: 。
**7. 如图,AD 和A ’D ’分别是锐角△ABC 和锐角△A ’B ’C ’中BC 和B ’C ’边上的高,且BC=B ’C ’,AD=A ’D ’,若使△ABC ≌△A ’B ’C ’,请你补充条件 。
(填一个你认为适当的条件)三、解答题:9. 已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,。
求证:(1)△OAB ≌△OCD ;(2)AB CD =。
《第十二章 轴对称》单元测试题一选择题:(每小题3分,共24分) 1、下列说法正确的是 ( )A 轴对称涉及两个图形,轴对称图形涉及一个图形B 如果两条线段互相垂直平分,那么这两条线段互为对称轴C 所有直角三角形都不是轴对称图形D 有两个内角相等的三角形不是轴对称图形2、若等腰三角形的一边长为10,另一边长为7,则它的周长为 ( ) A 17 B 24 C 27 D 24或273、若一个三角形的三个外角的度数之比为5∶4∶5,则这个三角形是( ) A 等腰三角形,但不是等边三角形,也不是等腰直角三角形 B 直角三角形,但不是等腰三角形 C 等腰直角三角形 D 等边三角形4、等腰三角形底边长为5cm,一腰上的中线分其周长的两部分的差为3cm ,则腰长为 ( ) A 2cm B 8cm C 2cm 或8cm D 以上答案都不对5、下列说法正确的个数有( )⑴等边三角形有三条对称轴 ⑵四边形有四条对称轴 ⑶等腰三角形的一边长为4,另一边长为9,则它的周长为17或22 ⑷一个三角形中至少有两个锐角 A 1个 B 2个 C 3个 D 4个6、若一个三角形一条边上的中点到其他两边的距离相等,那么这个三角形一定是( ) A 等边三角形 B 等腰三角形 C 不等边三角形 D 不确定 在平面直角坐标系中,直线y=2x-3关于x 轴对称的直线是( ) A y=2x+3 B y=-2x+3 C y=-2x-3 D y=-3x+27、如图,∠BAC=90o ,AD ⊥BC ,DE ⊥AC ,DF ⊥AB ,AC=12BC,除图中AC 和BC 外,关系形如a=12b 的线段对还有( )A 2对B 4对C 6对D 7对 二、填空题:(每小题3分,共24分)1、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________. 2.点A (3,-12),B (3,12)关于_______轴对称,点C (-5.4,-10),D (5.4,-10)关于________轴对称。
八年级(上)第十一章全等三角形章测试题参考答案及评分标准一、选择题1~ 5 题:C 、C 、A 、B 、D 6~10 题:C 、B 、C 、D 、B 二、填空题11、AC=AE ,12、95°,13、6.5cm ,14、∠D AB=CO ,AD=CD ,BD=OD ,AO=CB ,15、12,16、3 ,△ABO ≌△CDO ,17、115O ,18、30O ,19、AC 的中点,20、375 三、解答题21、(1)BE=CF ……2分 (2)证明:∵BE=CF∴BE+EC=CF+EC ,即BC=EF ……3分 ∵AB//DE,∴∠B =∠DEF ……4分在△ABC 和DEF 中⎪⎩⎪⎨⎧=∠=∠=DE AB DEF B EF BC∴△ABC ≌△DEF ……8分 22、证明:在△ABC 和DCB 中⎪⎩⎪⎨⎧===DB AC BC BC DC AB ∴ △ABC ≌△DCB ∴ ∠A= ∠D , ……4分 在△ABO 和DCO 中⎪⎩⎪⎨⎧=∠=∠∠=∠DC AB DOC AOB D A ∴ △ABO ≌ △DCO ……7分∴∠1=∠2 ……8分 23、(1)答:共2对,△DEG ≌ △BFH 和△AEH ≌ △CFG ……2分 (2)证明: △DEG ≌ △BFH ∵四边形ABCD 是平行四边形 ∴AD ∥CB , AB ∥CD∴∠E=∠F ,∠HGC=∠GHA ……4分 又∵∠DGE=∠HGC ,∠FHB=∠GHA∴∠DGE=∠FHB , ……6分在△DGE 和BFH 中⎪⎩⎪⎨⎧=∠=∠∠=∠BF DE FHB DGE BFH DEG ∴△DEG ≌△BFH ……10分 24、(1)证明:∵AD 是高 ∴∠ADB =∠ADC=90° 在Rt△ABD 和Rt△ACD 中⎩⎨⎧==ADAD AC AB∴Rt△ABD ≌Rt△ACD ……2分 ∴BD=CD 即 2BD=BC在Rt△ACD 中 ∠DA C+∠C=90°∴∠EBC=∠DAC ……3分 在△AEH 和△BEC 中⎪⎩⎪⎨⎧=∠=∠=∠=∠O BEC AEB BE AE DAC EBC 90∴△AEH ≌△BEC(ASA) ……6分 ∴AH=BC 又∵2BD=BC∴AH=2BD ……7分(2)成立(提示:在Rt△AHE 和Rt△ACD 中,先证∠ACD =∠AHE ,再证Rt△AHE ≌Rt△BCE ,得到AH=BC,得出AH=2BD ) ……10分 25、解:(1)已知:⑤,③,④ 求证:①,②证明:在AB 上截取一点F ,使AF=AD在△ADE 和△AFE 中⎪⎩⎪⎨⎧=∠=∠=AE AE EAB EAD AD AF ∴△ADE ≌△AFE ……3分 ∴ED=EF ,∠AFE=∠D∵AD+BC=AB ,∴BF=BC ……4分 在△BEF 和△BEC 中⎪⎩⎪⎨⎧=∠=∠=BE BE CBE ABE BC BF ∴△BEF ≌△BEC ,∴∠BFE=∠C ,EF=EC∴ED=EC ……7分 ∵∠BFE+∠AFE=180O ,∴∠C+∠D=180O ,∴AD ∥BC ……8分AB CDEF(2)命题一,已知:①,③,④求证:②,⑤ ……10分命题二,已知:①,②,③求证:④,⑤ ……12分26、解:(1)EF 与FD 之间的数量关系为FE=FD ……2分 (2)(1)中的结论FE=FD 仍然成立。
初中数学八(上)学习过程评价题 班级: 内容:第11章三角形 姓名: 得分: 一、选择题(30分). 1. 从五边形的一个顶点出发的对角线,把这个五边形分成 A.5B.4C.3 2. 以下列各组线段长为边能组成三角形的是 (). A.lcm , 2cm, 4cm B.2cm , 4cm, 6cm C.4cm ,个三角形. D.24. 一个三角形的三条角平分线的交点在 (). A.三角形内 B.三角形外 C. 三角形的某边上5. 某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板, 是()• A.正三角形 B.矩形 C.正六边形6. 能把一个任意三角形分成面积相等的两部分的是 ( A.角平分线 B.中线 C.高 D.以上二种情形都有可能 他购买的瓷砖形状不可以 D. 正八边形 ). D.A7. 一个角的两边与另一个角的两边互相垂直,且这两个角之差为为(). A.70。
和 110° B.80 。
和 120° C.40 。
和 140° 8. 一个三角形三个内角的度数之比为 2:3:7,这个三角形一 A .直角三角形B.等腰三角形 C •锐角三角形 9. ( n+1)边形的内角和比 n 边形的内角和大(). A.180 ° B.360 °C.n • 180° 40 B 、C 都可以,那么这两个角分别 D.100 定是(). D .钝角三角形 和 140°D.n • 360°10.如图,把△ ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则/ A 与/ 1 + Z 2之间 有一种数量关系始终保持不变,试着找一找这个规律 .你发现的规律是().C. / A=2 (/ 1 + Z 2)D. 第11题图二、填空题. 11.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条 是 (每题2分,共16 分)12. 某一个三角形的外角中有一个角是锐角,那么这个三角形是 ____________ 角三角形•13. 一个多边形的内角和是外角和的一半,则它的边数是—14. 如图所示:(1 )在厶ABC中,BC边上的高是_______ ;(2)在厶AEC中,AE边上的高是.15. 如图,正方形ABCD中,截去/ B、/ D后,/ 1、/ 2、/ 3、/ 4的和为16. 若一个等腰三角形的两边长分别是 3 cm和5 cm,则它的周长是cm~17. 三角形的三边长分别为5, 1+2x , 8,则x的取值范围是 ___________ .18. 一个四边形的四个内角中最多有 ________ 个钝角,最多有______ 个锐角?三、解答题(2X 4/=8/).19. 一个多边形的内角和等于它的外角和的6倍,这是一个几边形.20. 已知三角形的两个外角分别是久° , 3°,且满足(a—50)2=—|a +^—200|.求此三角形各角的度数.四、解答题(3X 5/=15/).21. △ ABC中,/ ABC / ACB的平分线相交于点0.(1)若/ ABC = 40 °,/ ACB = 50 °,则/ BOC = __________(2)若/ ABC +/ ACB =116°,则/ BOC = _________ .(3)_______________________________ 若/ A = 76 °,则/ BOC = .(4)_______________________________ 若/ BOC = 120°,则/ A = .22.如图的四边形是某地板厂加工地板时剩下的边角余料嵌吗?请说明理由.,用这种四边形的木板可以进行镶(5)你能找出/ A与/ BOC之间的数量关系吗?23. 已知等腰三角形中,AB= AC, —腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.四、解答题(3X 7/=21/).24. 如图,已知△ ABC D在BC的延长线上,E在CA的延长线上, F在AB上,试比较/ 1与/ 2的大小.25. 已知:如图,AC和BD相交于点0,说明:AC+BD>AB+CD.现测得/ A=145°, / B=75°, / C=85°Z D=55°,就断定这块模板是合格26.如图,它是一个大型模板,设计要求BA与CD相交成20°角, DA与CB相交成40°角, 的,这是为什么?五、解答题((3X 10/=30/)).27. 如图,四边形ABCD中,/ A=Z C= 90°, BE、DF分别是/ B/ D的平分线.(1)/ 1与/ 2大小有何关系,为什么?( 2) BE与DF有何关系?请说明理由C28. 如图1, / ACD>^ ABC的外角,BE平分/ ABC CE平分/ ACD且BE、CE交于点E.求证:⑴/ E= j / A;2(2)若BE、CE是厶ABC两外角的平分线且交于点E,则/ E与/ A又有什么关系?并说明理由29. 如图,/ ECM 90° ,线段AB的端点分别在CE和CF上,BD平分/ CBA并与/ CAB的外角平分线AG所在的直线交于一点 D. (1)Z D与/ C有怎样的数量关系?(2)点A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.参考答案1C ; 2.C ; 3.C ; 4.A ; 5.D ; 6.B ; 7.A ; 8.D ; 9.A ; 10.A ; 11.三角形具有稳定性; 12.钝;13.3 ; 14.AB 、CD 15.540 ° ; 16.11 或 13; 17.1 V x V 6; 18.3、3;22.能进行镶嵌;理由:由镶嵌的条件知,在一个顶点处各个内角的和为 360 °时,就能镶嵌.而任意四边形的内角和是 360 °,只要放在同一顶点的 4个内角和为360 ° 故能进行镶嵌. 23.如图,根据题意得: AB=AC, AD=CD, 设 BC=xcm, AD=CD=ycm 则 AB=AC=2ycm,①若 AB+AD=15cm, BC+CD=6cm 则 2y y 15x y 6解得:x 1 5 y即 AB=AC=10cm, BC=1cm ;②若 AB+AD=6cm , BC+CD=15cm2y 6 则x y 15解得:x 13y 2即 AB=AC=4cm, BC=13cm,19.14;20.13030°、 20°21. /OBC )••• 4+4=8V 13,不能组成三角形,舍去;•••这个等腰三角形的底边的长为1cm.24.根据三角形的外角性质,在△ AEF中,/ BAC >/ 1, 在厶ABC 中,/ 2>Z BAC ,所以,/ 2>Z 1.25.证明:••• AO+BO > AB , DO+CO > CD ,•AO+BO+DO+CO > AB+ CD ,即AC+BD > AB+ CD .26. 解:延长DA、CB,相交于F,•••/ C+Z ADC=85° +55°=140°,•••/ F=180° -140 ° =40 ° ;延长BA、CD相交于E,•/Z C+Z ABC=85° +75°=160°,•Z E=180° -160 °=20 °,故合格.27.(1 )Z 1+ Z 2=90°;•/ BE , DF分别是Z ABC , Z ADC的平分线, • Z 1 = Z ABE , Z 2=Z ADF ,/Z A= Z C=9C° ,• Z ABC+ Z ADC=180 ,••• 2 (/ 1+ / 2) =180° , • BE // DF .28. (1)证明:•••/ ACD= Z A+ /ABC ,1 •••Z2= — (/A+ /ABC )2•••左+ 72= 1 (/A+ ZABC )2•••左+ 1 (/A+ ZACB ) + 1 (/A+ /ABC ) =180。
新人教版八年级数学第—章单元考试试卷一、选择题(每小题3分,共30分)1.在ZV1BC 中,ZB=ZC,与AABC 全等的三角形有一个角是100。
,那么在△ABC 中 与这100。
角对应相等的角是()4•如图,L1^AB = DC, AD = BC, E, F 在 DB 上两点J=L BF=DE,若ZAEB=120。
,ZADB = 30°,则 ZBCF=() A.15O 0 B.40° C.80°D.90°5. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.不相等C.互余或相等D.互补或相等6. 如图,丄BC, BE±AC t Z1 = Z2, AD=AB f 贝U ( )A.Z1 = ZEFDB.BE=EC C ・BF=DF=CD D.FD//BC7.如图所示,BE 丄AC 于点 且 =BD = ED,若ZABC=54°,则ZE=()A.25°B.27。
C.30°D.45°8. 如图所示,亮亮书上的三角形被黒迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ZAB.ZBC.ZCD.ZB 或ZC 2. 如图,在CD 上求一点P, 使它到O 久OB 的距离和等,则P 点是( A.线段CD 的中点C.OA 与CD 的中乖线的交点B.OA 与OB 的中垂线的交点 D.CZ )与ZAOB 的平分线的交点3.如图所示,竺△CDB,A.AABD 和△CDS 的面积和等 卜•面四个结论屮,不正确的是()B.AABD 和△CDB 的周长和等C.ZA+ZABD= ZC+ZCBDD.AD//BC, HAD=BCA. SSSB.SASC. AASD.ASA第3题图A第4题图 第7题图9. 如图,在厶ABC 中,4Q 平分ABAC,过B 作BE 丄AQ 于& 过E 作EF 〃AC 交AB 10•将一张长方形纸片按如图所示的方式折叠,BC 、BQ 为折痕,则ZCBD 的度数为()A. 60°B. 75°C. 90°D. 95°二、填空题(每题3分,共15分)11・能够 ___________________ 的两个图形叫做全等图形.12.已知,如图,AD=AC, BD=BC, O 为AB h 一点,那么,图屮共有 对全等三用形.ZBAD 二40。
第十一章三角形单元测试一、单选题(共10题;共30分)1、如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则AC边上的高是()A、 B、C、D、2、等腰三角形的两边分别为5cm、4cm,则它的周长是()A、14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720°,则这个多边形的边数为()A、4B、5C、6D、76、下列图形中有稳定性的是()A、正方形B、直角三角形C、长方形D、平行四边形7、八边形的对角线共有()A、8条B、16条C、18条D、20条8、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A、8条B、9条C、10条D、11条9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是()A、数形结合B、特殊到一般C、一般到特殊D、转化二、填空题(共8题;共27分)11、一个等腰三角形的两边长分别为5厘米、9厘米,则这个三角形的周长为________.12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了________ .13、若一个多边形从一个顶点可以引8条对角线,则这个多边形的边数是________ ,这个多边形所有对角线的条数是________ .14、现要用两种不同的正多边形地砖铺地板,若已选用正三角形,则还可以选用正________ 边形与它搭配铺成无空隙且不重叠的地面(只需要写出一种即可)15、如果等腰三角形一个角是45°,那么另外两个角的度数为________16、已知一个多边形的内角和是1620°,则这个多边形是________边形.17、在格点图中,横排或竖排相邻两格点问的距离都为1,若格点多边形边界上有200个格点,面积为199,则这个格点多边形内有________个格点.18、一个多边形的每一个内角都是108°,你们这个多边形的边数是________.三、解答题(共5题;共32分)19、如图,已知,l1∥l2, C1在l1上,并且C1A⊥l2, A为垂足,C2, C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.20、如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.21、如图,在△ABC中,∠B=40°,∠C=62°,AD是△ABC的高,AE是△ABC的角平分线.求∠EAD的度数.22、如图,△ABC的中线AD、BE相交于点F.△ABF与四边形CEFD的面积有怎样的数量关系?为什么?23、如图,在7×8的方格纸中,已知图中每个小正方形的边长都为1,求图中阴影部分的面积.四、综合题(共1题;共11分)24、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案解析一、单选题1、【答案】 C【考点】三角形的面积,勾股定理【解析】【分析】以AC、AB、BC为斜边的三个直角三角形的面积分别为1、1、,因此△ABC的面积为;用勾股定理计算AC的长为,因此AC边上的高为.【解答】∵三角形的面积等于小正方形的面积减去三个直角三角形的面积,即S△ABC=4-×1×2-×1×1-×1×2=∵=,∴AC边上的高==,故选C.【点评】此题首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算.2、【答案】 D【考点】三角形三边关系,等腰三角形的性质【解析】【分析】因为等腰三角形的两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.故选D.3、【答案】 B【考点】多边形的对角线【解析】【分析】根据多边形的对角线与边的关系,n边形的对角线条数为:(n≥3,且n为整数)。
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、单选题1.安装空调一般会采用如图的方法固定,其根据的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短2.如图,一束光线与水平面成60°的角度照射地面,现在地面AB上支放一个平面镜CD,使这束光线经过平面镜反射后成水平光线,则平面镜CD与地面AB所成角∠DCB的度数等于()A.30°B.45°C.50°D.60°3.若一个多边形的每个外角都等于36°,则它的内角和是( )A.1 080°B.1 440°C.1 800°D.2 160°4.三角形的下列线段中能将三角形的面积分成相等的两部分的是()A.三角形的中线B.三角形的角平分线C.三角形的高D.以上答案均符合题意5.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为:()A.57°B.60°C.63°D.123°6.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15∘B.20∘C.25∘D.30∘7.如图,F是△ABC的角平分线CD和BE的交点,CG⊥AB于点G.若∠ACG=32°,则∠BFC的度数是()A.119°B.122°C.148°D.150°8.如图,将三角板的直角顶点放在直线a上,a∥b,∠1=55°,∠2=60°,则∠3的大小是()A.55°B.60°C.65°D.75°二、填空题9.在△ABC中,如果∠A=∠B+∠C,那么△ABC是三角形.(填“锐角”、“钝角”或“直角”)10.如果一个正多边形的每个外角是60°,则这个正多边形的对角线共有条.11.如图,△ABC中,点D、E分别是BC、AD的中点,△ABC的面积为6,则阴影部分的面积是.12.把一块直尺与一块直角三角板如图放置,若∠1=40°,则∠2的度数为.13.如图,AB∥CD,EF 分别交AB,CD 于点 J、G.,I为 AB 上一点,连接 FI 交 CD 于点 H,连接GI,若∠EJB=60°,∠IHD=40°,则∠F 的度数为.三、解答题14.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?15.如图所示,在△ABC中,AC=5,BC=6,BC边上高AD=4,若点P在边AC上(不含端点)移动,求BP最短时的值.16.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,求∠AOC ;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).17.如图,△ABC中,AD、AE分别是边BC上的中线和高,AE=4,S△ABD=10,求BC,CD的长.18.某个零件的的形状如图所示,按规定∠A等于90°,∠B、∠D应分别等于20°和30°,小李量得∠BCD=145°,他断定这个零件不合格,你能说出其中的道理吗?19.在△ABC 中,∠ABC 和∠ACB 的角平分线交于点 M.(1)若∠ABC=40°,∠ACB=60°,求∠BMC 的度数;(2)∠BMC 可能是直角吗?作出判断,并说明理由.参考答案1.A2.A3.B4.A5.A6.A7.A8.C9.直角10.911.3212.130°13.20°14.解:设边数为n,根据题意,得(n﹣2)×180°=360°+540°(n﹣2)×180°=900°n﹣2=5∴n=7.900÷7=9007.答:这个多边形的每一个内角等于9007度、它是正七边形.15.解:根据垂线段最短可知,当BP⊥AC时,BP最短.∵S△ABC=12×BC×AD=12×AC×BP∴6×4=5BP,∴PB=245即BP最短时的值为245.16.解:(1)∵∠BOD=60°,△AOB绕着O点旋转了30°,即∠AOD=30°,∴∠AOC=∠AOD+∠COD=30°+90°=120°;(2)若0°<α<90°,∵∠AOD=α,∠AOC=∠COD+∠AOD,∴∠BOD+∠AOC=(∠BOD+∠AOD)+∠COD=90°+90°=180°,在旋转的过程中∠BOD+∠AOC的值不变化,∠BOD+∠AOC=180°;(3)若90°<α<180°,问题(2)中的结论还成立理由:若90°<α<180°,∵∠AOB=∠COD=90°;又∵∠BOD+∠AOC+∠AOB+∠COD=360°∴∠BOD+∠AOC=360°﹣∠AOD﹣∠COD=360°﹣90°﹣90°=180°;(4)α=90°、60°、45°、105°、150°、135°时,两个三角形至少有一组边所在直线垂直。
人教版八年级上册第十一章单元测试题——全等三角形(时间:90分钟 满分:100分) 姓名 得分一、选择题二、1.一个三角形三个内角的度数之比为2∶3∶7,这个三角形是( ).A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形2.下列命题中,正确的是( )A 、有两边及一边的对角相等的两个三角形全等B 、有两边相等的两个直角三角形全等C 、有两个角及第三角的对边相等的两个三角形全等D 、有两个角及一边相等的两个三角形全等3.如图,BE=CF ,AB=DE ,添加下列哪些条件可以推证△ABC ≌△DFE ( )A 、BC=EFB 、∠A=∠DC 、AC ∥DFD 、AC=DF 4.已知,如图,AC=BC ,AD=BD ,下列结论不正确的是( )A 、CO=DOB 、AO=BOC 、AB ⊥BD D 、△ACO ≌△BCO 5.在△ABC 内部取一点P 使得点P 到△ABC 的三边距离相等,则点P 应是△ABC 的哪三条线交点( )A 、高B 、角平分线C 、中线D 、垂直平分线 6.下列结论正确的是( )A 、有两个锐角相等的两个直角三角形全等; 三、B 、一条斜边对应相等的两个直角三角形全等;C 、顶角和底边对应相等的两个等腰三角形全等;D 、两个等边三角形全等. 7.下列条件能判定△ABC ≌△DEF 的一组是( )A 、∠A=∠D ,∠C=∠F,,AC=DFB 、AB=DE , BC=EF,,∠A=∠DC 、∠A=∠D ,∠B=∠E ,∠C=∠F D 、AB=DE ,△ABC 的周长等于△DEF 的周长 8.能把一个三角形分成面积相等的两部分的是该三角形的一条( )A 、中线B 、角平分线C 、高线D 、边的垂直平分线9.已知,如下图,在△ABC 中,AB=AC,AD 是角平分线,BE=CF,则下列说法正确的有几个 ( ) (1)AD 平分∠EDF ;(2)△EBD ≌△FCD ; (3)BD=CD ;(4)AD ⊥BC 。
新人教版八年级数学上册第十一章三角形单元测试题含答案新人教版八年级数学上册第十一章三角形单元测试题(上)一、选择题(30分)1.从五边形的一个顶点出发的对角线,把这个五边形分成()个三角形。
A.5B.4C.3D.22.以下列各组线段长为边能组成三角形的是()。
A.1cm,2cm,4cmB.2cm,4cm,6cmC.4cm,6cm,8cmD.5cm,6cm,12cm3.下列图形中一定能说明∠1>∠2的是()。
1.211.22.12A。
B.CD4.一个三角形的三条角平分线的交点在()A.三角形内B.三角形外C.三角形的某边上D.以上三种情形都有可能5.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()。
A.正三角形B.矩形C.正六边形D.正八边形6.能把一个任意三角形分成面积相等的两部分的是()。
A.角平分线B.中线C.高D.A、B、C都可以7.一个角的两边与另一个角的两边互相垂直,且这两个角之差为40°,那么这两个角分别为()。
A.70°和110°B.80°和120°C.40°和140°D.100°和140°8.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()。
A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形9.(n+1)边形的内角和比n边形的内角和大()。
A.180°B.360°C.n·180°D.n·360°10.如图,把△XXX纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律。
你发现的规律是()。
BA.∠1+∠2=2∠AB.∠1+∠2=∠AC.∠A=2(∠1+∠2)D.∠1+∠2=∠A/2二、填空题(每题2分,共16分)1.在图1中,∠A+∠B+∠C+∠D+∠E=_____°。
人教版2020年八年级上册第11章《三角形》单元测试卷一.选择题(共12小题,满分36分,每小题3分)1.如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是( )A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短2.在△ABC中,∠A是钝角,下列图中画AC边上的高线正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.下列条件,可以确定△ABC是直角三角形的是()A.∠A+∠B+∠C=180°B.∠A+∠B=∠C C.∠A=∠B=∠C D.∠A=∠B=2∠C5.已知三角形中,某两条边的长分别为4和9,则另一条边的长可能是()A.4B.5C.12D.136.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,∠A=50°,则∠BOC=()A.50°B.65°C.105°D.115°7.如图,图中三角形的个数是()A.7B.6C.5D.48.一个多边形的外角和是内角和的,这个多边形的边数是()A.7B.8C.9D.109.如图,在△ABC中,∠A=38°,∠B=70°,CD是AB边上的高,CE平分∠ACB交AB于E,DP是△CDE 中CE边上的高,则∠CDP的度数是()A.75°B.74°C.73°D.72°10.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°11.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°12.若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14或15或16B.15或16C.14或16D.15或16或17二.填空题(共8小题,满分32分,每小题4分)13.若线段AD是△ABC的中线,且BD=3,则BC长为.14.已知△ABC三个内角的度数之比为2:4:9,则△ABC最大内角的度数为.15.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是.16.如图,小林从P点向西直走8米后,向左转,转动的角度为α,再走8米,如此重复,小林共走了72米回到点P,则α为.17.若△ABC的边AB、BC的长是方程组的解,设边AC的长为m,则m的取值范围是.18.已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=.19.如图,在△ABC中,∠C=50°,按图中虛线将∠C剪去后,∠1+∠2等于.16题20题20.如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④,其中正确的结论有.三.解答题(共7小题,满分52分)21.(8分)如图,由6条钢管铰接而成的六边形是不稳定的,请你再用三条钢管连接使之稳固(方法很多,请提供四种不同连接方法)22.(8分)阅读佳佳与明明的对话,解决下列问题:(1)“多边形内角和为2020°”,为什么不可能?(2)明明求的是几边形的内角和?(3)错当成内角的那个外角为多少度?23.(9分)已知,已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?24.(8分)如图,在△ABC中,∠B=40°,∠C=80°.(1)求∠BAC的度数;(2)AE平分∠BAC交BC于E,AD⊥BC于D,求∠EAD的度数.25.(9分)已知:如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.(1)若∠DCB=40°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.26.(10分)现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使点A落在CE上,则∠1与∠A的数量关系是.研究(2):如果折成图②的形状,猜想∠1+∠2与∠A的数量关系是;研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是三角形具有稳定性,故选:A.2.解:由题意可得,在△ABC中,∠A是钝角,画AC边上的高线是故选:A.3.解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.解:∠A+∠B+∠C=180°,∠A,∠B,∠C的度数不确定,A不能确定△ABC是直角三角形;∠A+∠B=∠C,根据三角形内角和定理得到∠C=90°,B可以确定△ABC是直角三角形;∠A=∠B=∠C,则△ABC是等边三角形,C不能确定△ABC是直角三角形;∠A=∠B=2∠C,则△ABC是等腰三角形,D不能确定△ABC是直角三角形;故选:B.5.解:9+4=13,9﹣4=5,所以第三边在5到13之间,只有C中的12满足.故选:C.6.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50=130°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选:D.7.解:BC上有6条线段,所以有6个三角形.故选:B.8.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9,故选:C.9.解:∵∠A=38°,∠B=70°,∴∠BAC=180°﹣∠A﹣∠B=180°﹣38°﹣70°=72°,∵CE平分∠ACB,∴∠ACE=∠ACB=×72°=36°,∵CD⊥AB,∴∠ACD=90°﹣∠A=90°﹣38°=52°,∴∠DCE=∠ACD﹣∠ACE=52°﹣36°=16°,∵DP⊥CE,∴∠CDP=90°﹣∠DCE=90°﹣16°=74°.故选:B.10.解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.11.解:∵AE平分∠BAC,∠1=30,∴∠CAE=∠1=30°,∴∠DAE=∠CAE﹣∠2=10°,∴∠BAD=∠1+∠DAE=40°.∵AD⊥BC,∴∠ADB=90°,∴∠B=180°﹣∠BAD﹣∠ADB=50°.故选:D.12.解:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选:A.二.填空题(共8小题,满分32分,每小题4分)13.解:∵AD是△ABC的一条中线,BD=3,∴BC=2BD=2×3=6.故答案为:6.14.解:∵∠A:∠B:∠C=2:4:9,∴设∠A=2a,则∠B=4a,∠C=9a,由三角形内角和定理得2a+4a+9a=180°,解得a=12°.∴∠A=24°,∠B=48°,∠C=108°.故答案为:108°.15.解:在△ABC中,∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=60°+40°=100°,故答案为:100°.16.解:设边数为n,根据题意,n=72÷8=9,则α=360°÷9=40°.故答案为:40°.17.解:,解得:,∵△ABC的边AB、BC的长是方程组的解,边AC的长为m,∴m的取值范围是:3<m<9,故答案为:3<m<9.18.解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.19.解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故答案为:230°.20.解:①∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;②∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,故②错误;③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°,故③正确;④∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∴∠ADB=∠DBC,∵∠DCF=90°﹣∠ABC=∠DBC+∠BDC,∴∠BDC=90°﹣2∠DBC,∴∠DBC=45°﹣∠BDC,故④正确;故答案是:①③④.三.解答题(共7小题,满分52分)21.解:如图所示..22.解:(1)设多边形的边数为n,180°(n﹣2)=2020°,解得,∵n为正整数,∴“多边形的内角和为2020°”不可能.(2)设应加的内角为x,多加的外角为y,依题意可列方程:(n﹣2)180°=2020°﹣y+x,∵﹣180°<x﹣y<180,∴2020°﹣180°<180°(n﹣2)<2020°+180°,解得,又∵n为正整数,∴n=13,n=14.故明明求的是十三边形或十四边形的内角和.(3)十三边的内角和:180°×(13﹣2)=1980°,∴y﹣x=2020°﹣1980°=40°,又x+y=180°,解得:x=70°,y=110°;十四边的内角和:180°×(14﹣2)=2160°,∴y﹣x=2160°﹣2020°=140°,又x+y=180°,解得:x=160°,y=20°;所以那个外角为110°或20°.23.解:(1)∵,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴.(2)不能,理由如下:∵,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.24.解:(1)∵∠B+∠BAC+∠C=180°,∠B=40°,∠C=80°,∴∠BAC=180°﹣40°﹣80°=60°;(2)∵AD⊥BC,∴∠ADC=90°,∵∠DAC=180°﹣∠ADC﹣∠C,∠C=80°,∴∠DAC=180°﹣90°﹣80°=10°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC,∴∠BAE=∠CAE=30°,∵∠EAD=∠CAE﹣∠DAC,∴∠EAD=20°.25.解:(1)∵CD是高,∠DCB=40°,∴∠B=50°,又∵∠ACB=90°,∴∠BAC=40°,又∵AE是角平分线,∴∠BAE=∠BAC=20°,∴∠CEF=∠B+∠BAE=50°+20°=70°;(2)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BAC=∠B+∠BAC=90°,∴∠ACD=∠B,∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CFE是△ACF的外角,∠CEF是△ABE的外角,∴∠CFE=∠ACD+∠CAE,∠CEF=∠B+∠BAE,∴∠CFE=∠CEF.26.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠DAE,理由是:∵∠2=∠AFE+∠DAE,∠AFE=∠A′+∠1,∴∠2=∠A′+∠DAE+∠1,∵∠DAE=∠A′,∴∠2=2∠DAE+∠1,∴∠2﹣∠1=2∠DAE.故答案为:(1)∠1=2∠A;(2)∠1+∠2=2∠A.27.解:(1)①∵AD∥BC,∠B=40°,∠C=70°,∴∠BAD=140°,∠ADC=110°,∵AE、DO分别平分∠BAD、∠CDA,∴∠OAD=70°,∠ADO=55°,∴∠DOE=∠OAD+∠ADO=70°+55°=125°故答案为:125;②∠B+∠C+2∠DOE=360°,理由:∵∠DOE=∠OAD+∠ADO,∵AE、DO分别平分∠BAD、∠CDA,∴2∠DOE=∠BAD+∠ADC,∵∠B+∠C+∠BAD+∠ADC=360°,∴∠B+∠C+2∠DOE=360°;(2)∠B+∠C=2∠DOE,理由:∵∠BAD+∠ADC=360°﹣∠B﹣∠C,∠EAD+∠ADO=180°﹣∠DOE,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAD=2∠EAD,∠ADC=2∠ADO,∴∠BAD+∠ADC=2(∠EAD+∠ADO),∴360°﹣∠B﹣∠C=2(180°﹣∠DOE),∴∠B+∠C=2∠DOE.。
猪场坪乡中学八年级数学第十一章单元考试试卷班级 姓名 坐号 得分一、选择题(每小题3分,共30分)1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ) A.线段CD 的中点 B.OA 与OB 的中垂线的交点 C.OA 与CD 的中垂线的交点 D.CD 与∠AOB 的平分线的交点第2题图 第3题图 第4题图3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( ) A.△ABD 和△CDB 的面积相等 B.△ABD 和△CDB 的周长相等 C.∠A +∠ABD =∠C +∠CBD D.AD ∥BC ,且AD =BC4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90°5A.6A.ADDACB ODCBA7.如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( ) A.25° B.27° C.30° D.45°8.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A. SSS B. SAS C. AAS D. ASA9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB 于F ,则( )A. AF =2BFB.AF =BFC.AF >BFD.AF <BF第8题图 第9题图 第10题图10.将一张长方形纸片按如图所示的方式折叠,B C B D ,为折痕,则C B D ∠的度数为( ) A .60° B .75° C .90° D .95° 二、填空题(每题3分,共15分)11.能够____ 的两个图形叫做全等图形.12.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.13.如图,△ABC ≌△ADE ,则,AB = ,∠E = ∠ .若∠BAE =120°,∠BAD =40°,则∠BAC = .14.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = . 15.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB •的距离是________.三、解答题(共55分)16.(7分)如图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.DBACBAED第12题图 第13题图FEDCBA AECBA ′ E ′D证明: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中∵⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( )17.(8分)已知:如图,在直线MN 上求作一点P ,使点P 到 ∠AOB 两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)18.(8分)已知: BE ⊥CD ,BE =DE ,BC =DA ,求证:△BEC ≌△DAE19.(8分)已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF , 求证:△ABC ≌△DEF .BCDEF A C EO NMBA20.(8分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .21.(8分)已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .22.(8分)如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.ACB DEF新人教版八年级数学第十一章单元考试试卷参考答案一、选择题1.A2.D 3.C 4.D 5.D 6.D 7.B 8.D 9.B 10.C二、填空题11.完全重合12.3 13.AD C 80°14.5 15.4cm三、解答题16.BAD CAD AB=AC ∠BAD=∠CAD AD=AD SAS17.作∠BOA的平分线交MN于P点,就是所求做的点。
人教新版八年级上册《第11章三角形》单元测试卷一.选择题(共18小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.72.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°3.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°4.如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是()A.0°<∠A<60°B.90°<∠A<180°C.0°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°5.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°6.如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87°B.84°C.75°D.72°7.如图,射线BD,AE分别是△ABC的外角∠ABF,∠CAG的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若∠BAC=∠ABC+102°,∠D=∠E+27°,则∠ACB的度数为()A.39°B.40°C.41°D.42°8.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数()A.19°B.20°C.22°D.25°9.如图,△ABC中,∠C=90°,将△ABC沿DE折叠,使得点B落在AC边上的点F处,若∠CFD=60°且△AEF中有两个内角相等,则∠A的度数为()A.30°或40°B.40°或50°C.50°或60°D.30°或60°10.如图,在直角△ABC中,∠CAB=90°,∠ABC=70°,AD是∠CAB的平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.35°B.30°C.25°D.20°11.在平面内,若AB=6,BC=4,∠A=30°,则可以构成的△ABC的个数是()A.0个B.1个C.2个D.不少于2个12.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°13.如图所示,在△ABC中,∠BAC、∠ABC、∠ACB的三等分线相交于D、E、F(其中∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF),且△DFE的三个内角分别为∠DFE=54°、∠FDE=60°、∠FED=66°,则∠BAC=()A.54°B.60°C.66°D.48°14.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为()A.49°B.50°C.51°D.52°15.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为()A.144°B.126°C.120°D.108°16.将每一个内角都是108o的五边形按如图所示方式放置,若直线m∥n,则∠1和∠2的数量关系是()A.∠1+∠2=90°B.∠1=∠2+72oC.∠1=∠2+36o D.2∠1+∠2=180°17.如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°18.如图,在正方形网格内(每个小正方形的边长为1),有一格点三角形ABC(三个顶点分别在正方形的格点上),现需要在网格内构造一个新的格点三角形与原三角形全等,且有一条边与原三角形的一条边重合,这样的三角形可以构造出()A.3个B.4个C.5个D.6个二.解答题(共9小题)19.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.20.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.21.如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC.求证:△ABC ≌△DEF.22.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.23.直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN﹣∠OMP﹣∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是.24.直线m与直线n相交于C,点A是直线m上一点,点B是直线n上一点,∠ABC的平分线BP与∠DAB的平分线AE的反向延长线相交于点P.(1)如图1,若∠ACB=90°,则∠P=;若∠ACB=α,则∠P=(结果用含α的代数式表示);(2)如图2,点F是直线n上一点,若点B在点C左侧,点F在点C右侧时,连接AF,∠CAF与∠AFC的平分线相交于点Q.①随着点B、F的运动,∠APB+∠AQF的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ交直线n于点G,作QH∥CF交AF于点H,则=.25.如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC交AD于E,求∠4的度数.26.已知点B、D分别为射线AM、AN上异于端点A的任一点,点C为∠MAN内部一点(如图1).∠A=α,∠C=β,(0°<α<180°,0°<β<180°).(1)∠ABC+∠ADC=(用含α、β的代数式直接填空);(2)如图2,若α=β=90°,BE平分∠ABC,DG平分∠CDN,若射线BE与DG所在直线交于点F,则∠BDG为角(只填序号);①锐角;②直角;③钝角.(3)①若∠MBC、∠CDN的角平分线相交于点P,α+β=110°,∠BPD=30°,试求α、β的值;②①中的∠BPD是否一定存在?若∠BPD不存在,请直接写出α、β满足的条件.27.同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC的平分线与∠EGC的平分线相交于点Q,求∠FQG的大小;(3)如图3,点P是线段AD上的动点(不与A,D重合),连接PF、PG,的值是否变化?如果不变,请求出比值;如果变化,请说明理由.人教新版八年级上册《第11章三角形》参考答案与试题解析一.选择题(共18小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7【分析】依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,即BC的长可能值有4个,故选:A.【点评】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.2.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,∠BCD的度数为60°或10°,故选:D.【点评】本题考查了三角形的内角和定理,分情况讨论是解决本题的关键.3.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°【分析】由△ABD的内角和为180°,可以求∠ADB,由△AEC内角和为180°,可以求∠AEC,再根据四边形AEFD内角和为360°,可求∠EFD.【解答】解:在△AEC中,∠A+∠ACE+∠AEC=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣60°﹣35°=85°,在△ABD中,∠A+∠ABD+∠ADB=180°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣60°﹣20°=100°,在四边形AEFD中,∠A+∠AEC+∠ADB+2∠EFD=360°,∴∠EFD=360°﹣∠A﹣∠AEC﹣∠ADB=360°﹣60°﹣85°﹣100°=115°,故选:A.【点评】本题考查三角形的内角和定理和四边形的内角和,掌握三角形的内角和定理是解本题的关键.4.如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是()A.0°<∠A<60°B.90°<∠A<180°C.0°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°【分析】由∠O=30°可分两种情况:若∠A为钝角,则90°<∠A<180°﹣30°,可直接求解∠A的范围;若∠A为锐角,则90°<∠A<180°﹣30°,再根据三角形外角的性质可求解.【解答】解:∵∠O=30°,若∠A为钝角,则90°<∠A<180°﹣30°,即90°<∠A<150°,若∠A为锐角,则0°<∠APN<90°,∵∠APN=∠O+∠A,∴∠A+30°<90°,∴0°<∠A<60°,综上,∠A的取值范围为0°<∠A<60°或90°<∠A<150°,故选:D.【点评】本题主要考查三角形的内角和定理,三角形外角的性质,分类讨论是解题的关键.5.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°【分析】分三种情况,利用三角形的内角和定理、等腰三角形的性质先求出∠APC的度数,再利用折叠的性质和三角形的内角和定理求出∠B.【解答】解:由折叠的性质知:∠BPD=∠APD=∠BP A,∠BDP=∠ADP=90°.当AP=AC时,∠APC=∠C=70°,∵∠BPD=(180°﹣∠APC)=55°,∴∠B=90°﹣55°=35°;当AP=PC时,∠P AC=∠C=70°,则∠APC=40°.∵∠BPD=(180°﹣∠APC)=70°,∴∠B=90°﹣70°=20°;当PC=AC时,∠APC=∠P AC,则∠APC=55°.∵∠BPD=(180°﹣∠APC)=62.5°,∴∠B=90°﹣62.5°=27.5°.故选:D.【点评】本题考查了折叠的性质、三角形的内角和定理、等腰三角形的性质等知识点,掌握折叠、等腰三角形的性质、三角形的内角和定理及分类讨论的思想方法是解决本题的关键.6.如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87°B.84°C.75°D.72°【分析】已知∠A=18°,欲求∠C,需求∠ABC.如图,由题意得:△ABN≌△A′BN,△C′BN≌△CBM,得∠1=∠2=∠3,∠CMB=∠C′MB=68°,则需求∠3.根据三角形内角和定理,得∠3+∠C=112°,∠ABC+∠C+18°=180°,即3∠3+∠C=162°,故求得∠3=25°.【解答】解:如图,由题意得:△ABN≌△A′BN,△C′BN≌△CBM.∴∠1=∠2,∠2=∠3,∠CMB=∠C′MB=68°.∴∠1=∠2=∠3.∴∠ABC=3∠3.又∵∠3+∠C+∠CMB=180°,∴∠3+∠C=180°﹣∠CMB=180°﹣68°=112°.又∵∠A+∠ABC+∠C=180°,∴18°+2∠3+(∠3+∠C)=180°.∴18°+2∠3+112°=180°.∴∠3=25°.∴∠C=112°﹣∠3=112°﹣25°=87°.故选:A.【点评】本题主要考查折叠的性质以及三角形内角和定理,熟练掌握三角形内角和定理是解决本题的关键.7.如图,射线BD,AE分别是△ABC的外角∠ABF,∠CAG的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若∠BAC=∠ABC+102°,∠D=∠E+27°,则∠ACB的度数为()A.39°B.40°C.41°D.42°【分析】设∠ABC=x,∠E=y,则∠BAC=x+102°,∠D=y+27°.由∠BAC+∠ABC+∠ACB=180°,得∠ACB=78°﹣2x°.由AE平分∠CAG,得∠GAE=39°﹣.同理可得:∠DBF=90°﹣.由∠GAE=∠ABC+∠E,∠DBF=∠D+∠ACB,得39°﹣=x+y,90°﹣=y+27°+78°﹣2x,得x=18°.那么,∠ACB=78°﹣2x=78°﹣2×18°=42°.【解答】解:设∠ABC=x,∠E=y,则∠BAC=x+102°,∠D=y+27°.∵∠BAC+∠ABC+∠ACB=180°,∴∠ACB=180°﹣(∠ABC+∠BAC)=78°﹣2x°.∵AE平分∠CAG,∴∠GAE===39°﹣.同理可得:∠DBF=90°﹣.∵∠GAE=∠ABC+∠E,∴39°﹣=x+y.∵∠DBF=∠D+∠ACB,∴90°﹣=y+27°+78°﹣2x.∴x=18°.∴∠ACB=78°﹣2x=78°﹣2×18°=42°.故选:D.【点评】本题主要考查三角形外角的性质以及角平分线的定义,熟练掌握三角形外角的性质是解决本题的关键.8.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数()A.19°B.20°C.22°D.25°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=48°,∠D=10°,∴∠P=(48°﹣10°)=19°.故选:A.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.9.如图,△ABC中,∠C=90°,将△ABC沿DE折叠,使得点B落在AC边上的点F处,若∠CFD=60°且△AEF中有两个内角相等,则∠A的度数为()A.30°或40°B.40°或50°C.50°或60°D.30°或60°【分析】分三种情形:①当AE=AF时,②当AF=EF时,③当AE=EF时,分别求解即可.【解答】解:①当AE=AF时,则∠AFE=∠AEF=(180°﹣∠A),∵∠B=∠EFD=90°﹣∠A,∠CFD=60°,∴∠AFD=120°,∴(180°﹣∠A)+90°﹣∠A=120°,∴∠A=40°.②当AF=EF时,∠AFE=180°﹣2∠A,同法可得180°﹣2∠A+90°﹣∠A=120°,∴∠A=50°.③当AE=EF时,点F与C重合,不符合题意.综上所述,∠A=40°或50°,故选:B.【点评】本题考查三角形内角和定理,翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.10.如图,在直角△ABC中,∠CAB=90°,∠ABC=70°,AD是∠CAB的平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.35°B.30°C.25°D.20°【分析】先根据角平分线定义求出∠CAD=∠BAD=∠CAB=45°,再根据直角三角形两锐角互余求出∠ACB及∠ACE,再通过∠ECD=∠ACE﹣∠BCA求解.【解答】解:∵∠CAB=90°,AD是∠CAB的角平分线,∴∠CAD=∠BAD=∠CAB=45°,∵CE⊥AD,∴∠ECA=∠CEA﹣∠CAE=45°,∵∠BCA=∠CAB﹣∠B=20°,∴∠ECD=∠ACE﹣∠BCA=25°,故选:C.【点评】本题考查三角形的内角和定理,解题关键掌握三角形内角和定理及直角三角形两个锐角互余.11.在平面内,若AB=6,BC=4,∠A=30°,则可以构成的△ABC的个数是()A.0个B.1个C.2个D.不少于2个【分析】利用30°角所对的直角边是斜边的一半可求出BH=3,再根据BC>3,可知符合条件的三角形有2个.【解答】解:如图,∵∠A=30°,AB=6,BH⊥AD,∴BH=3,∵BC=4>3,∴AD边上存在两个点C,使得BC=4,∴可以构成的△ABC的个数是2个,故选:C.【点评】本题主要考查了30°角所对的直角边是斜边的一半这一性质,解决问题的关键是作图,求出B到AD的距离.12.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°【分析】根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【解答】解:∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1﹣∠2=∠B+∠D=28°+28°=56°,故选:D.【点评】本题考查了三角形的外角性质和折叠的性质,能熟记三角形的外角性质是解此题的关键,注意:三角形的一个外角等于与它不相邻的两个内角的和.13.如图所示,在△ABC中,∠BAC、∠ABC、∠ACB的三等分线相交于D、E、F(其中∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF),且△DFE的三个内角分别为∠DFE=54°、∠FDE=60°、∠FED=66°,则∠BAC=()A.54°B.60°C.66°D.48°【分析】设∠BAD=x,∠CBE=y,∠ACF=z,则∠CAF=2x,∠ABD=2y,∠BCE=2z,利用三角形的外角的性质构建方程组解决问题即可.【解答】解:∵∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF,∴可以假设∠BAD=x,∠CBE=y,∠ACF=z,则∠CAF=2x,∠ABD=2y,∠BCE=2z,∵∠DFE=∠ACF+∠CAF,∠FDE=∠DAB+∠ABD,∠DEF=∠CBE+∠BCE,∴54°=2x+z,60°=x+2y,66°=y+2z,解得x=16°,y=22°,z=22°,∴∠BAC=3x=48°,故选:D.【点评】本题考查三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.14.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为()A.49°B.50°C.51°D.52°【分析】先根据折叠性质得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,根据三角形内角和为180°和周角360°求出结论.【解答】解:由折叠得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,∵∠A+∠B+∠C=180°,∴∠HOG+∠DOE+∠EOF=180°,∵∠1+∠2+∠HOG+∠DOE+∠EOF=360°,∴∠1+∠2=180°,∵∠1=131°,∴∠2=180°﹣131°=49°,故选:A.【点评】本题是折叠问题,考查了折叠的性质,熟练掌握折叠前后的两个角相等,结合三角形的内角和求出角的度数.15.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为()A.144°B.126°C.120°D.108°【分析】欲求∠AOG,可求∠AOC,则需求∠BCO、∠OAB、∠B.因为五边形ABCDE 是正五边形,所以∠EAB=∠E=∠BCD=108°.又因为AO平分∠EAB,CG平分∠DCF,所以可求得∠OAB=54°,∠BCG=108°+=144°.【解答】解:∵任意多边形的外角和等于360°,∴∠DCF=360°÷5=72°.∴这个正五边形的每个内角为180°﹣72°=108°.∴∠B=∠EAB=∠BCD=108°.又∵AO平分∠EAB,∴∠OAB=.又∵CG平分∠DCF,∴∠DCG=.∴∠BCO=∠BCD+∠DCG=108°+36°=144°.∴∠AOC=360°﹣(∠BAO+∠B+∠BCG)=360°﹣(54°+108°+144°)=54°.∴∠AOG=180°﹣∠AOC=180°﹣54°=126°.故选:B.【点评】本题主要考查任意多边形的外角和、正多边形的性质、角平分线的定义以及四边形的内角和,熟练掌握正多边形的性质、角平分线的定义以及四边形的内角和是解决本题的关键.16.将每一个内角都是108o的五边形按如图所示方式放置,若直线m∥n,则∠1和∠2的数量关系是()A.∠1+∠2=90°B.∠1=∠2+72oC.∠1=∠2+36o D.2∠1+∠2=180°【分析】如图,延长DC交直线n于2点H.由m∥n,得∠2=∠CHG.由四边形内角和等于360°,得∠4+∠5+∠A+∠B=360°,故∠1+∠A+∠B+∠5=360°,那么∠5=144°﹣∠1.由∠3+∠GCH+∠CGH=180°,得∠CGH=108°﹣∠2,故108°﹣∠2=144°﹣∠1.进而推断出∠1=36°﹣∠2.【解答】解:如图,延长DC交直线n于2点H.由题意得:∠A=∠B=∠DCB=108°.∴∠GCH=180°﹣∠DCB=180°﹣108°=72°.∵∠1和∠4是对顶角,∴∠1=∠4.∵∠4+∠5+∠A+∠B=360°,∴∠4+∠5=360°﹣(∠A+∠B)=360°﹣(108°+108°)=144°.∴∠1+∠5=144°.∴∠5=144°﹣∠1.∵∠5与∠CGH是对顶角,∴∠5=∠CGH.∵m∥n,∴∠2=∠CHG.又∵∠GCH+∠3+∠CGH=180°,∴72°+∠2+∠5=180°.∴∠5=108°﹣∠2.∴108°﹣∠2=144°﹣∠1.∴∠1=∠2+36°.故选:C.【点评】本题主要考查正多边形的性质、平行线的性质、对顶角的性质以及三角形内角和定理,熟练掌握正多边形的性质、平行线的性质、对顶角的性质以及三角形内角和定理是解决本题的关键.17.如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°【分析】由全等三角形的性质可求得∠ACD=65°,由垂直可得∠CAF+∠ACD=90°,进而可求解∠CAF的度数.【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.【点评】本题主要考查全等三角形的性质,由全等三角形的性质求解∠ACD的度数是解题的关键.18.如图,在正方形网格内(每个小正方形的边长为1),有一格点三角形ABC(三个顶点分别在正方形的格点上),现需要在网格内构造一个新的格点三角形与原三角形全等,且有一条边与原三角形的一条边重合,这样的三角形可以构造出()A.3个B.4个C.5个D.6个【分析】根据全等三角形的判定依据题目要求画出图形即可.【解答】解:如图满足条件的三角形如图所示,有5个.故选:C.【点评】本题考查全等三角形的判定,解题的关键是理解题意,灵活运用所学知识解决问题.二.解答题(共9小题)19.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.【分析】(1)由△ABD≌△CFD,得出∠BAD=∠DCF,再利用三角形内角和即可得出答案;(2)根据全等三角形的性质得出AD=DC,即可得出BD=DF,进而解决问题.【解答】(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.【点评】此题考查了全等三角形的性质,熟练应用全等三角形的性质是解决问题的关键.20.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.【分析】根据SAS证明即可.【解答】证明:∵AB∥CD,∴∠A=∠DCF,∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).【点评】本题考查全等三角形的判定,平行线的性质等知识,解题的关键是根据平行线的性质得到∠A=∠DCF.21.如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC.求证:△ABC ≌△DEF.【分析】根据平行线的性质得出∠A=∠D,求出AC=DF,再根据全等三角形的判定定理推出即可.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AF+CF=DC+CF,即AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).【点评】本题考查了平行线的性质和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.22.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=或时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s.【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.23.直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN﹣∠OMP﹣∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是∠MPN+∠OMP+∠ONP=320°;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有5种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.【分析】(1)①延长OP至点E,利用三角形的外角性质和整体思想求证;②分类讨论,点P在△OMN内部和外部进行讨论;③直线MN和直线AB、直线CD将平面分为7个部分,讨论点P在∠MON外部的5个部分进行讨论;(3)直线MN和直线AB、直线CD将平面分为6个部分,讨论点P在这6个部分时三个角之间的关系.【解答】(1)①证明:如图1,延长OP至点E,∵∠MPE和∠NPE分别是△MOP和△NOP的外角,∴∠MPE=∠MOP+∠OMP,∠NPE=∠NOP+∠ONP,∴∠MPE+∠NPE=∠MOP+∠NOP+∠OMP+∠ONP,即∠MPN=∠MON+∠OMP+∠ONP,∴∠MPN﹣∠OMP﹣∠ONP=∠MON=40°.②解:如图2,当点P在∠MON内部,且在直线MN右侧时,延长OP至点E,则∠MPO+∠MOP+∠OMP=180°,∠NPO+∠NOP+∠ONP=180°,∴∠MPO+∠NPO+∠MOP+∠NOP+∠OMP+∠ONP=360°,即∠MPN+∠MON+∠OMP+∠ONP=360°,∴∠MPN+∠OMP+∠ONP=360°﹣∠MON=360°﹣40°=320°.故答案为:∠MPN+∠OMP+∠ONP=320°.③解:如图3,当点P落在直线MN左侧,且在∠COB内部时,记PN与AB的交点为点E,∵∠OEP是△MEP和△OEN的外角,∴∠OEP=∠MPN+∠OMP,∠OEP=∠MON+∠ONP,∴∠MPN+∠OMP=∠MON+∠ONP,即∠MPN+∠OMP﹣∠ONP=∠MON,∴∠MPN+∠OMP﹣∠ONP=40°;如图4,当点P落在直线MN的右侧,且在∠COB内部时,记PN与AB的交点为点E,∵∠OMP是△MEP的外角,∠OEP是△OEN的外角,∴∠OMP=∠MPN+∠OEP,∠OEP=∠MON+∠ONP,∴∠OMP=∠MPN+∠MON+∠ONP,即∠OMP﹣∠ONP﹣∠MPN=∠MON,∴∠OMP﹣∠ONP﹣∠MPN=40°;如图5,当点P落在直线MN左侧,且在∠AOD内部时,记PM与CD的交点为点F,∵∠OFP是△MOF和△FNP的外角,∴∠OFP=∠MON+∠OMP,∠OFP=∠MPN+∠ONP,∴∠MON+∠OMP=∠MPN+∠ONP,即∠MPN+∠ONP﹣∠OMP=∠MON,∴∠MPN+∠ONP﹣∠OMP=40°;如图6,当点P落在直线MN右侧,且在∠AOD内部时,记PM与CD的交点为点F,∵∠OFP是△MOF的外角,∠ONP是△FNP的外角,∴∠OFP=∠MON+∠OMP,∠ONP=∠MPN+∠OFP,∴∠ONP=∠MPN+∠MON+∠OMP,∴∠MPN+∠OMP+∠ONP=∠MON=40°;如图7,当点P落在∠AOC内部时,延长PO至点G,∵∠MOG和∠NOG分别是△MOP和△NOP的外角,∴∠MOG=∠MPO+∠PMO,∠NOG=∠NPO+∠PNO,∴∠MOG+∠NOG=∠MPO+∠NPO+∠PMO+∠PNO,即∠MON=∠MPN+∠PMO+∠PNO,∴∠MPN+∠PMO+∠PNO=40°,综上所述:当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有5种.(2)解:如图8,当点P在直线MN右侧,且在直线AB上方时,记PN与直线AB的交点为H,∵AB∥CD,∴∠AHP=∠CNP,∵∠AMP是△MPH的外角,∴∠AMP=∠MPN+∠AHP,∴∠AMP=∠MPN+∠CNP;如图9,当点P在直线MN的左侧,且在直线AB上方时,记PN与直线AB的交点为H,∵AB∥CD,∴∠AHP=∠CNP,∵∠AHP是△MPH的外角,∴∠AHP=∠MPN+∠AMP,∴∠CNP=∠MPN+∠AMP;如图10,当点P在直线MN右侧,且在直线AB和直线CD之间时,∵AB∥CD,∴∠BMP+∠PMN+∠PNM+∠PND=180°,∵∠BMP=180°﹣∠AMP,∠PND=180°﹣∠PNC,∠PMN+∠PNM=180°﹣∠MPN,∴∠AMP+∠CNP+MPN=360°,如图11,当点P在直线MN左侧,且在直线AB和直线CD之间时,∵AB∥CD,∴∠AMP+∠PMN+∠CNP+∠PNM=180°,∵∠PMN+∠PNM=180°﹣∠MPN,∴∠AMP+∠CNP=∠MPN,如图12,当点P在直线MN右侧,且在直线CD下方时,记PN与CD的交点为H,∵AB∥CD,∴∠AMP=∠CHP,∵∠CNP是△NHP的外角,∴∠CNP=∠CHP+∠MPN,∴∠CNP=∠AMP+∠MPN;如图13,当点P在直线MN的左侧,且在直线CD下方时,记PN与CD的交点为H,∵AB∥CD,∴∠AMP=∠CHP,∵∠CHP是△PHN的外角,∴∠CHP=∠MPN+∠CNP,∴∠AMP=∠MPN+∠CNP,综上所述,当AB∥CD时,∠MPN与∠AMP、∠CNP之间存在的所有数量关系是:∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.故答案为:∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN =360°.【点评】本题考查了平行线的性质、三角形的外角性质和三角形的内角和定理,解题的关键是根据点P的位置进行分类讨论.分类情况较多,同学们可以将对应的图形一一画出,然后求出给定的三个角的数量关系.24.直线m与直线n相交于C,点A是直线m上一点,点B是直线n上一点,∠ABC的平分线BP与∠DAB的平分线AE的反向延长线相交于点P.(1)如图1,若∠ACB=90°,则∠P=45°;若∠ACB=α,则∠P=(结果用含α的代数式表示);(2)如图2,点F是直线n上一点,若点B在点C左侧,点F在点C右侧时,连接AF,∠CAF与∠AFC的平分线相交于点Q.①随着点B、F的运动,∠APB+∠AQF的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ交直线n于点G,作QH∥CF交AF于点H,则=.【分析】(1)根据BP、AE分别是∠ABC、∠BAD的平分线,得∠ABP=∠ABC,∠EAB=∠BAD,再根据外角的性质得∠BAD=∠ABC+∠ACB,∠EAB=∠ABP+∠P,化简即可;(2)①由AQ、FQ分别是∠CAF、∠AFB的平分线,导出∠AQF=90°+∠ACF,由(1)知:∠P=∠ACB,则∠APB+∠AQF=90°+∠ACF+∠ACB=180°,从而解决问题;②根据外角的性质得:∠AGC﹣∠HQF=∠GQF,由①知:∠AQF=90°+∠ACF,则∠GQF=90°﹣∠ACF,而∠ACB=180°﹣∠ACF,即可得出答案.【解答】解:(1)∵BP、AE分别是∠ABC、∠BAD的平分线,∴∠ABP=∠ABC,∠EAB=∠BAD,∵∠BAD是△ABC的外角,∴∠BAD=∠ABC+∠ACB,∴∠BAD=∠ABC+∠ACB,∵∠EAB是△ABP的外角,∴∠EAB=∠ABP+∠P,∴∠P=∠ACB,当∠ACB=90°时,∠P=45°;当∠ACB=α时,∠P=;故答案为:45°,;(2)①∵AQ、FQ分别是∠CAF、∠AFB的平分线,∴∠QAF=∠CAF,∠AFQ=∠AFC,∴∠QAF+∠AFQ=(∠CAF+∠AFC),∴∠AQF=180°﹣(∠QAF+∠AFQ)=180°﹣(∠CAF+∠AFC)=180°﹣(180°﹣∠ACF)=90°+∠ACF,由(1)知:∠P=∠ACB,∴∠APB+∠AQF=90°+∠ACF+∠ACB=180°,∴∠APB+∠AQF的值不变,为180°;②∵QH∥CF,∴∠HQF=∠QFG,∴∠AGC﹣∠HQF=∠GQF,由①知:∠AQF=90°+∠ACF,∴∠GQF=90°﹣∠ACF,∵∠ACB=180°﹣∠ACF,∴=,故答案为:.【点评】本题主要考查了三角形角平分线的定义、三角形内角和定理等知识,能熟练进行角之间的转化是解题的关键.25.如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC交AD于E,求∠4的度数.【分析】首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠4.【解答】解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=35°,∵∠4=∠2+∠ABE,∴∠4=45°.【点评】本题主要考查三角形的内角和,三角形的外角,解答的关键结合图形找出角与角之间的关系.26.已知点B、D分别为射线AM、AN上异于端点A的任一点,点C为∠MAN内部一点(如图1).∠A=α,∠C=β,(0°<α<180°,0°<β<180°).(1)∠ABC+∠ADC=360°﹣α﹣β(用含α、β的代数式直接填空);(2)如图2,若α=β=90°,BE平分∠ABC,DG平分∠CDN,若射线BE与DG所在直线交于点F,则∠BDG为①角(只填序号);①锐角;②直角;③钝角.(3)①若∠MBC、∠CDN的角平分线相交于点P,α+β=110°,∠BPD=30°,试求α、β的值;②①中的∠BPD是否一定存在?若∠BPD不存在,请直接写出α、β满足的条件.【分析】(1)由四边形内角和等于360°,可得∠ABC+∠ADC=360°﹣∠A﹣∠C=360°﹣α﹣β.(2)由(1)知:∠ABC+∠ADC=360°﹣α﹣β,得∠ABC+∠ADC=180°.由DG平分∠CDN,得∠CDG=90°﹣.欲证∠BDG与90°的大小关系,需证∠CDG+∠BDC与90°的大小关系,即证∠BDC与的关系.由BE平分∠ABC,得∠ABF =∠CBF,故∠ABD<CBD.由∠A+∠ABD+∠ADB=∠C+∠CBD+∠BDC,得∠ABD>∠BDC,故∠BDC<.进而推断出∠BDG为锐角.(3)如图3,连接PC并延长至Q.由BP平分∠MBC,得∠PBC=.同理可证:∠CDP=.那么,∠BCD=∠PBC+∠CDP+∠BPD=β=210°﹣=210°﹣.又因为α+β=110°,所以α=25°,β=85°.(4)如图4,BE平分∠MBC,BF平分∠CDN,过点C作GH∥BE,得∠BCG=∠EBC =90°﹣,故∠GCD=∠BCD﹣∠BCG=β﹣(90°﹣)=β+﹣90°.若∠CDF=∠GCD,则=β+﹣90°,即α=β,则GH∥DF,故BE∥DF.此时,P不存在.【解答】解:(1)∵四边形内角和等于360°,∴∠A+∠ABC+∠C+∠ADC=360°.∴∠ABC+∠ADC=360°﹣∠A﹣∠C=360°﹣α﹣β.故答案为:360°﹣α﹣β.(2)由(1)知:∠ABC+∠ADC=360°﹣α﹣β.∵α=β=90°,∴∠ABC+∠ADC=360°﹣90°﹣90°=180°.∵DG平分∠CDN,∴∠CDG==.∵BE平分∠ABC,∴∠ABE=∠CBE.∴∠ABD<∠CBD.又∵∠A=∠C=90°,∴∠ABD+∠ADB=∠CBD+∠CDB.∴∠ADB>∠BDC.∴2∠BDC<∠BDC+∠ADB=∠ADC.∴∠BDC<.∴0<∠BDG=∠CDG+∠BDC=90°﹣+∠BDC<90°﹣+=90°.∴∠BDG为锐角.故答案为:①.(3)①:如图3,连接PC并延长至Q.∵BP平分∠MBC,∴∠PBC=.同理可证:∠CDP=.∵∠QCB=∠PBC+∠BPC,∠QCD=∠CDP+∠CPD,∴∠QCB+∠QCD=∠CBP+∠BPC+∠CDP+∠CPD.∴∠BCD=∠PBC+∠CDP+∠BPD.∴β=90°﹣+90°﹣+30°.∴β=210°﹣=210°﹣.∴β﹣α=60°.又∵α+β=110°,∴α=25°,β=85°.②:∠BPD不一定存在,当α=β时,∠BPD不存在.如图4,BE平分∠MBC,BF平分∠CDN,过点C作GH∥BE.由①,可证:∠EBC=90°﹣,∠CDF=90°﹣.由(1)得:∠ABC+∠ADC=360°﹣α﹣β.∴∠ADC=360°﹣α﹣β﹣∠ABC.∴∠CDF=.∵BE∥GH,∴∠BCG=∠EBC=90°﹣.∴∠GCD=∠BCD﹣∠BCG=β﹣(90°﹣)=β+﹣90°.若∠CDF=∠GCD,则=β+﹣90°,即α=β.∴GH∥DF.又∵BE∥GH,∴BE∥DF.此时,P不存在,即∠BPD不存在.∴当α=β时,∠BPD不存在.【点评】本题主要考查四边形内角和等于360°、角平分线的定义、三角形外角的性质以及平行线的性质,熟练掌握四边形内角和等于360°、角平分线的额定义以及三角形外角的性质是解决本题的关键.27.同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC的平分线与∠EGC的平分线相交于点Q,求∠FQG的大小;(3)如图3,点P是线段AD上的动点(不与A,D重合),连接PF、PG,的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【分析】(1)如图1,延长AM交EG于M.由题意知:DF∥EG,∠ACB=90°,故∠α=∠GMC,∠ACB=∠GMC+∠CGM=90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC交EG于N.由题意知:DF∥EN,∠ACB=90°,得∠1=∠GNC,∠CGN+∠GNC=90°,故∠1+∠CGN=90°.因为∠DFC的平分线与∠EGC的平分线相交于点Q,所以∠QFC=,∠GQC=90°﹣.那么,∠FQG=360°﹣∠QFC﹣∠QGC﹣∠ACB=135°.(3)由题意知:DF∥EG,得∠FOG=∠EGO,故==1.【解答】解:(1)如图1,延长AM交EG于M.∠β+∠α=90°,理由如下:由题意知:DF∥EG,∠ACB=90°.∴∠α=∠GMC,∠ACB=∠GMC+∠CGM=90°.∵∠EGB和∠CGM是对顶角,∴∠β=∠CGM.∴∠β+∠α=90°.(2)如图2,延长AC交EG于N.由题意知:DF∥EN,∠ACB=90°.。
一、选择题(每题3分,共24分) 1、下列说法中正确的是( )
A 、两个直角三角形全等
B 、两个等腰三角形全等
C 、两个等边三角形全等
D 、两条直角边对应相等的直角三角形全等
2、(易错易混点)如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )
A .C
B CD = B .BA
C DAC =∠∠ C .BCA DCA =∠∠
D .90B D ==︒∠∠
3. 如图所示, 将两根钢条AA ’、BB ’的中点O 连在一起, 使AA ’、BB ’可以绕着点O 自由旋转, 就做成了一个测量工件, 则A ’B ’的长等于内槽宽AB, 那么判定△OAB ≌△OA ’B ’的理由是( ) A. 边角边 B. 角边角 C. 边边边 D. 角角边
4、如图,△ABC 中,∠C=90º,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且CD=6cm ,则DE 的长为( )
A 、4cm
B 、6cm
C 、8cm
D 、10cm
5、(易错易混点)下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( )
A 、3个
B 、2个
C 、1个
D 、0个
6、(易错易混点)如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带( )去配。
A. ①
B. ②
C. ③
D. ①和②
7.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三
角形全等,给出的条件中至少要有一对边对应相等.正确的是( ) A .①和② B .②和③ C .①和③ D .①②③
8、如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
二、填空题(每题3分,共24分)
9、如图,若111ABC A B C △≌△,且
11040A B ∠=∠=°,°,则1C ∠= . 10、如图已知△ABD ≌△ACE ,且AB=8,BD=7,AD=6则BC=________________.
11、如图,已知AC=BD ,21∠=∠,那么△ABC ≌ , 其判定根据是_______。
12、(2009.湖南省怀化市)如图,已知AD AB =,DAC BAE ∠=∠, 要使 ABC △≌ADE △,可补充的条件是 (写出 一个即可).
13、 如图,ABC △的周长为32,且BC AD DC BD ⊥=,于D ,ACD △的周长为24,那么AD 的长为 .
14、如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于
15、如图,在Rt ABC △中,
90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知
10=∠BAE ,则C ∠的度数为
16.已知△ABC 中,AB=BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.
三、用心做一做(17题10分,18题12分,19-21题每题10分)
17、已知:如图,
三点在同一条直线上,
,
,
.求证:
.
18、小红家有一个小口瓶(如图5所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了。
她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由。
(木条的厚度不计)
19、(1);
(2)
.
20、如图,已知AC平分∠BAD,∠1=∠2,求证:AB=AD
21、如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC, 能否找出与AB+AD相等的线段,并说明理由.
参考答案
一、1、D 【解析】判定三角形全等的条件主要有“SSS ””、SAS ”、“AAS ”、“ASA ”以及直角三角形中的”HL ”,所以不难看出答案应选D.
2、C 【解析】题目中已知AB AD =,还有公共边AC=AC,所以可用“SSS ” “ SAS ”来判定ABC ADC △≌△,这样不难发现A 、B 适合,对于答案D 来说90B D ==︒∠∠,说明△ABC 和△ADC 是直角三角形,所以可用“HL ”来判定这两个三角形全等,由此可知答案选C.
易错分析:有些同学忘记了“HL ”能判定三角形全等的,因袭会误选答案D.
5、C 【解析】
只有(3)是正确的,答案选C.
易错分析:全等形的定义是形状和大小都相同,所以(1)是错误的,对于(2)中的两个三角形,必须是两个全等的三角形才可以,所以(2)是错误的,这也是本题容易出错的地方.
6、C :【解析】怎样做一个三角形与已知三角形全等,可依据全等三角形的判定条件来判断。
题中的一块三角形的玻璃被打碎成三块,其中:(1)仅留一角;(2)没边没角;(3)存在两角和夹边,可依据ASA ,不难做出与原三角形全等的三角形。
所以带③去就可以了.
易错分析:好多同学可能认为带①②去合适的,实际上那样还是不能确定三角形的形状.
二、 9、300
【解析】因为111ABC A B C △≌△,所以∠C=∠C 1,又因为
11040A B ∠=∠=°,°,所以∠C=∠C 1=300
.
10、2 【解析】 因为△ABD ≌△ACE ,所以AD=AC=6,又因为AB=8,所以BC=2. 11、△ABD SAS
12、AC=AE 或D B ∠=∠或E C ∠=∠【解析】由DAC BAE ∠=∠可得EAD BAC ∠=∠,又已知AB=AD,那么,由SAS 、ASA 、AAS 可补充的条件是AC=AE 或D B ∠=∠或E C ∠=∠.
14、48°【解
析】因为△CDE 沿DE 折叠,所以△CDE ≌△DEP ,所以∠CDE=∠EDP=480
,CD=DP,所以∠ADP =1800
-480
-480
=840
,又因为D E ,分别为ABC △的AC ,BC 边的中点,所以DA=DC=DP,所以APD ∠=48°.
15、
40【解析】因为ED 是AC 的垂直平分线,所以可知道△AED ≌△EDC,所以∠EAD=∠C,又因为
10=∠BAE ,所以C ∠的度数是 40.
16、7【解析】以AB 为公共边可以作出两个与△ABC 全等的三角形,同样以BC 为公共边也可以作出两个与△ABC 全等的三角形,而以AC 为公共边只可以作出一个与△ABC 全等的三角形。
三、17证明: ∵AC ∥DE,
,
.
又∵∠ACD=∠B ,
.
又∵AC=CE,,
.
19、证明:(1) ∵
AB=BA
∴△ABC ≌△DBA
∴
(2)∵∠AOC=∠BOD ∠C=∠D ∴∠CAO=∠DBO ∵AC=BD ∴
20、证明:∵AC 平分∠BAD
∴∠BAC=∠DAC.
∵∠1=∠2
∴∠ABC=∠ADC.
在△ABC和△ADC中
,,BAC DAC ABC ADC AC AC ∠=∠⎧⎪
∠=∠⎨⎪=⎩
∴△ABC≌△ADC(AAS). ∴AB=AD.
⎪⎩
⎪
⎨⎧=∠=∠∠=∠EC DC EBC DAC BCE
ADC 所以△DAC ≌△BEC。