1.1.3-2集合的基本运算二
- 格式:ppt
- 大小:558.50 KB
- 文档页数:23
2019-2020年高中数学必修一1.1.3《集合的基本运算(2)》Word 精讲精析学习目标展示1. 能熟练地进行集全的并、并、补运算2. 理解补集的性质及其应用3. 能够进行集合的运算与性质的综合应用衔接性知识1. 已知全集,集合,求:(1),,,(2),解:(1),,(2),所以,2.观察上题的结果,你能猜想得到什么结论?解:从上题结果可猜想结论, [()]()[()]A B B A B A B A B =C C典例精讲剖析例1.已知全集,集合,,,求集合解:全集,例2. 设全集,,,求解:,由题且,解之或.例3. 设全集,,求、.解:将1、2、3、4代入中,或,当m = 4时,,即A = {1,4},又当m = 6时,,即A = {2,3}.故满足条件: = {1,4},m = 4; = {2,3},m = 6例4.设,集合,;若,求的值解:,由,得而2{|(1)0}{|(1)()0}B x x m x m x x x m =+++==++=当时,,符合;当时,,而,∴,即∴或精练部分A 类试题(普通班用)1. 已知全集{}{}5,42,13,0,2U R A x x B x x P x x x ⎧⎫==-≤<=-<≤=≤≥⎨⎬⎩⎭或求 解:,,2. 已知,,,试用列举法写出集合解:∵,,∴而},∴3.设全集,方程有实数根,方程有实数根,求解:当时,,即;当时,,解得∴而对于,即,∴从而4. 全集,,如果求实数解:,∴从而实数的值为5. 已知全集{5,4,3,2,1,0,1,2,3,4,5}I =-----,集合,,其中,若,求解:,,,考查集合若,则,此时,,,,与已知矛盾.若,则,此时,,,,与已知相符.,所以B 类试题(尖子班用)1. 设全集,集合,集合,则( )A .B .C .D .解:,,选C2. 设全集,,,那么( )A .B .C .D . 解:3{(,)|1}{(,)|1,2}2y M x y x y y x x x -====+≠-, ,,选B3. 下列命题之中,U 为全集时,不正确的是( B ) A .若,则 B .若,则=或=C .若,则D .若,则解:B 不正确,如,,则,但,4.已知全集{}{}5,42,13,0,2U R A x x B x x P x x x ⎧⎫==-≤<=-<≤=≤≥⎨⎬⎩⎭或那么 解:,,5.已知集合,,那么集合 , ,解:或;;或6. 已知,,,试用列举法写出集合解:∵,,∴而},∴7.设全集,方程有实数根,方程有实数根,求解:当时,,即;当时,,解得∴而对于,即,∴从而8. 全集,,如果则这样的实数是否存在?若存在,求出;若不存在,请说明理由 解:设满足条件的实数存在,则,∴,解得从而存在实数,满足已知条件9. 已知全集{5,4,3,2,1,0,1,2,3,4,5}I =-----,集合,,其中,若,求解:,,,考查集合若,则,此时,,,,与已知矛盾.若,则,此时,,,,与已知相符.,所以10. 设全集,集合,,且,求实数、的值。
1.1.3集合的基本运算(二)一、三维目标:知识与目标:(1)掌握交集与并集的区别,了解全集、补集的意义;(2)正确理解补集的概念,正确理解符号“U C A ”的含义;(3)会求已知全集的补集,并能正确应用它们解决一些具体问题。
过程与方法:通过观察和类比,借助图理解集合补集的含义和集合的基本运算。
情感态度与价值观:体会直观图示对理解抽象概念的作用,培养数形结合的思想。
二、学习重、难点:重点:补集的有关运算及数轴的应用。
难点:对补集概念的理解。
三、学法指导:研读学习目标,了解本章重难点,精读教材,独立完成学案,通过小组学习解决部分疑难问题,再通过课堂各小组展示及质疑对抗,共同提高,完成学习任务。
四、知识链接:1.什么叫子集、真子集、集合相等?符号分别是怎样的?2.什么叫交集、并集?符号语言如何表示?3.已知A ={x|x +3>0},B ={x|x ≤-3},则A 、B 与R 有何关系?五、学习过程:思考1. U={全班同学}、A={全班参加足球队的同学}、B={全班没有参加足球队的同学},则U 、A 、B 有何关系?全集、补集概念及性质1.全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U ,全集是相对于所研究问题而言的一个相对概念。
2.补集的定义:对于一个集合A , ,叫作集合A 相对于全集U 的补集,记作:读作:“A 在U 中的补集”,即{},U C A x x U x A =∈∉且用Venn 图表示:(阴影部分即为A 在全集U 中的补集)讨论:集合A 与U C A 之间有什么关系?→借助Venn 图分析。
,(),U U U U U U A C A A C A U C C A AC U C U ⋂=∅⋃===∅∅=巩固练习①.U={2,3,4},A={4,3},B=φ,则U C A = ,U C B = ;②.设U ={x|x<8,且x ∈N},A ={x|(x-2)(x-4)(x-5)=0},则U C A = ; ③.设U ={三角形},A ={锐角三角形},则U C A = 。
1.1.3集合的基本运算第2课时 全集与补集【学习目标】1.知道全集与补集的含义,能借助Venn 图或数轴理解集合的基本运算.2.体会数形结合、集合的思想.【学习重点】全集与补集的概念.【学习难点】理解全集与补集的概念,以及符号之间的区别和联系.【使用说明及学法指导】带着教材助读设置的问题,阅读并探究课本PP -1110的内容(15min ),完成学案自主学习部分(15min ),将预习中不能解决的问题标记出来,并写到后面“我的疑问”处.自主学习一、教材助读问题1:全集的定义是什么?全集是实数集R 吗?问题2:补集的定义是什么?它该怎样表示?问题3:补集如何用符号和图形表示?问题4:补集有什么运算性质?二、自学检测1:设集合}5,4,3,2,1{=U ,}4,2,1{=A , }2{=B ,则B C A u 等于 ( )A.}5,4,3,2,1{B.}4,1{C.}4,2,1{D.}5,3{2:已知集合}83|{<≤=x x A ,则=A C R . 3:若设全集U={1,2,3,4,5},A={1,2,5},B={2,4,5},请计算集合,,B C A C u u B A ,B A .合作探究我的疑问:基础知识梳理1.全集:如果一个集合含有我们所研究问题中涉及的 ,那么就称这个集合为全集,通常记作U.2.补集:对于一个集合A,由全集U 中 集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作 ,即 .3.性质:U A C A ⋂= ;U A C A⋃= ;()U C A B ⋃= ; ()U C A B ⋂= ;=)(A C C u u.探究一:已知全集}4|{≤=x x U ,集合}32|{<<-=x x A ,集合}23|{≤≤-=x x B . 求(1).,,B C A C B A u u(2)B A C u )(,)(B C A u ,).()(B C A C u u规律方法总结:探究二:设全集为U ,集合},,3,1{x A =B=},1{2x ,若}9{)(=B A C u ,求x 的值.规律方法总结:当堂检测:(见多媒体课件)反馈练习1.若A 为全体正实数的集合,}2,1,1,2{--=B , 则下列结论正确的是 ( )A.}1,2{--=B AB.}1,2{)(--=B A C RC.}2,1,1,2{--=B AD.}1,2{)(--=B A C R2.已知全集,R U =集合}32|{≤≤-=x x A ,1|{-<=x x B 或}4>x ,那么集合A )(BC u 等于 ( )A.}42|{<≤-x x B.3|{≤x x 或}4≥xC.}12|{-<≤-x x D.}31|{≤≤-x x3.如果}3,2,1{},6|{=<∈=A x N x U ,B},5,4,2{=那么)()(B C A C u u 等于( )A.}5,4,3,1,0{B.}5,4,3,1{C.}5,4,3,2,1{D.}0{4.设集合A 、B 都是}4,3,2,1{=U 的子集,已知)()(B C A C u u =},2{)(A C u B =}1{,则=A .5.设集合}3,2,1{},5,4,3,2,1{==A U ,B= }4,3,2{,则)(B A C u 等于 ( ) A.}3,2{ B.}5,4,1{C.}5,4{D.}5,1{课堂小结:。
1.1.3 集合的基本运算(第二课时)(胡琦)一、教学目标(一)核心素养通过这节课的学习,理解全集与补集的概念,理解在给定集合中一个子集的补集的含义,会求给定子集的补集,能使用Venn图表达集合的运算,体会直观想象对理解抽象概念的作用,培养学生的应用意识与创新意识.(二)学习目标1.理解集合全集的概念.2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn图表达集合的关系及运算.(三)学习重点1.全集与补集的概念.2.理解在给定集合中一个子集的补集的含义.(四)学习难点1.会求给定子集的补集.2.对Venn图表达集合的关系及运算的正确使用.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第10页至第11页.(2)练一练:全集的定义:如果集合含有我们所要研究的各个集合的全部元素,这个集合就可以看成一个全集,全集通常用符号U表示.补集的三种语言:①文字语言:设U是一个集合,A是U的一个子集(即A⊆U),由U中所有不属于A的元素组成的集合,叫做U中子集A的补集.②符号语言:C A={x|x∈U,且x∉A}.U③图形语言:2.预习自测(1)设U={1,2,3},A ={2,3},求U C A =( )A .{1}B .{2}C .{2,3}D .{1,2,3}【答案】A .(2)设U={1,2,3,4},A ={2,3},B ={3,4,5},求()U C A B I =( )A .{1,2,3}B .{4,5}C .{1,2,4}D .{1,4,5},【答案】C .(3)设U={1,2,3,4,5},A ={2,3},B ={3,4,5},求()U C A B U =( )A .{1,2}B .{4,5}C .{1}D .{4,5}, 【答案】C . (二)课堂设计1.知识回顾(1)元素与集合的关系:如果a 是集合A 中的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A .(2)集合间的基本关系:如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B ;若集合A 与集合B 的元素是一样的,称集合A 与集合B 相等;若集合A 是集合B 的子集,且集合A 不等于集合B ,则集合A 是集合B 的真子集; 把不含任何元素的集合叫做空集.(3)由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集,记为A ∪B ;由所有属于集合A 且属于集合B 的元素所组成的集合,叫做A 与B 的交集,记为A ∩B .。