(普通班)高三数学一轮复习第九篇平面解析几何第5节抛物线基础对点练理
- 格式:doc
- 大小:866.50 KB
- 文档页数:8
专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .32.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( )A .1B .2C .D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x =D .2x =-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为1612.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4三、填空题13.(2018·北京·高考真题(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C :26y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,线段FA 的长度为半径的圆交C 的准线于M ,N 两点,且A ,F ,M 三点共线,则AF =______.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.16.(2021·北京·高考真题)已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______; MNF 的面积为_______.四、解答题17.(2017·北京·高考真题(理))已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.22.(2021·全国·高考真题(文))已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.2.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .故选:B4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C.D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP【详解】如图所示:.故选:B.6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x = D .2x=-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅> D .2||||||BP BQ BA ⋅>所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)Cy px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =3(4p OA OB ⋅=又(4p MA MB ⋅=-又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为16 ,联立抛物线,由2AF FB =解出A 即可求出面积最小值,即可判断D 选项.【详解】由2AF FB =得直线设直线AB 的方程为4A B x x =-.由于2AF FB =,所以22x =±,所以2124A A y x ==,直线AB 的方程为),y OA ⊥所以AOB 面积的是小值为故选:BCD.12.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4220x y ,故AB k C ,切线方程TA :的方程为1xt y -=-三、填空题13.(2018·北京·高考真题(文))已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C:26=的焦点为F,y xA为C上一点且在第一象限,以F为圆心,线段FA的长度为半径的圆交C的准线于M,N两点,且A,F,M三点共线,则AF=______.【答案】6【分析】根据圆的几何性质以及抛物线的定义即可解出.故答案为:6.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F与双曲线22221(0,0)x ya ba b-=>>的左焦点重合,若两曲线相交于M,N两点,且线段MN的中点是点F,则该双曲线的离心率等于______.M在抛物线上,所以M在双曲线上,22cb=-故答案为:16.(2021·北京·高考真题)已知抛物线24y x=的焦点为F,点M在抛物线上,MN垂直x轴与于点N.若6MF=,则点M的横坐标为_______;MNF的面积为_______.FMNS.【FMNS=故答案为:四、解答题17.(2017·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点10,2⎛⎫⎪⎝⎭作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.故A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 利用3AP PB =可得y ()22,B x y 1252x x ∴+= 3AP PB = ∴则419AB =+⋅19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.D p,过F的直线交C于20.(2022·全国·高考真题(理))设抛物线2=>的焦点为F,点(),0:2(0)C y px pMF=.M,N两点.当直线MD垂直于x轴时,3(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.)(),0F c ,的方程为x =21c=+,解得抛物线2C 的方程为24y cx =,联立24x c y cx=⎧⎨=⎩,43CD =即223c ac +01e <<,解得(2)[方法一由椭圆的第二定义知所以12-a22.(2021·全国·高考真题(文))已知抛物线2=>的焦点F到准线的距离为2.C y px p:2(0)(1)求C的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. ,则(99PQ QF ==-)09,10y ,由P 在抛物线上可得Q 的轨迹方程为的斜率0025OQ y k x ==(1,0),9=PQ QF ,所以29(1)9x y =-=-,所以的斜率为244=y x t 方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.。
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离PF =x 0+p2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,准线方程为x =-a4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是(a4,0),准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F (p 2,0)的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长AB =x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )1.(2015·陕西改编)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为__________. 答案 (1,0)解析 由于抛物线y 2=2px (p >0)的准线方程为x =-p 2,由题意得-p2=-1,p =2,焦点坐标为()1,0.2.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,AF =54x 0,则x 0=________.答案 1解析 由抛物线的定义,可得AF =x 0+14,∵AF =54x 0,∴x 0+14=54x 0,∴x 0=1.3.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则OM =________. 答案 2 3解析 设抛物线方程为y 2=2px (p >0), 则点M (2,±2p ).∵焦点⎝ ⎛⎭⎪⎫p2,0,点M 到该抛物线焦点的距离为3, ∴⎝ ⎛⎭⎪⎫2-p 22+4p =9,解得p =2(负值舍去),故M (2,±22). ∴OM =4+4×2=2 3.4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________________. 答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=2px (p ≠0),或x 2=2py (p ≠0).将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y .5.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为________. 答案 43解析 ∵A (-2,3)在抛物线y 2=2px 的准线上, ∴-p2=-2,∴p =4,∴y 2=8x ,设直线AB 的方程为x =m (y -3)-2,① 将①与y2=8x 联立,即⎩⎪⎨⎪⎧x =m y --2,y 2=8x ,得y 2-8my +24m +16=0,②则Δ=(-8m )2-4(24m +16)=0,即2m 2-3m -2=0, 解得m =2或m =-12(舍去),将m =2代入①②解得⎩⎪⎨⎪⎧x =8,y =8,即B (8,8),又F (2,0),∴k BF =8-08-2=43.题型一 抛物线的定义及应用例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求PA +PF 的最小值,并求出取最小值时点P 的坐标. 解 将x =3代入抛物线方程y 2=2x ,得y =± 6.∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知PA +PF =PA +d ,当PA ⊥l 时,PA +d 最小,最小值为72,即PA +PF 的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2). 引申探究将本例中点A 的坐标改为(3,4),求PA +PF 的最小值. 解 当P 、A 、F 共线时,PA +PF 最小,PA +PF ≥AF = ⎝ ⎛⎭⎪⎫3-122+42= 254+16=892. 即PA +PF 的最小值为892. 思维升华 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.(1)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A ,B两点,又知点P 恰为AB 的中点,则AF +BF =________.(2)设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则PB +PF 的最小值为________. 答案 (1)8 (2)4解析 (1)分别过点A ,B ,P 作准线的垂线,垂足分别为M ,N ,Q ,根据抛物线上的点到焦点的距离等于该点到准线的距离,得AF +BF =AM +BN =2PQ =8.(2)如图,过点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则P 1Q =P 1F .则有PB +PF ≥P 1B +P 1Q =BQ =4.即PB +PF 的最小值为4.题型二 抛物线的标准方程和几何性质 命题点1 求抛物线的标准方程例2 已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为____________. 答案 x 2=16y解析 ∵x 2a 2-y 2b2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴b 2a 2=3,ba= 3. x 2=2py 的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,x 2a 2-y2b2=1的渐近线方程为y =±b a x ,即y =±3x .由题意得p21+32=2,∴p =8.故C 2的方程为x 2=16y .命题点2 抛物线的几何性质例3 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若AF =3,则△AOB 的面积为________. 答案322解析 由题意设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),如图所示,AF =x 1+1=3,∴x 1=2,y 1=2 2.设AB 的方程为x -1=ty ,由⎩⎪⎨⎪⎧y 2=4x ,x -1=ty消去x 得y 2-4ty -4=0.∴y 1y 2=-4.∴y 2=-2,x 2=12,∴S △AOB =12×1×|y 1-y 2|=322.思维升华 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.(1)(2015·陕西)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________. 答案 2 2解析 由于双曲线x 2-y 2=1的焦点为(±2,0),故应有p2=2,p =2 2.(2)已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:①y 1y 2=-p 2,x 1x 2=p 24;②1AF +1BF为定值;③以AB 为直径的圆与抛物线的准线相切. 证明 ①由已知得抛物线焦点坐标为(p2,0).由题意可设直线方程为x =my +p2,代入y 2=2px ,得y 2=2p ⎝ ⎛⎭⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*)则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2. 因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.②1AF +1BF =1x 1+p 2+1x 2+p2 =x 1+x 2+px 1x 2+p 2x 1+x 2+p 24.因为x 1x 2=p 24,x 1+x 2=AB -p ,代入上式,得1AF +1BF =ABp4+p2AB -p +p4=2p(定值).③设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M作准线的垂线,垂足为N ,则MN =12(AC +BD )=12(AF +BF )=12AB . 所以以AB 为直径的圆与抛物线的准线相切. 题型三 直线与抛物线的综合问题 命题点1 直线与抛物线的交点问题例4 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =________. 答案 2解析 抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=4+8k2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2. 命题点2 与抛物线弦的中点有关的问题例5 (2014·浙江)如图,已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM →.(1)若PF =3,求点M 的坐标; (2)求△ABP 面积的最大值. 解 (1)由题意知焦点F (0,1), 准线方程为y =-1. 设P (x 0,y 0),由抛物线定义知PF =y 0+1, 得到y 0=2,所以P (22,2)或P (-22,2).由PF →=3FM →得M ⎝ ⎛⎭⎪⎫-223,23或M ⎝ ⎛⎭⎪⎫223,23.(2)设直线AB 的方程为y =kx +m , 点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y 得x 2-4kx -4m =0.于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 的中点M 的坐标为(2k,2k 2+m ), 由PF →=3FM →,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0,得k 2=-15m +415.由Δ>0,k 2≥0,得-13<m ≤43.又因为AB =41+k 2·k 2+m , 点F (0,1)到直线AB 的距离为d =|m -1|1+k2,所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1.记f (m )=3m 3-5m 2+m +1⎝ ⎛⎭⎪⎫-13<m ≤43,令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1.可得f (m )在⎝ ⎛⎭⎪⎫-13,19上是增函数, 在⎝ ⎛⎭⎪⎫19,1上是减函数,在⎝ ⎛⎭⎪⎫1,43上是增函数. 又f ⎝ ⎛⎭⎪⎫19=256243>59=f ⎝ ⎛⎭⎪⎫43, 所以,当m =19时,f (m )取到最大值256243,此时k =±5515.所以,△ABP 面积的最大值为2565135.思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.已知过点M ⎝ ⎛⎭⎪⎫p 2,0的直线l 与抛物线y 2=2px (p >0)交于A ,B 两点,且OA →·OB →=-3,其中O 为坐标原点. (1)求p 的值;(2)当AM +4BM 最小时,求直线l 的方程. 解 (1)设A (x 1,y 1),B (x 2,y 2), 直线l 的方程为x =my +p2.联立⎩⎪⎨⎪⎧x =my +p 2,y 2=2px ,消去x 得y 2-2pmy -p 2=0.∴y 1+y 2=2pm ,y 1y 2=-p 2. ∵OA →·OB →=-3,∴x 1x 2+y 1y 2=-3.又x 1x 2=y 212p ·y 222p =p 24,∴p 24-p 2=-3⇒p 2=4.∵p >0,∴p =2. (2)由抛物线定义,得AM =x 1+p2=x 1+1,BM =x 2+p2=x 2+1,∴AM +4BM =x 1+4x 2+5≥24x 1x 2+5=9,当且仅当x 1=4x 2时取等号. 将x 1=4x 2代入x 1x 2=p 24=1,得x 2=12(负值舍去).将x 2=12代入y 2=4x ,得y 2=±2,即点B ⎝ ⎛⎭⎪⎫12,±2.将点B 代入x =my +1,得m =±24. ∴直线l 的方程为x =±24y +1,即4x ±2y -4=0.7.直线与圆锥曲线问题的求解策略典例 (16分)(2014·山东)已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA =FD .当点A 的横坐标为3时,△ADF 为正三角形. (1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E , ①证明直线AE 过定点,并求出定点坐标;②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 规范解答解 (1)由题意知F (p2,0).设D (t,0)(t >0),则FD 的中点为(p +2t4,0).因为FA =FD ,由抛物线的定义知3+p 2=⎪⎪⎪⎪⎪⎪t -p 2,解得t =3+p 或t =-3(舍去). 由p +2t4=3,解得p =2.所以抛物线C 的方程为y 2=4x .[4分] (2)①由(1)知F (1,0).设A (x 0,y 0)(x 0y 0≠0),D (x D,0)(x D >0). 因为FA =FD ,则|x D -1|=x 0+1, 由x D >0得x D =x 0+2,故D (x 0+2,0), 故直线AB 的斜率k AB =-y 02. 因为直线l 1和直线AB 平行, 设直线l 1的方程为y =-y 02x +b ,代入抛物线方程得y 2+8y 0y -8b y 0=0,由题意得Δ=64y 20+32b y 0=0,得b =-2y 0.[7分]设E (x E ,y E ),则y E =-4y 0,x E =4y 20.当y 20≠4时,k AE =y E -y 0x E -x 0=-4y 0-y 04y 20-y 204=4y 0y 20-4, 可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0). 由y 20=4x 0,整理可得y =4y 0y 20-4(x -1), 直线AE 恒过点F (1,0).当y 20=4时,直线AE 的方程为x =1,过点F (1,0), 所以直线AE 过定点F (1,0).[10分] ②由①知直线AE 过焦点F (1,0), 所以AE =AF +FE=(x 0+1)+⎝⎛⎭⎪⎫1x+1=x 0+1x 0+2.设直线AE 的方程为x =my +1. 因为点A (x 0,y 0)在直线AE 上,故m =x 0-1y 0. 设B (x 1,y 1),直线AB 的方程为y -y 0=-y 02(x -x 0),由于y 0≠0,可得x =-2y 0y +2+x 0,代入抛物线方程得y 2+8y 0y -8-4x 0=0,所以y 0+y 1=-8y 0,可求得y 1=-y 0-8y 0,x 1=4x 0+x 0+4.所以点B 到直线AE 的距离为d =⎪⎪⎪⎪⎪⎪4x 0+x 0+4+m ⎝ ⎛⎭⎪⎫y 0+8y 0-11+m2=x 0+x 0=4⎝⎛⎭⎪⎫x 0+1x 0.[14分]则△ABE 的面积S =12×4⎝ ⎛⎭⎪⎫x 0+1x 0⎝ ⎛⎭⎪⎫x 0+1x 0+2≥16, 当且仅当1x 0=x 0,即x 0=1时等号成立.所以△ABE 的面积的最小值为16.[16分]解决直线与圆锥曲线的位置关系的一般步骤: 第一步:联立方程,得关于x 或y 的一元二次方程; 第二步:写出根与系数的关系,并求出Δ>0时参数范 围(或指出直线过曲线内一点);第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或 y 1y 2,y 1+y 2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.温馨提醒 (1)解决直线与圆锥曲线结合的问题,一般都采用设而不求的方法,联立方程,由根与系数的关系去找适合该问题的等量关系.(2)在解决此类问题时常用到焦半径、弦长公式,对于距离问题,往往通过定义进行转化. (3)利用“点差法”可以将曲线的二次关系转化为一次关系即直线的关系,从而求直线斜率.[方法与技巧]1.认真区分四种形式的标准方程(1)区分y =ax 2与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx (m ≠0)或x 2=my (m ≠0).2.抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简化.抛物线上的点到焦点的距离根据定义转化为到准线的距离,即PF =|x |+p 2或PF =|y |+p2.[失误与防范]1.求抛物线的标准方程时一般要用待定系数法求出p 值,但首先要判断抛物线是否为标准方程,以及是哪一种标准方程.2.注意应用抛物线的定义解决问题.3.直线与抛物线结合的问题,不要忘记验证判别式.A 组 专项基础训练 (时间:40分钟)1.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为________. 答案 2解析 曲线的标准方程为(x -2)2+y 2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x =-p 2,∴由抛物线的准线与圆相切得2+p2=3,解得p =2.2.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为__________. 答案 x =-1解析 ∵y 2=2px 的焦点坐标为(p2,0),∴过焦点且斜率为1的直线方程为y =x -p2,即x =y +p2,将其代入y 2=2px ,得y 2=2py +p 2,即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1.3.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于____________. 答案 -4解析 ①若焦点弦AB ⊥x 轴, 则x 1=x 2=p 2,所以x 1x 2=p 24;∴y 1=p ,y 2=-p ,∴y 1y 2=-p 2, ∴y 1y 2x 1x 2=-4. ②若焦点弦AB 不垂直于x 轴,可设AB 的直线方程为y =k (x -p2),联立y 2=2px 得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24.所以y 1y 2=-p 2.故y 1y 2x 1x 2=-4. 4.已知抛物线的方程为y 2=2px (p >0),过抛物线上一点M (p ,2p )和抛物线的焦点F 作直线l 交抛物线于另一点N ,则NF ∶FM =______. 答案 1∶2解析 由题意得,直线l :y =22⎝ ⎛⎭⎪⎫x -p 2,联立方程⎩⎪⎨⎪⎧y 2=2px ,y =22⎝ ⎛⎭⎪⎫x -p 2,解得N ⎝ ⎛⎭⎪⎫p4,-22p ,∴NF =p 4+p 2=34p ,∴FM =p +p 2=32p ,∴NF ∶FM =1∶2.5.(2014·课标全国Ⅱ改编)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则AB =________.答案 12解析 焦点F 的坐标为⎝ ⎛⎭⎪⎫34,0,方法一 直线AB 的斜率为33, 所以直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34, 即y =33x -34,代入y 2=3x ,得13x 2-72x +316=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212,所以AB =x 1+x 2+p =212+32=12.方法二 由抛物线焦点弦的性质可得AB =2p sin 2θ=3sin 230°=12. 6.已知抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A 、B 两点,若△ABF为等边三角形,则p =________.答案 6解析 由题意知B ⎝ ⎛⎭⎪⎫p 3,-p 2,代入方程x 23-y 23=1得 p =6.7.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若BC =2BF ,且AF =3,则此抛物线的方程为________.答案 y 2=3x解析 如图,分别过A 、B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知:AF =AA 1,BF =BB 1,∵BC =2BF , ∴BC =2BB 1,∴∠BCB 1=30°,∴∠AFx =60°,连结A 1F ,则△AA 1F 为等边三角形,过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于K ,则KF =A 1F 1=12AA 1=12AF ,即p =32,∴抛物线方程为y 2=3x .8.已知一条过点P (2,1)的直线与抛物线y 2=2x 交于A ,B 两点,且P 是弦AB 的中点,则直线AB 的方程为_____________________________________________________________. 答案 x -y -1=0解析 依题意,设点A (x 1,y 1),B (x 2,y 2),则有y 21=2x 1,y 22=2x 2,两式相减得y 21-y 22=2(x 1-x 2),即y 1-y 2x 1-x 2=2y 1+y 2=1,直线AB 的斜率为1,直线AB 的方程是y -1=x -2,即x -y -1=0.9.如图,已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.解 设直线OA 的方程为y =kx ,k ≠0, 则直线OB 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,y 2=2px ,得x =0或x =2pk2.∴A 点坐标为⎝ ⎛⎭⎪⎫2p k2,2p k ,同理得B 点坐标为(2pk 2,-2pk ),由OA =1,OB =8,可得⎩⎪⎨⎪⎧4p 2k 2+1k 4=1, ①4p 2k 2k 2+=64, ②②÷①得k 6=64,即k 2=4.则p 2=16k2k 2+=45. 又p >0,则p =255,故所求抛物线方程为y 2=455x .10.抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值. 解 (1)依题意知F (1,0),设直线AB 的方程为x =my +1. 将直线AB 的方程与抛物线的方程联立,消去x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF →=2FB →,所以y 1=-2y 2.② 联立①和②,消去y 1,y 2,得m =±24. 所以直线AB 的斜率是±2 2.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等, 所以四边形OACB 的面积等于2S △AOB .因为2S △AOB =2×12·OF ·|y 1-y 2|=y 1+y 22-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4.B 组 专项能力提升 (时间:30分钟)11.(2015·四川改编)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是__________. 答案 (2,4) 解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12,∴-23<y 0<23,∵点M 在圆上, ∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.12.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,则点A 的坐标为__________. 答案 (2,±22)解析 如图所示,由题意,可得OF =1,由抛物线的定义,得AF =AM ,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1, ∴S △AMFS △AOF=12×AF ×AM ×sin∠MAF 12×OF ×AF π-∠MAF=3,∴AF =AM =3,设A ⎝ ⎛⎭⎪⎫y 204,y 0, ∴y 204+1=3,∴y 204=2,y 0=±22,∴点A 的坐标是(2,±22).13.对于抛物线y 2=4x 上任意一点Q ,点P (a,0)都满足PQ ≥|a |,则a 的取值范围是________. 答案 (-∞,2] 解析 设Q (t 24,t ),由PQ ≥|a |,得(t 24-a )2+t 2≥a 2,t 2(t 2+16-8a )≥0,t 2+16-8a ≥0,t 2≥8a -16恒成立,则8a -16≤0,a ≤2.14.(2014·江西)如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:MN 22-MN 21为定值,并求此定值.(1)证明 依题意可设AB 方程为y =kx +2,代入x 2=4y ,得x 2=4(kx +2),即x 2-4kx -8=0.设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8. 直线AO 的方程为y =y 1x 1x ;BD 的方程为x =x 2.解得交点D 的坐标为⎩⎪⎨⎪⎧x =x 2,y =y 1x 2x 1,注意到x 1x 2=-8及x 21=4y 1, 则有y =y 1x 1x 2x 1=-8y 14y 1=-2. 因此D 点在定直线y =-2上(x ≠0).(2)解 依题设,切线l 的斜率存在且不等于0,设切线l 的方程为y =ax +b (a ≠0), 代入x 2=4y 得x 2=4(ax +b ),即x 2-4ax -4b =0. 由Δ=0得(-4a )2+16b =0,化简整理得b =-a 2. 故切线l 的方程可写为y =ax -a 2. 分别令y =2,y =-2得N 1,N 2的坐标为N 1(2a +a,2),N 2(-2a+a ,-2),则MN 22-MN 21=(2a -a )2+42-(2a+a )2=8,即MN 22-MN 21为定值8.15.(2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且AF =3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.方法一 (1)解 由抛物线的定义得AF =2+p2.因为AF =3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x . (2)证明 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22x -,y 2=4x得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =22-02--=223,k GB =-2-012--=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)解 同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22x -,y 2=4x21 得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0),故直线GA 的方程为22x -3y +22=0.从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0.所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.。
1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c 为常数且a〉0,c〉0。
(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a〉|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质标准方程错误!-错误!=1(a〉0,b〉0)y2a2-错误!=1(a〉0,b〉0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关c2=a2+b2 (c>a>0,c>b〉0)系【知识拓展】巧设双曲线方程(1)与双曲线错误!-错误!=1(a>0,b〉0)有共同渐近线的方程可表示为错误!-错误!=t(t≠0).(2)过已知两个点的双曲线方程可设为错误!+错误!=1(mn〈0).【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ×)(2)方程错误!-错误!=1(mn〉0)表示焦点在x轴上的双曲线.(×)(3)双曲线方程错误!-错误!=λ(m〉0,n>0,λ≠0)的渐近线方程是错误!-错误!=0,即错误!±错误!=0.( √)(4)等轴双曲线的渐近线互相垂直,离心率等于 2.(√)(5)若双曲线错误!-错误!=1(a〉0,b>0)与错误!-错误!=1(a〉0,b>0)的离心率分别是e1,e2,则错误!+错误!=1(此结论中两条双曲线称为共轭双曲线).(√)1.(教材改编)若双曲线错误!-错误!=1 (a〉0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A。
课时作业51 圆锥曲线的综合问题一、选择题1.椭圆x 216+y 24=1上的点到直线x +2y -2=0的最大距离为( )A .3 B.11 C .2 2 D.10 答案:D2.(2019年内蒙古集宁一中高三上学期期末)设某曲线上一动点M 到点F (3,0)的距离与到直线x =-3的距离相等,经过点P (2,1)的直线l 与该曲线相交于A ,B 两点,且点P 恰为等线段AB 的中点,则|AF |+|BF |=( )A .6B .10C .12D .14解析:由曲线上一动点M 到点F (3,0)的距离与到直线x =-3的距离相等知该曲线为抛物线,其方程为y 2=12x ,分别过点A ,B ,P 向抛物线的准线x =-3作垂线,垂足分别为A 1,B 1,P 1,由梯形的中位线定理知|P 1P |=12(|AA 1|+|BB 1|)=12(|F A |+|FB |)=2-(-3)=5,所以|AF |+|BF |=10,故选B. 答案:B3.(2019年新疆乌鲁木齐高三考试)AB 是过抛物线y 2=2px 焦点F 的弦,其垂直平分线交x 轴于点G ,设|AB |=λ|FG |,则λ的值是( )A.32 B .2C .4D .与p 的值有关解析:如图1,设A (x 1,y 1),B (x 2,y 2),图1则k AB =y 2-y 1x 2-x 1=y 2-y 1y 222p -y 212p =2py 2+y 1, 故线段AB 的垂直平分线的方程为 y -y 2+y 12=-y 2+y 12p ⎝ ⎛⎭⎪⎫x -x 2+x 12, 令y =0,得x =p +x 2+x 12,故点G 的坐标为⎝ ⎛⎭⎪⎫p +x 2+x 12,0. ∴|FG |=⎝⎛⎭⎪⎫p +x 2+x 12-p 2=x 2+x 1+p2, 又|AB |=x 2+x 1+p ,∴|AB |=2|FG |.选B. 答案:B4.(2019年湖北省武汉市高中毕业生调研)已知不过坐标原点O 的直线交抛物线y 2=2px 于A ,B 两点,若直线OA ,AB 的斜率分别为2和6,则直线OB 的斜率为( )A .3B .2C .-2D .-3解析:设A ⎝ ⎛⎭⎪⎫y 2A 2p ,y A ,B ⎝ ⎛⎭⎪⎫y 2B 2p ,y B , 那么k AB =y A -y B y 2A -y 2B 2p =2py A +y B =6,所以y A +y B =p 3,而k OA =y A y 2A2p=2py A=2,故y A =p ,y B =-23p ,所以x B =29p ,k OB =-3,选D. 答案:D5.(2019年重庆市高二上学期期末)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线与抛物线C 相交于P ,Q 两点,与y 轴交于A 点,若AF→=FQ →,O 为坐标原点,则△OPQ 的面积为( ) A. 2 B.32 2 C .2 2 D .4解析:AF →=FQ →⇒x Q =2⇒y Q =22, 从而可设直线FQ 为y =22(x -1),联立方程有: ⎩⎪⎨⎪⎧y =22(x -1),y 2=4x⇒y 2-2y -4=0,由韦达定理: y p ×22=-4⇒y P =-2, 所以S =12|OF ||y Q -y P |=12×1×(22+2) =322,答案:B6.(2019年河南省郑州市高三毕业年级第二次质量预测)如图2,已知抛物线C 1的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆C 2:x 2+y 2-4x +3=0,过圆心C 2的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则|PN |+4|QM |的最小值为( )图2A .23B .42C .12D .52解析:由题意抛物线过定点(2,4),得抛物线方程y 2=8x ,焦点为F (2,0).圆的标准方程为(x -2)2+y 2=1,所以圆心为(2,0),半径r =1.由于直线过焦点,所以有1|PF |+1|QF |=2P =12,又|PN |+4|QM |=(|PF |+1)+(4|QF |+4)=|PF |+4|QF |+5=2(|PF |+4|QF |)⎝ ⎛⎭⎪⎫1|PF |+1|QF |+5=2⎝ ⎛⎭⎪⎫5+4|QF ||PF |+|PF ||QF |+5≥23, 当且仅当PF =2QF 时等号成立.选A.7.(2019年浙江省宁波市高三模拟)设抛物线y 2=4x 的焦点为F ,过点P (5,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,若|BF |=5,则△BCF 与△ACF 的面积之比S △BCFS △ACF=( )A.56B.2033 C.1531 D.2029解析:抛物线的准线方程为l :x =-1, 分别过A ,B 作准线l 的垂线AM ,BN , 则|BN |=|BF |=5,图3∴B 点横坐标为4,不妨设B (4,-4), 则直线AB 的方程为y =4x -20,联立方程组⎩⎪⎨⎪⎧y =4x -20,y 2=4x ,得4x 2-41x +100=0,设A 横坐标为x 0,则x0+4=414,故而x 0=254. ∴|AM |=x 0+1=294,∴S △BCFS △ACF=2029.答案:D8.(2019年湖南省邵阳市高三上学期期末)过圆P :(x +1)2+y 2=14的圆心P 的直线与抛物线C :y 2=3x 相交于A ,B 两点,且PB →=3P A →,则点A 到圆P 上任意一点的距离的最大值为( )A.116 B .2 C.136 D.73解析:由题意可知:P (-1,0),设A (x 1,y 1),B (x 2,y 2), 不妨设点A 位于第一象限,如图4所示,图4则:PB →=(x 2+1,y 2),P A →=(x 1+1,y 1),据此可得方程组:⎩⎪⎨⎪⎧y 2=3y 1,x 2+1=3(x 1+1),y 21=3x 1,y 22=3x2解方程可得:x 1=13,y 1=1, 则|AP |=⎝ ⎛⎭⎪⎫13+12+12=53,故点A 到圆P 上任意一点的距离的最大值为53+12=136. 本题选择C 选项. 答案:C9.(2019年内蒙古乌兰察布市北京八中分校高二上学期期末)经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A, B 两点,设O 为坐标原点,则OA→·OB →等于( ) A .-3 B .-13 C .-13或-3 D .±13解析:由x 22+y 2=1 ,得a 2=2,b 2=1,c 2=a 2-b 2=1 ,焦点为(±1,0).设直线l 过右焦点,倾斜角为45°,直线l 的方程为y =x -1.代入x 22+y 2=1得x 2+2(x -1)2-2=0,即3x 2-4x =0.设A (x 1,y 1),B (x 2,y 2),则x 1·x 2=0,x 1+x 2=43,y 1y 2=(x 1-1)·(x 2-1)=x 1x 2-(x 1+x 2)+1=1-43=-13,OA →·OB →=x 1x 2+y 1y 2=0-13=-13.故选B. 答案:B10.(2019年河南省平顶山高二第一学期期末)过点M (1,1) 的直线与椭圆x 24+y 23=1 交于A, B 两点,且点M 平分AB ,则直线AB 的方程为( )A .4x +3y -7=0B .3x +4y -7=0C .3x -4y +1=0D .4x -3y -1=0解析:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y 223=1两式相减并化简得y 1-y 2x 1-x 2=-34,所以直线的斜率为-34,由点斜式得到直线方程为3x +4y -7=0.答案:B11.(2019年湖南省三湘名校教育联盟高三第三次联考)已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交拋物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为(3,y 0)时, △AEF 为正三角形,则此时△OAB 的面积为( )A.433 B. 3 C.233 D.33图5解析:如图5所示,过点F 作AE 的垂线,垂足为H ,则H 为AE 的中点,则AE =3+p2,EH =p, ∴2p =3+p2,解得p =2, ∴y 2=4x ,A (3,23),F (1,0),∴k AF =3,直线AF 为y =3(x -1),代入抛物线方程为3(x -1)2=4x ,解得x =3或x =13,∴y =23或y =-233,∴B ⎝⎛⎭⎪⎫13,-233∴S △OAB =S △OFB +S △OF A=12×1×⎝⎛⎭⎪⎫23+233 =433,故选A. 答案:A12.(2019年普通高校全国卷一(A))已知抛物线x 2=2py (p >0)的焦点为F ,过焦点F 的直线l 分别交抛物线于点A ,B ,过点A ,B 分别作抛物线的切线l 1,l 2,两切线l 1,l 2交于点M ,若过点M 且与y 轴垂直的直线恰为圆x 2+y 2=1的一条切线,则p 的值为( )A.14B.12 C .2 D .4解析:由题可知抛物线x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,且过焦点F 的直线斜率存在,所以可设直线l :y =kx +p2,联立方程组⎩⎨⎧y =kx +p 2,x 2=2py ∴x 2-2kpx -p 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1x 2=-p 2,x 1+x 2=2kp .又由x 2=2py 得y =x 22p ,∴y ′=xp ,所以过A 点的切线方程为l 1:y -y 1=x 1p (x -x 1),∴y =y 1+x 1p x -x 21p =x 1p x -x 212p .同理可知过点B 的切线方程为l 2:y =x 2p x -x 222p ,联立方程组⎩⎪⎨⎪⎧y =x 1p x -x 212p ,y =x 2p x -x 222p ,∴⎩⎨⎧x =x 1+x 22,y =x 1x 22p =-p 2,因此点M ⎝ ⎛⎭⎪⎫x 1+x 22,-p 2,过点M 与y 轴垂直的直线为y =-p 2(p >0),而圆x 2+y 2=1与y 轴负半轴交于点(0,-1),所以-p2=-1,∴p =2.故选C.答案:C 二、填空题13.(2019年高三数学训练题)F 是双曲线C: x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B.若2AF→=FB →,则C 的离心率是________. 解析:双曲线C: x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为y =±b a x ,由题意,得|AF |=b ,|BF |=2b ,在Rt △AOF 中, |OF |=c ,则|OA |=c 2-b 2=a .设l 1的倾斜角为θ,即∠AOF =θ,则∠AOB =2θ,tan θ=b a ,tan2θ=3b a ,即3ba =2b a 1-b 2a 2,即a 2=3b 2,则e =c a =1+b 2a 2=233.答案:23314.(2019年高三数学训练题)设F 1,F 2为椭圆C 1: x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2的公共的左,右焦点,椭圆C 1与双曲线C 2在第一象限内交于点M ,△MF 1F 2是以线段MF 1为底边的等腰三角形,且|MF 1|=2,若椭圆C 1的离心率e ∈⎣⎢⎡⎦⎥⎤38,49,则双曲线C 2的离心率的取值范围是________.解析:设双曲线C 2的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),由题意知|MF 1|=2,|F 1F 2|=|MF 2|=2c ,其中c 2=a 22+b 22=a 21-b 21,又根据椭圆与双曲线的定义得⎩⎪⎨⎪⎧|MF 1|+|MF 2|=2a 1,|MF 1|-|MF 2|=2a 2,则⎩⎪⎨⎪⎧2+2c =2a 1,2-2c =2a 2即a 1-a 2=2c ,其中2a 1,2a 2分别为椭圆的长轴长和双曲线的实轴长.因为椭圆的离心率38≤e ≤49,所以38≤c a 1≤49,所以9c 4≤a 1≤8c 3,而a 2=a 1-2c ,所以c4≤a 2≤2c 3,所以32≤ca 2≤4,即双曲线C 2的离心率的取值范围是⎣⎢⎡⎦⎥⎤32,4.答案:⎣⎢⎡⎦⎥⎤32,415.(2019年新疆兵团农二师华山中学期末)P 为抛物线y 2=4x 上任意一点,点P 在y 轴上的射影为Q ,点M (4,5),则PQ 与PM 长度之和的最小值为________.解析:抛物线的准线方程为x =-1,焦点F (1,0), 由抛物线的几何性质得|PQ |=|PF |-1, |PQ |+|PM |=|PF |+|PM |-1 ≥|MF |-1=34-1,当P ,M ,F 三点共线时等号成立. 答案:34-116.过抛物线y 2=2px (p >0)焦点F 的直线与抛物线交于A ,B 两点,作AC ,BD 垂直抛物线的准线l 于C ,D 两点,O 为坐标原点,则下列结论正确的是________(填写序号).①AC→+CD →=BD →-BA →;②存在λ∈R ,使得AD →=λAO →成立;③FC→·FD →=0;④准线l 上任意点M ,都使得AM →·BM →>0.图6解析:如图6,可见AC→+CD →=BD →-BA →=AD →,所以①正确;设A (x 1,y 1),B (x 2,y 2),则C ⎝ ⎛⎭⎪⎫-p 2,y 1,D ⎝ ⎛⎭⎪⎫-p 2,y 2,“存在λ∈R ,使得AD →=λAO →成立”等价于“D ,O ,A 三点共线”,等价于“y 2-p 2=y 1x 1”,等价于“y 1y 2=-p 2(*)”.又因为F ⎝ ⎛⎭⎪⎫p 2,0,直线AB 可设为x =my +p 2,与y 2=2px 联立,消去x ,得y 2-2pmy -p 2=0,于是,y 1y 2=-p 2,(*)成立,所以②正确;“FC →·FD →=0”等价于“p 2+y 1y 2=0”,据y 1y 2=-p 2,(*)成立,知③正确;据抛物线定义知|AB |=|AC |+|BD |,所以以AB 为直径的圆半径长与梯形ACDB 中位线长相等,所以该圆与CD 相切,设切点为M ,则AM ⊥BM ,所以AM→·BM →=0,④不正确. 答案:①②③ 三、解答题17.(2019年内蒙古乌兰察布市北京八中分校高二上学期期末)在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A 、B 两点.(1)如果直线l 过抛物线的焦点,求OA→·OB →的值; (2)如果OA→·OB →=-4,证明直线l 必过一定点,并求出该定点. 解:(1)由题意:抛物线焦点为(1,0),设l :x =ty +1,代入抛物线y 2=4x ,消去x 得y 2-4ty -4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4,∴OA →·OB →=x 1x 2+y 1y 2 =(ty 1+1)(ty 2+1)+y 1y 2 =t 2y 1y 2+t (y 1+y 2)+1+y 1y 2 =-4t 2+4t 2+1-4=-3.(2)设l :x =ty +b 代入抛物线y 2=4x ,消去x 得y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4b ,∴OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2 =t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2 =-4bt 2+4bt 2+b 2-4b =b 2-4b .令b 2-4b =-4,∴b 2-4b +4=0,∴b =2, ∴直线l 过定点(2,0).∴若OA →·OB →=-4,则直线l 必过一定点(2,0).图718.(2019年内蒙古乌兰察布市北京八中分校高二上学期期末)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2·x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12, 且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22.19.(2019年百校联盟TOP20高三三月联考(全国Ⅱ卷))在平面直角坐标系xOy 中,与点M (-2,3)关于直线2x -y +2=0对称的点N 位于抛物线C :x 2=2py (p >0)上.(1)求抛物线C 的方程;(2)过点N 作两条倾斜角互补的直线交抛物线C 于A ,B 两点(非N 点),若AB 过焦点F ,求|AF ||BF |的值.解:(1)设N (m ,n ),则⎩⎨⎧n -3m +2=-12,m -22×2-n +32+2=0,解之得N (2,1),代入x 2=2py (p >0)得p =2, 所以抛物线C 的方程为x 2=4y . (2)显然直线NA 的斜率是存在的, 设直线NA 的方程y -1=k (x -2), 设直线NB 的方程y -1=-k (x -2), 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2=4y ,y -1=k (x -2)消元,得x 2-4kx +8k -4=0, 所以2+x 1=4k ,∴x 1=4k -2,∴y 1=4k (k -1)+1, 故A (4k -2,4k (k -1)+1), 同理,B (-4k -2,4k (k +1)+1),所以k AB =4k (k +1)+1-4k (k -1)-1-4k -2-4k +2=-1,若|AF ||BF |<1,因为cos45°=|BF |-|AF ||BF |+|AF |,∴|AF ||BF |=2-22+2=3-22,若|AF ||BF |>1,同理可求|AF ||BF |=2+22-2=3+2 2.20.(2019年辽宁省朝阳市普通高中高三第一次模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2且F 2关于直线x -y +a =0的对称点M 在直线3x +2y =0上.(1)求椭圆的离心率;(2)若过焦点F 2垂直x 轴的直线被椭圆截得的弦长为3,斜率为12的直线l 交椭圆于A ,B 两点,问是否存在定点P ,使得P A ,PB 的斜率之和为定值?若存在,求出所有满足条件的P 点坐标;若不存在,说明理由.解:(1)依题知F 2(c ,0),设M (x 0,y 0),则y 0x 0-c=-1且x 0+c 2-y 02+a =0,解得⎩⎪⎨⎪⎧x 0=-a ,y 0=a +c ,即M (-a ,a +c )∵M 在直线3x +2y =0上,∴-3a +2(a +c )=0,a =2c ,∴e =c a =12. (2)由(1)及题设得:c a =12且2b 2a =3, ∴a =2,b =3,∴椭圆方程为x 24+y 23=1设直线l 方程为y =12x +t ,代入椭圆方程消去y 整理得x 2+tx +t 2-3=0.依题Δ>0,即t 2<4设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-t ,x 1x 2=t 2-3如果存在P (m ,n )使得k P A +k PB 为定值,那么k P A +k PB 的取值将与t 无关k P A +k PB=y 1-n x 1-m +y 2-n x 2-m=⎝⎛⎭⎪⎫n -32m t +2mn -3t 2+mt +m 2-3,令⎝⎛⎭⎪⎫n -32m t +2mn -3t 2+mt +m 2-3=M则Mt 2+⎝ ⎛⎭⎪⎫mM +32m -n t +m 2M -3M -2mn +3=0为关于t (t 2<4)的恒等式∴⎩⎨⎧M =0,n =32m ,2mn =3,解得⎩⎨⎧m =1,n =32或⎩⎨⎧m =-1,n =-32综上可知,满足条件的定点P 是存在的,坐标为⎝ ⎛⎭⎪⎫-1,-32及⎝⎛⎭⎪⎫1,32.。
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 理1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离PF =x 0+p2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,准线方程为x =-a4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是(a4,0),准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F (p 2,0)的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长AB =x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )1.(2015·陕西改编)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为__________. 答案 (1,0)解析 由于抛物线y 2=2px (p >0)的准线方程为x =-p 2,由题意得-p2=-1,p =2,焦点坐标为()1,0.2.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,AF =54x 0,则x 0=________.答案 1解析 由抛物线的定义,可得AF =x 0+14,∵AF =54x 0,∴x 0+14=54x 0,∴x 0=1.3.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则OM =________. 答案 2 3解析 设抛物线方程为y 2=2px (p >0), 则点M (2,±2p ).∵焦点⎝ ⎛⎭⎪⎫p2,0,点M 到该抛物线焦点的距离为3,∴⎝ ⎛⎭⎪⎫2-p 22+4p =9,解得p =2(负值舍去), 故M (2,±22). ∴OM =4+4×2=2 3.4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________________. 答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=2px (p ≠0),或x 2=2py (p ≠0).将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y .5.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为________. 答案 43解析 ∵A (-2,3)在抛物线y 2=2px 的准线上, ∴-p2=-2,∴p =4,∴y 2=8x ,设直线AB 的方程为x =m (y -3)-2,① 将①与y2=8x 联立,即⎩⎪⎨⎪⎧x =m y --2,y 2=8x ,得y 2-8my +24m +16=0,②则Δ=(-8m )2-4(24m +16)=0,即2m 2-3m -2=0, 解得m =2或m =-12(舍去),将m =2代入①②解得⎩⎪⎨⎪⎧x =8,y =8,即B (8,8),又F (2,0),∴k BF =8-08-2=43.题型一 抛物线的定义及应用例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求PA +PF 的最小值,并求出取最小值时点P 的坐标.解 将x =3代入抛物线方程y 2=2x ,得y =± 6.∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知PA +PF =PA +d ,当PA ⊥l 时,PA +d 最小,最小值为72,即PA +PF 的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2). 引申探究将本例中点A 的坐标改为(3,4),求PA +PF 的最小值. 解 当P 、A 、F 共线时,PA +PF 最小,PA +PF ≥AF = ⎝ ⎛⎭⎪⎫3-122+42= 254+16=892. 即PA +PF 的最小值为892. 思维升华 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.(1)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A ,B两点,又知点P 恰为AB 的中点,则AF +BF =________.(2)设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则PB +PF 的最小值为________. 答案 (1)8 (2)4解析 (1)分别过点A ,B ,P 作准线的垂线,垂足分别为M ,N ,Q ,根据抛物线上的点到焦点的距离等于该点到准线的距离,得AF +BF =AM +BN =2PQ =8.(2)如图,过点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则P 1Q =P 1F .则有PB +PF ≥P 1B +P 1Q =BQ =4.即PB +PF 的最小值为4.题型二 抛物线的标准方程和几何性质 命题点1 求抛物线的标准方程例2 已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为____________. 答案 x 2=16y解析 ∵x 2a 2-y 2b2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴b 2a 2=3,ba= 3. x 2=2py 的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,x 2a 2-y2b2=1的渐近线方程为y =±b a x ,即y =±3x .由题意得p21+32=2,∴p =8.故C 2的方程为x 2=16y . 命题点2 抛物线的几何性质例3 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若AF =3,则△AOB 的面积为________. 答案322解析由题意设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),如图所示,AF =x 1+1=3, ∴x 1=2,y 1=2 2.设AB 的方程为x -1=ty ,由⎩⎪⎨⎪⎧y 2=4x ,x -1=ty 消去x 得y 2-4ty -4=0.∴y 1y 2=-4.∴y 2=-2,x 2=12,∴S △AOB =12×1×|y 1-y 2|=322.思维升华 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.(1)(2015·陕西)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________. 答案 2 2解析 由于双曲线x 2-y 2=1的焦点为(±2,0),故应有p2=2,p =2 2.(2)已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:①y 1y 2=-p 2,x 1x 2=p 24;②1AF +1BF为定值;③以AB 为直径的圆与抛物线的准线相切. 证明 ①由已知得抛物线焦点坐标为(p2,0).由题意可设直线方程为x =my +p2,代入y 2=2px ,得y 2=2p ⎝ ⎛⎭⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*)则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2. 因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.②1AF +1BF =1x 1+p 2+1x 2+p2 =x 1+x 2+px 1x 2+p 2x 1+x 2+p 24.因为x 1x 2=p 24,x 1+x 2=AB -p ,代入上式,得1AF +1BF =ABp24+p2AB -p +p24=2p(定值).③设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则MN =12(AC +BD )=12(AF +BF )=12AB .所以以AB 为直径的圆与抛物线的准线相切. 题型三 直线与抛物线的综合问题 命题点1 直线与抛物线的交点问题例4 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =________. 答案 2解析 抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=4+8k,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2. 命题点2 与抛物线弦的中点有关的问题例5 已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.解 (1)∵抛物线C :x 2=1m y ,∴它的焦点F (0,14m ).(2)∵RF =y R +14m ,∴2+14m =3,得m =14.(3)存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0⇒m >-12.设A (x 1,mx 21),B (x 2,mx 22),则⎩⎪⎨⎪⎧x 1+x 2=2m,x 1·x 2=-2m.(*)∵P 是线段AB 的中点,∴P (x 1+x 22,mx 21+mx 222),即P (1m ,y P ),∴Q (1m ,1m ).得QA →=(x 1-1m ,mx 21-1m),QB →=(x 2-1m ,mx 22-1m),若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则QA →·QB →=0, 即(x 1-1m )·(x 2-1m )+(mx 21-1m )(mx 22-1m)=0,结合(*)化简得-4m 2-6m+4=0,即2m 2-3m -2=0,∴m =2或m =-12,而2∈(-12,+∞),-12∉(-12,+∞).∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.(2014·大纲全国)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且QF =54PQ .(1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.解 (1)设Q (x 0,4),代入y 2=2px 得x 0=8p.所以PQ =8p ,QF =p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2. 所以C 的方程为y 2=4x . (2)依题意知l 与坐标轴不垂直, 故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故AB 的中点为D (2m 2+1,2m ),AB =m 2+1|y 1-y 2|=4(m 2+1).又l ′的斜率为-m ,所以l ′的方程为x =-1my +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4my -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故MN 的中点为E (2m 2+2m 2+3,-2m),MN = 1+1m2|y 3-y 4|=m 2+2m 2+1m 2,由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于AE =BE =12MN ,从而14AB 2+DE 2=14MN 2,即4(m 2+1)2+(2m +2m )2+(2m2+2)2=m 2+2m 2+m 4,化简得m 2-1=0,解得m =1或m =-1. 所求直线l 的方程为x -y -1=0或x +y -1=0.7.直线与圆锥曲线问题的求解策略典例 (16分)(2014·山东)已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA =FD .当点A 的横坐标为3时,△ADF 为正三角形. (1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E , ①证明直线AE 过定点,并求出定点坐标;②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 规范解答解 (1)由题意知F (p2,0).设D (t,0)(t >0),则FD 的中点为(p +2t4,0).因为FA =FD ,由抛物线的定义知3+p 2=⎪⎪⎪⎪⎪⎪t -p 2,解得t =3+p 或t =-3(舍去). 由p +2t4=3,解得p =2.所以抛物线C 的方程为y 2=4x . [4分](2)①由(1)知F (1,0).设A (x 0,y 0)(x 0y 0≠0),D (x D,0)(x D >0). 因为FA =FD ,则|x D -1|=x 0+1, 由x D >0得x D =x 0+2,故D (x 0+2,0), 故直线AB 的斜率k AB =-y 02. 因为直线l 1和直线AB 平行, 设直线l 1的方程为y =-y 02x +b ,代入抛物线方程得y 2+8y 0y -8b y 0=0,由题意得Δ=64y 20+32b y 0=0,得b =-2y 0.[7分]设E (x E ,y E ),则y E =-4y 0,x E =4y 20.当y 20≠4时,k AE =y E -y 0x E -x 0=-4y 0-y 04y 20-y 204=4y 0y 20-4, 可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0). 由y 20=4x 0,整理可得y =4y 0y 0-4(x -1), 直线AE 恒过点F (1,0).当y 20=4时,直线AE 的方程为x =1,过点F (1,0), 所以直线AE 过定点F (1,0).[10分]②由①知直线AE 过焦点F (1,0), 所以AE =AF +FE=(x 0+1)+⎝⎛⎭⎪⎫1x+1=x 0+1x 0+2.设直线AE 的方程为x =my +1. 因为点A (x 0,y 0)在直线AE 上,故m =x 0-1y 0. 设B (x 1,y 1),直线AB 的方程为y -y 0=-y 02(x -x 0),由于y 0≠0,可得x =-2y 0y +2+x 0,代入抛物线方程得y 2+8y 0y -8-4x 0=0,所以y 0+y 1=-8y 0,可求得y 1=-y 0-8y 0,x 1=4x 0+x 0+4.所以点B 到直线AE 的距离为d =⎪⎪⎪⎪⎪⎪4x 0+x 0+4+m ⎝ ⎛⎭⎪⎫y 0+8y 0-11+m2=x 0+x 0=4⎝⎛⎭⎪⎫x 0+1x 0.[14分]则△ABE 的面积S =12×4⎝ ⎛⎭⎪⎫x 0+1x 0⎝ ⎛⎭⎪⎫x 0+1x 0+2≥16, 当且仅当1x 0=x 0,即x 0=1时等号成立.所以△ABE 的面积的最小值为16. [16分]解决直线与圆锥曲线的位置关系的一般步骤: 第一步:联立方程,得关于x 或y 的一元二次方程;第二步:写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点); 第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.温馨提醒 (1)解决直线与圆锥曲线结合的问题,一般都采用设而不求的方法,联立方程,由根与系数的关系去找适合该问题的等量关系.(2)在解决此类问题时常用到焦半径、弦长公式,对于距离问题,往往通过定义进行转化. (3)利用“点差法”可以将曲线的二次关系转化为一次关系即直线的关系,从而求直线斜率.[方法与技巧]1.认真区分四种形式的标准方程(1)区分y =ax 2与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx (m ≠0)或x 2=my (m ≠0).2.抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简化.抛物线上的点到焦点的距离根据定义转化为到准线的距离,即PF =|x |+p 2或PF =|y |+p2.[失误与防范]1.求抛物线的标准方程时一般要用待定系数法求出p 值,但首先要判断抛物线是否为标准方程,以及是哪一种标准方程.2.注意应用抛物线的定义解决问题.3.直线与抛物线结合的问题,不要忘记验证判别式.A 组 专项基础训练 (时间:40分钟)1.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为________. 答案 2解析 曲线的标准方程为(x -2)2+y 2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x =-p 2,∴由抛物线的准线与圆相切得2+p2=3,解得p =2.2.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为__________. 答案 x =-1解析 ∵y 2=2px 的焦点坐标为(p2,0),∴过焦点且斜率为1的直线方程为y =x -p2,即x =y +p2,将其代入y 2=2px ,得y 2=2py +p 2,即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1.3.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于________. 答案 -4解析 ①若焦点弦AB ⊥x 轴, 则x 1=x 2=p 2,所以x 1x 2=p 24;∴y 1=p ,y 2=-p ,∴y 1y 2=-p 2, ∴y 1y 2x 1x 2=-4. ②若焦点弦AB 不垂直于x 轴, 可设AB 的直线方程为y =k (x -p2),联立y 2=2px 得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24.所以y 1y 2=-p 2.故y 1y 2x 1x 2=-4. 4.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是________(填序号).①BF -1AF -1; ②BF 2-1AF 2-1; ③BF +1AF +1; ④BF 2+1AF 2+1. 答案 ① 解析由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于BCAC.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1. ∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得BM =BF -1,AN =AF -1.在△CAN 中,BM ∥AN ,∴BC AC =BM AN=BF -1AF -1. 5.(2014·课标全国Ⅱ改编)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则AB =________.答案 12解析 焦点F 的坐标为⎝ ⎛⎭⎪⎫34,0, 方法一 直线AB 的斜率为33,所以直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34, 即y =33x -34,代入y 2=3x ,得13x 2-72x +316=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212,所以AB =x 1+x 2+p =212+32=12.方法二 由抛物线焦点弦的性质可得AB =2p sin θ=3sin 30°=12. 6.已知抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A 、B 两点,若△ABF为等边三角形,则p =________. 答案 6解析 由题意知B ⎝ ⎛⎭⎪⎫p 3,-p 2,代入方程x 23-y 23=1得 p =6.7.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若BC =2BF ,且AF =3,则此抛物线的方程为________.答案 y 2=3x 解析如图,分别过A 、B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知:AF =AA 1,BF =BB 1,∵BC =2BF ,∴BC =2BB 1,∴∠BCB 1=30°,∴∠AFx =60°,连结A 1F ,则△AA 1F 为等边三角形,过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于K ,则KF =A 1F 1=12AA 1=12AF ,即p =32,∴抛物线方程为y 2=3x .8.已知一条过点P (2,1)的直线与抛物线y 2=2x 交于A ,B 两点,且P 是弦AB 的中点,则直线AB 的方程为_____________________________________________________________. 答案 x -y -1=0解析 依题意,设点A (x 1,y 1),B (x 2,y 2),则有y 21=2x 1,y 22=2x 2,两式相减得y 21-y 22=2(x 1-x 2),即y 1-y 2x 1-x 2=2y 1+y 2=1,直线AB 的斜率为1,直线AB 的方程是y -1=x -2,即x -y -1=0. 9.如图,已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.解 设直线OA 的方程为y =kx ,k ≠0, 则直线OB 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,y 2=2px ,得x =0或x =2pk2.∴A 点坐标为⎝ ⎛⎭⎪⎫2p k2,2p k ,同理得B 点坐标为(2pk 2,-2pk ),由OA =1,OB =8,可得⎩⎪⎨⎪⎧4p 2k 2+1k 4=1, ①4p 2k 2k 2+=64, ②②÷①得k 6=64,即k 2=4.则p 2=16k2k 2+=45. 又p >0,则p =255,故所求抛物线方程为y 2=455x .10.(2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且AF =3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.方法一 (1)解 由抛物线的定义得AF =2+p2.因为AF =3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x . (2)证明因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22x -,y 2=4x得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =22-02--=223,k GB =-2-012--=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)解 同方法一.(2)证明设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22x -,y 2=4x得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0. 所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.B 组 专项能力提升 (时间:30分钟)11.(2015·四川改编)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是__________. 答案 (2,4) 解析设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12,∴-23<y 0<23,∵点M 在圆上, ∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.12.已知抛物线y 2=x ,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是________. 答案 3 解析如图,设A (m 2,m ),B (n 2,n ),点C 为直线AB 与x 轴的交点.其中m >0,n <0,则OA →=(m 2,m ),OB →=(n 2,n ),OA →·OB→=m 2n 2+mn =2,解得mn =1(舍)或mn =-2. ∴l AB :(m 2-n 2)(y -n )=(m -n )·(x -n 2), 即(m +n )(y -n )=x -n 2,令y =0,解得x =-mn =2,∴C (2,0).S △AOB =S △AOC +S △BOC =12×2×m +12×2×(-n )=m -n ,S △AOF =12×14×m =18m ,则S △AOB +S △AOF =m -n +18m =98m -n =98m +2m≥298m ·2m =3,当且仅当98m =2m ,即m =43时等号成立.故△ABO 与△AFO 面积之和的最小值为3.13.抛物线C :x 2=8y 与直线y =2x -2相交于A ,B 两点,点P 是抛物线C 上异于A ,B 的一点,若直线PA ,PB 分别与直线y =2相交于点Q ,R ,O 为坐标原点,则OR →·OQ →=________. 答案 20解析 设A ⎝ ⎛⎭⎪⎫x 1,x 218,B ⎝ ⎛⎭⎪⎫x 2,x 228,P ⎝⎛⎭⎪⎫x 0,x 208,Q (x 3,2),R (x 4,2).将y =2x -2代入x 2=8y 得x2-16x +16=0,则x 1+x 2=x 1x 2=16.直线PA 的方程为y -x 208=x 208-x 218x 0-x 1(x -x 0),即y -x 208=x 0+x 18·(x -x 0).令y =2,解得x 3=x 1x 0+16x 1+x 0;同理可得x 4=x 2x 0+16x 2+x 0.所以x 3x 4=x 1x 0+16x 1+x 0×x 2x 0+16x 2+x 0=x 2x 1x 20+16x 0x 1+x 2+162x 2x 1+16x 0+x 2=x 2x 1+16x 0+x 20x 2x 1+16x 0+x 2=16, 所以OR →·OQ →=x3x 4+4=20. 14.(2014·江西)如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点). (1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:MN 22-MN 21为定值,并求此定值.(1)证明 依题意可设AB 方程为y =kx +2,代入x 2=4y ,得x 2=4(kx +2),即x 2-4kx -8=0.设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8.直线AO 的方程为y =y 1x 1x ; BD 的方程为x =x 2.解得交点D 的坐标为⎩⎪⎨⎪⎧ x =x 2,y =y 1x 2x 1, 注意到x 1x 2=-8及x 21=4y 1,则有y =y 1x 1x 2x 1=-8y 14y 1=-2. 因此D 点在定直线y =-2上(x ≠0).(2)解 依题设,切线l 的斜率存在且不等于0,设切线l 的方程为y =ax +b (a ≠0),代入x 2=4y 得x 2=4(ax +b ),即x 2-4ax -4b =0.由Δ=0得(-4a )2+16b =0,化简整理得b =-a 2.故切线l 的方程可写为y =ax -a 2.分别令y =2,y =-2得N 1,N 2的坐标为 N 1(2a +a,2),N 2(-2a+a ,-2), 则MN 22-MN 21=(2a -a )2+42-(2a+a )2=8, 即MN 22-MN 21为定值8. 15.如图,已知抛物线C 的顶点为O (0,0),焦点为F (0,1).(1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求MN 的最小值.解 (1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p 2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1. 由⎩⎪⎨⎪⎧ y =kx +1,x 2=4y 消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1.同理,点N 的横坐标x N =84-x 2.所以MN =2|x M -x N |=2⎪⎪⎪⎪⎪⎪84-x 1-84-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2x 1x 2-x 1+x 2+16=82k 2+1|4k -3|, 令4k -3=t ,t ≠0,则k =t +34.当t >0时,MN =2 2 25t 2+6t +1>2 2.当t <0时,MN =2 2 ⎝ ⎛⎭⎪⎫5t +352+1625≥85 2.综上所述,当t =-253,即k =-43时,MN 的最小值是85 2.。
§9.6抛物线及其性质考纲解读分析解读 1.熟练掌握抛物线的定义及四种不同的标准方程形式.2.会根据抛物线的标准方程研究得出几何性质,会由几何性质确定抛物线的标准方程.3.能够把直线与抛物线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求抛物线的方程和研究抛物线的性质为主,分值约为12分,属偏难题.五年高考考点一抛物线的定义及其标准方程1.(2016课标全国Ⅰ,10,5分)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为( )A.2B.4C.6D.8答案 B2.(2016四川,8,5分)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为( )A. B.C. D.1答案 C3.(2017课标全国Ⅱ,16,5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M 为FN的中点,则|FN|= .答案 64.(2016浙江,9,4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.答案9教师用书专用(5—8)5.(2015陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .答案 26.(2014湖南,15,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则= .答案1+7.(2013广东,20,14分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.解析(1)依题意,设抛物线C的方程为x2=4cy,由题意易知=,且结合c>0,解得c=1.所以抛物线C的方程为x2=4y.(2)抛物线C的方程为x2=4y,即y=x2,求导得y'=x.设A(x1,y1),B(x2,y2),则切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为y-y1=(x-x1),即y=x-+y1,即x1x-2y-2y1=0.同理可得切线PB的方程为x2x-2y-2y2=0.因为切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以(x1,y1),(x2,y2)为方程x0x-2y0-2y=0的两组解.所以直线AB的方程为x0x-2y-2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF|·|BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1,联立方程消去x整理得y2+(2y0-)y+=0.由一元二次方程根与系数的关系可得y1+y2=-2y0,y1y2=,所以|AF|·|BF|=y1y2+(y1+y2)+1=+-2y0+1.又点P(x0,y0)在直线l上,所以x0=y0+2,所以+-2y0+1=2+2y0+5=2+.所以当y0=-时,|AF|·|BF|取得最小值,且最小值为.8.(2013湖南,21,13分)过抛物线E:x2=2py(p>0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交于点C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(1)若k1>0,k2>0,证明:·<2p2;(2)若点M到直线l的距离的最小值为,求抛物线E的方程.解析(1)由题意得,抛物线E的焦点为F,直线l1的方程为y=k1x+.由得x2-2pk1x-p2=0.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,y1+y2=k1(x1+x2)+p=2p+p.所以点M的坐标为,=(pk1,p).同理可得点N的坐标为,=(pk2,p),于是·=p2(k1k2+).由题设知k1+k2=2,k1>0,k2>0,k1≠k2,所以0<k1k2<=1.故·<p2(1+12)=2p2.(2)由抛物线的定义得|FA|=y1+,|FB|=y2+,所以|AB|=y1+y2+p=2p+2p,从而圆M的半径r1=p+p.故圆M的方程为(x-pk1)2+=(p+p)2,化简得x2+y2-2pk1x-p(2+1)y-p2=0.同理可得圆N的方程为x2+y2-2pk2x-p(2+1)y-p2=0.于是圆M,圆N的公共弦所在直线l的方程为(k2-k1)x+(-)y=0.又k2-k1≠0,k1+k2=2,则l的方程为x+2y=0.因为p>0,所以点M到直线l的距离d===.故当k1=-时,d取最小值.由题设知=,解得p=8.故所求的抛物线E的方程为x2=16y.考点二抛物线的几何性质1.(2015浙江,5,5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B 在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( )A. B.C. D.答案 A2.(2013四川,6,5分)抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是( )A. B. C.1 D.答案 B3.(2016天津,14,5分)设抛物线(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C,AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3,则p的值为.答案教师用书专用(4—5)4.(2013北京,7,5分)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于( )A. B.2 C. D.答案 C5.(2013江西,14,5分)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p= .答案 6考点三直线与抛物线的位置关系1.(2014课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.答案 D2.(2014辽宁,10,5分)已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为( )A. B. C. D.答案 D3.(2017北京,18,14分)已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.解析(1)由抛物线C:y2=2px过点P(1,1),得p=.所以抛物线C的方程为y2=x.抛物线C的焦点坐标为,准线方程为x=-.(2)由题意,设直线l的方程为y=kx+(k≠0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由得4k2x2+(4k-4)x+1=0.则x1+x2=,x1x2=.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1).直线ON的方程为y=x,点B的坐标为.因为y1+-2x1=====0,所以y1+=2x1.故A为线段BM的中点.教师用书专用(4—5)4.(2016江苏,22,10分)如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.解析(1)抛物线C:y2=2px(p>0)的焦点为,由点在直线l:x-y-2=0上,得-0-2=0,即p=4.所以抛物线C的方程为y2=8x.(2)设P(x1,y1),Q(x2,y2),线段PQ的中点M(x0,y0).因为点P和Q关于直线l对称,所以直线l垂直平分线段PQ,于是直线PQ的斜率为-1,则可设其方程为y=-x+b.①由消去x得y2+2py-2pb=0.(*)因为P和Q是抛物线C上的相异两点,所以y1≠y2,从而Δ=(2p)2-4×(-2pb)>0,化简得p+2b>0.方程(*)的两根为y1,2=-p±,从而y0==-p.因为M(x0,y0)在直线l上,所以x0=2-p.因此,线段PQ的中点坐标为(2-p,-p).②因为M(2-p,-p)在直线y=-x+b上,所以-p=-(2-p)+b,即b=2-2p.由①知p+2b>0,于是p+2(2-2p)>0,所以p<.因此,p的取值范围是.5.(2014大纲全国,21,12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线l'与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.解析(1)设Q(x0,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x0=+.由题设得+=×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(5分)(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l'的斜率为-m,所以l'的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3),N(x4,y4),则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E,|MN|=|y3-y4|=.(10分)由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2++=.化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.(12分)三年模拟A组2016—2018年模拟·基础题组考点一抛物线的定义及其标准方程1.(2018陕西西安一模,3)若抛物线y2=2px的焦点与双曲线-=1的右焦点重合,则p的值为( )A.-2B.2C.-4D.4答案 D2.(2018云南昆明质检,7)已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,MF的中点坐标是(2,2),则p 的值为( )A.1B.2C.3D.4答案 D3.(2017皖北协作区3月联考,3)已知抛物线C:x2=2py(p>0),若直线y=2x被抛物线所截弦长为4,则抛物线C 的方程为( )A.x2=8yB.x2=4yC.x2=2yD.x2=y答案 C4.(2017河南百校联盟质检,4)已知抛物线C:y2=4x上一点A到焦点F的距离与其到对称轴的距离之比为5∶4,且|AF|>2,则点A到原点的距离为( )A.3B.4C.4D.4答案 B5.(2017河南新乡二模,14)已知点A(1,y1),B(9,y2)是抛物线y2=2px(p>0)上的两点,y2>y1>0,点F是抛物线的焦点,若|BF|=5|AF|,则+y2的值为.答案10考点二抛物线的几何性质6.(2018青海西宁模拟,8)抛物线y2=16x的焦点为F,点A在y轴上,且满足||=||,B是抛物线的准线与x轴的交点,则·=()A.-4B.4C.0D.-4或4答案 C7.(2018贵州贵阳一模,8)过点M作圆x2+y2=1的切线l,l与x轴的交点为抛物线E:y2=2px(p>0)的焦点,l与抛物线E交于A、B两点,则AB的中点到抛物线E的准线的距离为( )A. B.3C. D.4答案 D8.(2017江西红色七校一联,7)已知抛物线y=x2和y=-x2+5所围成的封闭曲线如图所示,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A对称,则实数a的取值范围是( )A.(1,3)B.(2,4)C. D.答案 D9.(2017江西九校联考,14)已知过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,|AF|=2,则|BF|= .答案 2考点三直线与抛物线的位置关系10.(2018河南安阳模拟,7)已知点A(-1,-2)在抛物线C:y2=2px(p>0)的准线上,记C的焦点为F,过点F且与x 轴垂直的直线与抛物线交于M,N两点,则线段MN的长为( )A.4B.2C.2D.1答案 A11.(2018四川南充模拟,7)如图,过抛物线x2=2py(p>0)的焦点F的直线l交抛物线于A,B两点,交其准线于点C,若|BC|=|BF|,且|AF|=4+2,则p=( )A.1B.2C.D.3答案 B12.(2017广东汕头一模,11)过抛物线C:x2=2y的焦点F的直线l交抛物线C于A,B两点,若抛物线C在点B处的切线的斜率为1,则|AF|=( )A.1B.2C.3D.4答案 A13.(人教A选2—1,二,2-4A,5,变式)过抛物线y2=2px(p>0)的焦点F的一条直线与双曲线x2-=1的一条渐近线平行,并交抛物线于A、B两点,若|AF|>|BF|,且|AF|=2,则抛物线的方程为( )A.y2=2xB.y2=3xC.y2=4xD.y2=x答案 AB组2016—2018年模拟·提升题组(满分:40分时间:40分钟)一、选择题(每小题5分,共10分)1.(2018河南开封一模,10)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A. B. C. D.答案 D2.(2017山西五校3月联考,11)已知抛物线C:y2=2px(p>0)上一点(5,m)到焦点的距离为6,P、Q分别为抛物线C 与圆M:(x-6)2+y2=1上的动点,当|PQ|取得最小值时,向量在x轴正方向上的投影为( )A.2-B.2-1C.1-D.-1答案 A二、填空题(每小题5分,共15分)3.(2017河北唐山调研,15)已知抛物线x2=4y与圆C:(x-1)2+(y-2)2=r2(r>0)有公共点P,若抛物线在P点处的切线与圆C也相切,则r= .答案4.(2017河南商丘模拟,16)如图所示,已知抛物线y2=2px(p>0)的焦点恰好是椭圆+=1(a>b>0)的右焦点F,且两曲线交点的连线也过焦点F,则该椭圆的离心率为.答案-15.(2017湖北孝感模拟,16)已知抛物线x2=4py(p>0)的焦点为F,直线y=x+2与该抛物线交于A,B两点,M是线段AB的中点,过M作x轴的垂线,垂足为N,若·+(+)·=-1-5p2,则p的值为.答案三、解答题(共15分)6.(2018辽宁大连模拟,20)如图,已知过抛物线E:x2=4y的焦点F的直线交抛物线E于A、C两点,经过点A的直线l1分别交y轴、抛物线E于点D、B(B与C不重合),∠FAD=∠FDA,经过点C作抛物线E的切线为l2.(1)求证:l1∥l2;(2)求三角形ABC面积的最小值.解析(1)证明:抛物线E:x2=4y的焦点为F(0,1),且直线AF的斜率一定存在,故设AF的方程为y=kx+1.设A(x1,y1),C(x2,y2)(不妨设x2>0),由得x2-4kx-4=0⇒x1+x2=4k,x1x2=-4,∵∠FAD=∠FDA,∴|AF|=|DF|,y1+=y D-1,∴y D=y1+2.∴直线l1的斜率k1==,∵x1x2=-4,∴k1==x2,又∵y'=x,∴过C(x2,y2)的切线斜率k2=x2.即k1=k2,∴l1∥l2.(2)由(1)得直线l1的斜率为x2,故直线l1的方程为y=x2x++2,联立得x2-2x2x--8=0,∴x1+x B=2x2,x1x B=-(+8).∴|AB|=·=2·,点C到直线l1的距离d=====,三角形ABC的面积S=×|AB|×d=(x2-x1)3.由(1)可得x2-x1=4,∴当k=0时,(x2-x1)min=4,∴当k=0时,三角形ABC的面积S=(x2-x1)3取到最小值,S min=×43=16.C组2016—2018年模拟·方法题组方法1 求抛物线的标准方程的方法1.(2018广西钦州模拟,6)已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与y轴相切且与线段MF相交于点A,若=2,则p等于( )A.1B.2C.2D.4答案 B2.(2017江西赣州二模,4)抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上一点,若A到F的距离是A到y轴距离的两倍,且三角形OAF的面积为1,O为坐标原点,则p的值为( )A.1B.2C.3D.4答案 B3.(2017福建福州模拟,14)函数y=a x-1(a>0且a≠1)的图象恒过点P,则焦点在x轴上且过点P的抛物线的标准方程是.答案y2=x方法2 抛物线定义的应用策略4.(2018湖南长沙模拟,7)已知点A(3,0),过抛物线y2=4x上一点P的直线与直线x=-1垂直相交于点B,若|PB|=|PA|,则点P的横坐标为( )A.1B.C.2D.答案 C5.(2018浙江温州模拟,7)设抛物线的顶点在原点,其焦点在x轴上,又抛物线上的点A(-1,a)与焦点F的距离为2,则a=( )A.4B.4或-4C.-2D.-2或2答案 D6.(2018云南玉溪模拟,14)已知F是抛物线y=x2的焦点,M、N是该抛物线上的两点,|MF|+|NF|=3,则线段MN的中点到x轴的距离为.答案7.(2017福建四地六校4月模拟,15)已知抛物线C:y2=4x的焦点为F,直线l过点F与抛物线C交于A,B两点,且|AB|=6,若AB的垂直平分线交x轴于P点,则P点的坐标为.答案(4,0)8.(2016陕西西安模拟,13)如图,点F是抛物线y2=8x的焦点,点A,B分别在抛物线及圆(x-2)2+y2=16的实线部分上运动,且AB总是平行于x轴,则△FAB的周长的取值范围是.答案(8,12)方法3 解决直线与抛物线位置关系问题的方法9.(2018广东汕头一模,9)过抛物线C:x2=2y的焦点F的直线l交抛物线C于A、B两点,若抛物线C在点B处的切线斜率为1,则线段|AF|=( )A.1B.2C.3D.4答案 A10.(2017湖南长沙长郡中学模拟,20)在平面直角坐标系xOy中,过点C(2,0)的直线与抛物线y2=4x相交于A、B 两点,设A(x1,y1),B(x2,y2).(1)求证:y1y2为定值;(2)是否存在平行于y轴的定直线被以AC为直径的圆截得的弦长为定值?如果存在,求出该直线的方程和弦长,如果不存在,说明理由.解析(1)证明:设直线AB的方程为my=x-2.由得y2-4my-8=0,∴y1y2=-8,为定值.(2)存在.设存在直线x=a满足条件.设AC的中点为E,则E,|AC|=,因此以AC为直径的圆的半径r=|AC|==,点E到直线x=a的距离d=,所以所截弦长为2=2==.当1-a=0,即a=1时,弦长为定值2,这时直线方程为x=1.。
高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。
一、知识梳理1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内.(2)动点到定点F的距离与到定直线l的距离相等.(3)定点不在定直线上.2.抛物线的标准方程和几何性质标准方程y2=2px(p>0)y2=—2px(p>0)x2=2py(p>0)x2=—2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0x=0焦点F错误!F错误!F错误!F错误!离心率e=1准线方程x=—错误!x=错误!y=—错误!y=错误!范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口方向向右向左向上向下焦半径(其中P (x0,y0))|PF|=x0+错误!|PF|=—x0+错误!|PF|=y0+错误!|PF|=—y0+错误!1.抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F错误!的距离|PF|=x0+错误!,也称为抛物线的焦半径.2.y2=ax(a≠0)的焦点坐标为错误!,准线方程为x=—错误!.3.如图,设A(x1,y1),B(x2,y2).(1)y1y2=—p2,x1x2=错误!.(2)|AB|=x1+x2+p=错误!(θ为AB的倾斜角).(3)错误!+错误!为定值错误!.(4)以AB为直径的圆与准线相切.(5)以AF或BF为直径的圆与y轴相切.二、教材衍化1.过点P(—2,3)的抛物线的标准方程是()A.y2=—错误!x或x2=错误!yB.y2=错误!x或x2=错误!yC.y2=错误!x或x2=—错误!yD.y2=—错误!x或x2=—错误!y解析:选A.设抛物线的标准方程为y2=kx或x2=my,代入点P(—2,3),解得k=—错误!,m=错误!,所以y2=—错误!x或x2=错误!y.故选A.2.抛物线y2=8x上到其焦点F距离为5的点P有()A.0个B.1个C.2个D.4个解析:选C.设P(x1,y1),则|PF|=x1+2=5,y错误!=8x1,所以x1=3,y1=±2错误!.故满足条件的点P有两个.故选C.3.过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|=________.解析:抛物线y2=4x的焦点为F(1,0),准线方程为x=—1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.答案:8一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.()(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.()(3)若一抛物线过点P(—2,3),则其标准方程可写为y2=2px(p>0).()(4)抛物线既是中心对称图形,又是轴对称图形.()答案:(1)×(2)×(3)×(4)×二、易错纠偏错误!错误!(1)忽视抛物线的标准形式;(2)忽视p的几何意义;(3)忽视k=0的讨论;(4)易忽视焦点的位置出现错误.1.抛物线8x2+y=0的焦点坐标为()A.(0,—2)B.(0,2)C.错误!D.错误!解析:选C.由8x2+y=0,得x2=—错误!y.2p=错误!,p=错误!,所以焦点为错误!,故选C.2.已知抛物线C与双曲线x2—y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()A.y2=±2错误!xB.y2=±2xC.y2=±4xD.y2=±4错误!x解析:选D.由已知可知双曲线的焦点为(—错误!,0),(错误!,0).设抛物线方程为y2=±2px (p>0),则错误!=错误!,所以p=2错误!,所以抛物线方程为y2=±4错误!x.故选D.3.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.解析:由已知可得Q(—2,0),当直线l的斜率不存在时,不满足题意,故设直线l的方程为y=k (x+2),代入抛物线方程,消去y整理得k2x2+(4k2—8)x+4k2=0,当k=0时,l与抛物线有公共点;当k≠0时,Δ=64(1—k2)≥0得—1≤k<0或0<k≤1.综上,—1≤k≤1.答案:[—1,1]4.若抛物线的焦点在直线x—2y—4=0上,则此抛物线的标准方程为________.解析:令x=0,得y=—2;令y=0,得x=4.所以抛物线的焦点是(4,0)或(0,—2),故所求抛物线的标准方程为y2=16x或x2=—8y.答案:y2=16x或x2=—8y抛物线的定义(典例迁移)设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),则|PB|+|PF|的最小值为________.【解析】如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.【答案】4【迁移探究1】(变条件)若将本例中“B(3,2)”改为“B(3,4)”,如何求解?解:由题意可知点B(3,4)在抛物线的外部.因为|PB|+|PF|的最小值即为B,F两点间的距离,由例题知,F(1,0),所以|PB|+|PF|≥|BF|=错误!=2错误!,即|PB|+|PF|的最小值为2错误!.【迁移探究2】(变问法)在本例条件下,求点P到点A(—1,1)的距离与点P到直线x=—1的距离之和的最小值.解:如图,易知抛物线的焦点为F(1,0),准线是x=—1,由抛物线的定义知点P到直线x=—1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(—1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点P,此时最小值为错误!=错误!.【迁移探究3】(变问法)在本例条件下,求点P到直线l1:4x—3y+6=0和l2:x=—1的距离之和的最小值.解:由题可知l2:x=—1是抛物线y2=4x的准线,设抛物线的焦点为F(1,0),则动点P到l的距离等于|PF|,故动点P到直线l1和直线l2的距离之和的最小值,即焦点F到直线l1:4x—3y+62=0的距离,所以最小值是错误!=2.错误!(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+错误!或|PF|=|y|+错误!.1.(2020·江西萍乡一模)已知动圆C经过点A(2,0),且截y轴所得的弦长为4,则圆心C的轨迹是()A.圆B.椭圆C.双曲线D.抛物线解析:选D.设圆心C(x,y),弦为BD,过点C作CE⊥y轴,垂足为E,则|BE|=2,则有|CA|2=|BC|2=|BE|2+|CE|2,所以(x—2)2+y2=22+x2,化为y2=4x,则圆心C的轨迹为抛物线.故选D.2.(2020·成都模拟)已知抛物线C:y2=2px(p>0)的焦点为F,准线l:x=—1,点M在抛物线C上,点M在直线l:x=—1上的射影为A,且直线AF的斜率为—错误!,则△MAF的面积为()A.错误!B.2错误!C.4错误!D.8错误!解析:选C.如图所示,设准线l与x轴交于点N.则|FN|=2.因为直线AF的斜率为—错误!,所以∠AFN=60°.所以∠MAF=60°,|AF|=4.由抛物线的定义可得|MA|=|MF|,所以△AMF是边长为4的等边三角形.所以S△AMF=错误!×42=4错误!.故选C.抛物线的标准方程(师生共研)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9xB.y2=6xC.y2=3xD.y2=错误!x【解析】如图,过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,则由已知得|BC|=2a,由抛物线定义得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,从而得a=1,|FC|=3a=3,所以p=|FG|=错误!|FC|=错误!,因此抛物线的方程为y2=3x,故选C.【答案】C错误!求抛物线的标准方程应注意以下几点(1)当坐标系已建立时,应根据条件确定抛物线的标准方程属于四种类型中的哪一种.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系.(3)要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.1.(2020·重庆调研)已知抛物线y2=2px(p>0),点C(—4,0),过抛物线的焦点作垂直于x轴的直线,与抛物线交于A,B两点,若△CAB的面积为24,则以直线AB为准线的抛物线的标准方程是()A.y2=4xB.y2=—4xC.y2=8xD.y2=—8x解析:选D.因为AB⊥x轴,且AB过点F,所以AB是焦点弦,且|AB|=2p,所以S△CAB=错误!×2p×错误!=24,解得p=4或—12(舍),所以抛物线方程为y2=8x,所以直线AB的方程为x=2,所以以直线AB为准线的抛物线的标准方程为y2=—8x.故选D.2.已知双曲线C1:错误!—错误!=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p >0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程是()A.x2=16yB.x2=8yC.x2=错误!yD.x2=错误!y解析:选A.因为双曲线C1:错误!—错误!=1(a>0,b>0)的离心率为2,所以错误!=2.因为双曲线的渐近线方程为bx±ay=0,抛物线C2:x2=2py(p>0)的焦点错误!到双曲线的渐近线的距离为2,所以错误!=错误!·错误!=错误!=2,解得p=8,所以抛物线C2的方程是x2=16y.抛物线的性质(师生共研)已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:(1)y1y2=—p2,x1x2=错误!;(2)错误!+错误!为定值;(3)以AB为直径的圆与抛物线的准线相切.【证明】(1)由已知得抛物线焦点坐标为F(错误!,0).由题意可设直线方程为x=my+错误!,代入y2=2px,得y2=2p错误!,即y2—2pmy—p2=0.(*)则y1,y2是方程(*)的两个实数根,所以y1y2=—p2.因为y错误!=2px1,y错误!=2px2,所以y错误!y错误!=4p2x1x2,所以x1x2=错误!=错误!=错误!.(2)错误!+错误!=错误!+错误!=错误!.因为x1x2=错误!,x1+x2=|AB|—p,|AB|=x1+x2+p,代入上式,得错误!+错误!=错误!=错误!(定值).(3)设AB的中点为M(x0,y0),如图,分别过A,B作准线的垂线,垂足为C,D,过M作准线的垂线,垂足为N,则|MN|=错误!(|AC|+|BD|)=错误!(|AF|+|BF|)=错误!|AB|.所以以AB为直径的圆与抛物线的准线相切.错误!抛物线几何性质的应用技巧(1)涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.(2)与抛物线的焦点弦长有关的问题,可直接应用公式求解.解题时,需依据抛物线的标准方程,确定弦长公式是由交点横坐标还是由交点纵坐标定,是p与交点横(纵)坐标的和还是与交点横(纵)坐标的差,这是正确解题的关键.1.(2020·河南郑州二模)已知抛物线C:y2=2x,过原点作两条互相垂直的直线分别交C于A,B两点(A,B均不与坐标原点重合),则抛物线的焦点F到直线AB的距离的最大值为()A.2B.3C.错误!D.4解析:选C.设直线AB的方程为x=my+t,A(x1,y1),B(x2,y2).由错误!⇒y2—2my—2t=0⇒y1y2=—2t,由OA⊥OB⇒x1x2+y1y2=错误!+y1y2=0⇒y1y2=—4,所以t=2,即直线AB过定点(2,0).所以抛物线的焦点F到直线AB的距离的最大值为2—错误!=错误!.故选C.2.(2020·洛阳模拟)已知F是抛物线C1:y2=2px(p>0)的焦点,曲线C2是以F为圆心,错误!为半径的圆,直线4x—3y—2p=0与曲线C1,C2从上到下依次相交于点A,B,C,D,则错误!=()A.16 B.4C.错误!D.错误!解析:选A.因为直线4x—3y—2p=0过C1的焦点F(C2的圆心),故|BF|=|CF|=错误!,所以错误!=错误!.由抛物线的定义得|AF|—错误!=x A,|DF|—错误!=x D.由错误!整理得8x2—17px+2p2=0,即(8x—p)(x—2p)=0,可得x A=2p,x D=错误!,故错误!=错误!=错误!=16.故选A.直线与抛物线的位置关系(师生共研)(2019·高考全国卷Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为错误!的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若错误!=3错误!,求|AB|.【解】设直线l:y=错误!x+t,A(x1,y1),B(x2,y2).(1)由题设得F错误!,故|AF|+|BF|=x1+x2+错误!,由题设可得x1+x2=错误!.由错误!可得9x2+12(t—1)x+4t2=0,则x1+x2=—错误!.从而—错误!=错误!,得t=—错误!.所以l的方程为y=错误!x—错误!.(2)由错误!=3错误!可得y1=—3y2.由错误!可得y2—2y+2t=0.所以y1+y2=2.从而—3y2+y2=2,故y2=—1,y1=3.代入C的方程得x1=3,x2=错误!.故|AB|=错误!.错误!解决直线与抛物线位置关系问题的方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=|x1|+|x2|+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[提醒] 涉及弦的中点、斜率时,一般用“点差法”求解.1.(2020·河南郑州二模)已知抛物线C:y2=4x的焦点为F,直线l过焦点F与抛物线C分别交于A,B两点,且直线l不与x轴垂直,线段AB的垂直平分线与x轴交于点T(5,0),则S△AOB=()A.2错误!B.错误!C.错误!D.3错误!解析:选A.如图所示,F(1,0).设直线l的方程为y=k(x—1)(k≠0),A(x1,y1),B(x,y2),线段AB的中点E(x0,y0).2则线段AB的垂直平分线的方程为y=—错误!(x—5).联立错误!化为ky2—4y—4k=0,所以y1+y2=错误!,y1y2=—4,所以y0=错误!(y1+y2)=错误!,x0=错误!+1=错误!+1,把E错误!代入线段AB的垂直平分线的方程y=—错误!(x—5),可得错误!=—错误!·错误!,解得k2=1.S△OAB=错误!×1×|y1—y2|=错误!错误!=错误!错误!=2错误!.故选A.2.设A,B为曲线C:y=错误!上两点,A与B的横坐标之和为2.(1)求直线AB的斜率;(2)设M为曲线C上一点,曲线C在点M处的切线与直线AB平行,且AM⊥BM,求直线AB 的方程.解:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=错误!,y2=错误!,x1+x2=2,故直线AB的斜率k=错误!=错误!=1.(2)由y=错误!,得y′=x.设M(x3,y3),由题设知x3=1,于是M错误!.设直线AB的方程为y=x+m,故线段AB的中点为N(1,1+m),|MN|=错误!.将y=x+m代入y=错误!,得x2—2x—2m=0.由Δ=4+8m>0,得m>—错误!,x1,2=1±错误!.从而|AB|=错误!|x1—x2|=2错误!.由题设知|AB|=2|MN|,即错误!=错误!,解得m=错误!或m=—2(舍).所以直线AB的方程为y=x+错误!.解析几何中的“设而不求”“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点,避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”解题;(2)根据题意,整体消参或整体代入等.类型一巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求在平面直角坐标系xOy中,双曲线错误!—错误!=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.【解析】设A(x1,y1),B(x2,y2),由抛物线的定义可知|AF|=y1+错误!,|BF|=y2+错误!,|OF|=错误!,由|AF|+|BF|=y1+错误!+y2+错误!=y1+y2+p=4|OF|=2p,得y1+y2=p.k AB=错误!=错误!=错误!.由错误!得k AB=错误!=错误!=错误!·错误!,则错误!·错误!=错误!,所以错误!=错误!⇒错误!=错误!,所以双曲线的渐近线方程为y=±错误!x.【答案】y=±错误!x类型二中点弦或对称问题,可以利用“点差法”,“点差法”实质上是“设而不求”的一种方法△ABC的三个顶点都在抛物线E:y2=2x上,其中A(2,2),△ABC的重心G是抛物线E 的焦点,则BC边所在直线的方程为________.【解析】设B(x1,y1),C(x2,y2),边BC的中点为M(x0,y0),易知G错误!,则错误!从而错误!即M错误!,又y错误!=2x1,y错误!=2x2,两式相减得(y1+y2)(y1—y2)=2(x1—x2),则直线BC 的斜率k BC=错误!=错误!=错误!=错误!=—1,故直线BC的方程为y—(—1)=—错误!,即4x +4y+5=0.【答案】4x+4y+5=0类型三中点弦或对称问题,可以利用“点差法”,但不要忘记验证Δ>0已知双曲线x2—错误!=1,过点P(1,1)能否作一条直线l与双曲线交于A,B两点,且点P是线段AB的中点?【解】假设存在直线l与双曲线交于A,B两点,且点P是线段AB的中点.设A(x1,y1),B(x2,y2),易知x1≠x2,由错误!两式相减得(x1+x2)(x1—x2)—错误!=0,又错误!=1,错误!=1,所以2(x1—x2)—(y1—y2)=0,所以k AB=错误!=2,故直线l的方程为y—1=2(x—1),即y=2x—1.由错误!消去y得2x2—4x+3=0,因为Δ=16—24=—8<0,方程无解,故不存在一条直线l与双曲线交于A,B两点,且点P是线段AB的中点.类型四求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,“替代法”的实质是设而不求已知F为抛物线C:y2=2x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为________.【解析】法一:由题意知,直线l1,l2的斜率都存在且不为0,F错误!,设l1:x=ty+错误!,则直线l1的斜率为错误!,联立方程得错误!消去x得y2—2ty—1=0.设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=—1.所以|AB|=错误!|y1—y2|=错误!·错误!=错误!错误!=2t2+2,同理得,用—错误!替换t可得|DE|=错误!+2,所以|AB|+|DE|=2错误!+4≥4+4=8,当且仅当t2=错误!,即t=±1时等号成立,故|AB|+|DE|的最小值为8.法二:由题意知,直线l1,l2的斜率都存在且不为0,F错误!,不妨设l1的斜率为k,则l1:y=k错误!,l2:y=—错误!错误!.由错误!消去y得k2x2—(k2+2)x+错误!=0,设A(x1,y1),B(x2,y2),则x1+x2=1+错误!.由抛物线的定义知,|AB|=x1+x2+1=1+错误!+1=2+错误!.同理可得,用—错误!替换|AB|中k,可得|DE|=2+2k2,所以|AB|+|DE|=2+错误!+2+2k2=4+错误!+2k2≥4+4=8,当且仅当错误!=2k2,即k=±1时等号成立,故|AB|+|DE|的最小值为8.【答案】8[基础题组练]1.(2019·高考全国卷Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆错误!+错误!=1的一个焦点,则p=()A.2B.3C.4D.8解析:选D.由题意,知抛物线的焦点坐标为错误!,椭圆的焦点坐标为(±错误!,0),所以错误!=错误!,解得p=8,故选D.2.(2020·河北衡水三模)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若A,B,C三点坐标分别为(1,2),(x1,y1),(x2,y2),且|错误!|+|错误!|+|错误!|=10,则x1+x2=()A.6 B.5C.4D.3解析:选A.根据抛物线的定义,知|错误!|,|错误!|,|错误!|分别等于点A,B,C到准线x=—1的距离,所以由|错误!|+|错误!|+|错误!|=10,可得2+x1+1+x2+1=10,即x1+x2=6.故选A.3.(2020·河北邯郸一模)位于德国东部萨克森州的莱科勃克桥有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为5m,跨径为12m,则桥形对应的抛物线的焦点到准线的距离为()A.错误!m B.错误!mC.错误!m D.错误!m解析:选D.建立如图所示的平面直角坐标系.设抛物线的解析式为x2=—2py,p>0,因为抛物线过点(6,—5),所以36=10p,可得p=错误!,所以桥形对应的抛物线的焦点到准线的距离为错误!m.故选D.4.(2020·河南安阳三模)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,l与x轴的交点为P,点A在抛物线C上,过点A作AA′⊥l,垂足为A′.若四边形AA′PF的面积为14,且cos∠FAA′=错误!,则抛物线C的方程为()A.y2=xB.y2=2xC.y2=4xD.y2=8x解析:选C.过点F作FF′⊥AA′,垂足为F′.设|AF′|=3x,因为cos∠FAA′=错误!,故|AF|=5x,则|FF′|=4x,由抛物线定义可知,|AF|=|AA′|=5x,则|A′F′|=2x=p,故x=错误!.四边形AA′PF的面积S=错误!=错误!=14,解得p=2,故抛物线C的方程为y2=4x.5.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点.若|FA|=2|FB|,则k=()A.错误!B.错误!C.错误!D.错误!解析:选D.设抛物线C:y2=8x的准线为l,易知l:x=—2,直线y=k(x+2)恒过定点P(—2,0),如图,过A,B分别作AM⊥l于点M,BN⊥l于点N,由|FA|=2|FB|,知|AM|=2|BN|,所以点B为线段AP的中点,连接OB,则|OB|=错误!|AF|,所以|OB|=|BF|,所以点B的横坐标为1,因为k>0,所以点B的坐标为(1,2错误!),所以k=错误!=错误!.故选D.6.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4错误!,|DE|=2错误!,则C的焦点到准线的距离为________.解析:由题意,不妨设抛物线方程为y2=2px(p>0),由|AB|=4错误!,|DE|=2错误!,可取A错误!,D错误!,设O为坐标原点,由|OA|=|OD|,得错误!+8=错误!+5,得p=4.答案:47.过抛物线C:y2=2px(p>0)的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段AB的中点N且垂直于l的直线与C的准线交于点M,若|MN|=|AB|,则l的斜率为________.解析:设抛物线的准线为m,分别过点A,N,B作AA′⊥m,NN′⊥m,BB′⊥m,垂足分别为A′,N′,B′.因为直线l过抛物线的焦点,所以|BB′|=|BF|,|AA′|=|AF|.又N是线段AB的中点,|MN|=|AB|,所以|NN′|=错误!(|BB′|+|AA′|)=错误!(|BF|+|AF|)=错误! |AB|=错误!|MN|,所以∠MNN′=60°,则直线MN的倾斜角为120°.又MN⊥l,所以直线l的倾斜角为30°,斜率是错误!.答案:错误!8.(一题多解)已知点M(—1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C 交于A,B两点.若∠AMB=90°,则k=________.解析:法一:由题意知抛物线的焦点为(1,0),则过C的焦点且斜率为k的直线方程为y=k(x—1)(k≠0),由错误!消去y得k2(x—1)2=4x,即k2x2—(2k2+4)x+k2=0,设A(x1,y),B(x2,y2),则x1+x2=错误!,x1x2=1.由错误!消去x得y2=4错误!,即y2—错误!y—41=0,则y1+y2=错误!,y1y2=—4,由∠AMB=90°,得错误!·错误!=(x1+1,y1—1)·(x2+1,y2—1)=x1x2+x1+x2+1+y1y2—(y1+y2)+1=0,将x1+x2=错误!,x1x2=1与y+y2=错误!,y1y2=—4代入,得k=2.1法二:设抛物线的焦点为F,A(x1,y1),B(x2,y2),则错误!所以y错误!—y错误!=4(x1—x),则k=错误!=错误!,取AB的中点M′(x0,y0),分别过点A,B作准线x=—1的垂线,垂足分别2为A′,B′,又∠AMB=90°,点M在准线x=—1上,所以|MM′|=错误!|AB|=错误!(|AF|+|BF|)=错误!(|AA′|+|BB′|).又M′为AB的中点,所以MM′平行于x轴,且y0=1,所以y1+y2=2,所以k=2.答案:29.已知过抛物线y2=2px(p>0)的焦点,斜率为2错误!的直线交抛物线于A(x1,y1),B(x,y2)(x1<x2)两点,且|AB|=9.2(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若错误!=错误!+λ错误!,求λ的值.解:(1)由题意得直线AB的方程为y=2错误!·错误!,与y2=2px联立,消去y有4x2—5px+p2=0,所以x1+x2=错误!.由抛物线定义得|AB|=x1+x2+p=错误!+p=9,所以p=4,从而该抛物线的方程为y2=8x.(2)由(1)得4x2—5px+p2=0,即x2—5x+4=0,则x1=1,x2=4,于是y1=—2错误!,y2=4错误!,从而A(1,—2错误!),B(4,4错误!),设C(x3,y3),则错误!=(x3,y3)=(1,—2错误!)+λ(4,4错误!)=(4λ+1,4错误!λ—2错误!).又y错误!=8x3,所以[2错误!(2λ—1)]2=8(4λ+1),整理得(2λ—1)2=4λ+1,解得λ=0或λ=2.10.(2020·河北衡水二模)已知抛物线C:x2=2py(p>0)的焦点为F,点M(2,m)(m >0)在抛物线上,且|MF|=2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,证明:过点F作切线l0的垂线,垂足必在x轴上.解:(1)由抛物线的定义可知,|MF|=m+错误!=2,1又M(2,m)在抛物线上,所以2pm=4,2由12解得p=2,m=1,所以抛物线C的方程为x2=4y.(2)证明:1当x0=0,即点P为原点时,显然符合;2x0≠0,即点P不在原点时,由(1)得,x2=4y,则y′=错误!x,所以抛物线在点P处的切线的斜率为错误!x0,所以抛物线在点P处的切线l0的方程为y—y0=错误!x0(x—x0),又x错误!=4y0,所以y—y0=错误!x0(x—x0)可化为y=错误!x0x—y0.又过点F且与切线l0垂直的方程为y—1=—错误!x.联立方程得错误!消去x,得y=—错误!(y—1)x错误!—y0.(*)因为x错误!=4y0,所以(*)可化为y=—yy0,即(y0+1)y=0,由y0>0,可知y=0,即垂足必在x轴上.综上,过点F作切线l0的垂线,垂足必在x轴上.[综合题组练]1.(2020·陕西西安一模)已知F为抛物线C:y2=6x的焦点,过点F的直线l与C相交于A,B 两点,且|AF|=3|BF|,则|AB|=()A.6 B.8C.10 D.12解析:选B.抛物线y2=6x的焦点坐标为错误!,准线方程为x=—错误!,设A(x1,y1),B(x2,y2),因为|AF|=3|BF|,所以x1+错误!=3错误!,所以x1=3x2+3,因为|y1|=3|y2|,所以x1=9x2,所以x1=错误!,x2=错误!,所以|AB|=错误!+错误!=8.故选B.2.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为()A.错误!B.错误!C.错误!D.2错误!解析:选C.由题意设A(x1,y1),B(x2,y2)(y1>0,y2<0),如图所示,|AF|=x1+1=3,所以x1=2,y1=2错误!.设AB的方程为x—1=ty,由错误!消去x得y2—4ty—4=0.所以y1y2=—4,所以y2=—错误!,x2=错误!,所以S△AOB=错误!×1×|y1—y2|=错误!,故选C.3.(2020·江西九江二模)已知抛物线C:x2=4y的焦点为F,直线l与抛物线C交于A,B两点,连接AF并延长交抛物线C于点D,若AB中点的纵坐标为|AB|—1,则当∠AFB最大时,|AD|=()A.4B.8C.16 D.错误!解析:选C.设A(x1,y1),B(x2,y2),D(x3,y3),由抛物线定义得y1+y2+2=|AF|+|BF|,因为错误!=|AB|—1,所以|AF|+|BF|=2|AB|,所以cos∠AFB=错误!=错误!≥错误!=错误!,当且仅当|AF|=|BF|时取等号.所以当∠AFB最大时,△AFB为等边三角形,联立错误!消去y得,x2—4错误!x—4=0,所以x1+x3=4错误!,所以y1+y3=错误!(x1+x3)+2=14.所以|AD|=16.故选C.4.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则实数a的取值范围为________.解析:如图,设C(x0,x错误!)(x错误!≠a),A(—错误!,a),B(错误!,a),则错误!=(—错误!—x0,a—x错误!),错误!=(错误!—x0,a—x错误!).因为CA⊥CB,所以错误!·错误!=0,即—(a—x错误!)+(a—x错误!)2=0,(a—x错误!)(—1+a—x错误!)=0,所以x错误!=a—1≥0,所以a≥1.答案:[1,+∞)5.已知抛物线的方程为x2=2py(p>0),其焦点为F,点O为坐标原点,过焦点F作斜率为k(k≠0)的直线与抛物线交于A,B两点,过A,B两点分别作抛物线的两条切线,设两条切线交于点M.(1)求错误!·错误!;(2)设直线MF与抛物线交于C,D两点,且四边形ACBD的面积为错误!p2,求直线AB的斜率k.解:(1)设直线AB的方程为y=kx+错误!,A(x1,y1),B(x2,y2),由错误!得x2—2pkx—p2=0,则错误!所以y1·y2=错误!,所以错误!·错误!=x1·x2+y1·y2=—错误!p2.(2)由x2=2py,知y′=错误!,所以抛物线在A,B两点处的切线的斜率分别为错误!,错误!,所以直线AM的方程为y—y1=错误!(x—x1),直线BM的方程为y—y2=错误!(x—x2),则可得M错误!.所以k MF=—错误!,所以直线MF与AB相互垂直.由弦长公式知,|AB|=错误!|x1—x2|=错误!·错误!=2p(k2+1),用—错误!代替k得,|CD|=2p错误!,四边形ACBD的面积S=错误!·|AB|·|CD|=2p2错误!=错误!p2,解得k2=3或k2=错误!,即k=±错误!或k=±错误!.6.已知抛物线C:x2=2py(p>0)和定点M(0,1),设过点M的动直线交抛物线C于A,B 两点,抛物线C在A,B处的切线的交点为N.(1)若N在以AB为直径的圆上,求p的值;(2)若△ABN的面积的最小值为4,求抛物线C的方程.解:设直线AB:y=kx+1,A(x1,y1),B(x2,y2),将直线AB的方程代入抛物线C的方程得x2—2pkx—2p=0,则x1+x2=2pk,x1x2=—2p.1(1)由x2=2py得y′=错误!,则A,B处的切线斜率的乘积为错误!=—错误!,因为点N在以AB为直径的圆上,所以AN⊥BN,所以—错误!=—1,所以p=2.(2)易得直线AN:y—y1=错误!(x—x1),直线BN:y—y2=错误!(x—x2),联立,得错误!结合1式,解得错误!即N(pk,—1).|AB|=错误!|x2—x1|=错误!错误!=错误!错误!,点N到直线AB的距离d=错误!=错误!,则△ABN的面积S△ABN=错误!·|AB|·d=错误!≥2错误!,当k=0时,取等号,因为△ABN的面积的最小值为4,所以2错误!=4,所以p=2,故抛物线C的方程为x2=4y.。
§9.8 抛 物 线1.抛物线的定义平面内与一个定点F 和一条定直线l (F ∉______)距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的________,直线l 叫做抛物线的________.2标准 方程 y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)图形性 质 焦 点 ① ②⎝⎛⎭⎪⎫-p 2,0 ③ ④⎝⎛⎭⎪⎫0,-p 2准线⑤x =-p 2 ⑥ ⑦y =-p2 ⑧范 围 ⑨x ≥0, y ∈R⑩ ⑪⑫y ≤0,x ∈R对称 轴⑬ ⑭y 轴 顶 点 ⑮原点O (0,0)离心 率 ⑯ 开 口⑰ ⑱向左⑲向上⑳自查自纠1.l 焦点 准线2.①⎝ ⎛⎭⎪⎫p 2,0 ③⎝ ⎛⎭⎪⎫0,p 2 ⑥x =p 2 ⑧y =p2 ⑩x ≤0,y ∈R ⑪y ≥0,x ∈R ⑬x 轴 ⑯e =1 ⑰向右 ⑳向下(2015·陕西)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)解:∵抛物线的准线方程为x =-p 2=-1,∴p2=1,焦点坐标为(1,0).故选B .已知抛物线y 2=2px 上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( )A .x =8B .x =-8C .x =4D .x =-4解:由题意得1+p2=5,故p =8,准线方程为x =-4.故选D .已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D.74 解:易知抛物线y 2=x 的准线方程为x =-14.设A (x 1,y 1),B (x 2,y 2),线段AB 的中点P (x 0,y 0),则由抛物线的定义得|AF |=x 1+14,|BF |=x 2+14.∵|AF |+|BF |=3,∴x 1+x 2=52,x 0=12(x 1+x 2)=54,即P 点到y 轴的距离为54.故选C .(2015·陕西)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =____________.解:抛物线的准线方程为x =-p 2,∵p >0,∴x =-p2必经过双曲线x 2-y 2=1的左焦点(-2,0),∴-p2=-2,p =2 2.故填22.(2014·全国卷Ⅰ)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=____________.解:过点Q 作QQ ′⊥l 于点Q ′,∵FP →=4FQ →,∴|PQ ||PF |=34.又焦点F 到准线l 的距离为4,∴|QQ ′|4=|PQ ||PF |=34,|QF |=|QQ ′|=3.故填3.类型一 抛物线的定义及标准方程(1)已知抛物线的顶点在原点,焦点在坐标轴上,又知抛物线上一点A (m ,-3)到焦点F 的距离为5,求m 的值,并写出抛物线的方程.解:∵抛物线过点A (m ,-3),∴抛物线的开口向下、向右或向左.①当抛物线开口向下时,设抛物线的方程为x 2=-2py (p >0),准线方程为y =p2,由抛物线的定义得p2-(-3)=5,解得p =4,抛物线的方程为x 2=-8y .∵点A (m ,-3)在抛物线上,∴代入得m 2=24,m =±2 6.②当抛物线开口向右或向左时,设抛物线的方程为y 2=2ax (a ≠0),准线方程可统一为x =-a 2.由题意可得⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪a 2+m =5,2am =9, 解得⎩⎪⎨⎪⎧a =1,m =92, 或⎩⎪⎨⎪⎧a =-1,m =-92, 或⎩⎪⎨⎪⎧a =9,m =12, 或⎩⎪⎨⎪⎧a =-9,m =-12.∴当m =92时,抛物线的方程为y 2=2x ;当m =-92时,抛物线的方程为y 2=-2x ;当m=12时,抛物线的方程为y 2=18x ;当m =-12时,抛物线的方程为y 2=-18x .(2)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3C.115D.3716解:易知直线l 2:x =-1为抛物线y 2=4x 的准线,由抛物线的定义知,点P 到l 2的距离等于点P 到抛物线的焦点F (1,0)的距离,因此原问题可转化为在抛物线y 2=4x 上找一个点P 使得P 到点F (1,0)和直线l 1的距离之和最小.因此最小值为F (1,0)到直线l 1:4x -3y +6=0的距离,即d min =|4-0+6|42+(-3)2=2.故选A .【点拨】(1)用数形结合的方法判断抛物线的开口方向,以便选择抛物线方程的具体形式.注意利用代数的观点,把抛物线向右或向左的情形统一起来,提高解题效率.(2)把“数”“方程”向“形”的方向转化,运用运动变化的观点和几何的方法进行研究比直接代数化更简洁.(1)F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=6,则线段AB的中点到y轴的距离为____________.(2)已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是____________.(3)已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为____________.解:(1)过A,B分别作准线的垂线,垂足分别为D,E,由|AF|+|BF|=6及抛物线的定义知|AD|+|BE|=6,∴线段AB的中点到准线的距离为12(|AD|+|BE|)=3.又抛物线的准线为x=-12,∴线段AB的中点到y轴的距离为52.故填52.(2)将x=4代入抛物线方程y2=4x,得y=±4,∵|a|>4,∴A在抛物线的外部,如图.由题意知F(1,0),抛物线上点P到准线l:x =-1的距离为|PN|,由定义知,|PA|+|PM|=|PA|+|PN|-1=|PA|+|PF|-1.当A,P,F 三点共线时,|PA|+|PF|取最小值,此时|PA|+|PM|也最小,∴最小值为|AF|-1=9+a2-1. 故填9+a2-1.(3)∵ca=2,∴c2a2=a2+b2a2=4,得ba= 3.易知抛物线C2的焦点坐标为⎝⎛⎭⎪⎫0,p2,双曲线C1的渐近线方程为y=±bax,即y=±3x,根据题意,有p21+(3)2=2,∴p=8,∴C2的方程为x2=16y.故填x2=16y.类型二抛物线焦点弦的性质如图,AB为过抛物线y2=2px(p>0)焦点F的弦,点A,B在抛物线准线上的射影分别为A1,B1,且A(x1,y1),B(x2,y2).求证:(1)||AB=x1+x2+p;(2)x1x2=p24,y1y2=-p2;(3)以AB 为直径的圆与抛物线的准线相切;(4)1||AF +1||BF =2p.证明:(1)由抛物线的定义知||AB =||AF +||BF =||AA 1+||BB 1=x 1+x 2+p . (2)当直线AB 的斜率不存在时,直线AB 的方程为x =p 2,x 1x 2=p 24,y 1y 2=-2px 1·2px 2=-p 2;当直线AB 的斜率存在时,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,联立抛物线方程,消x 得y 2-2p k y -p 2=0, ∴y 1y 2=-p 2,x 1x 2=y 212p ·y 222p =p 24.(3)设AB 的中点为M ,M 到准线的距离为d ,则d =||AA 1+||BB 12=||AF +||BF 2=||AB 2,∴以AB 为直径的圆与准线相切.(4)当直线AB 的斜率不存在时,1|AF |+1|BF |=1|AA 1|+1|BB 1|=1x 1+p 2+1x 2+p 2=1p +1p =2p;当直线AB 的斜率存在时,∵x 1+x 2=⎝ ⎛⎭⎪⎫y 1k +p 2+⎝ ⎛⎭⎪⎫y 2k +p 2=y 1+y 2k +p =2p k 2+p ,x 1x 2=p 24,∴1||AF +1||BF =1||AA 1+1||BB 1=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24=2pk 2+2pp 2+p 2k 2=2p. 【点拨】本题小结了抛物线的焦点弦的有关性质,当抛物线的坐标方程形式发生变化时,性质(3)、(4)不变,性质(1)、(2)略有变化,如对于抛物线x 2=2py ,性质(1)应为|AB |=y 1+y 2+p ,性质(2)应为x 1x 2=-p 2,y 1y 2=p 24,其余情况可自行推导.本题与变式2分别从数与形的角度描述了抛物线的某些性质.设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,A (x 1,y 1),B (x 2,y 2),求证:(1)若点A ,B 在准线上的射影分别为M ,N ,则∠MFN =90°; (2)取MN 的中点R ,则∠ARB =90°; (3)以MN 为直径的圆必与直线AB 相切于点F ;(4)若经过点A 和抛物线顶点O 的直线交准线于点Q ,则BQ 平行于抛物线的对称轴. 证明:(1)由抛物线的定义知|AM |=|AF |,|BN |=|BF |,∴∠AMF =∠AFM ,∠BNF =∠BFN .∵AM ∥x 轴,BN ∥x 轴, ∴∠AMF =∠KFM ,∠BNF =∠KFN . ∴∠MFN =∠KFM +∠KFN =12(∠KFA +∠KFB )=90°. (2)证法一:取P 为AB 的中点,连接PR ,有|PR |=12(|MA |+|NB |)=12|AB |,则∠ARB =90°.证法二:易知R ⎝ ⎛⎭⎪⎫-p 2,y 1+y 22,则RA→=⎝ ⎛⎭⎪⎫x 1+p 2,y 1-y 22,RB →=⎝⎛⎭⎪⎫x 2+p 2,y 2-y 12,∵RA →·RB →=⎝⎛⎭⎪⎫x 1+p 2⎝ ⎛⎭⎪⎫x 2+p 2-14(y 1-y 2)2=x 1x 2+p 2(x 1+x 2)+p 24-14(y 21+y 22)+12y 1y 2=0,∴∠ARB =90°.(3)∵∠MFN =90°,∴F 在以MN 为直径的圆上.∵|AF |=|AM |,|MR |=|FR |, ∴∠MFA =∠AMF ,∠MFR =∠FMR .∴∠AFR =∠MFA +∠MFR =∠AMF +∠FMR =90°,即RF ⊥AB ,F 为垂足. 因此,以MN 为直径的圆必与直线AB 相切于点F .(4)易知直线AO 的方程为y =y 1x 1x ,则Q ⎝ ⎛⎭⎪⎫-p 2,-py 12x 1.∵y 1y 2=-p 2,∴-py 12x 1=-p 2·y 1y 212p=-p 2y 1=y 2,于是Q ⎝ ⎛⎭⎪⎫-p2,y 2与点N 重合.因此,BQ 平行于x 轴,即BQ 平行于抛物线的对称轴.1.抛物线的定义、标准方程和性质是解决有关抛物线问题的基础,应当熟练掌握. 2.求抛物线的标准方程的常用方法是待定系数法或轨迹法.若抛物线的开口不确定,为避免多种情况分类求解的麻烦,可以设抛物线方程为y 2=mx 或x 2=ny (m ≠0,n ≠0).若m >0,开口向右;若m <0,开口向左.m 有两解时,则抛物线的标准方程有两个.对n >0与n <0,有类似的讨论.3.抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于该点到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题时,要看到焦点想准线(看到准线想焦点),优先考虑利用抛物线的定义,将其转化为点到准线的距离,这样往往可以使问题简单化.4.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.5.抛物线的几个常用结论(1)焦半径:抛物线上的点P (x 0,y 0)与焦点F 之间的线段叫做抛物线的焦半径,记作r =||PF .①y 2=2px (p >0),r =x 0+p2;②y 2=-2px (p >0),r =-x 0+p2;③x 2=2py (p >0),r =y 0+p2;④x 2=-2py (p >0),r =-y 0+p2.(2)焦点弦:若AB 为抛物线y 2=2px (p >0)的焦点弦,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),弦中点M (x 0,y 0),||AB =l .则:①x 1x 2=p 24;②y 1y 2=-p 2;③弦长l =x 1+x 2+p ,因x 1+x 2≥2x 1x 2=p ,故当x 1=x 2时,l 取得最小值,最小值为2p ,此时弦AB 垂直于x 轴,所以抛物线的焦点弦中通径最短(垂直于抛物线对称轴的焦点弦叫做抛物线的通径).1.准线方程为y =4的抛物线的标准方程是( ) A .x 2=16yB .x 2=8y C .x 2=-16yD .x 2=-8y解:由题意可设抛物线方程为x 2=-2py (p >0),∵抛物线的准线方程为y =p2=4,∴p=8.∴该抛物线的标准方程为x 2=-16y .故选C .2.(2015·辽宁五校联考)已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( )A .2 B.12C.32D.52解:设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4,又p =1,∴x 1+x 2=3,∴点C的横坐标是x 1+x 22=32.故选C .3.已知O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4解:设点P (x 0,y 0),由题意知F (2,0),抛物线C 的准线为x =-2,则|OF |=2,x 0+2=|PF |=42,x 0=32,y 0=±26,S △POF =12|OF ||y 0|=12×2×26=2 3.故选C .4.已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( )A. 3B. 5C .2 D.5-1解:抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,∴点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,∴d +|PF |的最小值为|2+3|22+(-1)2=5,∴d+|PF |-1的最小值为5-1.故选D .5.已知抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上,且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解:由题可知抛物线焦点坐标为F (4,0),则p =8.过点A 作直线AA ′垂直于抛物线的准线,垂足为A ′,根据抛物线定义知,|AA ′|=|AF |,在△AA ′K 中,|AK |=2|AA ′|,故∠KAA ′=45°,∴直线AK 的倾斜角为45°,直线AK 的方程为y =x +4,代入抛物线方程y 2=16x 得y 2=16(y -4),即y 2-16y +64=0,解得y =8,∴x =4,∴△AFK 为直角三角形,∴△AFK 的面积为12×8×8=32.故选D .6.(2015·浙江)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解:如图所示,抛物线的准线DE 的方程为x =-1,过A ,B 分别作AE ⊥DE 于点E ,交y 轴于点N ,BD ⊥DE 于点D ,交y 轴于点M ,由抛物线的定义知|BF |=|BD |,|AF |=|AE |,则|BM |=|BD |-1=|BF |-1,|AN |=|AE |-1=|AF |-1,则S △BCF S △ACF =|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1.故选A .7.(2014·上海)若抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为____________.解:易知椭圆x 29+y 25=1的右焦点为(2,0),∵抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的右焦点重合,∴p =4,抛物线的准线方程为x =-2.故填x =-2.8.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .水位下降1 m 后,水面宽__________ m.解:以抛物线的顶点为坐标原点,水平方向为x 轴建立平面直角坐标系,设抛物线的标准方程为x 2=-2py (p >0),把(2,-2)代入方程得p =1,即抛物线的标准方程为x 2=-2y .再把y =-3代入得x =±6,因此水位下降1 m 后,水面宽为2 6 m .故填26.9.(2014·福建)已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2,求曲线Γ的方程.解法一:设S (x ,y )为曲线Γ上任意一点,依题意,点S 到F (0,1)的距离与它到直线y =-1的距离相等,∴曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线,其方程为x 2=4y .解法二:设S (x ,y )为曲线Γ上任意一点,则 |y -(-3)|-(x -0)2+(y -1)2=2,依题意,点S (x ,y )只能在直线y =-3的上方,∴y >-3.∴(x -0)2+(y -1)2=y +1,化简得曲线Γ的方程为x 2=4y .10.(2014·全国)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |,求C 的方程.解:设Q (x 0,4),代入y 2=2px 得x 0=8p,∴|PQ |=8p ,∴|QF |=x 0+p 2=8p +p2.又∵|QF |=54|PQ |,∴8p +p 2=54·8p ,解得p =2(舍去负值). ∴C 的方程为y 2=4x .11.已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.解:设直线OA 的方程为y =kx ,k ≠0,则直线OB 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,y 2=2px ,得x =0或x =2p k 2.∴A 点坐标为⎝ ⎛⎭⎪⎫2p k2,2p k ,同理得B 点坐标为(2pk 2,-2pk ),由|OA |=1,|OB |=8,可得⎩⎪⎨⎪⎧4p 2k 2+1k 4=1,4p 2k 2(k 2+1)=64,解得⎩⎪⎨⎪⎧k 2=4,p 2=45.又p >0,∴p =255,所求抛物线方程为y 2=455x .(2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解法一:(1)由抛物线的定义得|AF |=2+p2.由已知|AF |=3,得2+p2=3,解得p =2,∴抛物线E 的方程为y 2=4x .(2)证明:∵点A (2,m )在抛物线E :y 2=4x 上,∴m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x 得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0), ∴k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223, ∴k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.解法二:(1)同解法一.(2)证明:设以点F 为圆心且与直线GA 相切的圆的半径为r .∵点A (2,m )在抛物线E :y 2=4x 上,∴m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x 得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0,从而r =|22+22|8+9=4217. 又直线GB 的方程为22x +3y +22=0,∴点F 到直线GB 的距离d =|22+22|8+9=4217=r . 这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.。
2019高考数学一轮复习第九章平面解析几何9.5 抛物线及其性质练习文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第九章平面解析几何9.5 抛物线及其性质练习文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第九章平面解析几何9.5 抛物线及其性质练习文的全部内容。
§9.5抛物线及其性质考纲解读考点内容解读要求高考示例常考题型预测热度1。
抛物线的定义及其标准方程1。
了解抛物线的定义,并会用定义进行解题2。
掌握求抛物线标准方程的基本步骤(定型、定位、定量)和基本方法(定义法和待定系数法)Ⅲ2017课标全国Ⅱ,12;2017山东,15;2016四川,3;2014课标Ⅰ,10;2013江西,9选择题、填空题、解答题★★☆2。
抛物线的几何性质1.知道抛物线的简单几何性质(范围、对称性、顶点、离心率)2.能用其性质解决有关的抛物线问题,了解抛物线的一些实际应用Ⅱ2017天津,12;2016课标全国Ⅱ,5;2015四川,10选择题、填空题、解答题★★☆3。
直线与抛物线的位置关系1。
会用代数法和数形结合法判断直线与抛物线的位置关系2。
根据所学知识熟练解决直线与抛物线位置关系的综合问题Ⅲ2017课标全国Ⅰ,20;2016课标全国Ⅰ,20;2016课标全国Ⅲ,20选择题、填空题、解答题★★★分析解读从近几年的高考试题来看,抛物线的定义、标准方程、几何性质以及直线与抛物线的位置关系等一直是高考命题的热点,题型既有选择题、填空题,又有解答题;客观题突出“小而巧”的特点,主要考查抛物线的定义、标准方程,主观题考查得较为全面,除考查定义、性质之外,还考查直线与抛物线的位置关系,考查基本运算能力、逻辑思维能力和综合分析问题的能力,着力于数学思想方法及数学语言的考查。
自主梳理1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离________的点的轨迹叫做抛物线.点F 叫做抛物线的________,直线l 叫做抛物线的________.2.抛物线的标准方程与几何性质标准方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F (p2,0) F (-p2,0)F (0,p 2)F (0,-p2)离心率 e =1准线 方程 x =-p 2x =p 2 y =-p 2y =p 2 范围 x ≥0, y ∈R x ≤0, y ∈R y ≥0, x ∈R y ≤0, x ∈R 开口 方向向右向左向上向下自我检测1.抛物线y 2=8x 的焦点到准线的距离是________.2.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.3.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是________.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|=________.5.已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN =________.学生姓名 教师姓名班主任 日期时间段年级课时教学内容 抛物线复习教学目标 1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. 2.理解数形结合的思想. 重点 同上 难点同上探究点一抛物线的定义及应用例1已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求P A +PF的最小值,并求出取最小值时P点的坐标.变式迁移1已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为________.探究点二求抛物线的标准方程例2已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程.变式迁移2 根据下列条件求抛物线的标准方程:(1)抛物线的焦点F 是双曲线16x 2-9y 2=144的左顶点; (2)过点P (2,-4).探究点三 抛物线的几何性质例3 过抛物线y 2=2px 的焦点F 的直线和抛物线相交于A ,B 两点,如图所示.(1)若A ,B 的纵坐标分别为y 1,y 2,求证:y 1y 2=-p 2;(2)若直线AO 与抛物线的准线相交于点C ,求证:BC ∥x 轴.变式迁移3 已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2).求证:(1)x 1x 2=p 24;(2)1AF +1BF为定值.一、填空题1.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB 等于________.2.将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则n =________.3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是________.4.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________.5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为________.6.设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.7.已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则AB =________.8.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.二、解答题9.已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得的弦长为15,求抛物线方程.10.已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.轨迹方程自主梳理1.曲线的方程与方程的曲线如果曲线C 上点的坐标(x ,y )都是方程f (x ,y )=0的解,且以方程f (x ,y )=0的解(x ,y )为坐标的点都在曲线C 上,那么,方程f (x ,y )=0叫做曲线C 的方程.曲线C 叫做方程f (x ,y )=0的曲线.2.求曲线方程的一般方法(五步法)求曲线(图形)的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.3.求曲线方程的常用方法:(1)直接法;(2)定义法;(3)代入法;(4)参数法.自我检测1.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程为______________.2.一动圆与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,那么动圆的圆心P 的轨迹是__________________________________________________________________.3.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是______________________.4.若M 、N 为两个定点且MN =6,动点P 满足PM →·PN →=0,则P 点的轨迹方程为________.5.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是__________________.探究点一 直接法求轨迹方程例1 动点P 与两定点A (a,0),B (-a,0)连线的斜率的乘积为k ,试求点P 的轨迹方程,并讨论轨迹是什么曲线.变式迁移1 已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为______________.探究点二 定义法求轨迹方程例2 已知两个定圆O 1和O 2,它们的半径分别是1和2,且O 1O 2=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.变式迁移2 在△ABC 中,A 为动点,B 、C 为定点,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a2,0,且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程为____________________________________.探究点三 相关点法(代入法)求轨迹方程例3 如图所示,从双曲线x 2-y 2=1上一点Q 引直线x +y =2的垂线,垂足为N . 求线段QN 的中点P 的轨迹方程.变式迁移3 已知长为1+2的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,P是AB 上一点,且AP →=22PB →.求点P 的轨迹C 的方程.一、填空题1.已知椭圆的焦点是F 1、F 2,P 是椭圆的一个动点,如果M 是线段F 1P 的中点,则动点M 的轨迹是_________________________________________________________________.2.已知A 、B 是两个定点,且AB =3,CB -CA =2,则点C 的轨迹方程为______________.3.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC →=2CB →,则点C 的轨迹方程为____________.4.如图,圆O :x 2+y 2=16,A (-2,0),B (2,0)为两个定点.直线l 是圆O 的一条切线,若经过A 、B 两点的抛物线以直线l 为准线,则抛物线焦点所在的轨迹是________.5.P 是椭圆x 216+y 29=1上的动点,作PD ⊥y 轴,D 为垂足,则PD 中点的轨迹方程为____________.6.已知两定点A (-2,0),B (1,0),如果动点P 满足P A =2PB ,则点P 的轨迹所包围的图形的面积等于______.7.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长CD =3,则顶点A 的轨迹方程为______________.8.平面上有三点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为__________.二、解答题9.已知抛物线y2=4px (p>0),O为顶点,A,B为抛物线上的两动点,且满足OA⊥OB,如果OM⊥AB于点M,求点M的轨迹方程.10.已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C的方程;(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,OPOM=λ,求点M 的轨迹方程,并说明轨迹是什么曲线.。
第5节抛物线知识点、方法题号抛物线的定义与应用3,4,8抛物线的标准方程及应用1,2,7,12直线与抛物线的位置关系5,9,13抛物线的综合应用6,10,11,141.(2015沈阳质量监测)抛物线y=4ax2(a≠0)的焦点坐标是( C )(A)(0,a) (B)(a,0)(C)(0,) (D)(,0)解析:将y=4ax2(a≠0)化为标准方程得x2=y(a≠0),所以焦点坐标为(0,).2.(2016唐山模拟)已知抛物线的焦点F(a,0)(a<0),则抛物线的标准方程是( B )(A)y2=2ax (B)y2=4ax(C)y2=-2ax (D)y2=-4ax解析:以F(a,0)为焦点的抛物线的标准方程为y2=4ax.3.(2015兰州双基过关考试)抛物线y2=2px(p>0)上横坐标为6的点到此抛物线焦点的距离为10,则该抛物线的焦点到准线的距离为( B )(A)4 (B)8 (C)16 (D)32解析:设抛物线的准线方程为x=-(p>0),则根据抛物线的性质有+6=10,解得p=8,所以抛物线的焦点到准线的距离为8.4.(2016郑州第一次质量预测)已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|等于( D )(A) 100 (B)200 (C)360 (D)400解析:根据抛物线的定义可知,准线方程为y=-5,|PF|=b+5=25,所以b=20.又点P(a,b)是抛物线x2=20y上一点,所以a2=20×20,所以a=±20,所以|ab|=400.5.已知直线l:x-y-m=0经过抛物线C:y2=2px(p>0)的焦点,l与C交于A,B两点,若|AB|=6,则p的值为( B )(A) (B) (C)1 (D)2解析:因为直线l过抛物线的焦点,所以m=.联立得,x2-3px+=0.设A(x1,y1),B(x2,y2),则x1+x2=3p,故|AB|=x1+x2+p=4p=6,p=.6.(2016云南统一检测)已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A,B两点,如果·=-12,那么抛物线C的方程为( C )(A)x2=8y (B)x2=4y(C)y2=8x (D)y2=4x解析:由题意,设抛物线方程为y2=2px(p>0),直线方程为x=my+,联立消去x得y2-2pmy-p2=0,设A(x1,y1),B (x2,y2),则y1+y2=2pm,y1y2=-p2,得·=x1x2+y1y2=(my1+)(my2+)+y1y2=m2y1y2+(y1+y2)++y1y2=-p2=-12⇒p=4,即抛物线C的方程为y2=8x.7.(2015高考陕西卷)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .解析:y2=2px的准线方程为x=-,又p>0,所以x=-必经过双曲线x2-y2=1的左焦点(-,0),所以-=-,p=2.答案:28.(2015丹东市高三质检)抛物线x2=-8y上的一点M(x0,-3)到其焦点的距离是. 解析:x2=-8y的准线方程为y=2,则点M(x0,-3)到焦点的距离,利用抛物线定义知,就是点M到准线的距离为3+2=5.答案:59.(2015洛阳统考)过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,若|AF|=5,则|BF|= .解析:由题意,设A(x1,y1),B(x2,y2),则|AF|=x1+1=5⇒x1=4,=4x1=16,根据对称性,不妨取y1=4,所以直线AB:y=x-,代入抛物线方程可得,4x2-17x+4=0,所以x2=,所以|BF|=x2+1=.答案:【教师备用】 (2015唐山统考)已知抛物线y2=2px(p>0),过点C(-2,0)的直线l交抛物线于A,B两点,坐标原点为O,·=12.(1)求抛物线的方程;(2)当以AB为直径的圆与y轴相切时,求直线l的方程.解:(1)设l:x=my-2,代入y2=2px,得y2-2pmy+4p=0.(*)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则x1x2==4.因为·=12,所以x1x2+y1y2=12,即4+4p=12.得p=2,抛物线的方程为y2=4x.(2)(1)中(*)式可化为y2-4my+8=0,y1+y2=4m,y1y2=8.设AB的中点为M,则|AB|=2x M=x1+x2=m(y1+y2)-4=4m2-4,①又|AB|=|y1-y2|=,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,m=±.所以直线l的方程为x+y+2=0或x-y+2=0.能力提升练(时间:15分钟)10.(2015高考浙江卷) 如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( A )(A)(B)(C)(D)解析: 由题可知抛物线的准线方程为x=-1.如图所示,过A作AA2⊥y轴于点A2,过B作BB2⊥y 轴于点B2,则====.11.(2015高考四川卷)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是( D ) (A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)解析:当直线l的斜率不存在时,这样的直线l恰有2条,即x=5±r,所以0<r<5;所以当直线l的斜率存在时,这样的直线l有2条即可.设A(x1,y1),B(x2,y2),M(x0,y0),则又两式相减得(y1+y2)(y1-y2)=4(x1-x2),k AB===.设圆心为C(5,0),则k CM=.因为直线l与圆相切,所以·=-1,解得x0=3,于是=r2-4,r>2,又<4x0,即r2-4<12,所以0<r<4,又0<r<5,r>2,所以2<r<4.故选D.12.(2015云南检测)已知抛物线C的方程为y2=2px(p>0),圆M的方程为x2+y2+8x+12=0,如果抛物线C的准线与圆M相切,那么p的值为.解析:将圆M的方程化为标准方程:(x+4)2+y2=4,圆心坐标为(-4,0),半径r=2,又抛物线的准线方程为x=-,所以|4-|=2,解得p=12或4.答案:12或413.(2016山西大学附中高三上模块诊断)已知点A(-,)在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,则点A到动直线MN的最大距离为.解析:因为点A(-,)在抛物线C:y2=2px(p>0)的准线上,所以准线方程为x=-=-,所以p=1,所以抛物线方程为y2=2x,点M,N在抛物线上,所以可设M(,y1),N(,y2),由·=3得,×+y2×y1=3,即+4y1y2-12=0,解之得y1y2=2或y1y2=-6,又因为点M,N在x轴的两侧,所以y1y2=-6,直线MN的方程为=,即y-y1=(x-),当y=0时,x==3,所以直线MN恒过定点P(3,0),所以点A(-,)到直线MN的最大距离为|AP|==.答案:14.(2015大连双基测试)已知过点(2,0)的直线l1交抛物线C:y2=2px(p>0)于A,B两点,直线l2:x=-2交x轴于点Q.(1)设直线QA,QB的斜率分别为k1,k2,求k1+k2的值;(2)点P为抛物线C上异于A,B的任意一点,直线PA,PB交直线l2于M,N两点,·=2,求抛物线C的方程.解:(1)设直线l1的方程为x=my+2,A(x1,y1),B(x2,y2),联立得y2-2pmy-4p=0,y1+y2=2pm,y1·y2=-4p.k1+k2=+=+===0.(2)设P(x0,y0),则直线PA:y-y1=(x-x1),当x=-2时,y M=,同理y N=.因为·=2,所以4+y N y M=2.即·=-2,即=-2,即=-2,p=,抛物线C的方程为y2=x.精彩5分钟1.已知F为抛物线C:y2=4x的焦点,点E在C的准线上,且在x轴上方,线段EF的垂直平分线与C的准线交于点Q(-1,),与C交于点P,则点P的坐标为( D )(A)(1,2) (B)(2,2)(C)(3,2) (D)(4,4)解题关键:设出E点坐标,利用|EQ|=|QF|解出E点坐标,再利用k EF与k QP的关系写出QP方程联立方程组求解.解析:由题意,得抛物线的准线方程为x=-1,F(1,0).设E(-1,y),因为PQ为EF的垂直平分线,所以|EQ|=|FQ|,即y-=,解得y=4,所以k EF==-2,k PQ=,所以直线PQ的方程为y-=(x+1),即x-2y+4=0.由解得即点P的坐标为(4,4),故选D.2.(2015郑州模拟)已知实数m是2和8的等比中项,则抛物线y=mx2的焦点坐标为.解题关键:先利用等比数列求得m,再利用抛物线方程求得焦点坐标.解析:实数m为2和8的等比中项,所以m2=2×8=16,所以m=±4,又因为焦点在y轴上的抛物线的标准方程为x2=2py,所以p=±,所以=±,又因为焦点在y轴上,所以该抛物线的焦点坐标为(0,±). 答案:(0,±)。