第十一章全等三角形导学案(第1课时)
- 格式:doc
- 大小:132.00 KB
- 文档页数:2
八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思教材分析1.掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题;学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
2.培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
学情分析1、学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
2、学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
3、根据学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限。
教学目标(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
教学重点和难点重点:三角形全等条件的探索过程是本节课的重点。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对学生有一定的难度。
教学过程全等形、全等三角角形的概念,对应关系。
判定两个三角形是否全等,至少需要多少个怎样的条件?给定三条定长的线段a.b.c.用这三条线段分别画两个三角形,然后剪下来对照,发现什么问题,多做几次。
11.全等三角形导案(SAS)一、导学目标1.知道三角形全等“边角边”的内容.2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.二、导学重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三SAS三、导学准备:三角尺、圆规四、导学流程:1、复习全等三角形的判定12、探索三角形全等的条件(SAS)3、用“SAS”判定的运用4、题型训练11.全等三角形学案(SAS)一、学习目标1.知道三角形全等“边角边”的内容.2.会运用“S AS ”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 二、学习重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三角SAS三、知识储备全等三角形的性质和全等三角形的判定1----SSS四、教学流程 (一)知识回顾1. 如图,四边形ABCD 中,AD =BC ,A B =DC . 求证:△ABC ≌△CDA .2.如图,A B D C =,A CD B=,△ABC ≌△DCB 全等吗?为什么(二)、探索新知 活动一 探索三角形全等的条件DCBA1.如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?(1)在上面的例子中我们已知哪些条件(从三角形的边、角关系作答),得到什么结论?(2)由(1)中的回答,你能得到什么猜想?2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?(三)、知识点小结总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动二全等三角形判定的简单应用阅读课本第9页例2后,完成下列问题:1.如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2.思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?把你的发现和同伴交流。
个性天地课题11.1 全等三角形课型自学课总课时 1 主创人教研组长签字领导签字个性天地情境导入明晰目标任务驱动学习目标:1.知道什么是全等形、全等三角形及全等三角形的对应元素,会用符号正确地表示两个三角形全等.2.知道全等三角形的性质,并会进行应用.3.能熟练找出两个全等三角形的对应角、对应边.学习重点:全等三角形的概念.学习难点:找对应顶点、对应边、对应角.学法指导:1、学生独立阅读课本P2—P3,探究课本基础知识,提升自己的阅读理解能力。
2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。
3、教师巡视,及时指导、帮助学生解决疑难问题。
导学流程:一、旧知回顾:什么是三角形?它都具备哪些性质?二、基础知识探究活动一:知道全等形、全等三角形及对应元素一系列概念,会用符号表示全等1.将三角板按在纸上,沿外框画出两个三角形,把这两个三角形裁下来后放在一起,观察它们能否重合。
2.观看课本美丽的图片并阅读课本P2—3的部分,思考并回答下列问题:(1)什么是全等形?什么是全等三角形?你能举出生活中全等形的实例吗?(2)全等三角形有哪些对应元素?怎样记两个三角形全等?活动一知道全等三角形的性质1.利用三角形纸片做如下变换:将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.2.思考:各图中的两个三角形全等吗?为什么?如果全等把它们分别表示出来.(注意书写时对应顶点字母写在对应的位置上)3.寻找上图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(提示:全等三角形是指能够完全重合的两个三角形)独立完成后,小组交流并归纳出全等三角形的性质:.三、综合应用探究1.如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.2.如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.四、达标反馈1.下面的每对三角形分别全等,观察是怎么变化而成的,说出对应边、对应角。
授课人: 班 级: 姓 名: 小 组:课题名称:全等三角形(第1课时)【学习目标】学习内容:11、1 全等三角形学习重点:1、全等三角形的定义 2、全等三角形的性质 3、平移、翻折、旋转前后的图形全等 学习难点:全等三角形性质的应用※ 【活动方案】活动一 知道全等形、全等三角形及对应元素一系列概念,会用符号表示全等 对应练习一1、如图所示,△ABC ≌△DEF , 对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.2、如图(1),点O 是平行四边形ABCD 的对角线的交点,△AOB 绕O 旋转180°,可以与△______重合,这说明△AOB ≌△______.这两个三角形的对应边是AO 与_____,OB 与_____,BA 与______;对应角是∠AOB 与________,∠OBA 与________,∠BAO 与________.3、如图(2),已知△ABC 中,AB=3,AC=4, ∠ABC =118°,那么△ABC 沿着直线AC 翻折,它就和△ADC 重合,那么这两个三角形________,即____________所以DA=______,∠ADC =_____°。
活动二 知道全等三角形的性质 对应练习二1、如图△ ABD ≌ △CDB ,若AB=4,AD=5,BD=6,则BC= ,CD=______,2、如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .3、如图、三角形纸片ABC ,AB=10CM,BC=7CM,AC=6CM,沿过点Bde 直线折叠这个三角形,使定点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为 cm.3、如图,D E ,分别为A B C △的A C ,B C 边的中点,将此三角形沿D E 折叠,使点C 落在AB 边上的ABCC 1A 1B 1授课人: 班 级: 姓 名: 小 组:点P 处.若48C D E ∠=°,则A P D ∠等于( )A .42°B .48°C .52°D .58° 4、如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.18005、如图,A C B A C B '''△≌△,B C B ∠'=30°,则ACA '∠的度数为( ) A .20°B .30°C .35°D .40°活动三 全等三角形的综合应用 对应练习三 、有关面积的计算1、如图所示,在△ABC 中,∠ACB=900,且AC=BC=4cm,已知△BCD ≌△ACE ,求四边形AECD 的面积。
数学导学案八年级备课组课题11.1全等三角形的判定(一)(1)一、 学习目标1、掌握全等形、全等三角形及相关概念和全等三角形性质。
2、理解“平移、翻折、旋转”前后的图形全等。
3、熟练 确定全等三角形的对应元素。
二、 自学指导自学课本P2-3页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
6、课本P4练习1、27、如图1,△ABC ≌△DEF ,对应顶点是__________,对应角是____________,对应边是___________________。
878、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角_____________________________9、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC.10910、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?课后反思:1.2三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式二、自学指导认真阅读课本P6-8页,完成下列要求:1、小组讨论探究1。
(1)满足一个或两个条件的两个三角形是否全等。
(2)满足3个条件时,两个三角形是否全等。
班级:小组:姓名:学号:组内评价:教师评价:课题:《11.2三角形全等的判定》(ASA、AAS)导学案【使用说明与学法指导】1.学生课前预习课本第11-12页完成(预习自测)2 .组内探究、合作学习完成探究案。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4. 积极投入,激情展示,做最佳自己。
5.带﹡的题要多动脑筋,展示你的能力。
【学习目标】1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3、积极投入,激情展示,体验成功的快乐。
【学习重点】应用“角边角”和“角角边”证明三角形全等。
【学习难点】利用三角形全等证明线段或角相等。
【学习过程】(Ⅰ)、旧知回顾判断:1、两边及其夹角对应相等,两个三角形全等。
()2、两边和其中一边的对角对应相等,两个三角形全等。
()(Ⅱ)、教材助读1、两角和它们的夹边对应相等的两个三角形全等(可以简写成或);两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成或)。
2、三角形的两个内角分别是600和800,它们的夹边为4cm你能画几个三角形同时满足这些条件?请将你画的几个三角形剪下,观察它们是不是全等?3、三角对应相等的两个三角形全等吗?4、证明三角形全等有哪几种方法?(Ⅲ)预习自测1、判断:(1)全等三角形的三个角对应相等,反之也成立()(2)有两个角及一条边对应相等的两个三角形全等()2、图1中的两个三角形全等吗?请说明理由。
3、(易错题)如图2所示,∠B=∠ACD,∠ACB=∠D=900,AC是△ABC和△ACD的公共边,所以就可以判定△ABC≌图1DCBA50°45°50°45图2BDA△ACD 。
你认为正确吗?为什么??我的疑惑请你将预习中未能解决的问题和有疑问的问题写下来,等待课堂上与老师和同学探究解决(Ⅰ)、学始于疑——我思考、我收获1、 三角形中已知两角及一边对应相等有几种可能?它们都能证明两个三角形全等吗?2、 “角边角”和“角角边”有哪些应用?学习建议 请同学们思考2分钟,可以通过三角形中两角与边的不同的位置关系找出几种可能并进行探究。
第十一章:全等三角形课题:全等三角形主备人: 初审人: 终审人:中学理科教研组【导学目标】1、理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2、掌握全等三角形的性质,并运用性质解决有关的问题。
3、会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
【导学重点】运用全等三角形的性质解决相关的计算及证明等问题。
【导学难点】运用全等三角形的性质解决相关的计算及证明等问题。
【导学过程】一、温故知新(5分钟)1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 。
“全等”用“ ”表示,读作 。
4、如图所示,△OCA ≌△OBD ,对应顶点有:点___和点___,点___和点___,点___和点___; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.5、全等三角形的性质:全等三角形的 相等。
二、设问导学(一)小组讨论,完成下题: 1、如图,△AB C ≌△CDA ,AB 和CD ,BC 和DA 是对应边。
写出其他对应边及对应角。
2、如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边。
写出其他对应边及对应角。
(二)课内探究1、如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边.在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝.(1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2、如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?为什么?三、当堂达标1、△AOB ≌△COD ,那么∠ABD 与∠CDB 相等吗?为DBAC O DCBA NMGHF E DC BEA EDCBA什么?四、拓展训练2.如图:Rt △ABC 中,∠ A=90°,若△ADB ≌△EDB ≌△EDC ,则∠C= .五、谈谈本节课的收获 六、预习指向1、预习下节中“探究2”.2、完成练习册中1_5题。
第十一章 全等三角形 11.1全等三角形学习目标1.知道什么是全等形、全等三角形;2.能熟练找出全等三角形的对应元素,能用符号正确地表示两个三角形全等; 3.掌握全等三角形的性质.重点: 全等三角形的概念、性质。
难点: 对应边和对应角的确定。
自主学习一、全等形、全等三角形的概念阅读课本P2内容,回答课本思考问题,并完成下面填空: 1. 能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2.能够完全重合的两个三角形叫做 . 二、全等三角形的对应元素及表示阅读课本P3第一个思考及下面两段内容,完成下面填空:1. 平移 翻折 旋转甲DCABFE 乙DCAB丙DCABE启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略.2.全等三角形的对应元素(1)对应顶点(三个)---重合的顶点 (2)对应边(三条)--- 重合的边 (3)对应角(三个)--- 重合的角请同学们写出上图甲、乙、丙的对应顶点、对应边、对应角 图甲: 对应边是: 对应顶点是: 对应角是: 图乙:对应边是: 对应顶点是: 对应角是:图丙:对应顶点是: 对应边是:对应角是: 寻找对应元素的规律(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角;(4)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (5)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
3.“全等”用“≌”表示,读作“全等于”如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF 如图乙记作: 读作: 如图丙记作: 读作:注意:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上. 三、全等三角形的性质阅读课本P3第二个思考及下面内容,完成下面填空: 全等三角形的性质:全等三角形的 相等, 相等. 练习1.如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,说出这两个三角形中相等的边和角.D CABODCABE图1 图22.如图2,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角. 课堂小结本节课你有哪些收获? 巩固练习1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角.(1)(2)(3)2.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,已知:∠A=43°,∠B=30°,求∠ADC的大小.B C课堂检测1.全等用符号表示,读作: .2.若△BCE≌△CBF,则∠CBE= , ∠BEC= ,BE= , CE= .3.判断题1)全等三角形的对应边相等,对应角相等.()2)全等三角形的周长相等,面积也相等. ()3)面积相等的三角形是全等三角形. ()4)周长相等的三角形是全等三角形. ()4.如图:△ABC≌△DBF,找出图中的对应边,对应角.答:∠B的对应角是,∠C的对应角是,∠BAC的对应角是;AB的对应边是,AC的对应边是,BC的对应边是 .课后作业:课本P4习题第1、2题板书设计:11.1 全等三角形一、全等形、全等三角形的概念二、全等三角形的对应元素及表示三、全等三角形的性质教学反思:BDAC FBE 11.2.1三角形全等的判定学习目标1.理解三边对应相等的两个三角形全等的内容. 2.会运用“边边边”条件证明两个三角形全等. 3. 会作一个角等于已知角. 自主学习 一、课前准备1. 叫做全等三角形2.全等三角形的 和 相等3.将△ABC 沿直线BC 平移,得到△DEF ,说出你得到的结论,说明理由?如果AB=5, ∠A=55°, ∠B=45°,那么DE= ,∠F= . 二、自主探究自主探究三角形全等的条件:阅读课本P6探究2之前,回答下面问题: 通过探究(1)只给一个条件对应相等的两个三角形一定全等吗?①只给一条边时;②只给一个角时;(2)如果给出两个条件画三角形,你能说出有哪几种可能的情况?①给出两个角时;②给出两条边时;③给出一条边和一个角时;45◦ 45◦45◦3㎝ 3㎝ 3cm(3)由上面的几种情景,两个三角形满足一个或两个条件时,它们一定全等吗?(4)如果两个三角形有三个条件对应相等,这两个三角形全等吗?我们也可以分情况讨论,有哪几种情况?①我们先来探究两个三角形三个角相等的情况:②画出一个三角形,使它的三边长分别为3cm 、 4cm 、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?③上面的探究反映了什么规律?阅读课本P6-7探究2至例1前,回答下面问题:的两个三角形全等,简写为“ ”或“ ”. 三、例题学习阅读课本P7例1,学习“边边边”证明两个三角形全等的格式. 巩固练习1. 如图,AB=AD ,BC=CD ,求证:(1)△ABC ≌△ADC (2)∠B=∠D证明: (1)在△ABC 和△ADC 中(公共边)∴△ABC ≌△ADC ( )(2)∵△ABC ≌△ADC∴∠B=∠D ( )2.如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到AB CD 300 700 800300 800700FDCBEABCDA这个条件?证明:四、作一个角等于已知角阅读课本P7最后一段至P8,回答书中问题.课堂小结本节课你有哪些收获? 课堂检测如图,AB=CD ,AC=BD ,△ABC 和△DCB 是否全等?试说明理由。
全等三角形第一课时教学设计学习者特征分析(1)起点能力水平:此阶段的学生已知道三角形的一些概念和基本性质,如边,角,顶点,角平分线,中线,高等,同时也认识一些基础图形:线、圆、正方形、长方形等。
(2)认知结构特点:大部分学生对以前所学内容掌握的比较扎实,只有少部分学生学习能力较差,跟不上教学进度。
(3)学习动机及态度:此阶段学生好奇心强,尤其在成绩较好、能力强的人身上体现更加明显,但此时期的学生叛逆心理增强,会有不少学生不再以长者的赞许为学习动力。
教材分析本节课是新人教版义务教育课程标准实验教材数学八年级上册第十一章第一课时的内容,本章围绕全等三角形,主要学习全等三角形的有关概念和性质,三角形全等的条件以及角平分线的性质,学生在七年级教材中学过了线段、角、相交线等与三角形有关的知识和一些简单的说理内容,这为全等三角形的学习奠定了基础,并且在今后学习等腰三角形、直角三角形、线段的垂直平分线、角平分线等内容中都要通过证明两个三角形全等来加以解决。
教学设计理念在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。
教学目标1.知识与技能目标(1)了解全等形和全等三角形的概念,掌握全等三角形的性质。
(2)能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。
2. 过程与方法目标在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,通过全等三角形有关概念的学习,提高学生数学概念的辨析能力,通过找出全等三角形的对应元素,培养学生的识图能力。
3.态度价值观目标通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神,通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧,培养学生科学的学习态度及自信,互相尊重的健全人格。
教学重点和难点重点:全等三角形的概念和性质.难点:找出全等三角形的对应边、对应角.教学内容本节课提出了全等形、全等三角形、全等三角形的对应顶点、对应边、对应角等概念以及利用全等三角形的概念得到全等三角形的性质,是一节基础课,是以以前学过的三角形知识为基础,根据全等三角形的性质得到对应边相等、对应角相等是今后证明线段和角相等的基本方法。
课题:11.1全等三角形(1)主备教师谢晓斌教师签名:(二)学习重点和难点:1.重点:全等三角形的概念.2.难点:找对应顶点、对应边、对应角.二、自主学习:阅读P1—4页回答下列问题:1.指出P2页中彩图中形状、大小相同的图形。
(与同学交流)2.回答本页中的“小云朵”和“思考”问题(答案写在教材空白处)3.说明全等形与全等三角形。
________________________________________________________________________________________________________________________________________4.回答本节课中“思考2”问题,给我们带来启示是什么?________________________________________________________________________________________________________________________________________5. P3页中的“便签”说明什么?________________________________________________________________________________________________________________________________________6.说明“对应顶点”、“对应边”和“对应角”图11.1—1 △ABC和△______全等,记做:___________________对应顶点有:A和__,B和__,C和__等对应. 对应边有:AB和____,BC和____,AC和____等对应. 对应角有: ∠A和____, ∠B和____, ∠C和____等对应.图11.1—2 △ABC和△______全等,记做:___________________对应顶点有:A和__,B和__,C和__等对应. 对应边有:AB和____,BC和____,AC和____等对应. 对应角有: ∠A和____, ∠ABC和______, ∠ACB和________等对应.图11.1—3 △ABC和△______全等,记做:___________________对应顶点有:A和__,B和__,C和__等对应. 对应边有:AB和____,BC和____,AC和____等对应. 对应角有: ∠BAC和____, ∠B和____, ∠C和____等对应.7. 回答“思考3”问题,并说明得到的结论是什么?________________________________________________________________________________________________________________________________________8、拿一张纸对折后,剪成两个全等的三角形,把这两个三角形一起放在下列图中△ABC 的位置上,试一试,如果其中一个三角形不动,怎样移动另一个三角形,能够得到下列图中的各图形.并总结出寻找对应边、对应角的方法。
徐闻县和安中学 ◆八年级数学导学案 设计:林朝清 ◆◆我们的约定:我的课堂 我作主!第 周 星期 第 节 本学期学案累计: 8、9 课时 姓名:________课题:第十一章全等三角形复习(1、2)学习目标 我的目标 我实现1.知道第十一章全等三角形知识结构图.2.通过基本训练,巩固第十一章所学的基本内容.3.通过典型例题的学习和综合运用,加深理解第十一章所学的基本内容,发展能力. 突破:【重点】知识结构图和基本训练.【难点】典型例题和综合运用.导学过程 我的课堂 我作主☆☆导学活动1☆☆ 归纳总结,完善认知1.总结本章知识点及相互联系.2.三角形全等探究 三角形 全等的 条件☆☆导学活动2☆☆ 基本训练,掌握双基 1.填空(1)能够 的两个图形叫做全等形,能够 的两个三角形叫做全等三角形.(2)把两个全等的三角形重合到一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 .(3)全等三角形的 边相等,全等三角形的 角相等. (4) 对应相等的两个三角形全等(边边边或 ).(5)两边和它们的 对应相等的两个三角形全等(边角边或 ). (6)两角和它们的 对应相等的两个三角形全等(角边角或 ). (7)两角和其中一角的 对应相等的两个三角形全等(角角边或 ). (8) 和一条 对应相等的两个直角三角形全等(斜边、直角边或 ). (9)角的 上的点到角的两边的距离相等. 2.如图,图中有两对三角形全等,填空:(1)△CDO ≌ ,其中,CD 的对应边是 , DO 的对应边是 ,OC 的对应边是 ; (2)△ABC ≌ ,∠A 的对应角是 ,∠B 的对应角是 ,∠ACB 的对应角是 .两边一____两边一对角____________ ____________三边______________ ___边_____________ 两角一边对应相等 __________________一个条件 两个条件 三个条件A B C DEO◆八年级数学导学案 设计:林朝清 设计时间 2013年9月3日3.判断对错:对的画“√”,错的画“×”.(1)一边一角对应相等的两个三角形不一定全等. ( ) (2)三角对应相等的两个三角形一定全等. ( )(3)两边一角对应相等的两个三角形一定全等. ( ) (4)两角一边对应相等的两个三角形一定全等. ( ) (5)三边对应相等的两个三角形一定全等. ( ) (6)两直角边对应相等的两个直角三角形一定全等. ( ) (7)斜边和一条直角边对应相等的两个直角三角形不一定全等. ( ) (8)一边一锐角对应相等的两个直角三角形一定全等. ( )4.如图,AB ⊥AC ,DC ⊥DB ,填空:(1)已知AB =DC ,利用 可以判定 △ABO ≌△DCO ; (2)已知AB =DC ,∠BAD =∠CDA ,利用 可以判△ABD ≌△DCA ; (3)已知AC =DB ,利用 可以判定△ABC ≌△DCB ;(4)已知AO =DO ,利用 可以判定△ABO ≌△DCO ;(5)已知AB =DC ,BD =CA ,利用 可以判定△ABD ≌△DCA.5.完成下面的证明过程: 如图,OA =OC ,OB =OD.求证:AB ∥DC.证明:在△ABO 和△CDO 中,OA OC ,AOB __________,OB OD ,⎧=⎪∠=⎨⎪=⎩∴△ABO ≌△CDO ( ).∴∠A = .∴AB ∥DC ( 相等,两直线平行).6.完成下面的证明过程:如图,AB ∥DC ,AE ⊥BD ,CF ⊥BD ,BF =DE.求证:△ABE ≌△CDF. 证明:∵AB ∥DC ,∴∠1= . ∵AE ⊥BD ,CF ⊥BD , ∴∠AEB = . ∵BF =DE ,∴BE = .在△ABE 和△CDF 中,1______,BE ______,AEB _______,⎧∠=⎪=⎨⎪∠=⎩∴△ABE ≌△CDF ( ).A B CDO ABCD O12AB CDEF徐闻县和安中学 ◆八年级数学导学案 设计:林朝清 ◆◆我们的约定:我的课堂 我作主!☆☆导学活动3☆☆ 典型题目,加深理解 题1 如图,AB =AD ,BC =DC. 求证:∠B =∠D.题2 证明:角的内部到角的两边的距离相等的点在角的平分线上.(先结合图形理解命题的意思,然后结合图形写出已知和求证,已知、求证及证明过程)题3 如图,CD ⊥AB ,BE ⊥AC ,OB =OC.求证:∠1=∠2.☆☆导学活动4☆☆ 综合运用,发展能力 7.如图,OA ⊥AC ,OB ⊥BC ,填空: (1)利用“角的平分线上的点到角的两边的距离相等”,已知 = , 可得 = ;(2)利用“角的内部到角两边距离相等的点在角的平分线上”,已知 = ,可得 = ;8.如图,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且离公 路与铁路交叉处300米.如果图中1 厘米表示100米,请在图中标出集 贸市场的位置.A B C D 21E D CB AO 12OA B C S◆八年级数学导学案 设计:林朝清 设计时间 2013年9月3日9.如图,CD =CA ,∠1=∠2,EC =BC.求证:DE =AB.10.如图,AB =DE ,AC =DF ,BE =CF. 求证:AB ∥DE.11.如图,在△ABC 中,D 是BC 的中点, DE ⊥AB ,DF ⊥AC ,BE =CF. 求证:AD 是△ABC 的角平分线.(第11题图)12.选做题:如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE.求证:△ACD ≌△CBE. (第12题图)E AB CD12F A B C DE A B C DEF A B CD E。
全等三角形导学案设计嘿,大家好,今天咱们聊聊全等三角形!这个词听上去是不是有点严肃啊?但三角形就像咱们身边的好朋友,随处可见,简直是生活中的小明星。
想想看,吃披萨的时候,切开的那块就像个三角形,对吧?不管你从哪个角度看,都一样美味。
这就像全等三角形,无论怎么旋转、翻转,它们总是保持着相同的形状和大小,真是太神奇了。
说到全等三角形,咱们得先搞清楚啥叫“全等”。
它就是指两个三角形的边长和角度都一模一样,简直就像一对双胞胎,走到哪儿都能被认出来。
你可以把它想象成两个不同的房间,里边的家具摆放得一模一样,甚至连墙上的画都没有差别。
这种“完美一致”让人觉得特别有趣。
好啦,想象一下你和朋友一起去画画,你们都用同样的颜料、同样的画布,结果画出的画却截然不同,那可就有意思了!我们来聊聊全等三角形的判定方法,听起来是不是有点复杂?其实一点都不!就像你在挑选衣服一样,看看合不合身、颜色好不好看,三角形也是要符合几个条件的。
首先有“边边边”这个条件,也就是说三角形的三条边都得一样长,才算是好朋友。
然后还有“边角边”,这就像是说,两条边相等的三角形,夹着的角也得相等。
还有个“角边角”,这个条件就有点像在做“传声筒”,两个角相等,再加上一条边相等,嘿嘿,完美!最后还有一个“角角角”,三角形的三个角都相等,那就稳了。
想想看,就像找人一起合唱,声音、节奏都得对上,才能唱出美妙的和声。
我们来想象一下,如果生活中有这些全等三角形,那得多好玩啊!比如,你和你的好基友一起去参加一个DIY活动,结果你们俩做了同样的纸飞机。
你们把它们一起放飞,结果两只飞机几乎平行飞向天空,回头一看,简直就是两个孪生兄弟,飞行轨迹都那么相似。
那种感觉简直棒极了,有没有?这就是全等三角形带来的乐趣,让人觉得生活中无处不在的规律,真是神奇!对了,还有个小故事,讲的是有一天,一只猫咪走进了一家数学商店,看到一块黑板上写着全等三角形的公式。
猫咪抬头一看,心里想:“这些三角形真有意思,要是我也能变成一个全等三角形,那我和我的小伙伴们就能永远在一起了!”这只猫咪的心愿就像我们渴望友情一样,想要和最好的朋友一直保持一致。
课题:19.1命题班级:姓名:小组:小组内评价:★学习目标:1、知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。
会区分命题的条件和结论。
知道判断一个命题是假命题的方法。
2、过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。
★重点:找出命题的条件(题设)和结论。
★难点:命题概念的理解。
课前预习案一、知识点:1、叫做命题。
2、每个命题都由________和_______两部分组成,已知的事项是________,由已知事项推断出的事项是________.命题可分为_______命题和_____命题,其中正确的命题称为______命题,错误的命题称为_______命题.二、预习自测:1、把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。
(1)菱形的四条边都相等;(2)全等三角形的面积相等。
2.下列命题中是真命题的是()A.平行于同一条直线的两条直线平行;B.两直线平行,同旁内角相等C.两个角相等,这两个角一定是对顶角;D.相等的两个角是平行线所得的内错角3.下列语句中不是命题的是()A.延长线段ABB.自然数也是整数C.两个锐角的和一定是直角;D.同角的余角相等4.下列语句中是命题的是()A.这个问题B.这只笔是黑色的C.一定相等D.画一条线段5.下列命题是假命题的是()A.互补的两个角不能都是锐角;B.若a⊥b,a⊥c,则b⊥cC.乘积是1的两个数互为倒数;D.全等三角形的对应角相等三、我的疑惑:课内探究案探究点一:“对顶角相等”写成“如果.....,那么......”的形式,并说出它的条件和结论,探究点二:在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C.•以其中两个作为条件,另外一个作为结论,用“如果……那么……”的形式,•写出一个你认为正确的命题.探究点三:如果a>b,b>c, 那么a=c;是真命题还是假命题。
八年级数学上册教案河南省舞阳县吴城一中谷瑞林八年级数学上册教案一、指导思想通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
本班是刚刚接手,对班上学生不了解,从原科任老师处得知:优生不多,但后进生却较多,有少数学生不上进,基础特差,问题较严重。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教学目标1、知识与技能目标学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。
进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。
2、过程与方法目标掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;经历了探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。
3、情感与态度目标通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。
体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。
认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。
养成独立思考和合作交流相结合的良好思维品质。
了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。
四、教材分析第十一章全等三角形本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。
全等三角形复习课(一)学习目标: 1、认识全等三角形2、能利用全等判断两线段或者两角的相等关系3、能判断两个三角形全等学习重点、难点:能用不同方法判断两个三角形全等 [知识要点]一、全等三角形② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 一、 预习、交流1,两个能够完全重合的图形称为 .全等图形的 和 完全相同. 2.如图1,若△ABC ≌△EFC,且CF=3cm,∠EFC=64°,则BC=_____cm,∠B=___.BA EF A 21CDB AEC DBAD(图1) (图2) (图3) (图4) 3.如图2,AC=DB,∠1=∠2,则△ABC ≌△______,∠ABC=∠______. 4.如图3,在△ABC 和△ADE 中,∠CAE=∠BAD,AC=AE (1)若加条件_________,可用SAS 推得△ABC ≌△ADE; (2)若加条件_________,可用ASA 推得△ABC ≌△ADE.5.(1)如图4,已知△ABC中AD平分∠BAC,∠ABD=∠ACD,则再由“___ ”, 就可判定△ABD≌△ACD.(2)如图5,已知AD∥BC,∠ABC=∠CDA,则可由“AAS”直接判定△_______ ≌________,(3)如图6,已知△ABC中,AD是BC边上的高,要根据“AAS”证明△ABC≌△ACD, 还需加条件∠_________=∠__________.B ACDBACD BA EF CDO(图5)(图6)(图7)6. 如图7,AD∥BC,AD=BC,AC与BD交于点O,EF过点O并分别交AD、BC于E、F, 则图中的全等三角形共有( ) A.1对 B.2对 C.3对 D.4对7. 如图,△ABC≌△DEF,求证:AD=BE.8.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF,求证:AC= BF.9.如图,已知:AC和BD相交于点O,OA=OC,OB=OD,AB与DC平行吗?说明理由。
《三角形全等的判定(1)》学案学习目标: 1.经历三角形全等的判定的全过程,体会利用操作归纳获得数学结论的过程。
2.掌握三角形全等的“边边边”条件,了解三角形的稳定性。
学习重难点:1.三角形全等的条件;2.寻求三角形全等的条件.学习过程一、课前预习阅读课本P35-37二、自主探究(小组讨论合作交流)活动一:探究三角形全等的条件:阅读课本探究1之前,回答下面问题:1.思考:两个三角形,有三条对应边,三个对应角,如果满足这六个条件中的一个或两个相等时,能不能保证所画出的两个三角形一定全等?2.只给一个条件(画图说明)。
(1)只给一条边时;(2)只给一个角时结论:只有一条边或一个角对应相等的两个三角形全等(填“一定”或“不一定”)3.给出两个条件(画图说明)(1)给出两个角相等:(2)给出两条边相等结论:两个角对应相等的两个三角形全等(填“一定”或“不一定”)结论:两条边对应相等的两个三角形全等(填“一定”或“不一定”)(3)给出一边一角相等(画图说明):结论:一条边一个角对应相等的两个三角形全等(填“一定”或“不一定”) 总结:只给出一个或两个条件时,都_______保证所画的三角形全等(填“能”或“不能”) (4)如果两个三角形有三个条件对应相等,这两个三角形全等吗?我们也可以分情况讨论,有哪几种情况?你觉得总共有几种情况,分别是活动二:探究三条边对应相等的两个三角形是否全等。
我们这节课来重点研究两个三角形三条边对应相等的情况.画出一个三角形,使它的三边长分别为3cm、 4cm、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?做法看课本35页探究2. 比较验证结果上面的探究反映了什么规律?回答下面问题:的两个三角形全等,简写为“”或“”.三、例题学习例1.如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD . 证明:∵D 是BC ; ∴ = ∴在△ 和△ 中AB= BD=AD=∴△ABD △ACD( )温馨提示:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好; ②三角形全等书写三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论。
C 11A B A 1第十一章全等三角形导学案(第1课时)
年级:八年级 学科:数学 执笔: 试教:
内容: 11.1 全等三角形 课型:新授课 上课间: 2011.____.___
学习目标:
1、了解全等形、全等三角形的概念,明确全等三角形对应边、对应角相等。
2、在列举生活中常见的的全等图形的过程中,学会判断对应边、对应角的方法。
3、积极投入,激情展示,做最佳自己
学习重难点:
教学重点:全等三角形的性质及寻找全等三角形的对应边、对应角。
教学难点:寻找全等三角形的对应边、对应角。
一、阅读教材第 2 页至 3页(关键处、疑难处做好标记)
二、 独立思考•解决问题:
1、全等形。
回忆:举出现实生活中能够完全重合的图形的例子? 同一张底片洗出的同大小照片是能够完全重合的(如图);
能够完全重合的两个图形叫做 . (1) 一个图形经过平移,翻转,旋转后,位置变化了,但 和 都没有改变,即平移,翻转,旋转前后的图形 。
(2) 如果两个图形全等,它们的形状大小一定都相同吗?全等形的特征是 和
2、全等三角形。
能够完全重合的两个三角形叫做 (如下图)。
“全等”用符号“≌”来表示,读作“全等于”,如上图记作△ABC ≌△A 1B 1C 1 叫对应顶点,A ←→A 1,B ←→B 1,C ←→C 1
叫对应边,AB ←→A 1B 1,AC ←→ , ←→B 1C 1 叫对应角,∠A ←→∠A 1,∠B ←→∠ ,∠C ←→∠ 注意:书写全等式时要求把对应顶点字母放在 的位置上。
3、全等三角形的性质。
全等三角形的 相等, 相等。
用符号表示为
∵△ABC ≌△A 1B 1C 1 ∴ AB=A 1B 1, BC=B 1C 1, AC=A 1C 1
(全等三角形的 )
∴ ∠ A= ∠ A 1, ∠ B= ∠B 1 , ∠ C= ∠C 1(全等三角形的 )
三、合作探究
11A B A 1
P A B D
C F E C A B
D B C F
A D
1、在找全等三角形的对应元素时一般有什么规律?
有公共边的,公共边是对应边有公共角的,公共角是对应角有对顶角的,对顶角是对应角. 一对最长的边是对应边,一对最短的边是对应边; 一对最大的角是对应角,一对最小的角是对应角。
根据上面的提示,你能总结寻找对应边、角的规律吗? 2、如图:△ABC ≌△DBF, 找出图中的对应边, 对应角.
四、学以致用 1、如图△ABC ≌ △ADE,若∠D=∠B , ∠C= ∠AED ,
则∠DAE= ; ∠DAB= 。
2、如图,△ABC ≌△AED,AB 是△ABC 的最大边,
AE 是△AED 的最大边, ∠BAC 与∠ EAD 对应角,且
∠BAC=25°, ∠B=35°,AB=3cm,BC=1cm,求出∠E,
∠ ADE 的度数和线段DE,AE 的长度。
∠BAD 与
∠EAC 相等吗?为什么?
五、当堂检测
1、全等用符号 表示,读作: 。
2、若△ BCE ≌ △ CBF ,则∠CBE= , ∠BEC= ,BE= , CE= .
3、判断题
1)全等三角形的对应边相等,对应角相等。
( )
2)全等三角形的周长相等,面积也相等。
( )
3)面积相等的三角形是全等三角形。
( )
4)周长相等的三角形是全等三角形。
( )
4、如图△ABD ≌ △EBC ,AB=3cm,BC=5cm,求DE 的长
六、我的收获与反思
七、作业:必做:第4页习题11.1 1-3
选做:第5页第4题
A
B C D A B C D
C D A B E。