运算定律除法的性质例8
- 格式:ppt
- 大小:1.04 MB
- 文档页数:23
运算律和简便运算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,和不变 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++ 注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
3、减法的性质 注意:这些都是由加法交换律和结合律衍生出来的。
减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--减法性质②:如果一个数连续减去两个数,那么相当于从这个数中减去后面两个数的和。
字母表示:)(c b a c b a +-=--4、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
字母表示:a b b a ⨯=⨯例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)()(c b a c b a ⨯⨯=⨯⨯ 乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。
加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2.加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1.减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2.乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用交换律和结合律: a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
小学数学简便运算和巧算一、数的加减乘除有时可以运用运算定律、性质、或数量间的特殊关系进性较快的运算这就是简便运算。
(一)其方法有:一:利用运算定律、性质或法则。
(1) 加法:交换律,a+b=b+a, 结合律,(a+b)+c=a+(b+c).(2) 减法运算性质:a-(b+c)=a-b-c, a-(b-c)=a-b+c, a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法:利用运算定律、性质或法则。
交换律,a×b=b×a, 结合律,(a×b)×c=a×(b×c),分配率,(a+b)×c=a×c+b×c, (a-b)×c=a×c-b×c.(4)除法运算性质:a÷(b×c)=a÷b÷c, a÷(b÷c)=a÷b×c, a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c, (a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,。
后面数值的运算符号不变。
例1:283+52+117+148=(283+117)+(52+48)=400+200=600(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:657-263-257=657-257-263=400-263=147.(运用减法性质,相当加法交换律。
)例3:195-(95+24)=195-95-24=100-24=76 (运用减法性质)例4; 150-(100-42)=150-100+42=50+42=92. (同上)例5:(0.75+125)×8=0.75×8+125×8=6+1000=1006. (运用乘法分配律))例6:( 125-0.25)×8=125×8-0.25×8=1000-2=998. (同上)例7:(1.125-0.75)÷0.25=1.125÷0.25-0.75÷0.25=4.5-3=1.5。
四年级数学运算题规律运算定律有什么第一类是加法运算定律:加法交换律加法结合律减法的性质第二类是乘法运算定律:乘法交换律乘法结合律乘法分配律除法的性质一、加法运算定律1.加法交换律:定义:两个数相加,交换加数的位置,和不变。
叫作加法交换律。
用字母表示为:a+b=b+a那如何判定算式是运用了加法交换律呢?你只需要确定数的位置变了,就是运用的加法交换律例如3+4=4+33和4的位置交换了,和没变,运用了加法交换律还有什么地方可以用到加法交换律呢?例如加法竖式计算验算时,你可以通过交换两个加数的位置来达到验算的目的2.加法结合律定义:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,叫作加法结合律。
用字母表示为:(a+b)+c=a+(b+c)简单来说,加法结合律是改变了运算顺序例如:3+4+7=3+(4+7)等号左边要先算3+4,之后再加7;等号右边先算的是4+7,之后再与3相加。
那有没有既使用了加法交换律,又运用了加法结合律呢?有的,那就是数既改变了位置,又改变了运算顺序。
例如:3+8+2=8+2+3这个算式中,数的位置变了,原来是3、8、2,现在是8、2、3。
运算顺序也变了,等式左边先算的3+8,等式右边先算的8+2.3.减法的性质定义:一个数连续减去两个数,可以用这个数减去这两个减数的和,差不变。
用字母表示:a-b-c= a-(b+c)例如:120-30-60=120-(30+60)还有一个补充就是一个数连续减去两个数,任意交换减数的位置,差不变。
用字母表示:a-b-c= a-c-b例如:120-30-60=120-60-30那在这里给大家出几道简便计算的题二、乘法运算定律1.乘法交换律定义:两个数相乘,交换两个因数的位置,积不变,这叫作乘法交换律。
用字母表示为:a×b=b×a例如:5×4=4×5同样在乘法算式中,乘法交换律判定方法:改变了数的位置2. 乘法结合律定义:三个数相乘,先乘前两个数或者先乘后两个数,积不变,这就是乘法结合律。
加、减法的速算与巧算( 基础篇)原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!落红不是无情物,化作春泥更护花。
出自龚自珍的《己亥杂诗·其五》1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 28—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
数学简便计算:运算定律和性质1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
用字母表示:(a×b)×c= a ×( b×c)5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质1:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c)a -( b+c) = a-b-c7、减法的性质2:一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a-c-b8、除法的性质1:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a ÷( b×c)a ÷( b×c) = a÷b÷c9、除法的性质2:一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷ c ÷ b级数学简便计算:加减法篇一、加法:1.利用加法交换律例如:254+158+246我们首先观察发现254与246相加可以凑成整百,于是交换158和246两个加数的位置,变成254+246+158。
人教版四年级下册数学加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
小学数学,运算定律与性质篇一:小学数学常用运算定律小学数学常用运算定律加法交换律: a+b=b+a加法结合律: a+b+c=(a+b)+c a+(b+c)=(a+c)+b乘法交换律:ab=ba乘法结合律: abc=(ab)c=a(bc)=(ac)b乘法分配律: a(b+c)=ab+acab+ac= a(b+c)减法的运算性质:a-b-c=a-(b+c)除法的运算性质:a÷b÷c=a÷(b×c)a÷(b×c)= a÷b÷c= a÷c÷b a÷b×c=a÷(b÷c)a÷(b÷c)= a÷b×c小学数学图形计算公式正方形(C:周长S面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a长方形(C:周长S:面积a:边长)周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2平行四边形(s:面积a:底h:高)面积=底×高s=ah 梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷2圆形(S:面积C:周长л d=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л S=лr2小学数学常用单位和进率质量(重量)单位:1吨=1000千克1千克=1000克长度单位:1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=10分米=100厘米=1000毫米面积单位: 1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米地积单位1亩=10分,1公顷=15亩,1亩≈667平方米, 1公顷=100公亩=10000平方米体积单位:1立方米=1000立方分米,1立方分米=1000立方厘米,1立方厘米=1000立方毫米1升=1000毫升时间单位:1天=24时1时=60分1分=60秒1年=12月1月=3旬(上旬、中旬都是10天,剩下的天数为下旬)篇二:小学数学运算规律基本性质小学数学中一些概念、运算规律、基本性质乘法:1、积的变化规律:一个因数不变,另一个因数乘或除以几,积就相应的乘或除以几。
运算定律与简便运算一.加法运算定律1. 加法交换律——两个加数交换位置,和不变。
字母公式:a+b+c = (b+a ) +c题例(简算过程):6+18+4=(6+4 ) +18=10+18=282. 加法结合律——先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c = a+(b+c)题例(简算过程):6+18+2=6+(18+2)=6+20=26二.乘法运算定律:1. 乘法交换律--- 两个乘数交换位置,积不变。
字母公式:a x b = b x a题例(简算过程):125 X 12 X 8=125 X 8 X 12=1000 X12=120002. 乘法结合律——先乘前两个数,或者先乘后两个数,积不变。
字母公式:a X b X c = a X (b X c)题例(简算过程):30 X25 X4=30 X (25 X 4)=30 X 100=30003. 乘法分配律一一两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(a+b) x c=a x c+b x c题例(简算过程):(1)12 x 6.2+3.8 x 12=12 x (6.2+3.8)=12 x 10=120三.减法性质:一个数连续减去两个数,可以先把后两个数相加,再相减。
字母公式:A-B-C二A-(B+C)题例(简算过程):20-8-2=20-(8+2)=20-10=101. 一个数连续减去几个数,可以用这个数减去所有减数的和,差不变。
字母公式:A-B-C=A-(B+C)题例:6-1.99=6X100-1.99X100=(600-199)/100=4.01四.除法性质一个数连续除以两个数,可以先把后两个数相乘,再相除。
字母公式:a — b —c=a —(b x c)题例(简算过程):20 -8 - 1.25=20 - (8 x 1.25)=20 - 10=2被除数和除数同时乘上或除以相同的数( 0除外)它们的商不变。
运算定律与简便计算重点知识归纳(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a+b=b+a例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:(a+b)+c=a+(b+c)注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法的性质注:这些都是由加法交换律和结合律衍生出来的。
减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:a-b-c=a-c-b例2.简便计算:198-75-98减法性质②:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:a-b-c=a-(b+c)例3.简便计算:(1)369-45-155 (2)896-580-120 4.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244 (4)89+997 (5)103-60 (6)458+996 (7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
小学四年级数学7个运算定律一、加法交换律两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
a+b=b+a二、加法结合律三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。
这叫做加法结合律。
a+b+c=(a+b)+c或a+b+c =a+(b+c)三、减法性质(1)在减法中,被减数、减数同时加上或者减去一个数,差不变。
a-b=(a+c)-(b+c)或a-b=(a-c)-(b-c)(2)在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。
反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
a-b=(a+c)-b=差+c或a-b=(a-c)-b=差-ca-b=a-(b+c)=差-c或a-b=a-(b-c)=差+c(3)在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
a–b-c= a-(b + c)四、乘法交换律两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。
a×b = b×a五、乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。
这叫做乘法结合律。
a×b×c =(a×b)×c或a×b×c = a×(b×c)六、乘法分配律两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。
这叫做乘法分配律。
(a + b) ×c= a×c+b×c 或(a - b)×c= a×c-b×c七、乘法的其他运算性质一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。
a×b = (a×c) ×( b÷c)八、除法的运算性质(1)商不变性质,两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。
加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2.加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1.减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2.乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用交换律和结合律: a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。
运算定律与简便运算一.加法运算定律1.加法交换律-—两个加数交换位置,和不变。
字母公式:a+b+c =(b+a)+c题例(简算过程):6+18+4=(6+4)+18=10+18=282.加法结合律——先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c = a+(b+c)题例(简算过程):6+18+2=6+(18+2)=6+20=26二.乘法运算定律:1.乘法交换律——两个乘数交换位置,积不变。
字母公式:a×b = b×a题例(简算过程):125×12×8=125×8×12=1000×12=120002.乘法结合律—-先乘前两个数,或者先乘后两个数,积不变.字母公式:a×b×c = a×(b×c)题例(简算过程):30×25×4=30×(25×4)=30×100=30003.乘法分配律——两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(a+b)×c=a×c+b×c题例(简算过程):(1)12×6.2+3.8×12=12×(6。
2+3。
8)=12×10=120三.减法性质:一个数连续减去两个数,可以先把后两个数相加,再相减。
字母公式:A—B-C=A—(B+C)题例(简算过程):20-8-2=20-(8+2)=20—10=101.一个数连续减去几个数,可以用这个数减去所有减数的和,差不变。
字母公式:A—B-C=A—(B+C)题例:6—1.99= 6X100-1.99X100=( 600—199)/100=4。
01四.除法性质一个数连续除以两个数,可以先把后两个数相乘,再相除.字母公式:a÷b÷c=a÷(b×c)题例(简算过程):20÷8÷1.25=20÷(8×1。
加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2.加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1.减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2.乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用交换律和结合律: a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。