汽车变速器自动换挡机构及其电气实现
- 格式:pdf
- 大小:144.48 KB
- 文档页数:4
amt换挡机构工作原理
AMT(Automated Manual Transmission)即自动手动变速器,是一种将传统手动变速器与电子控制系统相结合的变速器。
其工作原理如下:
1. 车辆驾驶员通过离合器踏板和换挡杆控制变速器的换挡操作。
2. AMT系统通过传感器感知车辆的转速、车速等参数,并通过电子控制单元(ECU)进行处理和控制。
3. 当驾驶员踩下离合器踏板时,ECU会收到信号,并通过控制执行器控制离合器的操作。
4. 当驾驶员通过换挡杆选择相应的挡位时,ECU会根据当前的车速、转速等参数,通过控制执行器控制换挡机构的操作。
5. 换挡机构由电动机和一系列离合器和齿轮组成,通过电动机控制离合器的操作,从而实现换挡。
6. 换挡过程中,ECU会根据车速、转速等参数,计算出合适的换挡时机,从而实现平滑换挡。
7. AMT系统可以根据驾驶需求和实时工况,自动选择最佳挡位,提供更好的驾驶性能和燃油经济性。
总的来说,AMT系统通过电子控制单元和执行器控制离合器和换挡机构的操作,实现了自动化的换挡过程,提供了更加便利和舒适的驾驶体验。
汽车变速箱自动换档机构及其电气实现
董学平
【期刊名称】《《微计算机信息》》
【年(卷),期】2004(20)2
【摘要】本文介绍了汽车变速箱自动换档机构的设计原理,介绍了以伺服电机作动力源的自动换档机械手的工作原理,以及用PLC控制自动换档的软件设计方法,其自动换档机构具有安全可靠、成功率高的特点。
【总页数】2页(P1-2)
【作者】董学平
【作者单位】230009 合肥合肥工业大学鸳鸯楼404#自动化研究所
【正文语种】中文
【中图分类】TP273
【相关文献】
1.基于AMESim的机械式自动变速箱换档执行机构液压系统建模与仿真 [J], 张宁;郭朋彦;张瑞珠;石学坤;朱崇敬;马付屹
2.基于RecurDyn的自动档变速器驻车机构P-R换档性能的设计校核 [J], 张玉文;李慧强
3.客车半自动换档控制系统及执行机构 [J], 刘欣;孟庆祎;方家宝;侯素礼
4.自动换档试验机构研究 [J], 王金友; 吕晓洲; 胡世广
5.自动换档液压执行机构 [J], 刘衡;生瑞山
因版权原因,仅展示原文概要,查看原文内容请购买。
自动换挡控制系统的结构与工作原理自动变速器控制系统由各种控制阀板总成、电磁阀、控制开关、控制电路等组成,电子控制自动变速器的控制系统还包括各种传感器、执行器、电脑等。
控制系统的主要任务是控制油泵的泵油压力,使之符合自动变速器各系统的工作需要;根据操纵手柄的位置和汽车行驶状态实现自动换挡;控制变矩器中液压油的循环和冷却,以及控制变矩器中锁止离合器的工作。
控制系统的工作介质是油泵运转时产生的液压油。
油泵运转时产生的液压油进入控制系统后被分成两个部分:一部分用于控制系统本身的工作,另一部分则在控制系统的控制下送至变矩器或指定的换挡执行元件,用于操纵变矩器及换挡执行元件的工作。
(一)自动换挡控制的原理为实现自动换挡,必须以某种(或某些)参数作为控制的依据,而且这种参数应能用来描述车辆对动力传动装置各项性能和使用的要求,能够作为合理选挡的依据,同时,在结构上易于实现,便于准确可靠地获取。
目前常用的控制参数是车速和发动机节气门开度。
至目前为止,常用的控制系统有两种:一种是只以车速或变速器输出轴转速作为控制参数的系统称为单参数控制系统;另一种是以车速和节气门开度作为控制参数的系统称为双参数控制系统。
1、单参数控制系统的原理单参数控制系统只是以车速为控制参数。
在发动机负荷一定的条件下,车速越大,说明行驶阻力越小,一般应选择传动比小的高挡工作;车速越低,说明路面阻力大,应选择较低挡位工作,以保证有足够的驱动力。
单参数控制系统的原理如图1-27所示。
轴1以与车速成正比的转速旋转,转速升高,重锤2的离心力增大,使重锤向外甩动,推动轴3向右移动,使弹簧5压缩。
轴3上连接的触点4与各挡的导电薄片相接触时,可以接通换挡机构的控制电路,得到相应的挡位。
轴3与触点4的位置,即是重锤2的离心推力与弹簧力平衡的位置。
1-旋转轴 2-重锤 3-推力轴 4-触点 5-弹簧 6-挡位导电薄片。
图1-27 单参数控制系统的原理示意图当车速增大的,旋转轴1的转速也增大,离心推力带动推力轴3和触点4进一步右移,当车速增加到定一值,触点4由薄片I移至II,变速器也相应地由一挡换入二挡,实现自动变速。
变速器换挡原理
变速器是一种用于改变车辆运动方向和速度的装置。
它通过调整发动机输出的转矩和转速,并将其传递给车辆驱动轮,以实现不同速度和动力要求下的行驶。
变速器的换挡原理主要有以下几点:
1. 齿轮传动:变速器采用一组不同的齿轮组合,通过齿轮的啮合和分离来改变输出转速和扭矩。
传动比越高,车辆速度越快,但扭矩相应较小;传动比越低,车辆速度越慢,但扭矩较大。
2. 离合器:离合器位于发动机和变速器之间,用于实现发动机和变速器的分离和连接。
在换挡时,离合器解除连接,踩下离合器踏板,使发动机的输出动力断开,变速器内的齿轮可以自由换挡。
3. 换挡杆:车辆驾驶员通过操纵换挡杆来选择不同的挡位。
换挡杆的操作机构会在驾驶员进行换挡操作时,通过一系列连杆和装置将操作传递给变速器的换挡机构,从而改变变速器的齿轮组合。
4. 油压操作:现代汽车变速器大多采用液压操作,通过液压系统来实现换挡过程的顺畅进行。
液压系统由变速器内的泵、油管、液压控制阀等组成,通过调节油压来控制换挡时齿轮组合的切换。
5. 电子控制:现代自动变速器采用电子控制系统,通过传感器感知车辆和发动机状态,并根据驾驶员的需求和工况来自动调
整换挡策略,使换挡更加智能化和精确。
总之,变速器的换挡原理是通过改变齿轮传动比和离合器的连接状态,实现发动机动力的分配和车辆速度的调节。
通过合理的换挡策略和系统控制,可以提高汽车的动力性能和燃油经济性。
自动变速器换挡原理自动变速器是现代汽车上的一种重要装置,它能够自动调整车辆的传动比,使发动机在各种工况下都能够保持在最佳工作状态。
而自动变速器的核心就是换挡原理,下面我们就来详细了解一下自动变速器的换挡原理。
首先,我们需要了解自动变速器的结构。
自动变速器主要由液力变矩器、齿轮组、行星齿轮组、离合器和制动器等部件组成。
其中,液力变矩器是自动变速器的核心部件之一,它通过液体的动能传递来实现发动机与变速器的连接。
齿轮组和行星齿轮组则负责传递动力并实现不同档位的换挡操作,而离合器和制动器则用于控制齿轮组和行星齿轮组的运动状态。
在车辆行驶过程中,自动变速器会根据车速、油门开度、发动机转速等参数自动进行换挡操作,以确保车辆能够在不同工况下保持最佳的动力输出和燃油经济性。
换挡原理主要包括以下几个方面:首先,液力变矩器的工作原理。
液力变矩器通过液体的动能传递来实现发动机与变速器的连接,其内部包含泵轮和涡轮两个部件,液体在泵轮的作用下传递动能到涡轮,从而实现发动机与变速器的连接。
在换挡时,液力变矩器会通过控制液体的流动来实现动力的传递或中断,从而实现换挡操作。
其次,齿轮组和行星齿轮组的工作原理。
自动变速器内部包含多个齿轮组和行星齿轮组,它们通过不同的组合来实现不同档位的换挡操作。
在换挡时,自动变速器会通过控制离合器和制动器来锁定或释放特定的齿轮组或行星齿轮组,从而实现换挡操作。
最后,控制系统的工作原理。
自动变速器的换挡操作是由控制系统来实现的,控制系统会根据车速、油门开度、发动机转速等参数来自动调整换挡时机和方式。
在换挡时,控制系统会通过控制液压或电磁阀来控制离合器和制动器的动作,从而实现换挡操作。
总的来说,自动变速器的换挡原理是一个复杂而精密的系统工作,它通过液力变矩器、齿轮组和行星齿轮组、离合器和制动器以及控制系统等部件的协同作用来实现车辆在不同工况下的换挡操作,从而保证车辆能够保持最佳的动力输出和燃油经济性。
简述自动变速器自动换挡原理
自动变速器是现代汽车中常见的一种传动装置,它能够自动地根据车辆的速度和负载条件来实现换挡操作。
其原理基于液力传动和齿轮传动的结合。
自动变速器中的液力传动系统起到了关键作用。
液力传动系统由液力变矩器和液力离合器组成。
液力变矩器相当于传统机械变速器中的离合器,它通过液压力将发动机的动力传递给齿轮系统。
液力离合器则起到了换挡的作用,它能够根据车辆的速度和负载条件来自动操作齿轮的换挡。
自动变速器中的齿轮传动系统也是至关重要的。
齿轮传动系统由多个齿轮组成,每个齿轮都有不同的齿数,从而实现不同的传动比。
当车辆需要加速时,液力离合器会根据车速的增加逐渐关闭,同时自动变速器会通过液压控制机构来选择合适的齿轮组合,以实现更高的传动比,从而提供更大的扭矩输出。
当车辆需要减速或停车时,液力离合器会再次打开,同时自动变速器会根据车速的降低选择合适的齿轮组合,以实现更低的传动比,从而提供更好的经济性和舒适性。
总结起来,自动变速器的自动换挡原理是基于液力传动和齿轮传动的结合。
液力传动系统通过液力变矩器和液力离合器将发动机的动力传递给齿轮系统,并根据车辆的速度和负载条件来自动操作齿轮的换挡。
齿轮传动系统则通过多个齿轮的组合实现不同的传动比,
以提供适合不同驾驶情况的扭矩输出。
通过这种自动换挡原理,自动变速器能够实现车辆的平稳加速和舒适换挡,提高驾驶的便利性和舒适性。
变速器换挡机构的原理与设计要点一、引言在现代汽车中,变速器扮演着重要的角色,它能够在车辆行驶中改变驱动力的传递比,使得驾驶者能够根据行驶条件和需求选择合适的档位。
而变速器的换挡机构则是实现档位切换的核心部件。
本文将介绍变速器换挡机构的原理与设计要点。
二、换挡机构的原理1. 换挡原理换挡机构的核心原理是通过控制齿轮的相对位置和连接状态来实现档位的切换。
在变速器中,通常会采用齿轮对齿轮的咬合方式来传递驱动力。
当需要进行换挡时,换挡机构会采用不同的方式来切换齿轮的连接状态,从而实现不同的传递比。
2. 换挡方式根据不同的变速器结构和设计,换挡机构的方式也会有所不同。
常见的换挡方式包括手动换挡和自动换挡。
手动换挡通常通过操纵换挡杆或拨片来实现,驾驶者可以根据需求手动选择合适的档位。
而自动换挡则通过电子系统和液压控制来实现,系统会根据车速和发动机负荷等参数智能选择合适的档位。
三、换挡机构的设计要点1. 结构设计换挡机构的结构设计应考虑紧凑、坚固和易于操控。
在设计过程中需要充分了解齿轮传递的力学特性,并选择合适的轴承和连接件。
同时,在设计中应注意杠杆原理,通过合理的杠杆比例来减小操纵力。
2. 换挡力矩控制换挡时需要克服一定的换挡力矩,而过大或过小的力矩都会影响换挡的舒适性和可靠性。
因此,在设计中需要准确计算换挡力矩,并选择合适的换挡机构传递力矩的方式,如使用弹簧、摩擦片等。
3. 换挡路径设计换挡路径设计要考虑换挡的顺畅性和快速性。
合理设计换挡机构的路径和动作,可以减少换挡时间和换挡过程中的冲击和噪音。
同时,注意相邻档位之间的间隔,使得换挡过程中能够准确地进入目标档位。
4. 换挡机构的可靠性换挡机构的可靠性是设计的一个重要指标。
在设计过程中,需要使用合适的材料和加工工艺,确保换挡机构能够承受长时间和高强度的工作。
同时,需进行可靠性验证和测试,以确保换挡机构的正常工作和寿命。
四、总结变速器换挡机构是实现档位切换的重要部件,其原理和设计要点直接影响着变速器的性能和可靠性。
自动变速器换挡原理
自动变速器是一种能够根据车辆的工况和驾驶需求自动选择合适档位的装置。
它通过一系列的传动比来实现动力的传递,以适应不同的速度和负载情况。
以下是自动变速器的换挡原理:
1. 感应器探测:自动变速器内置了多个感应器,用于监测车辆的速度、油门踏板的位置、油压和传动油温等参数。
这些感应器会将检测到的信息传递给控制单元。
2. 控制单元计算:控制单元根据感应器提供的信息,通过内置的智能算法计算出合适的换挡点。
这些算法基于车辆的工况以及驾驶者的行为模式,以实现平稳的换挡过程。
3. 离合器释放:在进行换挡之前,自动变速器会通过控制单元指令释放离合器。
这样可以断开发动机与传动系统之间的连接,从而实现换挡过程。
4. 换挡执行:一旦离合器释放,自动变速器会根据预先计算的换挡点控制换挡执行。
它会通过液压系统操纵换挡机构,切换到相应的齿轮。
5. 离合器接合:当换挡完成后,自动变速器会再次通过控制单元指令接合离合器,重新连接发动机与传动系统。
这样可以确保动力的平稳传递,维持车辆的正常行驶。
以上是自动变速器的换挡原理。
通过感应器的监测和控制单元
的计算,它能够根据车辆和驾驶条件智能地选择合适的换挡点,以提供平稳的驾驶体验。
自动挡变速箱的基本构造和工作原理现在越来越多的车使用自动挡变速箱,他的优点就是操作容易,所以也越来越受大家的欢迎,自动挡变速箱是由液力变矩器和齿轮式自动变速器组合起来的。
常见的组成部门有液力变矩器、离合器、行星齿轮机构、制动器、油泵、控制阀体、滤清器、管道、速度调压器等,按照这些部件的功能,可将它们分成液力变矩器、变速齿轮机构、供油系统、自动换挡控制系统和换挡操作机构等五大部门。
1、自动换挡控制系统自动换挡控制系统能根据发动机的负荷(节气门开度)和汽车的行驶速度,按照设定的换挡规律,自动地接通或堵截某些换挡离合器和制动器的供油油路,使离合器结合或分开、制动器制动或开释,以改变齿轮变速器的传动化,从而实现自动换挡。
自动变速器的自动换挡控制系统有液压控制和电液压(电子)控制两种。
2、供油系统自动变速器的供油系统主要由油泵、油箱、滤清器、调压阀及管道所组成。
油泵是自动变速器最重要的总成之一,它通常安装在变矩器的后方,由变矩器壳后真个轴套驱动。
在发动机运转时,不论汽车是否行驶,油泵都在运转,为自动变速器中的变矩器、换挡执行机构、自动换挡控制系统部门提供一定油压的液压油。
油压的调节由调压阀来实现。
3、变速齿轮机构自动变速器中的变速齿轮机构所采用的型式有普通齿轮式和行星齿轮式两种。
采用普通齿轮式的变速器,因为尺寸较大,最大传动比较小,只有少数车型采用。
目前绝大多数轿车自动变速器中的齿轮变速器采用的是行星齿轮式。
变速齿轮机构主要包括行星齿轮机构和换档执行机构两部门。
行星齿轮机构,是自动变速器的重要组成部门之一,主要因为太阳轮(也称中央轮)、内齿圈、行星架和行星齿轮等元件组成。
行星齿轮机构是实现变速的机构,速比的改变是通过以不同的元件作主动件和限制不同元件的运动而实现的。
在速比改变的过程中,整个行星齿轮组还存在运动,动力传递没有间断,因而实现了动力换挡。
换挡执行机构主要是用来改变行星齿轮中的主动元件或限制某个元件的运动,改变动力传递的方向和速比,主要由多片式离合器、制动器和单向超越离合器等组成。
换挡执行机构工作原理
换挡执行机构是汽车传动系统中的重要部件,它的工作原理是通过控制齿轮或离合器的位置和动作,实现车辆的换挡操作。
具体的工作原理如下:
1. 手动换挡机构:手动换挡机构通常由换挡杆、变速器和离合器组成。
当驾驶员操作换挡杆时,通过各种杠杆、连杆和销针等连接装置,将换挡杆的运动传递给变速器内的齿轮和离合器,以实现换挡操作。
驾驶员通过触感和听觉反馈判断换挡的顺利性和准确性。
2. 自动换挡机构:自动换挡机构通过传感器和电子控制单元来监测车辆转速、车速、油门踏板位置等参数,并根据预设的换挡策略自动控制离合器和齿轮的运动和位置,实现自动换挡操作。
自动换挡机构通常还具有主动学习和适应性控制功能,可以根据驾驶员的驾驶习惯和行驶环境的变化,调整换挡策略以提供更加舒适和高效的驾驶体验。
总之,换挡执行机构的工作原理是通过机械或电子装置,将驾驶员的换挡操作传递给变速器和离合器,以实现车辆的换挡功能。
不同类型的换挡执行机构有不同的工作原理和控制方式,但其共同目标是提供平稳、准确和高效的换挡操作。
换挡机构工作原理
换挡机构是指汽车变速器中的一个重要部件,它起到改变发动机输出转速和车轮转速之间的传动比以适应不同行车状态的作用。
换挡机构的工作原理可以简单地描述为下面的几个步骤:
1. 输入轴与输出轴之间的动力传递:换挡机构的主要作用是将发动机的动力传递给车轮,实现车辆前进。
当发动机运转时,通过离合器的连接,发动机的扭矩传递到输入轴上。
输入轴与发动机连接的方式可以是齿轮传动或液力传动等。
2. 不同速比的选择:换挡机构中内置有不同大小的齿轮或离合器等,用来实现不同速比的选择。
在运行过程中,通过操作换挡杆或拨片等控制装置,驾驶员可以选择适合当前行车状态的转速范围和动力输出。
3. 离合器的操作:在换挡过程中,离合器起到了关键的作用。
当需要换挡时,驾驶员先将离合器踏板踩下,断开发动机与输入轴之间的连接;然后再通过操作换挡杆实现对齿轮或离合器的切换;最后松开离合器踏板,重新连接发动机与传动系统。
这个过程中,离合器的操作确保了换挡的平稳进行。
4. 动力输出:换挡机构通过不同的速比选择,可以实现发动机输出更高转速和扭矩的情况,也可以降低转速以提高油耗经济
性。
这样就可以根据驾驶员对车辆性能和经济性的需求来进行调整,以提供更好的驾驶体验。
总的来说,换挡机构通过选择不同的齿轮或离合器等,实现发动机输出转速和车轮转速之间的转化,以适应不同行车状态下的需求。
它是汽车变速器中一个关键的部件,对车辆的性能和经济性有重要影响。
汽车变速器的分类以及工作原理手动变速器是一种传统的变速器,司机通过离合器和换档杆来控制齿轮的切换。
手动变速器的主要组成部分包括输入轴、中间轴、输出轴、离合器、齿轮组、齿轮轴和换档机构。
手动变速器的工作原理是通过离合器的启动和换档机构的操作,将发动机的动力传递到输入轴。
输入轴通过齿轮组与中间轴和输出轴相连。
中间轴上的齿轮通过换挡机构的操作改变齿轮比例,从而改变车辆的行驶速度。
当需要换挡时,司机通过离合器将发动机与变速器分离,同时操作换挡机构,切换到所需的齿轮。
自动变速器是一种能够根据车速和负载自动调节齿轮比例的变速器。
自动变速器的主要组成部分包括液力变矩器、行星齿轮组、液压操纵系统和操纵电路。
自动变速器的工作原理是通过液力变矩器实现动力的传递和变速功能。
液力变矩器是由泵轮、涡轮和导向叶片组成的液压传动装置。
当发动机工作时,泵轮产生液压压力,使涡轮旋转,通过液压传动将动力传递到齿轮组。
行星齿轮组根据车速和负载的不同,自动调节齿轮比例,以确保发动机能够在最佳工作区间内提供动力。
自动变速器通过液压操纵系统和操纵电路实现换挡功能。
液压操纵系统由液压液和液控阀组成,控制换挡和液力变矩器的工作。
操纵电路由传感器、电控阀和控制单元组成,通过监测车速、发动机转速、加速踏板位置等信息,来自动控制液压操纵系统的工作。
除了手动变速器和自动变速器之外,还有一种叫做CVT (Continuously Variable Transmission,无级变速器)的变速器。
CVT变速器通过无级变速器带来的“连续”的变速比来实现动力传递和变速功能。
CVT变速器的工作原理是通过两个锥面带和一个斜盘来实现动力的传递。
当发动机的转速改变时,CVT变速器可以根据需要自动调整齿轮比例,以实现平滑的加速和节省燃油。
总之,汽车变速器根据结构和工作原理的不同分为手动变速器、自动变速器和CVT变速器。
每种变速器都有其独特的特点和应用场景,为驾驶员提供了不同的驾驶体验和使用便利。
简述自动变速器自动换挡原理自动变速器是现代汽车中常见的传动装置,它可以根据车辆的速度和负载情况,自动选择合适的挡位,以实现高效的动力传输和平稳的行驶。
自动变速器的自动换挡原理是基于一系列的传感器和控制单元,通过监测车辆的运行状态和驾驶者的需求,来实现自动的换挡操作。
自动变速器的自动换挡原理主要包括以下几个方面:1. 车速传感器:自动变速器内置有车速传感器,用于测量车辆的实际速度。
通过监测车速传感器的信号,自动变速器可以判断车辆的运行状态,从而决定是否进行换挡操作。
2. 转速传感器:自动变速器还配备了转速传感器,用于测量发动机和传动系统的转速。
通过监测转速传感器的信号,自动变速器可以了解发动机的负载情况和转速变化,从而决定是否进行换挡操作。
3. 控制单元:自动变速器的控制单元是整个系统的核心,它接收来自车速传感器和转速传感器的信号,并根据预设的换挡策略,来控制变速器的工作。
控制单元根据车辆的速度、负载和驾驶者的需求,实时判断是否需要进行换挡操作,并发送控制信号给变速器执行换挡操作。
4. 换挡执行机构:自动变速器内部有一套复杂的换挡执行机构,用于根据控制信号来实现换挡操作。
换挡执行机构包括离合器、制动器和换挡齿轮等部件,通过它们的协调工作,可以实现变速器的换挡操作。
自动变速器的自动换挡原理可以简单概括为:通过车速传感器和转速传感器监测车辆的运行状态和发动机的负载情况,控制单元根据预设的换挡策略来判断是否需要进行换挡操作,并通过换挡执行机构来实现换挡操作。
整个过程实现了自动化的换挡操作,使得驾驶者无需手动干预,即可实现平稳的行驶和高效的动力传输。
自动变速器的自动换挡原理在提高驾驶舒适性和行驶效率方面具有重要作用。
它可以根据车辆的实际情况来选择合适的挡位,使得发动机在最佳工作区间内运行,减少油耗和排放。
同时,自动换挡也可以避免驾驶者因频繁换挡而分散注意力,提高驾驶的安全性和便利性。
自动变速器的自动换挡原理是基于传感器和控制单元的协同工作,通过监测车辆的运行状态和驾驶者的需求,来实现自动的换挡操作。