中微子的发现
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
1995年诺贝尔物理学奖——中微子和重轻子的发现1995年诺贝尔物理学奖的一半授予美国加州斯坦福大学的佩尔(Martin L.Perl,1927—),奖励他发现了τ轻子①,另一半授予美国加利福尼亚州欧文(Lrvine)加州大学的莱因斯(Frederick Reines,1918—),奖励他检测到了中微子。
佩尔和莱因斯是对轻子物理学作出重大贡献的两位美国物理学家。
这是继鲍威尔(1950年发现π介子),张伯伦与西格雷(1959年发现反质子),丁肇中与里克特(1976年发现J/ψ粒子),鲁比亚和范德米尔(1984年发现W±、z0粒子),莱德曼、施瓦茨和斯坦博格(1988年发现中微子有不同属性),夏帕克(1992年发明多丝正比室)等人之后,国际科学界又一次将诺贝尔物理学奖这一殊荣授予实验高能粒子物理学领域的科学家,人数占本世纪后半叶的总领奖人数的12%。
从这一统计数字可以看出,50年代以来,实验高能粒子物理学的成就非常突出,是物理学界引以为豪的领域之一。
提到中微子的发现,应该先讲讲几件先驱的贡献。
中微子的概念是1930年泡利首先提出的。
当时摆在物理学家面前的疑难问题中有一个涉及β衰变。
β衰变和α衰变及γ衰变不一样,放射性元素发出的β电子能量是连续分布的,不像α和γ射线具有明确的分立谱。
而原子核的能态差是确定的,显然β衰变的连续谱是一种反常现象,不符合能量守恒定律的要求。
是某种未知的过程在起作用,把能量带走了,还是能量守恒定律不适用于β衰变?在这个疑难问题面前,玻尔甚至都准备放弃能量守恒定律的普适性,他提出也许能量守恒定律只适用于统计性的过程。
泡利是一位思想极为活跃的理论家,他在一封给同行的公开信中提出:“原子核中可能存在一种自旋为1/2,服从不相容原理的电中性粒子”。
β衰变中失踪的能量也许就是这一察觉不到的中性粒子——中微子带走的。
费米支持泡利的设想,他在1934年正式提出β衰变理论,很好地解释了β能谱的连续性问题,不久这一理论得到了正电子衰变实验的肯定。
中微子物理学中微子物理学,是研究中微子这种基本粒子的物理学科。
中微子是一种没有电荷、质量极小且几乎不与其他粒子发生相互作用的基本粒子。
虽然中微子数量庞大,但由于其弱相互作用特性,很难被探测到。
中微子物理学的发展为我们深入理解宇宙的起源、粒子物理标准模型的完善以及核反应堆、太阳等重要领域提供了重要方法和手段。
一、中微子的发现与性质中微子最早是由保罗·克里金和费米团队在1950年发现的。
他们通过研究核反应得出结论,存在一种新的中性粒子,与电子质量相当小,并且与物质相互作用相当弱。
这个新粒子被命名为中微子。
中微子是标准模型中的基本粒子,可以分为电子中微子、μ子中微子和τ子中微子。
它们都是没有电荷、质量极小的粒子,但质量却不为零。
中微子弱相互作用非常强,但与其他粒子的电磁相互作用和强相互作用非常弱。
二、中微子振荡中微子振荡是中微子物理学中的重要现象。
振荡现象由日本的横川阳一郎和加拿大的阿瑟·麦克唐纳等人在20世纪90年代实验证实。
他们发现,中微子在传播过程中会发生种族振荡,即不同种类的中微子在传播中会相互转换。
这种振荡现象表明中微子质量状态并非固定的,会随着传播过程发生改变。
这项发现对中微子物理学的研究产生了重要影响。
中微子振荡的研究有助于精确测量中微子的质量和深入理解中微子的性质。
三、中微子天文学中微子天文学是利用中微子探测技术研究天体物理学的重要分支。
中微子弱相互作用的特性使得中微子可以穿透巨大的物质,并携带着有关宇宙起源和高能天体现象的重要信息。
利用中微子探测技术,科学家们可以观测到来自宇宙各个角落的中微子,从而窥探宇宙的奥秘。
通过观测太阳中微子,科学家们可以了解到太阳核心的情况,以及太阳能量的产生机制。
此外,中微子还可以帮助我们研究超新星爆发、中子星、黑洞等天体现象,为我们了解宇宙的演化提供了重要线索。
四、中微子物理学的研究方法和技术中微子物理学的研究需要借助先进的实验设备和技术。
中微子的发现的过程及其在现代物理学中的意义(1)中微子的提出要追溯中微子发现的经过,还要从19世纪末20世纪初对放射性的研究谈起.当时科学家们发现,在量子世界中能量的吸收和发射是不连续的.不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的.这是由于原子核在不同能级间跃迁时释放的,是符合量子世界的规律的.奇怪的是,物质在β衰变过程中释放出的由电子组成的β射线的能谱却是连续的,而且电子只带走了它应该带走的能量的一部分,还有一部分能量失踪了.瑞士物理学家泡利在1931年最先假设有种新粒子“窃走了”能量.在1931年,泡利在美国物理学会的一场讨论会中提出,这种粒子不是原来就存在于原子核中,而是衰变产生的.1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子”正名为“中微子”. 1933年意大利物理学家费米提出了β衰变的定量理论,指出自然界中除了已知的引力和电磁力以外,还有第三种相互作用——弱相互作用.β衰变就是核内一个中子通过弱相互作用衰变成一个电子、一个质子和一个中微子.他的理论定量地描述了β射线能谱连续和β衰变半衰期的规律,β能谱连续之谜终于解开了.如果中微子有引力质量,那么根据Einstein 的质能方程,必须把能量E*的一部分用来产生中微子,这样留给电子的能量就比E*小.泡利推算出中微子是没有质量的观点是错误的,由于中微子的引力质量非常小,因此在埃利斯的实验中发现电子也偶尔确实会有能量为E*的情况.泡利的中微子假说和费米的β衰变理论虽然逐渐被人们接受,但终究还蒙上了一层迷雾:谁也没有见到中微子.就连泡利本人也曾说过,中微子是永远测不到的.(2)中微子的发现在泡利提出中微子假说的时候,我国物理学家王淦昌正在德国柏林大学读研究生,直到回国,他还一直关心着β衰变和检验中微子的实验.1941年王淦昌写了一篇题为《关于探测中微子的一个建议》的文章,发表在次年美国的《物理评论》杂志上.1942年6月,该刊发表了美国物理学家艾伦根据王淦昌方案作的实验结果,证实了中微子的存在,这是当年世界物理学界的一件大事.但当时的实验不是非常成功,直到1952年艾伦与罗德巴克合作,才第一次用成功地完成了实验,同一年,戴维斯也实现了王淦昌的建议,并最终证证明中微子不是几个而是一个.在电子俘获试验证实了中微子的存在以后,进一步的工作就是测量中微子与质量相互作用引起的反应,直接探测中微子.由于中子与物质相互作用极弱,这种实验是非常困难的.直到1956年,这项试验才由美国物理学家弗雷德里克·莱因斯完成.首先实验需要一个强中微子源,核反应堆就是合适的源.这是由于核燃料吸收中子后会发生裂变,分裂成碎片时又放出中子,从而使其再次裂变.裂变碎片大多是β放射性的,反应堆中有大量裂变碎片,因此它不仅是强大的中子源,也是一个强大的中微子源.因为中微子反应几率很小,要求用大量的靶核,莱因斯选用氢核(质子)作靶核,使用了两个装有氯化镉溶液的容器,夹在三个液体闪烁计数器中.这种闪烁液体是是一种在射线下能发出荧光的液体,每来一个射线就发出一次荧光.由于中微子与构成原子核的质子碰撞时发出的明显的频闪很有特异性,从而证实了中微子的存在.其检测机制是:1)核反应堆里的beta衰变会产生中微子和反中微子(泡利的假设);2)一部分反中微子应该会被质子俘获而变成中子和正电子;3)正电子会碰到电子而湮灭,产生一对伽玛光子;4)中子会被镉核子俘获而产生光子(比正负电子对湮灭约晚几个微妙).这样,这一理论机制应该意味着同时有三个光子的产生.所以,实验物理学家就用一种“符合电路”检测三个光子同时出现的事件.只要同时检测到了三个光子,就认为檢测到了反中微子.但是其中的每一步理论预言的反应是无法单独检测的.1978年,斯坦福大学物理学家马丁·佩尔和同事发现了τ轻子,在理论上这意味着τ中微子的存在,因为中微子是轻子的“前辈”.但是,由于τ中微子几乎没有质量,又不带电,且几乎不与周围物质相互作用,因而一直难寻踪迹.1982年,费米实验室的科学家用实验支持了τ中微子存在的假设.1989年,欧洲核子研究中心科学家证实τ中微子是标准模型中的第三个,也是最后一个轻中微子.1980年,前苏联的科学家曾对氚b能谱的测量推得中微子有静止质量.1998年6月,日本科学家经过一段时间的观测后,也证实了中微子具有静止质量.根据电子、放射性核和子核的旋转情况,泡利推算出中微子具有自旋,是左手征的.在量子力学中,场的能量集中在波包中,electric field的能量集中在光子中,因此引力场的能量应当集中在中微子中.光波是electromagnetic field(即电磁质量)的传播,机械波是中微子(即引力质量)的传播.它们具有共性.(3)现代物理学对于中微子的研究新华社东京2006年2月15日电(记者钱铮)日本、美国等8个国家的科学家15日正式启动“冰立方”计划,准备借助南极点附近的冰观测宇宙的高能基本粒子———中微子.共同社15日援引日本千叶大学副教授吉田滋的话说,“冰立方”计划将依靠4800个检测仪,观测中微子和冰撞击时所产生的微弱的光,目前安装完成的540个检测仪已经投入观测工作.目前,8个国家的科学家正在南极点附近的冰层垂直向下挖洞,最深达冰面以下2500米.他们将间隔17米设置的60个检测仪用电缆连接起来,并把电缆下放到冰洞中深1400米至2500米的位置.科学家们打算在六角形的广阔冰层上,以125米的间隔设置80个这样的冰洞.到2009年,科学家们计划在南极建成体积为1立方公里的中微子观测站———“冰立方”.它的体积将是目前世界最大的中微子观测装置———日本的“超级神冈”体积的2万倍,主要观测来自北极方向穿过地球的中微子. 据悉,“冰立方”计划将耗资约300亿日元(约合2.57亿美元),其中美国承担80%,剩下的20%由日本、英国、德国、比利时、荷兰、瑞典和新西兰7个参与国分担. 中微子是一种非常小的基本粒子,广泛存在于宇宙中.它可以自由穿过地球,不与任何物质发生作用,因而难以捕捉和探测,被称为宇宙间的“隐身人”.中微子研究是当前物理学研究的一大热点,美国科学家雷蒙德•戴维斯和日本科学家小柴昌俊因为在探测宇宙中微子方面取得的成就而获得2002年诺贝尔物理学奖.据新华社北京2006年6月8日电中国和美国科学家将联手在大亚湾核电站进行大规模的粒子物理实验.这项耗资近5000万美元的实验是中美两国迄今最大的基础科学研究合作项目.主持这个项目的中国科学院院士、中国科学院高能物理研究所所长陈和生8日在接受新华社记者专访时说:“国际合作组将在大亚湾核电站附近设置3个探测器进行中微子测量.”他说:“我们将在2008年建成隧道,2009年安装探测器,2010年开始获取数据.”根据计划,中方将投入1.5亿元人民币(约合1870万美元),负责基本建设和建造一半探测器;美方投入2500万至3000万美元,负责建造另一半探测器.陈和生说:“比较国际上目前进行的太阳、大气、反应堆和加速器这几类中微子实验,反应堆中微子实验最有可能获得突破性成果.”大亚湾与岭澳核电站群目前共有4个反应堆.大亚湾核电站紧邻高山,可以提供中微子实验必需的宇宙线屏蔽,这是一个巨大的优势.世界上其他可用于反应堆中微子实验的核电站附近都缺乏足够的岩石覆盖.陈和生说:“我们已完成大量深入研究和计算,并多次实地考察,提出利用大亚湾反应堆群精确测量中微子混合角θ13的设想.这是目前世界上精度最高的实验方案.”中微子探测器为半径2.6米、高5米的圆柱体,每个重约100吨,里面分隔成3层同心圆柱.3个探测器将分别放置在山腹内,最近的距核电站360米,最远的2000米.一条隧道从地面进入山腹,连接3个放置探测器的地下实验室.联合投资这个重要实验并将参加合作研究的机构包括美国的布鲁克黑文国家实验室、劳伦斯·伯克利国家实验室.陈和生说:“大亚湾反应堆中微子实验投入相对较少而物理意义重大,有可能获得重大创新成果,这是中国基础科学研究领域的一次重大机遇.”。
中微子物理学中微子是一种神秘而又神奇的基本粒子,其发现和研究不仅对粒子物理学产生了重大影响,也深刻地影响了我们对宇宙和基本物理定律的理解。
本文将介绍中微子的发现历程、性质特征以及对物理学的重要意义。
一、中微子的发现历程中微子的存在假设最早可以追溯到1930年代,但直到1956年,物理学家Clyde Cowan和Frederick Reines才首次成功地探测到中微子。
他们在位于南卡罗莱纳州的Savannah River核电站进行实验,利用了中微子与质子反应产生的反应截面相对较大的特点。
这一发现引起了学界的广泛关注,并使中微子物理学成为了新的研究领域。
二、中微子的性质特征中微子是一种基本粒子,没有电荷且质量极轻。
根据标准模型的推断,中微子的质量应该非常接近于零,但实验证据似乎表明中微子具有微小的非零质量。
此外,中微子还具有弱相互作用,几乎不与物质发生相互作用,可以穿透地球和太阳等大质量物体。
这一特性使中微子成为了天体物理学和宇宙学中的重要研究对象。
三、中微子对物理学的影响1. 中微子振荡现象的发现:20世纪末和21世纪初,通过对中微子实验数据的研究,科学家们发现了中微子振荡现象,即中微子在传播过程中会发生类型的转变。
这一发现揭示了中微子具有质量的事实,推翻了原来的中微子质量为零的假设,并为粒子物理学的发展提供了重要线索。
2. 宇宙学中的应用:中微子与宇宙学的关系密切。
通过研究中微子在宇宙中的产生、传播和探测,科学家们可以了解宇宙演化的过程和宇宙中的物质组成。
中微子的研究有助于揭示宇宙的奥秘,并为我们了解宇宙的起源和发展提供了重要线索。
3. 物理学模型的改进:中微子不按标准模型的预期运动和相互作用,因此对于中微子的研究促进了物理学模型的改进和完善。
科学家们提出了多种拓展标准模型的理论,如中微子海森堡模型、大统一理论等,用于解释中微子的性质和行为,推动了物理学理论的进步。
结语中微子物理学是粒子物理学中一个重要且充满挑战的研究领域。
5、中微子的发现要追溯中微子发现的经过,还要从19世纪末20世纪初对放射性的研究谈起。
当时,科学家们发现,在量子世界中,能量的吸收和发射是不连续的。
不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的。
这是由于原子核在不同能级间跃迁时释放的,是符合量子世界的规律的。
奇怪的是,物质在B衰变过程中释放出的由电子组成的B射线的能谱却是连续的,而且电子只带走了它应该带走的能量的一部分,还有一部分能量失踪了。
瑞士物理学家泡利在1931年最先假设有种新粒子“窃走了”能量。
在1931年,泡利在美国物理学会的一场讨论会中提出,这种粒子不是原来就存在于原子核中,而是衰变产生的。
1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子〃正名为“中微子〃。
1933年,意大利物理学家费米提出了B衰变的定量理论,指出自然界中除了已知的引力和电磁力以外,还有第三种相互作用一弱相互作用。
B衰变就是核内一个中子通过弱相互作用衰变成一个电子、一个质子和一个中微子。
他的理论定量地描述了B射线能谱连续和B衰变半衰期的规律,B能谱连续之谜终于解开了。
如果中微子有引力质量,那么根据Einstein的质能方程,必须把能量E*的一部分用来产生中微子,这样留给电子的能量就比E*小。
泡利推算出中微子是没有质量的观点是错误的,由于中微子的引力质量非常小,因此在埃利斯的实验中发现电子也偶尔确实会有能量为E*的情况。
泡利的中微子假说和费米的B衰变理论虽然逐渐被人们接受,但终究还蒙上了一层迷雾:谁也没有见到中微子。
就连泡利本人也曾说过,中微子是永远测不到的。
在泡利提出中微子假说的时候,我国物理学家王淦昌正在德国柏林大学读研究生,直到回国,他还一直关心着B衰变和检验中微子的实验。
1941年,王淦昌写了一篇题为《关于探测中微子的一个建议》的文章,发表在次年美国的《物理评论》杂志上。
1942年6月,该刊发表了美国物理学家艾伦根据王淦昌方案作的实验结果,证实了中微子的存在,这是这一年中世界物理学界的一件大事。
重数为零的微粒子——中微子物理学中微子是一种质量极小、电荷极弱的基本粒子,它们几乎没有与其它物质发生作用的能力,因此被称为重数为零的微粒子。
中微子物理学是研究中微子的性质、特性和产生、传播、检测等方面的一个重要领域,在现代粒子物理学和天体物理学中具有重要地位。
一、中微子的发现中微子最早在放射性衰变中被观察到。
1930年代,科学家们发现放射性核素会放出高能电子或正电子,这些粒子称为β粒子。
但后来发现,β衰变的能量守恒定律无法解释实验结果,因为电子的总能量似乎小于放射性核素释放的能量。
1956年,意大利物理学家帕维亚尼和中国物理学家杨振宁提出中微子假设,即核衰变产生中微子并将能量带走,从而解决了这个难题。
随着技术的进步,科学家们开始研究中微子的性质和特性。
1962年,美国物理学家莱德曼成功地探测到了太阳中微子,这一探测成果对研究太阳和中微子物理学产生了重要影响。
此后,科学家们利用中微子进行了许多重要实验,逐渐揭示了中微子的内在特性。
二、中微子的三种种类在中微子物理学中,中微子可以分为电子中微子、$\mu$子中微子和$\tau$子中微子三种。
它们分别与电子、$\mu$子和$\tau$子相联系。
这三种中微子在物理性质上很相似,但它们的质量、能量散布规律、产生机制等方面都不同。
电子中微子最早被发现,它只与电子发生作用,并且参与核反应。
$\mu$子中微子与$\mu$子相联系,$\tau$子中微子与$\tau$子相联系。
三种中微子在自然界中经常以共同的方式产生,如太阳核反应等,因此深入了解中微子的性质和特性对了解整个自然界也是有帮助的。
三、中微子的检测方法中微子对物质交换的能力非常弱,所以检测它的方法变得异常困难。
科学家们通过设备的极端灵敏度、直接的高精度实验和理论模型等方式去解决这个问题。
目前,对中微子进行检测的方法主要有:1、加速器实验利用高能加速器加速质子产生中微子,让中微子与物质发生相互作用,产生其他粒子并探测这些粒子,从而获得中微子的信息。
物理学中的中微子及其探测技术中微子是物理学中非常神秘和特殊的一种粒子。
它的质量极小,几乎不和其他物质产生任何相互作用,这使得它在宇宙中的传播非常广泛。
中微子也是太阳、恒星、超新星等天体中核反应的产物,因此理解中微子的特性对于我们研究宇宙的起源和演化非常重要。
中微子的发现可以追溯到1930年代,由福建籍科学家王淦昌提出。
但是当时的技术还不足以探测到这些微小的粒子。
直到1956年,美国物理学家考内斯基和莫里斯利共同发现了中微子,这恰好也是核反应中的一次观测。
中微子是一种轻质子和中性粒子的复合体。
据估算,中微子的质量大约是电子的百万分之一,非常透明。
它因为几乎和一切物质无法作用,所以经常被称为“鬼粒子”或“无形之物”。
尽管中微子的存在很难被检测,但是物理学家们经过多年的努力,在1956年发明了一个叫做“反应堆中微子”的探测器。
反应堆中微子是通过核反应过程中释放的中微子与其他物素之间发生相互作用而发现的。
另一种发现中微子的方法是由神经元粒子团队在1970年所发现的“太阳中微子”。
太阳中微子是在太阳中以核反应产生的中微子,它们可以穿过地球并到达探测器。
现代物理学家们针对中微子的探测技术已经不断进步。
目前,在日本的神岛,一个名为超级神岛的巨型中微子探测器已经投入使用。
这个探测器是由成千上万的探测器组成的,可以在宇宙强烈的中微子辐射中捕捉到相对大量的中微子,这对于对中微子的物理学研究非常有价值。
中微子的探测研究对我们理解宇宙的相关科学问题非常重要。
例如,通过对中微子的研究,一些物理学家确认了中微子是具有质量和能量波长的粒子,这对于我们了解物质的性质和宇宙的演化有很大的意义。
总之,中微子是物理学中一个非常神秘和特殊的粒子。
尽管它们的质量非常微小,但是对于我们了解宇宙的相关问题有非常重要的作用。
随着中微子的探测技术逐渐成熟,我们相信我们还将会了解到更多关于这个有趣的粒子的信息。
幽灵粒子中微子的隐秘世界在我们周围的宇宙中,存在着一种神秘而又普遍的粒子,那就是中微子。
中微子是一种基本粒子,没有电荷,质量极小,同时也没有稳定的内部结构。
虽然中微子在我们日常生活中并不具有直接影响力,但在宇宙学、粒子物理学等领域却扮演着重要角色。
而让人们着迷的是,中微子的隐秘世界究竟包含着怎样的奥秘呢?中微子的发现与性质中微子是由意大利物理学家恩里科·费米等人在20世纪50年代初次提出并发现的。
他们猜测,由于核反应而产生的中微子几乎没有相互作用,因此极难被检测到。
直到后来,在核反应堆实验中,科学家们才首次成功地捕获到了中微子的存在。
对于中微子的性质,科学家们进行了大量实验证明其几乎不与物质发生相互作用,并且有三种不同类型:电子中微子、穿越中微子和缠缠绕绕中微子。
由于其质量极小,速度接近光速,以及非常稀疏的相互作用特性,使得中微子成为了一种极为神秘的粒子。
中微子挑战传统物理模型在现代物理学领域中,标准模型被广泛认为是对物质和力之间相互作用的最好描述。
然而,由于中微子具有了传统物理模型无法解释的性质,使得科学家们需要重新思考这一模型。
例如,在过去的研究中发现,中微子具有自旋1/2,但标准模型无法解释其质量问题。
随着物理研究技术的不断进步,越来越多的数据显示出中微子可能涉及到新的物理规律,这也引发了对新物理学模型和核心理论的重新思考和研究。
中微子与宇宙学之谜除了在实验室中进行研究外,在宇宙学领域中,中微子也扮演着重要角色。
据科学家估计,宇宙中约有10亿个中微子穿过每平方厘米每秒。
这些来自太阳、地球核反应堆以及宇宙射线等不同来源产生的中微子流深深影响着宇宙演化和结构形成。
通过观测和研究地球产生的大气呼吸过程或者星际射线等现象,科学家们可以更深入地探索宇宙背后更加深邃而复杂的机制与秩序。
而其中微子作为介质和信使参与其中,并且其行为特性可能揭示出更多令人震惊并引人深思的现象。
未来展望与新发现尽管中微子的隐秘世界给科学家们带来巨大挑战,但也正是这种挑战激发了更多前沿领域的研究与探索。
中微子的发现
背景
从运动学理论可以知道,当一个粒子衰变为两个粒子时,动量和动能守恒,末态粒子的能量应为确定值。
而1914年,查德威克在实验中发现β衰变中放出的电子的能谱为连续谱,这意味着电子有各种不同的能量。
这是什么原因呢?
对查德威克发现的现象,梅特纳认为:原子发射的电子能量都具有观察到的最大值,最终观察到的是电子经过别的过程损失一定能量后的次级电子。
艾利斯(C.D.Ellis)和伍斯特(W.A.Wooster)设计了一个实验,运用一个量能器把所有产生的粒子收集起来,即使初级电子的能量被次级过程重新分配,也能从收集到的总能量算出每次β衰变放出的平均能量,它应当等于观察到的电子能谱极大值。
可是,1927年他们的实验结果表明,量能器得到的只是最后射出的电子能量,其平均值与连续谱相符,而看不到次级发射的其它能量。
由此可见并没有什么次级过程起作用的迹象。
面对这种困惑形势,玻尔对能量守恒理论提出了质疑。
玻尔的主张遭到激烈的反对,狄拉克表示:“我宁可不惜任何代价来保持能量的严格守恒。
”泡利也不同意玻尔的观点,1930年,他提出:β衰变中,可能存在一种电中性的粒子带走了电子一部分能量。
他把这一电中性的粒子称为中微子。
泡利的这一建议是很大胆的,因为这样的粒子是很难直接探测出来的,但这一假设可以使人们摆脱有关核结构理论及β衰变所遇到的困境。
1933年10月的索尔维会议对中微子概念的发展具有重大意义。
泡利在会上再次介绍了他对这个新粒子的看法。
尽管海森伯还持有怀疑态度,费米却对它做了肯定,并且已经认识到它与中子的区别。
那届索尔维会议后仅两个月,费米即在核的质子-中子模型的基础上,发表了有关β衰变的理论。
他用相对论量子力学描述费米子,又利用狄拉克辐射理论的产生与湮灭算符及遵从二次量子化的方法导出了寿命公式和β衰变的连续能谱公式,成功的完成了他的β衰变理论。
费米的β衰变理论,不仅圆满地解释了整个β衰变过程,澄清了有关β衰变的疑难,同时也确立了有关核结构的理论。
按照费米的理论,在β衰变里,中微
子总是和电子一起放出来,它们不都是原子核中原有的成分。
基本的β衰变可以写成
n→p+e +v e
其中的p是质子,v e是反中微子。
发现过程
中微子只参加弱相互作用,且穿透能力极强,几乎可以不受任何阻碍地穿过地球,由此可见中微子探测是十分困难的。
1941年,中国物理学家王淦昌首先提出利用K-俘获原子的反冲测量,确定中微子的间接方法。
他指出:“当一个β+放射性原子不是放射一个正电子,而是俘获一个K层电子时,反应后的原子的反冲能量和动量仅仅取决于所放射的中微子,原子核外电子的效应可以忽略不计。
于是,只要测量反应后原子的反冲效应对所有的原子都是相同的。
”1942年,美国物理学家艾伦(J.S.Allen)按照王淦昌的方案进行了测量,取得了肯定的结果,但并未完全成功。
1952年,罗德拜克(G.W.Rodeback)和艾伦又重新进行了K俘获实验,测出了原子的反冲能。
这一年戴维斯(R.Davis)成功地重复了艾伦1942的实验,也获得了成功。
这样,确定中微子存在的间接检验得到了实验上的支持。
在核反应中,中微子的发射数量级极大,它们是在核裂变中子产物的β衰变中产生出来的。
通过对核裂变产物的探测,有可能看到中微子的存在。
1956年,中微子终于被洛斯阿拉莫斯实验室的美国物理学家柯恩(C.C.Cowan )与莱因斯(F.Reines)首先在核反应堆中检测到。
最后的实验是他们在1959年美国原子能委员会所属的赛凡纳河工场完成的,这个实验确实巧妙地证实了反中微子的存在,它的结果很快被粒子物理界承认,它也被列为20世纪物理学的重要实验之一。
莱因斯也因此获得了1995年的诺贝尔物理学奖。
中微子的存在被证实后,为了探测到中微子,人们把目光转向了宇宙。
最早进行实验的是美国布鲁克海文国家实验室的物理学家戴维斯等人,他们首先用四氯化碳(CCl4)作为探测介质,中微子与之相撞后,即
νe+37Cl→37Ar+e
反应生成的37Ar(Ar是惰性元素),一旦生成后便自动脱离氯分子,聚合为小氩气泡。
37Ar具有放射性,即使量很小,也能因为它具有的放射性而被识别出来。
戴维斯利用这个装置终于证实了中微子的存在。
意义
尽管中微子的提出颇有些戏剧性色彩,而且对它的认识也是极为曲折,但以后的研究证明,中微子是轻子的一种,是一种“基本粒子”。
中微子具有一些奇妙的性质,它在微观世界中扮演着奇妙的角色。