细谈抗菌肽抗肿瘤作用的研究进展
- 格式:doc
- 大小:32.00 KB
- 文档页数:10
抗菌肽的研究进展及展望抗菌肽是一类存在于生物体内的小分子多肽,在许多生物体中具有广谱的抗菌活性。
由于抗菌肽具有不易产生耐药性、杀菌快速、作用广泛等优点,因此受到了广泛的研究关注。
本文将对抗菌肽的研究进展及展望进行综述。
目前,抗菌肽的研究主要集中在以下几个方面:抗菌肽的发现与鉴定、分子机制研究以及应用前景。
首先,抗菌肽的发现与鉴定是抗菌肽研究的基础。
传统的抗菌肽发现方法主要依赖于生物体中天然存在的抗菌肽的提取和鉴定。
而现代的研究方法通过基因工程技术或化学合成手段,合成了大量具有抗菌活性的肽段。
同时,利用蛋白质组学技术,如质谱分析和基因芯片技术,能够加速对抗菌肽的鉴定过程,扩大了抗菌肽的种类。
其次,抗菌肽的分子机制研究对于深入理解其抗菌活性至关重要。
已经有许多研究对抗菌肽的杀菌机制进行了探索。
一方面,抗菌肽通过与细菌细胞膜相互作用,破坏细菌细胞膜的完整性,导致细胞内的物质渗漏,并最终引起细胞死亡。
另一方面,抗菌肽还可以通过调节免疫反应来发挥其抗菌作用。
近年来的研究表明,抗菌肽能够调节机体免疫细胞的功能,促进炎症反应,增强机体的抗菌能力。
最后,抗菌肽在临床应用中具有广阔的前景。
由于抗菌肽具有广谱的抗菌活性,不易产生耐药性的特点,因此被认为是一种具有巨大潜力的抗菌药物。
目前,已经有一些抗菌肽被商业化生产,并成功应用于临床。
例如,抗菌肽polymyxin B和polymyxin E被用于治疗产生多药耐药的革兰氏阴性菌感染。
此外,抗菌肽也可以用于生物防治、食品保鲜等领域。
尽管抗菌肽在抗菌药物领域中具有巨大的潜力,但其在实际应用中仍然面临一些挑战。
首先,抗菌肽的生产成本较高,限制了其大规模生产和应用。
其次,抗菌肽的稳定性和毒副作用也需要进一步研究和改善。
因此,未来应加强对抗菌肽的生产和改良以及对其在临床应用中的消毒副作用进行更加深入的研究。
总的来说,抗菌肽作为一类具有广泛应用前景的抗菌药物,其研究已取得了显著的成果。
抗菌肽的抗癌研究及其机制剖析随着现代医疗技术的不断进步,治疗癌症的方法也越来越多样化和有效。
近年来,一种叫做抗菌肽的物质引起了人们的关注,因为它被证明在治疗癌症方面有着独特的功效。
本文将介绍抗菌肽的抗癌研究及其机制剖析,以期帮助人们更好地认识和理解这个领域的最新进展。
一、抗菌肽概述及其抗癌效果抗菌肽是一种由许多生物产生的小分子肽链,具有广谱的杀菌作用。
它们通过结合并破坏细胞膜,使细胞死亡。
抗菌肽的主要来源包括动物、植物和微生物等。
最近的研究显示,除了其广泛的抗感染和免疫调节作用外,抗菌肽还能够对癌细胞起到抑制和杀死的作用。
研究人员发现,当抗菌肽与癌细胞接触时,它们能够通过多种途径抑制癌细胞的生长、增殖和迁移,从而达到治疗癌症的目的。
这使得抗菌肽成为了一种非常有前途的抗癌治疗药物。
二、抗菌肽抑制癌细胞增殖和生长的机制尽管抗菌肽能够杀死癌细胞,但它们更常见的作用是抑制癌细胞的增殖和生长。
这一机制涉及到多种生物学过程和信号途径,下面对其中的几种主要途径进行详细阐述:1. 细胞周期调控:抗菌肽能够通过调控细胞周期相关的蛋白表达,影响癌细胞的增殖和分裂。
例如,一些抗菌肽能够抑制白血病细胞的G1/S细胞周期进程,从而减缓其增殖速度。
2. 细胞凋亡:抗菌肽能够通过诱导癌细胞凋亡来激活免疫系统并抑制癌细胞的增殖。
凋亡是一种自我毁灭性的细胞死亡方式,抗菌肽通过多种路径诱导凋亡,如激活Caspase酶等。
3. 氧化应激:大多数癌细胞都表现出较高水平的氧化应激,抗菌肽能够通过抑制癌细胞内部的氧化应激反应,从而防止癌细胞生长和增殖。
三、研究进展和展望当前,已经有很多研究证实:抗菌肽具有抑制癌细胞的功能,但是研究仍处于初级阶段。
从基础研究到临床应用需要更多的时间和研究资源,而且现有的试验仍然没有确定最优的剂量、给药途径和时间点等信息。
此外,伴随着抗菌肽的应用,也出现了一些问题,如耐药性、毒副作用等,这些问题也需要进一步解决。
细谈抗菌肽抗肿瘤作用的研究进展本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!癌症是导致数以百万计人死亡的重要原因之一,其发病机理多由于异常细胞不受控制地生长和扩散。
常规的治疗手段,如手术和化疗成功率均低,且存在复发的风险;同时,前列腺癌、胰腺癌和恶性黑色素瘤仅用化疗治疗效果较差。
为避免肿瘤的复发和( 或) 发生转移,辅助治疗药物( 如DNA 烷基化剂、激素激动剂/ 拮抗剂和抗代谢药物等) 被广泛应用,但这些药物选择性较差,攻击癌细胞的同时,对正常细胞损害较大,导致患者发生骨髓抑制和血小板减少( 血细胞生成减少)、黏膜炎( 消化道炎症) 和脱发等。
此外,这些化合物可使癌细胞产生耐药性,不宜长期使用。
如今,随着与癌症相关的疾病数量的日益增加,面对常规疗法的缺点和不足,新的治疗方案呼之欲出。
抗菌肽已被证实是一种分子靶向抗癌药物,这种小分子多肽可有效进行组织渗透并被异质癌细胞吸收,进而杀伤肿瘤细胞。
与现有疗法联合作用将极大改善抗癌药物对肿瘤细胞的选择性,并减少对健康组织的有害影响,它的开发与应用为癌症治疗带来新的希望。
1具有抗癌活性的抗菌肽的分类和选择性从结构的角度来看,大多数具有抗癌活性的抗菌肽具有α- 螺旋或β- 折叠的构象[4],针对其靶细胞,可将它们分为两大类:第一类包括对微生物和癌细胞具有活性而对健康的哺乳动物细胞无活性的肽,如cecropins 和magainins ;第二类包含的抗菌肽对微生物、正常细胞和癌细胞均具有杀伤作用,如人中性粒细胞防御素HNP-1。
抗菌肽以溶膜或非溶膜机制选择性杀伤肿瘤细胞。
基于这种选择性机制的溶膜肽的活性依赖于抗菌肽自身特点及靶膜的特性。
抗菌肽对肿瘤细胞和正常的哺乳动物细胞的选择性基于恶性肿瘤细胞膜带的净负电荷,这些负电荷由磷脂酰丝氨酸、O- 糖基化的黏蛋白唾液酸和肝素等赋予。
抗菌肽的研究进展
一、抗菌肽的概念
抗菌肽是一类具有抗菌作用的天然肽产物,又称抗微生物活性多肽,
是由多个氨基酸组成的高分子小分子,具有抗菌、抑菌、杀菌、抗真菌、
抑真菌以及杀真菌等特异性活性,能够对细菌、真菌形成有效的抑制作用。
二、抗菌肽的现状
近年来,抗菌肽研究领域发展迅速,诸如蛋白质分析、分子克隆和功
能研究等领域已取得了重大进展。
随着抗菌肽在临床应用的广泛开展,研
究领域也在不断拓展。
目前,研究者们已经发现了具有多种抗微生物活性
的肽类物质,如青蒿素肽、抗菌肽素肽、抗生素肽、抗真菌肽等,并开展
了许多研究工作。
三、抗菌肽的抗菌机制
抗菌肽的结构多种多样,但基本上都是短的氨基酸序列。
它们可以通
过改变细菌的细胞壁、抑制细菌的生长和促进细菌的死亡来发挥活性,而
且对细菌的抑制作用比其他抗菌剂强。
一些抗菌肽具有电荷修饰,可以抑
制细菌胞壁的运动,阻止细菌繁殖。
另外,一些抗菌肽具有抑制水解酶的
活性,这些酶可以改变细菌细胞壁的结构,从而降低细菌的耐药性。
抗菌肽的研究进展抗菌肽是一种生物活性肽类分子,具有广泛的抗菌谱和多种生物活性。
其研究涉及基础生物学、生物技术和医疗健康等多个领域,近年来得到了广泛关注。
一、抗菌肽的概述抗菌肽最初被发现于20世纪50年代,是一类长度在10~100个氨基酸之间、分子量在1~10千道尔顿的小分子化合物。
它们主要存在于植物、动物、微生物等生物体内,为一种特殊的免疫分子,具有广谱的抗菌、抗病毒和抗真菌等生物活性。
因此,抗菌肽已成为新型抗感染药物的研究热点之一。
抗菌肽可以激活宿主免疫系统,促进嗜中性粒细胞吞噬病原体,调控炎症反应等,同时还可以直接破坏细菌膜、DNA和RNA分子等,具有强大的杀菌能力。
二、抗菌肽的种类目前已经发现和鉴定的抗菌肽有数百种,其中最为常见的是以下几类:1、防御素:是由哺乳动物的单核细胞、肺泡、胃液和吐泄物等分泌的一种抗菌肽,主要作用于革兰氏阳性菌和革兰氏阴性菌。
2、宏观藻类鱼类抗菌肽:是由宏观藻类和鱼类细胞制造出的一些无效肽类,主要杀菌作用是针对革兰氏阳性菌。
3、微生物抗菌肽:是由某些微生物体分泌的与内共生菌、外来菌和真菌等有广泛抗菌作用的肽类。
4、合成抗菌肽:与其他抗菌肽不同,合成抗菌肽是经过化学合成得到的一系列分子,因此其抗菌谱、抗菌速度、抗菌强度等性质可以根据需要调整和改进。
三、抗菌肽的应用前景抗菌肽作为新型抗感染药物具有很好的应用前景。
据报道,美国一些单位已经使用抗菌肽制成肺炎克雷伯菌感染的口服制剂,并且该制剂已进入三期临床试验,有望在未来取代现有的抗生素。
此外,抗菌肽还可以用于保健食品、动物饲料、化妆品等领域。
比如抗菌肽可以用于保健食品中,改善人体免疫系统的健康水平,饲料则可以用于提高家禽、畜禽的生产效益和健康水平。
四、抗菌肽研究的挑战和机遇尽管抗菌肽的应用前景广阔,但是其研究也面临一些挑战和机遇。
1、抗菌肽的生产技术尚不成熟,生产成本较高;2、抗菌肽的应用场景和使用规模有待进一步扩展和加大;3、抗菌肽的作用机理和毒副作用还需要深入研究和认识,以及合适的应用剂量等。
抗菌肽的研究进展摘要:由于细菌对抗生素耐药性不断出现, 研发新型抗菌物质已迫在眉睫。
而抗菌肽是广泛存在于自然界生物中的具有广谱抗菌、抗病毒、抑制杀伤肿瘤细胞等作用的多肽。
本文介绍了抗菌肽的结构,抗菌肽的生物学活性,抗菌肽的作用机理和作用机制,以及抗菌肽的应用和前景。
关键词:耐药性,抗菌肽;作用机理;前景抗菌肽,简称ABP,是由宿主产生的一类能够抵抗外界病原体感染的小分子多肽。
广泛存在于各种生物体内。
1980 年,瑞典科学家Boman 等从天蚕蛹的血淋巴中分离得到天蚕素( cecropin ) 抗菌肽,使人们对抗菌肽的作用机理和应用有了一个崭新的认识。
目前世界上已知的抗菌肽共有1 700余种。
由于热稳定性强,且对较高离子强度环境有较强的适应性,不仅有广谱抗细菌能力, 而且有的对真菌、病毒及癌细胞也有一定的抑杀作用,最重要的是可以杀伤动物体内的肿瘤细胞,却又极少破坏动物体内的正常细胞,因此,抗菌肽的开发和应用研究已成为国内外昆虫学、生理学、药理学研究热点,在动植物转基因工程及药物开发领域及农业、食品等领域具有广阔的应用前景。
1 .抗菌肽的结构1 .1 一级结构据报道,已分离并测定其氨基酸序列一级结构的抗菌肽达几十种,且一级结构都比较相似,具有以下典型的特征:由20~70多个氨基酸残基组成的肽链,其N 端富含赖氨酸和精氨酸等阳离子型氨基酸,C 端富含丙氨酸、缬氨酸、甘氨酸等非极性氨基酸,中间部分则富含脯氨酸,且在许多特定位置都有一些较保守的氨基酸残基,这些高度保守的氨基酸残基是一些抗菌肽分子具有抗菌活性所不可缺少的,1. 2 二级结构通过圆二色性分析、二维核磁共振谱法及脂质体模拟实验研究抗菌肽的二级结构特征,结果表明,抗菌肽在一定条件下形成a-螺旋和β-折叠结构。
a-螺旋是一个近乎完美的水脂两亲结构,即圆柱形分子的纵轴一边为带正电-的亲水区,而对称面为疏水区。
这种两亲性结构是抗菌肽杀菌的关键,改变a-螺旋的螺旋度会影响抗菌肽的活性。
抗菌肽的研究现状与展望韩文瑜,孙长江(吉林大学畜牧兽医学院,长春 130062)[收稿日期]2009-09-18 [文献标识码]A [文章编号]1002-1280(2009)10-0011-09 [中图分类号]S859.4[摘 要] 耐药性细菌的出现致使现有抗菌药物对细菌感染治疗的疗效低下或无效,形成的危害日益严重,迫切需要开发出新型的抗菌制剂。
高效、低毒、广谱的抗菌肽作为最有希望代替抗生素的新药制剂倍受国内外科研工作者的关注,成为当前的研究热点。
本文综述了抗菌肽的生物学特性,生物学活性及其作用机制,抗菌肽的筛选策略,分析了影响抗菌肽应用中存在的问题,并对其应用前景进行了展望。
[关键词] 抗菌肽;研究进展;应用前景作者简介:韩文瑜(1955年-),男,博士,教授,主要从事分子细菌学与分子免疫学研究。
E -m a i:l hanwy @jl u .edu .cnR esearch Progress on Anti m icrobial Pepti des and Its D evelop m ent ProspectHAN W en-yu ,SUN Chang-jiang(C olle g e of An i ma lS cience and Ve t erina ryM ed i c i ne ,J ili n Un i v e rsit y,Changchun 130062;China )Abst ract :The e m ergence of an ti b i o tic-resistant bacteria m ake the bad or i n vali d therapeuti c effect of the curre -ntl y used anti b iotics used to co m bat bacterial i n fecti o ns ,w hich severely har m the hu m an and ani m al hea lth ,and every e ffort to develop nove l anti b acterial agents are i n great needed .Anti m icrob ial peptides have e m erged as effective broad-spectr um t h erapeutic agents w ith a pro m ising substitute for anti b iotic ,and anti m i c rob ial peptides have been a pri m ary focus o f ne w drug research wo rl d w i d e .This paper deals w ith an overv i e w o f t h e types ,bioactiv ities ,antibacterialm echan is m s ,se lection m et h ods .The prob le m s i n app lications of the anti b acteria l pept-i des and prospects for future researches are also m entioned .K ey w ords :anti m icrobia l pepti d es ;research pr ogress ;applicati o n prospect 当前,细菌性感染和细菌性疾病呈上升趋势,细菌耐药性的形成是一个重要的原因。
一、抗菌肽概念抗菌肽是生物体内存在的一种具有抗菌活性的小分子蛋白,氨基酸数目小于100,常带正电荷,并具广谱抗菌性的一类小肽,是生物体免疫防御系统产生的一类对抗外源性病原体致病作用的防御性多肽活性物质,是生物体先天免疫的重要组成成分,与干扰素、补体等组成了宿主的免疫防御系统,这类生物活性小分子是非专一性的免疫应答产物,具有广谱抗菌作用,它对革兰阳性菌、革兰阴性菌、真菌均有抑杀作用,还可以抗原虫、病毒,杀伤动物体内的肿瘤细胞,却不破坏动物体内的正常细胞。
抗菌肽抗菌时一般没有特殊受体,直接通过物理作用造成细胞膜的穿孔而达到广谱抗菌的效果,因而不会诱导抗药株的产生,它属于小分子多肽,在动物体内容易降解,并且无毒副作用及药物残留问题,因而是绿色环保型药物。
抗菌肽具有广谱的抗菌性,包括抗革兰氏阴性菌(G -)和阳性菌(G +)、抗真菌、抗病毒、抗肿瘤等尤其对耐药性细菌有杀灭作用。
二、抗菌肽分类抗菌肽在自然界分布广泛,来源不一,种类繁多,分类也多种多样。
抗菌肽除了具有广谱抗菌、抗真菌、抗病毒功能外,还具有抑制一些肿瘤细胞生长的作用。
(一)根据抗菌肽的结构分类 根据抗菌肽的结构可将其分为五类:(1)单链无半胱氨酸残基的α-螺旋,或由无规卷曲连接的两段α-螺旋组成的肽。
(2)富含某些氨基酸残基但不含半胱氨酸残基的抗菌肽。
(3)含1个二硫键的抗菌多肽。
(4)有2个或2个以上二硫键、具有β-折叠结构的抗菌肽。
(5)由其它已知功能的较大的多肽衍生而来的具有抗菌活性的肽。
(二)根据抗菌肽的来源分类 根据来源分类可分为4类:(1)昆虫抗菌肽包括天蚕素类和昆虫防御素。
天蚕素是从美洲天蚕的蛹中分离到的抗菌多肽。
此后,人们相继从家蚕、柞蚕、果蝇、麻蝇中分离到了此类多肽抗生素。
第1种昆虫防御素(M-asturyama)于1988年在一种双翅目昆虫肉蝇中发现,至今昆虫纲中已有15大类30多种防御素被报道。
杀菌肽类对革兰氏阳性菌和革兰氏阴性菌都具有很强的杀伤力,而对真菌和真核细胞没有毒性。
细谈抗菌肽抗肿瘤作用的研究进展
抗菌肽,也称为抗感染多肽,是一类具有抗感染活性的小肽。
研究人
员认为,它不仅可以作为抗生素来抑制细菌的生长,而且还具有抗炎和抗
肿瘤作用。
有越来越多的研究显示抗菌肽对治疗肿瘤具有显著的潜力。
本
文旨在综述近年来关于抗菌肽抗肿瘤作用的研究进展。
1、抗肿瘤机制
抗菌肽可以从多个方面抗肿瘤,例如促进免疫系统的正常功能,阻断
糖和蛋白质的吸收,抑制肿瘤细胞的增殖和转移,以及调节血管生成和血
管化学活性。
抗菌肽可以直接溶解肿瘤细胞,也可以通过抑制肿瘤血管生
成和肿瘤微环境改变来促进肿瘤细胞的死亡,从而减少肿瘤的发展。
此外,抗菌肽还可以通过诱导细胞凋亡,抑制宿主炎症反应并促进免疫细胞的活
跃及效应,从而增强免疫系统对肿瘤的抗御能力。
2、应用研究。
抗菌肽的研究进展抗菌肽是一类存在于人体动物、植物和微生物中的小分子肽类物质,具有广谱抗菌活性。
由于其独特的作用机制和广泛的抗菌谱,抗菌肽在医药领域备受关注。
以下将重点介绍抗菌肽的研究进展。
首先,对于抗菌肽的作用机制进展进行了深入研究。
抗菌肽作为一类具有天然免疫功能的小分子肽类物质,其作用机制主要包括破坏细菌细胞膜、干扰细胞内生理过程以及调节免疫反应等。
其中,破坏细菌细胞膜是抗菌肽主要的杀菌方式,抗菌肽通过与细菌细胞膜中的脂质相互作用,导致细菌细胞膜的破裂,进而导致细菌死亡。
此外,抗菌肽还能通过抑制细菌内部的重要生物过程如蛋白质合成、DNA复制等来达到抗菌作用。
其次,抗菌肽的抗菌谱也是研究的重点之一、抗菌肽对于广谱抗菌活性的表现是其优势之一,它们具有对抗细菌、真菌、病毒和寄生虫等的抗菌活性。
近年来,研究人员还发现了许多具有特殊功能的抗菌肽,如抗生物膜、抗癌等。
这些抗菌肽的研究,拓宽了抗菌肽的应用范围,为药物创新提供了重要的材料。
然后,对于抗菌肽的应用研究也取得了一些突破。
抗菌肽研究的重要应用领域之一是医药领域。
抗菌肽具有天然免疫功能,并且对于大多数耐药菌株也具有抗菌活性。
因此,抗菌肽在抗感染药物的开发中具有重要意义。
目前,已经有一些抗菌肽类药物成功进入临床应用阶段,并且取得了很好的治疗效果。
另外,抗菌肽还在生物农业、食品工业以及环境保护等领域也有很好的应用前景。
最后,抗菌肽的改性研究也是近年来的热点之一、由于天然抗菌肽的不足,一些改性研究成为了研究的重点。
改性抗菌肽是通过合成多肽或者改造天然肽的结构,提高其抗菌活性和稳定性,从而更好地适应临床需求。
目前,已经有一些改性抗菌肽获得了很好的研究成果,并且显示出了更好的抗菌效果。
总之,抗菌肽是一类具有天然免疫功能的小分子肽类物质,在医药领域具有广阔的应用前景。
近年来,抗菌肽的研究进展主要体现在作用机制的深入研究、抗菌谱的广泛拓展、应用领域的不断壮大以及改性研究的不断突破。
抗菌肽的研究进展抗菌肽是一类由生物体产生的天然抗微生物活性的多肽分子。
它们具有广谱、快速、低毒和不易产生耐药性等特点,被认为是一种具有潜力的新型抗感染剂。
近年来,对抗菌肽的研究取得了显著的进展。
其次,研究者对抗菌肽的结构和功能进行了深入研究。
抗菌肽通常具有一定的螺旋、折叠和β-折叠等次级结构,这种结构形成了孔道或通道,使抗菌肽能够通过破坏微生物的细胞膜而实现杀菌作用。
此外,抗菌肽还具有一些其他功能,如促进伤口愈合、免疫调节和抗肿瘤等。
这些研究为抗菌肽的优化和应用提供了理论基础。
另外,研究者对抗菌肽的制备技术进行了改进。
传统的合成和表达方法通常过程较长、成本较高。
近年来,基因工程技术的发展使得抗菌肽的大规模合成和生产成为可能。
利用重组蛋白技术、合成生物学和化学合成方法,可以高效、快速地制备各类抗菌肽。
同时,还开发了一系列载体系统,通过对抗菌肽的修饰、载体传递等方式,实现对抗菌肽性能和活性的调控和优化。
最后,针对抗菌肽的应用进行了广泛的研究。
抗菌肽可以用于治疗和预防感染性疾病,特别是对于那些多重耐药菌引起的感染,抗菌肽有望成为替代或辅助抗生素的药物选择。
此外,抗菌肽还可以用于食品保鲜和农业养殖业的疾病防控等领域。
此外,抗菌肽具有较低的毒副作用,因此被认为是一种潜在的治疗肿瘤的新型药物。
总之,抗菌肽作为一种新型的抗感染剂,其研究进展迅速。
通过对抗菌肽的发现、结构与功能研究、制备技术改进和应用研究等方面的不断探索,为抗菌肽的应用提供了更多的可能性。
随着对抗菌肽的深入研究,相信抗菌肽将成为未来抗感染领域的重要组成部分。
抗菌肽的研究进展王亮赵协常维山山东农业大学动物科技学院摘要:具有广谱高效杀菌活性的小分子多肽类物质———抗菌肽,是机体非特异性免疫系统的重要组成部分。
在动植物体内分布广泛, 是天然免疫防御系统的一部分。
据研究表明,抗菌肽对细菌、部分真菌、原虫、病毒、肿瘤细胞都具有杀伤作用。
从目前国内外在抗菌肽研究热点着手,分析阐述了抗菌肽的分类、作用机理、抗菌肽基因工程,及抗菌肽在农业、畜牧业中的应用,并对微生物针对杭菌肤的耐药性进行了简单讨论。
关键词:抗菌肽;基因工程;耐受性;作用机理;阳离子抗菌肽。
抗菌肽(Antibacterial pep tide)是生物细胞特定基因编码、经特定外界条件诱导产生的一类多肽,具有相对分子质量小、热稳定、杀菌范围广、作用机制独特等特点,不仅对细菌、真菌、病毒、支原体、衣原体、螺旋体及一些活性细胞有杀伤活性, 还在免疫调节、激素调节及刺激伤口愈合等方面有重要作用。
随着抗生素的大量使用,耐药性的问题越来越严重,寻找合适的活性物质来替代抗生素是解决这一问题最有效的途径。
抗菌肽具有水溶性好、热稳定、广谱抗菌及不易引起病原产生耐药性等优点,是理想的抗生素替代品。
笔者就目前国内外对抗菌肽的研究及抗菌肽在农业中的应用综述如下。
1 发展历程1975年瑞典科学家G.Boman等人[2]等从惜古比天蚕(Hyatophoracecropia)蛹中诱导分离得到一种杀菌肽,并将其命名为cecropin。
此后,许多抗菌肽相继被分离、纯化。
一些抗菌肽的氨基酸一级结构和基因序列得到确定。
80年代,有关抗菌肽的研究主要集中在大型的经济昆虫。
90年代以来,在继续对大型经济昆虫进行研究的同时,又扩展到一些小型昆虫和其它无脊椎及脊椎动物,抗菌肽已成为免疫学和分子生物学研究的热点。
2007年3月,中国科学院昆明动物研究所在动物来源的抗菌肽研究方面取得重要进展。
研究小组在单个两栖动物个体中发现了107种新型的抗菌肽类似多肽,占全世界已知抗菌肽总数的10%左右,并克隆了372条抗菌肽基因,分属于30个不同的多肽家族,是目前世界上发现的最丰富的抗菌肽资源。
抗菌肽的研究进展及展望抗菌肽是一类广泛存在于自然界的小分子肽链,具有抗菌、抗病毒、抗肿瘤等多重生物活性。
由于其广谱抗菌特性以及相对较低的抗菌耐药性,抗菌肽在医药领域具有重要的应用前景。
本文将对抗菌肽的研究进展及展望进行探讨。
目前,研究人员已经发现了大量具有抗菌活性的抗菌肽,并通过调整肽链序列、引入非天然氨基酸以及合成模拟多肽等方法改良抗菌肽的抗菌活性和稳定性。
此外,抗菌肽也被用于开发新型抗菌药物。
近年来,一些研究表明抗菌肽对多重抗药菌株具有抗菌活性,且不易出现明显的抗药性。
这使得抗菌肽在抗菌药物研究中表现出重要的开发潜力。
尽管已有大量的抗菌肽被发现与研究,但目前仍然存在一些问题和挑战。
首先,抗菌肽的抗菌活性与毒性之间的平衡仍然是一个难题。
一方面,为了提高抗菌肽的抗菌活性,研究人员通常需要增加其亲水性和溶解度,但这往往会导致抗菌肽的毒性增加。
另一方面,降低其毒性又会影响其抗菌活性。
因此,如何在保持抗菌活性的同时降低抗菌肽的毒性仍然是一个需要解决的问题。
其次,抗菌肽的机制研究仍然不够深入。
目前已有一些关于抗菌肽靶向细胞膜的机制研究,但抗菌肽的其他作用机制目前还不清楚。
进一步研究抗菌肽与靶菌细胞之间的相互作用机制,将有助于揭示其抗菌活性的底层原理,并指导对抗菌肽的结构优化和药物开发。
此外,抗菌肽的应用范围还可以进一步扩展。
目前,抗菌肽主要应用于抗菌药物领域,但其在其他领域的应用潜力也值得关注。
比如,抗菌肽可以用作食品保鲜剂,用于制造具有抗菌功能的材料以及开发抗菌肽药物的新途径等。
综上所述,抗菌肽是一类具有广泛生物活性的分子,具有重要的应用前景。
尽管目前仍存在一些问题和挑战,但随着对抗菌肽研究的深入和技术的发展,相信抗菌肽将在未来的医药领域发挥更大的作用。
抗肿瘤抗菌肽在药物载体中的应用研究近年来,肿瘤和感染依旧是人类健康面临的严峻问题之一。
由于传统抗生素对抗菌药物的消耗过大,而且存在细菌耐药性等问题,因此人们开始将目光投向新型的抗菌策略,抗菌肽逐渐受到关注。
同时,抗菌肽被发现还具有抗肿瘤作用,这为抗肿瘤策略的开发提供了可行性。
本文主要讲述抗肿瘤抗菌肽在药物载体中的应用研究。
一、抗菌肽的特点抗菌肽是细胞内或分泌性蛋白质或多肽,主要是在先天免疫中,通过杀死或限制细菌、真菌、病毒和寄生虫等微生物来保护宿主。
抗菌肽具有如下特点:1.广谱:抗菌肽不仅可以对抗细菌,还可以对抗病毒、真菌和寄生虫等微生物,具有广谱性。
2.在使用过程中不易出现耐药:抗生素的使用过程中,由于长期、不规范的使用,使细菌逐渐产生抗药性,这使得传统的抗菌药物的效果越来越差。
3.免疫识别不强:抗菌肽与细胞膜上的靶细胞分子结合,从而杀死细胞等,但与抗原抗体的识别方式不同,不容易激发免疫系统的响应。
二、抗肿瘤抗菌肽的应用抗肿瘤抗菌肽被广泛研究,证实了它在治疗肿瘤方面的作用,对于临床治疗提供了新的希望。
1.给药方式抗菌肽给药途径多种多样,包括口服、外用、注射等。
在临床治疗中,注射为主要途径,而在肺炎、皮炎等病例中,抗菌肽的外用方法也取得了一定的效果。
2.抗菌肽的药物载体在抗菌肽的使用过程中,因抗菌肽生化稳定性差等原因,常常需要采用载体技术,例如微球化、脂质体等,从而将抗菌肽包裹在这些载体中,提高药效。
3.联合用药联合使用两种或多种抗菌肽,不仅可以取长补短,同时还可以协同发挥作用,提高治疗效果。
例如,当人体内细菌稳定时,静注在乳酸球杆菌(Carnobacterium)中发现有毒素剪切酶肽与肿瘤细胞酸性酵素抗肿瘤肽同步治疗,最终发现明显减少了癌细胞存活数量。
此外,还有一些抗菌肽可以与传统化学药物联合使用,从而达到抗肿瘤的效果。
三、未来展望抗肿瘤抗菌肽是一种全新的肿瘤治疗策略,具有独特的机理,其疗效和不良反应的安全性已开始得到关注。
抗菌肽的抗肿瘤研究进展抗菌肽的抗肿瘤研究进展药学与临床研究PharmaceuticatandclinicaIResearch李正洋,童明,姚文兵中国药科大学生命科学与技术学院,南京210009摘要抗茵~k(AMPs)是具有抗茵活性的一类多肽,广泛存在于生物界.抗菌肽对肿瘤细胞有广谱杀伤作用.却对正常的哺乳动物细胞没有毒性作用.本文概述抗菌肽杀伤肿瘤细胞的多种作用机制,并探讨了将其开发为新型抗肿瘤药物的可行性.关键词抗茵肽;抗肿瘤活性;作用机制;应用前景中图分类号R979.1文献标志码A文章编号1673—7806(2010)04-377-04自从1974年瑞典科学家Boman[-2]等人发现第一种抗菌肽cecropin以来,科学家相继在不同生物体内发现了多种抗菌肽.抗菌肽广泛存在于从细菌到哺乳动物的生物体内,是天然免疫防御系统的一个重要的组成部分,是动物体液免疫系统中具有广谱杀菌,抑病毒,抑杀肿瘤细胞等作用的一类活性多肽.被称为"第二防御体系".迄今为止,国内外文献报道大约有2000多种抗菌肽被分离,鉴定出来,而以天然抗菌肽作模板进行人工合成的模拟肽已达数千种.由于抗菌肽具有理化性质稳定,抗菌谱广,不易产生耐药性等特点,早期对抗菌肽的研究集中于将其开发成为新一代的抗菌药物.随着对抗菌肽研究的深入,抗菌肽的抗肿瘤活性逐渐引起科研工作者的关注.抗菌肽由于其特殊的抗肿瘤机制,不易产生耐药性,以及对哺乳动物正常细胞毒性较低等特点,已经成为抗肿瘤药物研发的热点之一.1抗菌肽的抗肿瘤作用机制Claudia~】等发现—defensin不仅在中性粒细胞中表达.在肾特异性上皮细胞中也有表达.因此可能参与了肾肿瘤发生的病理过程,并通过影响肾肿瘤细胞的增殖和免疫识别,调节肾肿瘤的进展.Chen.1yre等报道一种来自鱼类的抗菌肽tilapiahepcidinTH2—3对人纤维肉瘤细胞HT1080的增殖有呈浓度依赖性的抑制作用,经TH2—3处理48~96小时,c—iun mRNA的表达明显下调;此外,ChenJY等还证实抗菌肽Epinecidin一1抑制人白血病细胞的增殖,诱导细胞凋亡:赵瑞君[61等报道家蝇成虫抗菌肽对肿瘤细胞109,K562,Daudi及T24的有效杀伤力都在85%以上:魏晓丽171等报道鼠13一de—fensin能够抑制宫颈癌移植瘤的生长,延长荷瘤小鼠的生存时间.这些研究表明,抗菌肽所致某些基因的表达与肿瘤的发生有一定的关联,且大多数研究结果表明,抗菌肽对肿瘤作者简介通讯作者收稿日期李正洋,男,硕士生E-mail:******************姚文兵,男,教授,研究方向:生物技术与生物制药Tel:025—83271218E—*****************.cn2010-05—12修回日期2010—06—03的发生,发展有显着的抑制作用.具有抗肿瘤活性的抗菌肽已经成为开发对正常细胞毒性低,不易产生耐药性的新型抗肿瘤药物的研究热点之一(见表1).与其杀菌机制相比较,抗菌肽抑杀肿瘤细胞的机制更为复杂.目前,比较认同的机制主要有以下几种:1.1细胞膜差别决定抗菌肽对肿瘤细胞的选择性抗菌肽对肿瘤细胞的选择性作用可能是由于肿瘤细胞与正常细胞的一系列根本差别.肿瘤细胞过度表达磷脂酰丝氨酸[8-9],硫酸乙酰肝素㈣等阴离子物质,使细胞膜带负电.然而,正常哺乳动物细胞膜表面主要由中性的磷脂和固醇类物质组成…1.真核细胞膜的主要成分胆固醇,被推测可以通过改变膜的流动性保护其不受抗菌肽的细胞溶解作用.研究发现,当细胞膜中胆固醇含量增加时,插入细胞膜的抗菌肽cecropin及其类似物则相应减少.除此以外,一些乳腺和前列腺癌细胞的富含胆固醇的脂筏水平提高,增强细胞对抗菌肽溶菌活性的抵抗能力n3】.肿瘤细胞和正常细胞的另外一个区别源于肿瘤细胞相对于正常细胞所含的微绒毛数目.这些微绒毛促使肿瘤细胞与更多数目的抗菌肽接触.由于结构蛋白发生变化,与正常细胞相比,肿瘤细胞的微绒毛形态更不规则.这些变化可能会影响受体的易接受性,细胞粘附性,以及肿瘤细胞与环境之间的交流.因此,细胞膜组成,流动性,以及细胞表面积的差别对于抗菌肽特异性识别肿瘤细胞是十分关键的.1.2抗菌肽对肿瘤细胞的膜裂解作用与抗菌肽裂解细菌细胞壁方式类似,抗菌肽可能通过选择性裂解肿瘤细胞膜实现其抗肿瘤活性.一项关于mag. ainin及其合成类似物的杀伤造血细胞及固态肿瘤细胞的研究,最先证实了此种膜裂解的作用机制.此项研究的一个关键发现在于,横穿细胞膜的负离子梯度对于膜裂解以及细胞毒性是决定性的.另外,将magainin的L一氨基酸替换为D一氨基酸,其抗肿瘤活性保留,推测有一种受体介导的作用机制.扫描电子显微镜观察显示,抗菌肽magaininⅡ通过介导膀胱癌细胞的破裂直接导致肿瘤细胞的溶解.而对成纤维细胞无明显杀伤作用[51(见图1).377l墨I妻i0-:0一表1部分具有抗肿瘤活性的抗菌肽图1扫描电子显微镜观察magaininll对膀胱癌细胞和成纤维细胞的作用(A)未处理的膀胱癌细胞486P;(B)膀胱癌细胞486P经50mM magaininII处理,细胞膜破裂;(C)未处理的成纤维细胞;(D)成纤雏细胞经50raMmagaininII处理,细胞膜无明显损伤通过对其他抗菌肽的研究,包括melittin,cecropin,roc—tonin等,也得出类似的结论.通过研究含有D一和L一氨基酸的抗菌肽对不同肿瘤细胞的杀伤作用,发现在细胞膜发生紊乱后.这些肿瘤细胞逐渐死亡.抗菌肽的膜裂解作用可能通过两种机制,分别是"毡毯"模型和"桶板"模型-q.根据"毡毯"模型,抗菌肽以类似毡毯的结构平行排列在带负离子的细胞膜表面,待抗菌肽达到I界浓度,便会穿透细胞膜.而根据"桶板"模型,抗菌肽在细胞膜表面通过疏水作用聚集,形成跨膜通道或者孔隙.抗菌肽的膜裂解作用不仅局限于细胞膜,而且同样可以渗透进入线粒体,使其发生膨胀,释放细胞色素C,诱导细胞凋亡.损伤的线粒体释放细胞色素C同样诱导Apaf_1寡聚化,激活caspase一9,使pro—caspase3向caspase一3转化.近期研究发现,抗菌肽buforinⅡb(RAGLQFPVG[RLLR]3),是一种组蛋白H2A衍生化多肽,对60种人肿瘤细胞表现出选择性的细胞毒性.BuforinⅡb穿过肿瘤细胞细胞膜,并且不会损伤细胞膜,而通过激活caspase一9和释放细胞色素C进入细胞液.诱导依赖于线粒体的细胞凋亡.尽管如此,buforinⅡb介导的细胞凋亡具体作用机制仍然不清楚㈣,而且,细胞凋亡的线粒体途径与死亡受体途径相关.比如,抗菌肽tachyplesin结合到整联蛋白RGDhomingdomain,通过两种机制诱导细胞凋亡.在破坏线粒体膜的同时,促进死亡受体途径的作用因子的表达,包括Fas配体,FADD和caspase一8t2ol.1.3细胞膜的糖基化作用当一个细胞转化为肿瘤细胞时,膜相关的糖蛋白和糖脂的糖基化会发生变化.这可能是抗菌肽对肿瘤细胞发挥细胞378毒性的关键过程.因此研究分子水平的这些重要变化是非常有意义的.糖蛋白的这些变化主要是由于部分糖基转移酶被激活,催化糖蛋白的合成.此外,催化降解过程的糖苷酶的过量表达也是导致这些变化的原因12".N一乙酰萄糖胺(GlcNAc)存在于各种糖蛋白,催化其形成过程的N一乙酰葡萄糖氨基转移酶Ⅲ(GnT一Ⅲ)可能与肿瘤发生过程有关.过量表达GnT一Ⅲ可引起表面糖蛋白及其他特殊蛋白质的GlcNAc残基含量增加,进而导致一系列与肿瘤扩展相关的细胞过程,比如,对蛋白水解作用敏感性的变化;粘附能力增加,帮助肿瘤细胞转移:对免疫系统的杀伤细胞抵抗能力增强;信号途径的损伤等.此外,研究发现,肿瘤细胞含有更大的N—glycans分支㈤.有趣的是,糖基化作用同样增强了抗菌肽drosocin的活性.因此,阳离子抗菌肽与肿瘤细胞的吸附作用以及接下来的穿透细胞膜的过程很可能至少部分依赖于肿瘤细胞细胞膜蛋白质的糖基化作用.1,4其它作用机制除了与膜相关的作用机制以外,越来越多的研究表明,抗菌肽还通过其他的作用机制表现其抗肿瘤活性.比如, melittin(GIGAVLKVLTFGLPALISWIKRKRQQ)是一个含有26 个氨基酸的抗菌肽,特异性地杀伤过度表达肿瘤ras基因的细胞.Melittin通过过度激活肿瘤ras基因转化细胞中的磷脂酶A(PIA2),选择性的杀死细胞.alloferons是来源于昆虫富含组氨酸的抗菌肽,具有类似于细胞因子的调节作用.体外实验中,用alloferon1(HGVS—GHG0HGvHG)和alloferon2(GVSGHGOHGVHG)合成的多肽可促进淋巴细胞的活性;而在体内试验中,此合成多肽可诱导小鼠体内干扰素(IFN)的表达.2具有抗肿瘤的新型抗菌肽的研发由于多肽药物的药代动力学特征,抗菌肽作为抗肿瘤药物的研究开发受到了阻碍.蛋白水解作用限制了药物在体内的保留时间.降低了其I:I服生物利用度.此外,抗菌肽对人体有潜在的毒性作用.目前,许多研究正在致力于解决这些问题.2.1化学修饰抗菌肽将L一氨基酸部分或者完全替换为D一氨基酸,以及在不影响药物抗肿瘤活性的支链引入非天然氨基酸,可以增强抗菌肽对蛋白水解作用的抵抗能力.比如,对小鼠腹腔注射抗菌肽magainin2以及all~D一氨基酸类似物MSI一238;两种药物都对P388非白血性白血病,S18O腹水癌和自发性卵巢癌有抑制作用.与magainin相比,MSI一238体外活性是其10 倍.而抑制小鼠肿瘤细胞的体内活性是其2倍.2-2抗菌肽偶联回归蛋白抗菌肽可通过载体介导的运输方式进入肿瘤细胞,克服抗菌肽药物的药代动力学缺陷及其潜在的毒性作用.利用与回归蛋白偶联,抗菌肽也可实现减低毒性的目的.由于回归蛋白对体内的特异性位点有选择性,因此,对于治疗性和诊断性药物是一种适宜的载体.过去的研究表明,多种脉管系统回归蛋白与抗肿瘤药物偶联,可以抑制肿瘤的血管生成,减轻药物对其他器官的副作用.但是,由于不能载运药物进入肿瘤细胞,肿瘤回归多肽的作用受到了抑制.为了克服这个缺陷,目前已经开始研究包含具有穿透细胞功能的抗菌肽序列和回归多肽序列的嵌合体多肽,比如,包含蛋白转导结构域,整联蛋白受体以及可以特异性识别肿瘤血管和红细胞间质中凝结血浆蛋白的序列为CREKA的线性多肽[2627j.在一项近期研究中,将阳离子抗菌肽pV ec(LLIILRRRIRKQA—HAHSK)与回归多肽CREKA以及DNA烷基化因子Cbl (chorambucil)偶联.在体外实验中,此偶联多肽Cbl—CRE. KA—pV ec将MDA—MB一231细胞扩增的百分比从100%降至约40%.这项研究表明,CREKA—pVec可以作为一个有效的载体,将DNA烷基化因子靶向性转运进入肿瘤细胞∞.3展望目前,由于抗肿瘤药物不仅针对肿瘤细胞.而是所有快速增殖的细胞,现有的抗肿瘤治疗存在严重的副作用.然而,某些抗菌肽表现出对肿瘤细胞特异性的杀伤作用,被人们寄予厚望,并且相关的研究已经取得了一定的进展.但是,在将抗菌肽开发成为新型抗肿瘤药物的过程中,仍然需要深人研究引发抗菌肽与肿瘤细胞特异性结合的肿瘤细胞的自身特征以及两者之间相互作用的机制,尤其是与结构,动力学,形态学,膜破裂机制相关的生物物理学研究.抗菌肽进入抗肿瘤治疗的临床应用需要其具有对肿瘤细胞的特异性杀伤作用和在血清中的稳定性.许多表现出杀伤肿瘤细胞作用的抗菌肽由于生物利用度较差,潜在的毒性作用或工艺成本太高,难以开发成为临床抗肿瘤药物.近期研究表明,通过化学修饰的方法或者将抗菌肽与回归蛋白相偶联,可以提高抗菌肽的生物利用度,降低毒性.随着研究的进一步深入,抗菌肽将为抗肿瘤药物的研发开辟出一个新的领域,为临床肿瘤治疗提供更安全有效的新方案.参考文献[1】JenssenH,HamillP,HancockRE,eta1.Peptideantimicru- bialagents叨.ClinMicrobiolRev,2006,19(3):491—511.【2】RathinakumarR,WMkenhorstWF,WimleyWC,eta1.Broad—spectrumantimicrobialpeptidesbyrationalcombinatorialde- signandhigh—throughputscreening:theimportanceofinter—facialactivitym.JAmChemSoc,2009,131(22):7609—17.[3】GambichlerT,SkryganM,HuynJ,eta1.PatternofmRNA expressionofB-defensinsinbasalcellcarcinoma『JI.BMCPharm~aceu…tic…a,an—d驾ClinicalRe黧sear;ch恝fl巳!!】疆cancer,2006,6(8):163.[4JChenJY,LinWJ,LinTL.Afishantimicrobialpeptide,tilapia hepcidinTH2—3,showspotentantitumoractivityagainsthu- manfibrosarcomacells『J].Peptides,2009,30(9):1636—42.[5]ChenJY,LinWJ,WuJL,eta1.Epinecidin一1'peptideinduces aDoptosiswhichenhancesantitumoreffectsinhumanleukemiaU937cells[J1.Peptides,2009,30(12):2365-73.[6]赵瑞君,张庆华,李飞栋.家蝇成虫抗菌肽对4种肿瘤细胞的作用观察[J].中国媒介生物学及控制杂志,2007,18(1):17-9.[7】魏晓丽,丁剑冰,蒋忠华,等.鼠p一防御素2抗宫颈癌的实验研究fJ1.细胞与分子免疫学杂志,2009,25(12):1186—8.[8】UtsugiT,SchroitAJ,ConnorJ,eta1.Elevatedexpressionof phosphatidylserineintheouterleafletofhumantumorcells andrecognitionbyactivatedhumanbloodmonoeytes[J1.Con—cerRes,1991,51(11):3062-6.【9】DobrzynskaJ,Szachowicz-PetelskaB,Sulkowskis,etaLChangesin electricchargeandphospholipidscompositioninhumancolorectal cancerceilsMolCeUBioche~2005,276(1-2):l13--9.【10]KleeffLIshiwataT,KumbasarA,eta1.Thecell-surfacehep- araBsulfateproteoglyeanregulatesgrowthfactoractionin pancreaticcarcinomacellsandisoverexpressedinhuman pancreaticcancerfJ].JClinInvest,1998,102(9):1662—73.【11】HoskinDW,RamamoorthyA.Studiesonanticanceractivities ofantimicrobialpeptides[J】.BiochimBiophysAeta,2008,1778(2):357—75.[12】SimonsK,IkonenE.Howcellshandlecholesterol[JJ.Science, 2000,290(5497):1721—6.【13]LiYC,ParkSK,Y eCW,eta1.Elevatedlevelsofcholesterol richlipidraftsincancercellsarecorrelatedwithapoptosis sensitivityinducedbycholesteroldepletingagents[J】.AmJ Pathol,2006,168(4):1107—18.[14]ChanSC,HuiL,ChenHM.Enhancementofthecytolyticel- feetofanti-bacterialcecropinbythemicrovilliofcancercells[J】.AnticancerRes,1998,18(6A):4467-74.【15】WangKR'ZhangBZZhangeta1.Antitumoreffects,cellse—lectivityandstructure-activityrelationshipofanovelantimi- crobialpeptidepolybia-MPI[JlPeptides,2008,29(6):963--8.f16]OrenShaiY.Modeofactionoflinearamphipathiealpha-heli—calantimicrobialpeptidesBiopolymers,1998,47(6):451--63. [17】ShaiY.Mechanismofthebinding,insertion,anddestabiliza—tionofphospholipidbilayermembranesbyalpha-helicalan—timicrobialandcellnon—selectivemembrane-lyticpeptidesⅢ.BiochimBiophysAeta,1999,1462(1-2):55—70.[18]MaiJC,Mi五KimSH,eta1.Aproapoptoticpeptideforthetreat—mentofsolidtumorslJlCancerRes,2001,61(21):7709--1Z[19]LeeHS,ParkCB,KimJM,eta1.Mechanismofanticancer activityofbuforinIIh,ahistoneH2A—derivedpeptidefJ].CancerLetters,2008,271(1):47—55.f20]ChcnY,XuX,HongS,eta1.RGD-tachyplesininhibitstumorgrowth叨.CancerRes,2001,61(6):2434-8.【21]TaniguchiN,GaoCX,IharaY,eta1.Theinvolvementof bisectingN—acetylgluc0samineincancer,in:M.Aubery GlycansinCellInteractionandRecoguition:Therapeutic379抗菌肽的抗肿瘤研究进展Aspects嗍HarwoodAcodemicPublishers,Japan,2001:73—88.[22】DennisJWGranovskyMB1,6N-acetylglucosaminyhransferaseV isadeterminantofcancergrowthandmetastasi&irrj垤Aubery~d.), GlyeansincellInteractionandrecognition:therapeuticas—peers[M】.HarwoodAcademicPublishers,Jop.~2001:89--104.[23]SharmaSV.Melittinresistance:acounterselectionforrastransformation[J】.Oncogene,1992,7(2):192—201.[24]ChernyshS,KimSI,BekkerG,eta1.Antiviralandantitumor peptidesfrominsects[JJ.户rocNatlAcodSciUSA,2002,99(20):12628—32.[25】BakerMAMaloyWLZaslofetalAnticancerefficacyofmagainin2andanaloguepeptides讲CancerRes,199353(13):3052-7.[26】SimbergD,DuzaT,ParkJH,eta1.Biomimeticamplification ofnanoparticlehomingtotumorsfJ1.ProcNatlAcadSciUSA,2007,104(3):932—6.【27】Mh'eM,MyrbergH,E1一AndaloussiS,eta1.Designofatu. mothomingcellpenetratingpeptidefordrugdelivery【JJ./ntJPeptResTher,2009,5(1):11-5. EvolutionofAnticancerMechanismofAntimicrobialPeptidesLIZheng-yang,TONGYue,YAOWen—bing SchoolofLifeScienceandTechnology,ChinaPharmaceuticalUniversity,Nanjing210009, ChinaABSTRACTAntimicrobialpeptides(AMPs),whichhavebeenseparatedfromagreatnumb eroforganisms,arenovelantibacterialagents.Manystudieshavedemonstratedthat,someAMPs exhibitabroadspectrumofcytotoxicactivityagainsttumorcells,butnottonormalmammalcells.Thisrevie wfocusesonrecentstudiesaboutanticancermechanismofAMPs,andtheapplicationprospectofAMPsas anticancerdrugs.KEYWORDSAntimicrobialpeptides;Anti——canceractivity;Mechanism;Applicationprospect2010年6~7月美国FDA公布的部分药物警示1关键词:长效13激动剂(LABAs)安全使用的最新要求06/I,2O1OFDA通知相关医护人员和患者.由于涉及安全问题.FDA正在要求对所有的长效13受体激动剂类药物(LABAs)制定一项风险控制计划(KEMS),并进行整类药物的标签变更.该项风险控制计划将要求包括一份经修订的专为患者编写的用药指南.以及一份用于指导医护人员正确使用LABAs的计划.上述要求是基于FDA对相关研究的分析后而做出的.这些研究显示在一些使用LABAs治疗哮喘的儿童和成人患者中可能会增加哮喘症状严重加剧的风险,并可能导致患者住院甚至死亡以下内容将会被用于提醒医护人员,以保证LABAs的安全使用:(1)单成分的LABAs应与一种哮喘控制药物(asthmacontrollermedication)联用,而不应单独使用:(2)LABAs应只能用于通过哮喘控制药物无法有效控制症状的哮喘患者的长期治疗:(3)LABAs应使用达到控制哮喘症状所需要的最短持续时间,一旦哮喘已被控制,则应尽快停用LABAs,之后患者应通过接受哮喘控制药物以进行维持治疗:(4)需要在吸入型皮质激素类药物中加用LABA的儿童和青少年患者应使用一种同时含有这两种药物的复方制剂.以保证同时接受两药的治疗FDA已确认,在需要加用LABAs的患者中.当这类药物与哮喘控制药物正确联用时,LABAs在改善哮喘症状方面的益处大于其潜在的风险,并认为上述推荐的安全措施将有助于LABAs的安全使用.2关键词:吉妥单抗(myiotarg)撤市06/21/2010美国食品药品监督管理局(FDA)提醒医生.近来的临床数据显示吉妥单抗(吉妥珠单抗奥唑米星)有新的药品安全问题.且在临床研究中其并未表现出预期的良好治疗效果吉妥单抗用于治疗急性髓细胞性白血病,于2000年5月经FDA快速审查程序批准上市,2004年由惠氏公司(现辉瑞)设计并主持了一项对其验证性的上市后临床试验.该试验设计是对比在化疗的基础上增加使用Mylotarg.验证是否能有效延长患者生命,旱些时间该试验被终止,因为没有明显的药效,且会发生更高的死亡率.FDA建议新的患者不要使用该药.正在服用的患者要遵循医生的意见,医生要提醒患者该药物的风险.以后Mylotarg如想要在美国上市必须重新提交新药临床研究申请3关键词:硫酸奎宁误用存在风险07,08,2O10FDA发布Qualaquin(quininesulfate硫酸奎宁)药品安全警告380由于持续收到患者将硫酸奎宁用于治疗夜闻的腿部抽筋而发生严重副反应的报告.而这一用法为"非说明书指定用途"(即非FDA批准的用途).因此FDA批准了一项风险管理计划(P.EMS)以提醒人们不要将药品如此使用.使用硫酸奎宁可能引起严重甚至致命的血液病变,包括由于血4,板减少而引起的严重出血,溶血性尿毒症/血栓,血小板减少性紫癜等,有时候会引起永久性肾损伤,一些患者需要住院,甚至会死亡.4关键词:Arava(来氟米特J肝损伤07/13/2010FDA对风湿性关节炎药物Arava(采氟米特)增加了严重肝损伤的黑框警告,以便提醒患者使用该药物的风险并尽量避免.在此之前FDA曾要求该药品增加黑框警告:来氟米特禁用于怀孕妇女及未采取有效避孕措施的待孕女性.5关键词:血管紧张素受体阻滞剂(ARBs)潜在癌症风险07,l5,2010最近一项与与癌症相关的临床试验荟萃分析报告提示.血管紧张素受体阻滞剂(ARBs)可能会引起癌症风险略有增高血管紧张素受体阻滞剂(ARBs)用于高血压患者或其他症状的患者.商品名包括坎地沙坦(Atacand),厄贝沙坦(Avapro),奥美沙坦(BeMc~),氯沙坦(Co~ar),缬沙坦(Diovan),替米沙坦(Mi—c~dis)和依普罗沙坦(Teveten),FDA还没有确定ARBs增加罹惠癌症的风险.该机构正在审查与此安全问题有关的信息,并会及时将新的信息提供给公众. FDA相信AREs的益处大于其潜在的风险6关键词:Cubicin(达托霉素)嗜酸细胞性肺炎风险07,29,2010FDA通知医疗保健专业人士和病人在使用icin(这托霉素)治疗过程中有可能发展成为嗜酸细胞性肺炎Cubicin是一种静脉注射的抗菌药.用于治疗严重的皮肤感染和血行性感染嗜酸细胞性肺炎是一种罕见但严重的痛,即白血细胞类型(嗜酸性粒细胞)充满了肺部.嗜酸细胞性肺炎的症状包括发烧,咳嗽,呼吸急促和呼吸困难.该病可导致随之的呼吸衰竭,并且如果没有迅速认识和合理管理.具有潜在致命性危险医疗保健专业人士应密切监察使用Cubicin治疗的病人.以防止发生嗜酸性细胞性肺炎.接受Cubicin治疗的病人如果出现新发的或恶化的发烧,咳嗽,气短或呼吸困难.应立即联系医疗保健专业人士. (由江苏省药品不良反应监测中心提供)。
浅析抗菌肽的研究进展及其应用前景侯宇明摘要:抗生素的长期滥用,导致细菌耐药问题日益严重。
如今,寻找新的抗生素变得越来越困难。
抗菌肽(AMP)是一类能够杀死微生物的新型药物。
它可以穿透微生物的细胞膜,高效地抑制细菌、真菌、病毒的繁殖。
本文详细分析了抗菌肽的研究进展,深入探讨了抗菌肽的应用前景,以期为相关人员提供参考。
关键词:抗菌肽;作用机制;医药领域;畜牧领域0.引言自从发现抗生素以来,科学家一直致力于研究抗生素的作用机理及其在临床工作中的应用。
不过,滥用抗生素会导致耐药菌的出现。
近年来,研究人员致力于寻找新型抗生素。
但是研发新型抗生素的速度远远低于细菌发生突变的速度。
寻找有较高的抗菌活性的药物,成了科学家的当务之急。
2.2.2 非膜结构破坏型机制不过,天然的抗菌肽不够稳定,半衰期非常短,且有一定的毒副作用。
一些抗菌肽会导致溶血反应,对生物的血液循环造成严重的影响。
各个国家和地区的科学家应当互相分享研究经验,致力于开发药效更持久的、副作用更小的抗菌肽类似物,从而扩大抗菌肽在医药、农业、畜牧业、食品等领域的应用范围。
1.抗菌肽的结构和特征20世纪80年代,一些科学家发现了一种能够杀死多种细菌和真菌的新型多肽—抗菌肽。
抗菌肽是人、动物和植物等生物分泌的用于抵御外来生物的免疫活性分子。
目前,研究人员已经发现了数千种抗菌肽,其中,大多是带有阳离子的α-螺旋肽分子。
这些阳离子抗菌肽可以改变细菌细胞膜上的电化学势,引起细胞膜损伤和生物大分子(如蛋白质)的渗漏,破坏细胞形态,最终导致细胞死亡。
研究表明,抗菌肽的抗菌活性非常高,它们能够用于治疗由微生物引起的感染性疾病和过敏性疾病。
正常情况下,机体会合成一定量的抗菌肽,以维持机体免疫功能。
不过,一些特定的外部因素也可以诱导抗菌肽的表达。
抗菌肽通常是螺旋多肽,含有不超过100个氨基酸残基。
多数抗菌肽带有阳离子,并具有两亲性。
它们可以同时与极性分子和非极性分子发生相互作用。
抗菌肽的研究进展及其应用一、本文概述抗菌肽,作为一类具有广谱抗菌活性的多肽分子,自发现以来就在全球科研领域引起了广泛关注。
这些肽类分子以其独特的抗菌机制、良好的生物相容性和低毒性等优点,为解决日益严重的抗生素耐药性问题提供了新的可能。
本文旨在全面综述抗菌肽的研究进展及其应用现状,为相关领域的研究人员提供有价值的参考。
文章首先简要介绍了抗菌肽的基本特性、分类及作用机制,然后重点分析了近年来抗菌肽在合成生物学、分子生物学、遗传学等领域的最新研究进展,包括抗菌肽的基因克隆、表达调控、结构改造等方面。
文章还对抗菌肽在农业、医药、食品工业等领域的应用进行了详细阐述,展望了其未来的发展前景。
通过本文的综述,期望能为抗菌肽的深入研究与广泛应用提供有益的启示和借鉴。
二、抗菌肽的分类与来源抗菌肽,作为一种天然的抗菌物质,其来源和分类具有多样性和复杂性。
从来源上看,抗菌肽可以分为两大类:一是来源于生物体的内源性抗菌肽,这类抗菌肽主要由生物体的免疫系统产生,用于抵抗外来病原体的入侵;二是来源于人工合成的抗菌肽,这类抗菌肽则是通过人工基因工程技术合成,具有特定的抗菌活性。
从分类上看,抗菌肽可以根据其结构、功能和作用机制的不同进行细分。
其中,根据结构特点,抗菌肽可以分为α-螺旋结构抗菌肽、β-折叠结构抗菌肽、环状结构抗菌肽等;根据功能特性,抗菌肽可以分为广谱抗菌肽、特异性抗菌肽等;根据作用机制,抗菌肽可以分为膜作用型抗菌肽、细胞内作用型抗菌肽等。
不同的抗菌肽具有不同的生物学活性和抗菌效果,因此在医药、农业、畜牧业等领域具有广泛的应用前景。
深入研究抗菌肽的分类与来源,对于理解其抗菌机制、发掘新的抗菌肽资源、开发新型抗菌药物具有重要意义。
三、抗菌肽的作用机制抗菌肽的作用机制是其生物学活性的核心,也是抗菌肽研究和应用的关键。
抗菌肽的作用机制主要包括破坏细菌细胞膜、抑制细菌细胞壁合成、干扰细菌蛋白质合成和抑制细菌DNA、RNA合成等几个方面。
细谈抗菌肽抗肿瘤作用的研究进展本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!癌症是导致数以百万计人死亡的重要原因之一,其发病机理多由于异常细胞不受控制地生长和扩散。
常规的治疗手段,如手术和化疗成功率均低,且存在复发的风险;同时,前列腺癌、胰腺癌和恶性黑色素瘤仅用化疗治疗效果较差。
为避免肿瘤的复发和( 或) 发生转移,辅助治疗药物( 如DNA 烷基化剂、激素激动剂/ 拮抗剂和抗代谢药物等) 被广泛应用,但这些药物选择性较差,攻击癌细胞的同时,对正常细胞损害较大,导致患者发生骨髓抑制和血小板减少( 血细胞生成减少)、黏膜炎( 消化道炎症) 和脱发等。
此外,这些化合物可使癌细胞产生耐药性,不宜长期使用。
如今,随着与癌症相关的疾病数量的日益增加,面对常规疗法的缺点和不足,新的治疗方案呼之欲出。
抗菌肽已被证实是一种分子靶向抗癌药物,这种小分子多肽可有效进行组织渗透并被异质癌细胞吸收,进而杀伤肿瘤细胞。
与现有疗法联合作用将极大改善抗癌药物对肿瘤细胞的选择性,并减少对健康组织的有害影响,它的开发与应用为癌症治疗带来新的希望。
1具有抗癌活性的抗菌肽的分类和选择性从结构的角度来看,大多数具有抗癌活性的抗菌肽具有α- 螺旋或β- 折叠的构象[4],针对其靶细胞,可将它们分为两大类:第一类包括对微生物和癌细胞具有活性而对健康的哺乳动物细胞无活性的肽,如cecropins 和magainins ;第二类包含的抗菌肽对微生物、正常细胞和癌细胞均具有杀伤作用,如人中性粒细胞防御素HNP-1。
抗菌肽以溶膜或非溶膜机制选择性杀伤肿瘤细胞。
基于这种选择性机制的溶膜肽的活性依赖于抗菌肽自身特点及靶膜的特性。
抗菌肽对肿瘤细胞和正常的哺乳动物细胞的选择性基于恶性肿瘤细胞膜带的净负电荷,这些负电荷由磷脂酰丝氨酸、O- 糖基化的黏蛋白唾液酸和肝素等赋予。
此外,癌细胞膜具有典型的糖基化修饰且大多数癌细胞膜比正常细胞的流动性大,抗菌肽促使膜处于不稳定状态。
然而,某些肿瘤,如乳腺癌和前列腺癌,为了应对抗菌肽的溶膜机制,细胞膜上通常富集较高含量的胆固醇[8]。
同时,细胞表面积也是影响抗菌肽活性的一个重要因素,因为恶性癌细胞上的绒毛数量和弯曲程度的增加使其具有更大的与抗菌肽分子接触的细胞表面积[5]。
抗菌肽的抗菌特性和抗癌活性有着相似的选择性分子机制。
然而,并非所有的抗菌肽都具有抗癌活性。
因此,综合理解抗菌肽选择性识别和裂解肿瘤细胞的因素至关重要,揭示某些肿瘤类型和存在的特异性靶标将对多肽药物的设计提供依据。
2抗菌肽对各类肿瘤细胞的抗肿瘤作用抗菌肽在体内和体外均可成功杀伤肿瘤细胞,还可防止转移的形成[9]。
但是,以特定的方式识别肿瘤发生和转移的靶向抗菌肽很难获得。
因此,研究抗菌肽结构与活性之间的关系为促进药物开发提供可能。
抗菌肽可广泛作用于各类肿瘤,如实体瘤和非实体瘤。
实体瘤实体瘤的特征是无囊肿或液体区域的组织,在这些肿瘤中能区分恶性细胞和维持这些细胞的基质。
存在于肿瘤块的表型异质性群体癌细胞,每个细胞均具有增殖能力并能形成一种新的肿瘤。
这些肿瘤的生理和形态在很大程度上不同于正常的组织,研究癌症治疗的选择性正是基于这种差异。
针对不同类型的实体瘤已经开发多种抗菌肽,但其特异的选择性靶向这种类型肿瘤的结构特点及机理仍不明确。
目前,已证实抗菌肽可通过多种机制靶向实体瘤。
乳腺癌和前列腺癌是分别在女性和男性最常诊断出的癌症,但是通过单种或多种药物联合治疗前列腺癌效果并不显著。
已研究的抗菌肽大多针对乳腺、前列腺、宫颈、肝和肺的肿瘤,这些抗菌肽杀伤恶性肿瘤的机制可能是通过破坏细胞膜之后,促进细胞凋亡或坏死,也可能通过多种模式呈现抗癌活性。
非实体瘤非实体瘤包括血液、骨髓和淋巴结癌,以及白血病、多发性骨髓瘤和淋巴瘤等。
目前,治疗非实体瘤多使用细胞毒性药物、放射治疗或骨髓移植,这些治疗方式对患者可造成严重的长期影响。
作为影响多种细胞类型的复杂疾病,抗菌肽可靶向血液和骨髓细胞,从而达到杀伤肿瘤细胞的目的。
研究表明,来源于猪NK细胞的NK-2肽具有净正电荷,可通过坏死机制选择性地杀伤癌细胞。
这种杀伤机制与癌症细胞表面带负电荷的磷脂酰丝氨酸膜有关,如白血病细胞膜磷脂酰丝氨酸暴露较少,故对该抗菌肽不敏感。
Lemeshko 证实由于抗菌肽可导致质膜通透性、静电相互作用和跨膜电位的增加,因此,存在于细胞膜上的磷脂酰丝氨酸对抗菌肽靶向神经母细胞瘤细胞的活性具有重要作用。
具有α- 螺旋肽的cecropin 衍生物已作为治疗白血病潜在的替代品。
天蚕素B1 (CB1) 具有极性脂质的表面,其活性主要来自于cecropin B (CB)两个α 螺旋的肽段,增加的α 螺旋结构可增强α-螺旋肽的稳定性,促使其更灵活有效地插入质膜,导致膜溶解,从而杀伤肿瘤细胞。
Pep2 和Pep3合成短肽来自凋亡线粒体蛋白ARTS 的C- 末端,可作为白血病细胞凋亡的诱导剂,有效杀伤人类白血病细胞。
此外,最近有研究表明,由Bcl-2 蛋白家族促凋亡成员之一BIM 与Bcl-2 稳定α 螺旋结构域(SAHBs) 组成的BIM-SAHBA 结构域可靶向Bcl-2 通路。
这种抗菌肽可激活Bcl-2 蛋白家族,通过沉默血液癌症表达的抗凋亡基因,导致肿瘤细胞死亡。
实验表明,该肽段能够抑制耐药性白血病肿瘤在小鼠体内的生长,与其他药物联合使用时,表现出协同的抗癌效果。
3抗菌肽的抗肿瘤作用机制膜裂解机制在前期研究中,Iwasaki 等使用4 种来自甲虫防御素的抗菌肽类似物(D-peptides A、B、C 和D)处理一些肿瘤细胞系,并检测其细胞表面磷脂酰丝氨酸的密度,建立了抗菌肽对肿瘤细胞敏感性的相关模型,结果表明有选择性的细胞毒性依赖于癌细胞膜中磷脂酰丝氨酸所携带的负电荷。
Papo 等也报道了宿主防御肽类似物瘤内注射后可抑制人前列腺癌和乳腺癌细胞的生长。
DK6L9 肽通过破坏膜结构和诱导肿瘤细胞坏死促使肿瘤细胞溶解,并伴随肿瘤血管密度、新毛细管形成以及前列腺特异抗原分泌的减少。
磷脂酰丝氨酸是抗癌肽的靶标,通过定位于带负电荷的磷脂,选择性地与它们相互作用,从而导致肿瘤细胞膜去极化,最终肿瘤细胞膜溶解。
除了磷脂酰丝氨酸,许多恶性肿瘤细胞带负电荷的膜组分也是抗癌活性触发器。
抗菌肽通过结合肿瘤细胞表面表达的带负电荷的糖胺聚糖激活抗癌活性,从而成为常规化疗药物潜在的替代品,并以此阐明抗菌肽选择性结合正常细胞和肿瘤细胞的机制。
例如,来源于抗菌肽pleurocidin 家族的NRC-03 和NRC-07,能够通过暴露在细胞膜外的带负电荷的分子( 如肝素和硫酸软骨素) 结合肿瘤细胞,影响肿瘤细胞膜的稳定性,同时肿瘤细胞死亡也涉及线粒体损伤和活性氧的产生。
大多数抗菌肽在细胞表面形成具有生物活性的α- 螺旋或β- 折叠结构以达到杀伤肿瘤细胞的目的。
从蜘蛛(Acanthoscurria gomesiana) 血细胞中分离获得的Gomesin 是一种阳离子抗菌肽,具有发夹状的双链反平行β- 折叠结构。
Rodrigues 等研究表明,该抗菌肽可在体内外抑制小鼠黑色素瘤的生长,同时对乳腺癌和结肠癌均具有抗癌活性;Gomesin 抑癌作用依赖于β-发夹结构、静电引力和疏水作用等。
坏死和凋亡机制抗菌肽与肿瘤细胞膜接触后,通过形成孔洞和( 或) 改变细胞膜电位破坏细胞膜,渗透进入细胞内,最终通过细胞坏死或凋亡通路抑制肿瘤细胞生长。
细胞膜上孔洞的形成是由于许多疏水性氨基酸插入细胞膜上的疏水核心区以获得稳定结构所致。
细胞死亡可能是细胞凋亡和( 或) 坏死的结果,其特征在于肿瘤细胞不同的形态变化。
事实上,诱导癌细胞凋亡已成为一个公认的癌症治疗的方法[25]。
抗菌肽对肿瘤细胞和健康细胞的形态学影响多是诱发肿瘤细胞皱缩或肿胀、染色质固缩、胞浆空泡或膜出泡等,如低浓度的合成抗菌肽epinecidin-1可选择性杀伤癌细胞,其抑癌活性主要通过破坏膜结构、诱导凋亡、坏死基因异常表达等实现。
另外,抗菌肽也可特异性诱导转移性肿瘤细胞和肿瘤相关的血管内皮细胞凋亡。
Xu 等证实不同的抗菌肽也具有双重作用模式:合成的抗菌肽A9K 是两亲性短肽,可通过破坏细胞膜和细胞凋亡途径选择性杀伤白血病细胞、宫颈癌细胞和肾癌细胞;爪蟾抗菌肽MG2 和细胞穿膜肽ANTP 的N- 末端形成的融合肽MG2A 具有抗肿瘤活性,可靶向肿瘤细胞表面的硫酸软骨素,导致细胞膜溶解、细胞凋亡。
多重作用模式抗菌肽杀伤肿瘤细胞的作用模式并不仅限于破坏质膜和线粒体膜,也可能涉及多种通路,如免疫应答、荷尔蒙受体、抑制DNA 的合成和抗血管生成作用等。
人中性粒细胞肽HNP-1 属于α- 防御素,含有30 个氨基酸残基。
研究表明HNP-1 是潜在的癌症预后标志物,在瘤内表达时与肿瘤坏死相关。
Wang 等证实成熟HNP-1 在乳腺癌和结肠癌模型中表达可诱导树突状细胞的聚集和激活,从而导致机体对肿瘤的免疫反应。
HNP-1 以成熟形式在瘤内表达可抑制肿瘤生长。
采用抗菌肽靶向或模拟激素受体或激素调节基因可提高抑癌效果。
ERα17p 肽源于雌激素受体α (ERα)序列的一部分,可与肿瘤细胞膜的极性区相互作用,在高浓度下诱导细胞膜损伤。
鲎素是从鲎中分离的具有17 个氨基酸残基的短肽,它可结合肿瘤细胞表面的透明质酸或糖胺,激活补体途径,导致质膜破裂,呈现抗肿瘤活性。
此外,肿瘤细胞膜上的负电荷分子的不同表达模式,将成为抗菌肽与膜结合和作用的一个限制因素,由此决定每种抗菌肽杀死特定肿瘤细胞的能力。
抗菌肽通过不同的作用机制选择性抑癌的效果取决于癌症的类型以及肿瘤细胞的类型。
4抗菌肽作为抗癌多肽的设计与发展在合理的药物设计过程中,抗菌肽的基因序列、净电荷、二级结构、两亲性、疏水性和血清稳定性等均需考虑。
同时,肿瘤细胞表面分子表达模式和细胞膜流动性的差异均可决定抗菌肽对某些癌细胞的杀伤效果。
而抗菌肽全长的氨基酸序列对抗癌活性至关重要,通过合成保留完整生物活性的较短片段可降低生产成本,改善药理参数,降低免疫原性,提高生物利用率和稳定性。
LL-37 是目前唯一在人类中发现的抗菌肽。
研究表明,与原始序列相比,人工改造的较短片段抗癌活性显著提高,这可能由于阳离子抗菌肽的精氨酸残基与两性离子磷脂间相互作用增强导致。
另外,抗菌肽D- 氨基酸序列和环化结构的添加可提高血清稳定性。
研究证实,亲脂性β2,2 氨基酸结构加入到抗菌肽序列中可提高抗菌肽对人类和小鼠淋巴瘤细胞潜在的抗癌活性,以及对非肿瘤细胞的选择性;在α- 螺旋肽中加入β2,2 氨基酸,在结构上增加了额外的亚甲基基团,它能够与两个亲脂性取代基结合,这种环化结构导致刚性增加,两亲性以及二级结构构象发生变化,增加其对蛋白质降解的稳定性及抗癌活性。