高等数学考试(2003~2004学年第二学期)题解
- 格式:doc
- 大小:266.50 KB
- 文档页数:6
2004年河南省普通高等学校选拔专科优秀毕业生进入本科学校学习考试高等数学试卷一、单项选择题(每小题2分,共50分)在每个小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需更改,用橡皮擦干净后,再选涂其他答案标号. 1.函数1ln y x=+的定义域为( ) A .(2,2)- B .[0,1)(1,2]C .(2,1)(1,2)-D .(0,1)(1,2)【答案】D【解析】要使函数有意义,须使240x ->,即22x -<<,由ln 0x ≠,得0x >且1x ≠,则行数的定义域为(0,1)(1,2).2.函数1sin y x=是定义域内的( )A .周期函数B .单调函数C .有界函数D .无界函数【答案】C 【解析】由于1sin 1x≤,显然在其定义域内是一个有界的函数.3.lim sinn xn n→∞⋅=( ) A .x B .0 C .∞ D .1【答案】A【解析】变量是n ,则sinsinlim sin lim lim 1n n n x xx n n n x x x n n n→∞→∞→∞⋅==⋅=.中公学员 培训讲义2学员专用 请勿外泄4.当0x →时,sin x x -是比2x ( ) A .低阶的无穷小 B .高阶的无穷小C .等价的无穷小D .同阶但非等价的无穷小【答案】B【解析】2200001sin 1cos 2lim lim lim lim 0224x x x x xx x x x x xx →→→→--====,所以当0x →时,sin x x -是比2x 高阶的无穷小.5.设2arcsin(1)()1x f x x -=-,则1x =是()f x 的( )A .连续点B .可去间断点C .跳跃间断点D .第二类间断点【答案】B【解析】2111arcsin(1)arcsin(1)11lim ()limlim 1112x x x x x f x x x x →→→--==⋅=--+,间断点1x =处函数()f x 的左、右极限都存在且相等,所以1x =是()f x 的可去间断点.6.设()f x '在点0x x =的某个邻域内存在,且0()f x 为()f x 的极大值,则000(2)()limh f x h f x h→+-=( )A .0B .1C .2D .2-【答案】A 【解析】0000000(2)()(2)()lim 2lim 2()2h h f x h f x f x h f x f x h h→→+-+-'==,而由题目知0()f x '存在,且()f x 在0x x =处取到极大值,则0x x =是()f x 的驻点,所以0()0f x '=.故选A .7.下列函数中,在1x =处连续但不可导的是( )A .211x y x -=- B .1y x =-C .cot(1)y x =-D .2y x x =-【答案】B【解析】该题采用排除法.A 、C 显然在1x =处不连续,B 、D 都在1x =处连续,但D 在1x =处可导,故只有B 符合要求.8.下列函数中,在[]1,1-上满足罗尔定理条件的是( )A .2ln xB .xC .cos xD .211x - 【答案】C【解析】罗尔定理条件有三个:①()f x 在[,]a b 上连续;②()f x 在(,)a b 内可导;③()()f a f b =.A 不满足①,2ln x 在0x =处不连续;B 不满足②,x 在0x =处不可导;C 满足罗尔定理得条件;D 不满①、②和③.9.设()f x 点3x =的某个邻域内有定义,若23()(3)lim 1(3)x f x f x →-=--,则在3x =处( )A .()f x 的导数存在且(3)0f '≠B .()f x 的导数不存在C .()f x 取得极小值D .()f x 取得极大值【答案】D 【解析】因为23()(3)lim 1(3)x f x f x →-=--,所以存在3x =的某个去心邻域,使得2()(3)0(3)f x f x -<-.即无论3x >或3x <都有()(3)f x f <,又()f x 在3x =的某邻域有定义,所以()f x 在3x =处取得极大值.10.曲线232(2)x y x +=-的渐近线有( )A .1条B .2条C .3条D .0条中公学员 培训讲义4学员专用 请勿外泄【答案】B【解析】232lim 0(2)x x x →∞+=-,所以曲线有水平渐近线0y =;2322lim (2)x x x →+=∞-,所以曲线有垂直渐近线2x =,故y 有两条渐近线.11. 下列函数对应的曲线在定义域内凹的是( )A .x y e -=B .2ln(1)y x =+C .23y x x =-D .sin y x =【答案】A【解析】x y e -=,x y e -'=-,0x y e -''=>,所以曲线x y e -=在定义域内时凹的.12.下列函数中,可以作为同一函数的原函数的是( ) A .21sin 2x 和1cos 24xB .ln ln x 和2ln xC .21sin 2x 和1cos 24x -D .2tan 2x 和2csc 2x【答案】C【解析】2111sin 2sin cos sin 2222x x x x '⎛⎫=⋅⋅= ⎪⎝⎭,111cos 2(sin 2)2sin 2442x x x '⎛⎫-=--⋅= ⎪⎝⎭,故选C .13.下列等式正确的是( ) A .()()f x dx f x '=⎰B .()()d df x f xC =+⎰C .()()df x dx f x dx =⎰D .()()d df x f x '=⎰【答案】C【解析】A 未加常数C ,而B 中()()d df x f x dx '=⎰,D 等号右端缺dx .只有()()df x dx f x dx =⎰是对的,故选C .14.设()f x '为连续函数,则102x f dx ⎛⎫'= ⎪⎝⎭⎰( )A .12(0)2ff ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦B .[]2(1)(0)f f -C .11(0)22f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦D .[]1(1)(0)2f f - 【答案】A 【解析】1111220000122()2()2(0)2222xu x x x f dx f d f u du f u f f =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫'''=−−−→==- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎰⎰⎰.15.下列广义积分收敛的是( ) A .2ln e xdx x +∞⎰B .1ln e dx x x +∞⎰C .e+∞⎰D .21ln edx x x+∞⎰【答案】D【解析】选项A ,223ln 1ln ln (ln )3ee e x dx xd x x x +∞+∞+∞===+∞⎰⎰;选项B ,11ln ln ln ln ln e ee dx d x x x x x+∞+∞+∞===+∞⎰⎰; 选项C ,112(ln )ln 2(ln )eeex d x x +∞+∞-+∞===+∞⎰⎰;选项D ,22111ln 1ln ln ln ee e dx d x x x x x+∞+∞+∞==-=⎰⎰.16.设xy z e =,则(1,2)dz =( )A .()xy e xdy ydx +B .23eC .222e dx e dy +D .0【答案】C中公学员 培训讲义6学员专用 请勿外泄【解析】22(1,2)(1,2)()2xy xy dz e ydx e xdy e dx e dy =⋅+⋅=+.17.设22(,)(4)f x y x y =-+,则点(4,0)( ) A .不是驻点 B .是驻点但非极值点C .极大值点D .极小值点【答案】D【解析】2(4)x f x =-,2y f y =,令两式等于0,解得4x =,0y =.2xx A f ==,0xy B f ==,2yy C f ==,240B AC -=-<,20A =>,所以点(4,0)为(,)f x y 的极小值点.18.设区域D 由y 轴及直线y x =,1y =所围成,则Dxdxdy =⎰⎰( )A .1B .12 C .13D .16【答案】D【解析】12111300011(1)236x Dx xdxdy dx xdy x x dx x ⎡⎤==-=-=⎢⎥⎣⎦⎰⎰⎰⎰⎰.19.设直线L 1:1312x ty t z t=-⎧⎪=+⎨⎪=-⎩与直线L 2:234112x y z ---==-的关系是( ) A .平行但不重合 B .重合C .垂直但不相交D .垂直相交【答案】A【解析】两直线的方向向量分别为1(1,1,2)=--s ,2(1,1,2)=-s ,且112112--==-,所以两直线平行或重合,将第一条直线上的点(1,3,1)代入第二条直线方程显然不满足,所以两直线平行但不重合.20.方程2221x y -=表示的二次曲面是( )A .球面B .旋转抛物面C .柱面D .圆锥面【答案】C【解析】方程2221x y -=缺一个变量z ,因此表示一个母线平行于z 轴的柱面,由于它在xOy 坐标平面中表示双曲线,所以更具体地说,它表示的是双曲柱面.21.下列级数中绝对收敛的是( )A.n n ∞=B .13(1)2nnn ∞=⎛⎫- ⎪⎝⎭∑C .32111(1)n n n ∞-=⎛⎫- ⎪⎝⎭∑D .11(1)nn n n∞=--∑ 【答案】C 【解析】选项A,n n ∞∞===,当n →∞~,级数发散;选项B ,1133(1)22nnnn n ∞∞==⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭∑∑,公比1q >的等比级数,发散;选项C ,332211111(1)n n n n n ∞∞-==⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭∑∑,1p >的p 级数,收敛,原级数绝对收敛; 选项D ,1111(1)nn n n n n n ∞∞==---=∑∑,1lim1n n n →∞-=,不满足级数收敛的必要条件,级数发散. 故选C .22.下列级数中发散的是( )中公学员 培训讲义8学员专用 请勿外泄A .1sin 2n n π∞=∑B .111(1)1n n n ∞-=-+∑ C .134nn ∞=⎛⎫⎪⎝⎭∑D .311n n ∞=⎛⎫ ⎪⎝⎭∑【答案】A 【解析】limsin02n n π→∞≠,A 不满足级数收敛的必要条件,所以级数发散.23.级数02!nn n ∞=∑的和为( )A .0B .eC .2eD .不存在【答案】C【解析】因为幂级数0!n x n x e n ∞==∑,(,)x ∈-∞+∞,所以202!n n e n ∞==∑.24.用待定系数法求方程2x y y y xe '''-+=的特解*y 时,下列特解设法正确的是( ) A .*2()x y ax bx c e =++ B .*2()x y x ax bx c e =++C .*2()x y x ax b e =+D .*22()x y x ax bx c e =++【答案】D【解析】方程2x y y y xe '''-+=对应的齐次方程20y y y '''-+=的特征方程为2210r r -+=,解得121r r ==.由()xf x xe =知1λ=是特征方程的二重根,故特解形式为*22()x y x ax bx c e =++.25.设L 为从点(1,0)A 沿x 轴到点(1,0)B -的直线段,则2L y dx =⎰( )A .0B .1C .2D .3【答案】A【解析】L :0y =,x :11→-,则12100Ly dx dx -==⎰⎰.二、填空题 (每小题 2分,共 30分)1.设211(0)x x f x x x ++⎛⎫=≠ ⎪⎝⎭,则()f x =________.【答案】(1)x x - 【解析】令1x u x +=,解得11x u =-,代入原式变为()(1)f u u u =-,即()(1)f x x x =-.2.若lim 1n n x →∞=,则22lim 3n n n n x x x +-→∞++=________. 【答案】1【解析】由lim 1n n x →∞=,得2lim 1n n x +→∞=,2lim 1n n x -→∞=,故22lim 13n n n n x x x +-→∞++=.3.设21cos ,0(),0xx f x x k x -⎧≠⎪=⎨⎪=⎩在0x =处连续,则k =________.【答案】12【解析】()f x 在0x =处连续,应有lim ()(0)x f x f →=,而22200011cos 12lim ()lim lim 2x x x xx f x x x →→→-===,(0)f k =,所以12k =.4.设3225x y x x e =++,则(10)y =________. 【答案】1022x e【解析】3225x y x x e =++,223102x y x x e '=++,226102x y x e ''=++,3262x y e '''=+,,(10)1022x y e =.5.设2tx t y e ⎧=⎪⎨=⎪⎩,则22d y dx =________.中公学员 培训讲义10学员专用 请勿外泄【答案】3(1)4t e t t - 【解析】()()2t dy y t e dx x t t '==',22232(1)()4t te d dy t d y e t dt dx dx dx t t dt'⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭==='. 6.24sin 2lim x x tdt x→=⎰________.【答案】1 【解析】2220433000sin 2sin 2222lim lim lim 144x x x x tdt x x x x x x x→→→⋅⋅===⎰.7.3272y x x =-+在[]0,1上的最大值为________. 【答案】2【解析】3272y x x =-+,223273(9)y x x '=-=-,因为[]0,1x ∈,所以0y '<,从而函数在[]0,1上单调递减,故最大值为(0)2y =.8.设2()sin x f x tdt π-=⎰,则2f f π⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦________. 【答案】1-【解析】2()sin xf x tdt π-=⎰,则22sin 02f tdt πππ-⎛⎫== ⎪⎝⎭⎰,则0022(0)sin cos 12f f f tdt tπππ--⎡⎤⎛⎫===-=- ⎪⎢⎥⎝⎭⎣⎦⎰.9.1ln exdx =⎰________.【答案】1【解析】111111ln ln ln (1)1ee e e exdx x x xd x e x dx e dx e e x =-=-⋅=-=--=⎰⎰⎰⎰.10.设2x e 为()f x 的一个原函数,则2()xe f x dx -=⎰________.【答案】2x C +【解析】利用分部积分法,因为()f x 的一个原函数为2x e ,则222222()2x x x x x e f x dx e de e e xdx x C ---==⋅⋅=+⎰⎰⎰.11.广义积分1101qdx x +⎰当________收敛. 【答案】0q <【解析】100111110000lim ln lim(ln1ln ),011lim 111lim lim 1,0q q q q x q dx dx x x q qx q εεεεεεεεεε+++++→→++→→→⎧=-=∞=⎪⎪==⎨⎡⎤⎛⎫⎪-=--≠ ⎪⎢⎥⎝⎭⎪⎣⎦⎩⎰⎰, 第二式当0q <时极限为1q-,故0q <时,广义积分收敛.12.过原点且与直线L :113213x y z -++==-垂直的平面方程为________. 【答案】230x y z +-=【解析】该平面的法向量可取直线的方向向量(2,1,3)-,又平面过点(0,0,0),故平面的点法式方程为230x y z +-=.13.设2xy z e x=+,则2z x y ∂=∂∂________. 【答案】22yx-中公学员 培训讲义12学员专用 请勿外泄【解析】22221x xz y e y e x x x ∂⎛⎫=+⋅-=- ⎪∂⎝⎭,222z z y x y y x x ∂∂∂⎛⎫==- ⎪∂∂∂∂⎝⎭. 14.2221x y x ydxdy +≤=⎰⎰________.【答案】0【解析】在极坐标系下,区域D 可表示为0201r θπ≤≤⎧⎨≤≤⎩,所以22212222222000111cos sin cos sin cos cos 55x y x ydxdy d r r rdr d d πππθθθθθθθθ+≤=⋅⋅==-⎰⎰⎰⎰⎰⎰ 32011cos 053πθ=-⋅=.15.设222(,)ln(3)x y f x y x y +=--,则10lim (,)x y f x y →→=________. 【答案】2ln 2【解析】函数(,)f x y 在点(1,0)连续,故 2211022102lim (,)limln(3)ln(310)ln 2x x y y x y f x y x y →→→→+⋅+===----.三、判断是非题(每小题2分,共10分)1.若)(x f 在0x x =处连续,则)]([x f f 在点0x x =处一定连续.( ) 【答案】×【解析】把0x x =代入)]([x f f 中,可得)]([0x f f .)(x f 在0x x =处连续,并不可以得到)(x f 在)(0x f 处是连续的,故错误. 2. 若数列{}n x 有界,则{}n x 必收敛.( ) 【答案】×【解析】3. 方程0)1ln(1=+x x 在]1,1[-e 上无实根.( )【答案】√ 【解析】 4.⎰⎰-<202cos cos ππxdx xdx .( )【答案】× 【解析】5. 若二元函数),(y x f z =在点),(00y x 处的两个偏导数都存在,则),(y x f z =在点),(00y x 处可微.( )【答案】× 【解析】四、计算题 (每小题5 分,共40 分) 1.求极限11lim 1x x x x +→∞-⎛⎫⎪+⎝⎭.【答案】2e - 【解析】11(2)2212lim lim 111x x x x x e x x ++⋅---→∞→∞--⎛⎫⎛⎫=+= ⎪ ⎪++⎝⎭⎝⎭.2.设()y y x =是由方程221y x e y +=所确定的函数,求(1,0)dydx.【答案】2-【解析】方程221y x e y +=两边对x 求导得2220y y xe x e y y y ''++⋅=,代人1x =,0y =,得 (1,0)(1,0)2dy y dx'==-.中公学员 培训讲义14学员专用 请勿外泄3.计算不定积分32cos x x dx ⎰.【答案】22211sin cos 22x x x C ++【解析】()2322221111cos cos cos sin sin sin 2222x ux x dx x x dx u udu ud u u u udu ==−−−→==-⎰⎰⎰⎰⎰ ()2221111sin cos sin cos 222u u u C x x x C =++=++.4.计算0x⎰. 【答案】233π⎫⎪⎭【解析】x t =,则2x t =,2dx tdt =,当0x =时,0t =,当3x =时,3t =[]33322000012212arctan 23113x t tdt dt t t t t π⎫⎫=⋅=-=-=⎪⎪++⎝⎭⎭⎰.5.设(,)z f x y xy =+可微,求dz . 【答案】1212()()dz f yf dx f xf dy ''''=+++ 【解析】12121zf f y f yf x∂''''=⋅+⋅=+∂,12121z f f x f xf y ∂''''=⋅+⋅=+∂, 1212()()z zdz dx dy f yf dx f xf dy x y∂∂''''=+=+++∂∂.6.计算2112200y dy x y dx -+⎰.【答案】6π【解析】1131201236dy d r rdr r πππθ=⋅=⋅=⎰⎰⎰.7.求幂级数211(1)2n nn x ∞=+∑的收敛区间(不考虑端点情况).【答案】(1)【解析】由于缺项,令2(1)x t +=,则2111(1)22nnn n n n t x ∞∞==+=∑∑,11112lim lim 122n n n n nn a a ρ++→∞→∞===,所以收敛半径2R =,所以22t -<<,即2(1)2x +<时级数收敛,解得收敛区间为(1).8.求微分方程0y y ''-=的积分曲线方程,使其在(0,0)处与直线y x =相切. 【答案】1122x xy e e -=-【解析】0y y ''-=的特征方程为210r -=,得特征根1r =±,所以通解为12x x y C e C e -=+.由已知条件(0)0y =,01x y ='=,解得112C =,212C =-,于是所求积分曲线方程为1122x xy e e -=-.五、应用题 (每小题7 分,共 14 分)1.某地域人口总数为50万,为在此地域推广某项新技术,先对其中1万人进行培训,使其掌握此项技术,并开始在此地域推广.设经过时间t ,已掌握此技术人数为()x t (将()x t 视为连续可微变量).其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,且比例常数为(0)k k >,求()x t .【答案】505050()49ktkte x t e =+中公学员 培训讲义16学员专用 请勿外泄【解析】令()y x t =,由题意可知(50)y ky y '=-,(0)1y =, 分离变量(50)dykdt y y =-,两边同时积分(50)dykdt y y =-⎰⎰,解得ln ln(50)50y y kt C --=+.当0t =,1y =时,ln49C =-,故505050()49ktkte y x t e ==+.2.过点(1,0)P 做抛物线2y x =-的切线L ,L 与上述抛物线及x 轴所围成一平面图形,求此图形绕x 轴旋转一周所成旋转体的体积. 【答案】6π【解析】设切点为00(2)x x -,切线的斜率为0022x x y x ='=-则切线方程为0002)22y x x x x -=--,切线经过(1,0)P ,代入解得03x =,即切点坐标为(3,1),切线方程为1(1)2y x =-.故3222112(2)36x V x dx πππ=⋅⋅⋅--=⎰.六、证明题 (6 分)证明:当0x >时,22ln(1)1x x x +>+. 【解析】令22()ln(1)1f x x x x =++,则2222222211()10111(1)x x x f x x x x x x +-⎛⎫+'=+=> +++++⎝,所以()f x 单调递增,而0x >,则()(0)0f x f >=,故ln(x >.。
2004年数学(二)试题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x =⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞。
(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.)(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰⎰.【详解2】11201101)arcsin 2dt tt π+∞-===⎰⎰⎰.(4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z z x y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x z z e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数. 23(23)x z z z e x x -∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx zz e x e--∂=∂+, 所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x z F x y z e y z -=+-= 则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂ 2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x z x zz z e x y e e ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得即 2323213x z x z z e x e --∂=∂+, 23213x z z y e-∂=∂+ 从而 32z zx y∂∂+=∂∂ (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解: 积分得 1ln ln ln 2y x c =+y ⇒=设(y c x =,代入方程得从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为1615x yC ==⇒=, 故所求通解为315y x =.【详解2】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得6(1)15y C =⇒=, 从而所求的解为315y x =.(6)设矩阵210120001A ⎛⎫⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值.【详解1】 2ABA BA E **=+ 2A B A B A E**⇔-=, (2)A E B A E *⇔-=,21A E B A E *∴-==, 22111110(1)(1)392100001B A E A A *====-⋅---. 【详解2】由1A A A *-=,得二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 20x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα[]B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302000lim limcos x x x t dttdtγα++→→=⎰320lim lim 02x x x x++→→===, 即o ()γα=.又 2000tan lim limxx x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ). (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点.(B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[]C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点. 又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点. 所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).(9)lim ln (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰[]B【分析】将原极限变型,使其对应一函数在一区间上的积分和式。
04高考函数一)选择题1 (2004. 天津卷)若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a =(A)(A)42 (B)22(C)41 (D)212. (2004.江苏)若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( A ) (A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 23. (2004.江苏)设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( B ) (A)3 (B)32 (C)43 (D)654.(2004.全国理)已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( B )A .bB .-bC .b 1D .-b15.(2004.全国理)函数)1(11≥+-=x x y 的反函数是( B )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1)6、(2004.上海理)若函数y=f(x)的图象可由函数y=lg(x+1)的图象绕坐标原点O 逆时针旋转2π得到,则 f(x)=( A )(A) 10-x -1. (B) 10x -1. (C) 1-10-x . (D) 1-10x. 7、(2004. 上海卷文科)若函数y=f(x)的图象与函数y=lg(x+1)的图象关于直线x-y=0对称,则 f(x)=( A )(A)10x -1. (B) 1-10x . (C) 1-10-x . (D) 10-x-1.8.(2004.湖北理)已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为 ( C ) A .21x x+ B .212x x+-C .212x x+ D .21x x+-9.(2004.湖北理)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B )A .41B .21 C .2D .410.(2004. 福建理)已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是 ( B )11 (2004. 天津卷)函数123==x y )01(<≤-x 的反函数是(D)(A))31(log 13≥+=x x y (B))31(log 13≥+-=x x y (C))131(log 13≤<+=x x y (D))131(log 13≤<+-=x x y12.(2004. 福建理)定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( D ) A .f (sin 6π)<f (cos 6π) B .f (sin1)>f (cos1)C .f (cos 32π)<f (sin 32π) D .f (cos2)>f (sin2)13.(2004. 重庆理)函数y =的定义域是:( D )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]14.(2004. 重庆理)一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( C )A .0a <B .0a >C .1a <-D .1a >15.(2004. 辽宁卷)对于10<<a ,给出下列四个不等式D ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是 A .①与③B .①与④C .②与③D .②与④(16) (2004. 天津卷)定义在R 上的函数)(x f 既是偶函数又是周期函数。
2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004年全国卷II 高考理科数学真题及答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2(C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 (A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ 0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与夹角的大小;(Ⅱ)设FB =AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C (II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列BA'C'(II )解:由(I )知,)2(14111≥-•=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=••-+=•-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1),=DM (0,21,-21),,0,01=•=•A∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=•G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,•=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+•+=•x x x x x x y x y x OB OAcos<,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0.∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ -- 22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln(2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +). 设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2003年考研数学(四)试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限xx x 20)]1ln(1[lim ++→= - . (2)dx e x x x ⎰--+11)(= - .(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= - .(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(--E A = - .(5)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= - .(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX , 则2)(Y X E += .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. [ ](2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. [ ](3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.[ ](4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. [ ](5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立.(C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立.[ ](6)设随机变量X 和Y 都服从正态分布,且它们不相关,则(A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布.(C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. [ ]三 、(本题满分8分)设],21,0(,)1(11sin 1)(∈---=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y xg -=,求.2222yg x g ∂∂+∂∂ 五 、(本题满分8分)计算二重积分.)sin(22)(22dxdy y x e I D y x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)设a>1,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式. 八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,T]上的平均剩余量.九、(本题满分13分)设有向量组(I ):T )2,0,1(1=α,T )3,1,1(2=α,Ta )2,1,1(3+-=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P ,)()()()()()()(B P A P B P A P B P A P AB P -=ρ称做事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ。
高等数学统考试卷(20-2004学年第二学期)参改解答一、1.{}14,7,49±-(漏“一”号扣一分) 2.dy y x xdx y x y 2222+++-3.120()yydy f x y dx -⋅⎰⎰4.275.y =0y e kx-二、6.D 7.D 8.C 9.B 10.C三、11.解法1.记 22(,,)(,)F x y z G x yz y xz =++v u x zG x G F +⋅=2 v u y yG zG F 2+= v u z G yG F λ+=x z ∂∂v u u u xG yG zG xG ++-=2, v u v uxG yG xG zG y z ++-=∂∂2 22(2)(2)z zy xz x yz x y ∂∂-+-∂∂[])2)(2()2)(2()(122v u v u v u yG zG yz x zG xG xz y xG yG +-++-+-=[]xy z xG yG z xy xG yG v u v u -=+-+-=22))(4()(1解:将原方程两边同时对x 、y 求导(z=z(x,y))得0)()2(=∂∂++∂∂+x zx z G x z y x G v u (1)()(2)0u v z z G z y G y x y y ∂∂+++=∂∂ (2) 联立(1)、(2)消去G u 、G v 得 22z z z z x y y x z y z x x y y x ⎛⎫⎛⎫∂∂∂∂⎛⎫⎛⎫++=++ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭0)2()2(22=∂∂-+∂∂-y zyz x x z xy y 12.设三条移长分别为x,y,z ,则长方体表面积为求U=2xy+2zx+2yz ,其中x+y+z=3a方法一:由z z y y x x f f f ϕϕϕ==得111yx x z z y +=+=+ 得x=y=z=a 为所求唯一解故当x=y=z=a 时 u=6a 2为所求条件最大值方法二:作)3(222),,,(z y x a yz zx xy z y x F ---+++=λλ 0)(2=-+=λz y F x 解科x=y=z=a (唯一解)0)(2=-+=λx z F y 2()0z F y x λ=+-= (一般不要求判定)判定法(亦是初等解法)222116(183)(2()666)33a u a u x y z xy yz zx -=-=++--- 2221()()()03x y y z z x ⎡⎤=-+-+-≥⎣⎦ 26a u ≤ 且等号仅当x=y=z=a 时或立,故x=y=z=a 时u 取得条件最大值26u a =13.记}2,2,1{1-=n},,{2}2,2,2{z y x z y x n ==令}2,1,2//{},,{-z y x 即⎩⎨⎧-==y z yx 22代入曲面方程9)2()2(222=-+y y y + 1±=y 所求点为(2,1,-2)或 (-2,-1,2)14.原式=aa a dx ydy -⋅⎰⎰-=⋅⨯=-=a a a a dx x a 22222122ππ15.方法一:(投影法,柱面坐标法) 原式=xy DR d zdz σ⋅⎰⎰ 2223:4R D x y +≤xyDd y x R R R σ⎰⎰--+-=)2(2222⎰⎰⋅-⋅+-⋅=πθ20230222)2(R r d rr R R R d22223122(()243R R R R R r π⎡⎤⎢⎥=⋅-⋅+--⎢⎥⎢⎥⎣⎦444125)811(32832R R R πππ=⎥⎦⎤⎢⎣⎡-+-=方法二:截面法,用平行于xoy 平面的平行平面截所给立体域截面积⎪⎪⎩⎪⎪⎨⎧≤≤-=≤≤-==R z R z R R z z Rz z S D D 2)(20)2()(22221πσπσ原式⎰⎰⎰⎰⎰⎰⋅+=RR D xy z D xy R d zdz d zdz 2)(202122σσ⎰⎰-⋅+-=202222)(2)2(2RRR dz z R z dz z Rz z ππ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⋅+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛⋅=42224316114141222412322R R R R R R R ππ 1252641583641121244⨯=⎥⎦⎤⎢⎣⎡-+-=R R ππ15.方法:(球面坐标法)作锥面3πϕ=将Ω分为Ω1及Ω2两部分原式⎰⎰⎰⎰⎰⎰ΩΩ+=1222zdv zdv⎰⎰⎰⎰⎰⎰⋅⋅⋅+⋅⋅=302023cos 202220cos sin 2cos sin 2ππππϕπρρρϕϕϕθρρρϕϕϕθRR d d d d d d32445203112sin 22sin cos 42R d ππππϕπϕϕϕ=⋅+⨯⨯⎰44)64161(8241432R R ⎥⎦⎤⎢⎣⎡⨯--⨯+⋅⨯=ππ441254811632R R ππ=⨯⎥⎦⎤⎢⎣⎡+=17.2()22()2p Q x y u y y x u y y xϕϕ∂∂''=⋅+≡=⋅+∂∂ 故积分与路径无关选L 1:2225=+y x ,从点A(5,0)到B(3,4) y d y x d x=-⎰⎰⎰+--+==ABL xdx x dx x x 1]2)5([]25)5([352ϕϕ⎰---=-=35332]35[)53(25)325(dx x 48=亦可改选L 2折线A(5,0), C(3,0), B(3,4)34225()((9)6)ABACCBx x dx y y y dy ϕϕ=+=+++⎰⎰⎰⎰⎰⎰⎰=++=92525942483)(21)(21y dv v du u ϕϕ )9,(22y v x u +==18.作辅助0:1=∑z原式=⎰⎰⎰⎰⎰⎰∑∑∑)()()(11上下上+++⎰⎰⎰⎰⎰⎰⎰∑+∑∑Ω+-+-+-+=外上=)()(222222110)666(dv x z z y y x⎰⎰⎰Ω++=dv z y x )(5222⎰⎰⎰⋅⋅⋅⋅=ππρρρϕϕθ20222s i n5Rd d d 552002)2R Rπρπϕπ=⋅-18.⎰⎰⎰⎰-⋅⋅=--=20cos 0222222πθθσrdr r R d d y x R V R Dxy223/2c o s20012()|3R R r d πθθ=⋅--⎰ ⎰⎪⎭⎫ ⎝⎛-=-⋅=2033332232)s i n 1(32ππθθR d R19.1111)21(|)(||)(|1⨯=⨯++=∞→+∞→βn u im l x u x u im l n nn n当|x|<|原级数绝对收敛,当|x|>|原级数发散当x=1 β)1(1)(+=n x U n 当β>1时原级数收敛 当1≤β时原级数发散当x=-1 (1)(1)(1)n n U n β--=+当β>1时原级数绝对收敛 当0<1≤β时原级数条件收敛 当0≤β原级数发散20.记0!>=n n n n b11()nn n n n b n l im l im e b n →∞→∞++==故R =e当e x <-=|23|||1 幂级数绝对收敛当e x >=32 幂级数发散 21.222'(1)2x x y y xe ++⨯=解:标准化(*)1122222x e x x y x x dx dy +=++ 方法一:先解0122=++y x x dx dy 求得211x ccy y +== 改设)()(1x y x u y = 代入方程(*) 2222111)(x e x xx x u +=+⋅' 22)(x xe x u ='c eu x +=22故得:222112xex c y x +++= 方法二:212)(x xx p += 22()1xp x dx dx x --=+⎰⎰221ln(1)ln 1x x =-+=+211xe p d x+=⎰- ()21p x dx e x ⎰=+ ⎥⎥⎦⎤⎢⎢⎣⎡+⋅++⎰=⎰-dx x e x x c e y x pdx )1(12222)(11222x e c x++= 方法三:原方程为222])1[(x xe y x ='+ c e y x x +=+222)1(2212xec y x ++=22.先解065=+'-''Y Y Y 由0652=+-r r得3,221==r r故知2312x x Y C e C e =+再求 ax ae y y y =+'-''65的特解,*y当32≠≠a a ,,ax ax e a a aAe y 65*2+-== 通解为ax x x e a a ae c e c y 6523221+-++= 当a=2,x x x e e xe A y 22225222*⨯-=-⨯=⨯=通解x x x e e c e c y 232212⨯-+=当a=3 x x x e e xe A y 33335323*⨯=-⨯=⨯= 通解233123x x x y c e c e xe =++。