人教版九年级数学第23章同步练习题及答案全套
- 格式:doc
- 大小:331.00 KB
- 文档页数:5
人教版九年级数学上册第23章旋转23.1.2旋转的作图及应用同步测试题号一二三总分得分第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30)1.下列各图中,可看作是由下面矩形顺时针方向旋转90°而成的是( )2.1.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1 B.2C.3 D.43.有一种平面图形,它绕着中心旋转,不论旋转多少度,所得到的图形都与原图形完全重合,你觉得它可能是()A.三角形B.等边三角形C.正方形D.圆4. 右图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为()A.30°B.60°C.120° D.180°5.将下面的直角梯形绕直线L旋转一周,可以得到右边立体图形的是()6.如图,将正方形ABCD 绕点C 按顺时针方向旋转120°后,得到正方形D C B A ''',则∠BC D '等于( ) A .120°B .130°C .140°D .150°7. 如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD ⊥AC;③四边形ACED 是菱形.其中正确的个数是( ) A.0 B.1 C.2 D.38. 如图,△ABC 绕着点O 按顺时针方向旋转90°后到达了△CDE 的位置,下列说法中不正确的是( ) A.线段AB 与线段CD 互相垂直 B.线段AC 与线段CE 互相垂直 C.点A 与点E 是两个三角形的对应点 D.线段BC 与线段DE 互相垂直9. 如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个10.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2 018次得到正方形OA2 018B2 018C2 018,如果点A的坐标为(1,0),那么点B2 018的坐标为( )A.(1,1) B.(0,2)C.(-2,0)D.(-1,1)第Ⅰ卷(非选择题)二.填空题(共8小题,3*8=24)11.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心一定是_____.12. 在△ABC中,∠C=90°,AB=5cm,BC=3cm,把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(不取近似值)13. 如图,在△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕点A旋转180°,点C落在C’处,则CC’的长为___________.14.如果两个图形可通过旋转而相互得到,则下列说法中:①对应点连线的中垂线必经过旋转中心.②这两个图形大小、形状不变.③对应线段一定相等且平行.④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.其中正确的有________个15.如图用等腰直角三角板画∠AOB=45º,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22º,则三角板的斜边与射线OA的夹角α为______度.16.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转900得到月牙②,则点A的对应点A’的坐标为.17.已知直线y=-2x+4,若该直线绕原点顺时针旋转1800,则旋转后得到的直线解析式是.18.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于点D、F,下列结论中:①∠CDF=α;②A1E=CF;③DF=FC;④AD=CE;⑤A1F=CE.其中正确的有___________________(写出正确结论的序号).三.解答题(共7小题,46分)19.(6分) 如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到BA′时所扫过的扇形的面积.20. (6分) 如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D 均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).21. (6分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA',求点A'的坐标.22.(6分) 如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无需说明理由)23.(6分) 如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH ⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,求AH的长.24.(8分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;25.(8分) ) 通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F,D,G共线.根据______,易证△AFG≌_______,得EF=BE+DF;(2)类比引申如图②,在四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在边BC,CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系__________________时,仍有EF=BE+DF;(3)联想拓展如图③,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,猜想BD,DE,EC应满足的等量关系,并写出推理过程.∠B+∠D=180°参考答案 1-5ACDBB 6-10 DDCDD 11. 点B 12. 4 13. 414. 3 15. 22° 16. (2,4) 17. y=-2x-4 18. ①②⑤ 19. 解:(1)图略(2)点A′(6,0),C′(0,-6),D′(0,0)(3)∵点A 的坐标为(-6,12),点B 的坐标为(-6,0), ∴AB =12,∴线段BA 旋转到BA′时所扫过的扇形的面积=14π×122=36π20. 解:(1)点D→D 1→D 2→D 经过的路径如图所示(3)周长=8π21. 解:如图,过点A 作AB ⊥x 轴于点B,过点A'作A'B'⊥x 轴于点B',由题意知OA=OA',∠AOA'=90°, ∴∠A'OB'+∠AOB=90°, ∵∠AOB+∠OAB=90°, ∴∠OAB=∠A'OB',在△AOB 和△OA'B'中,{∠OAB =∠A 'OB ',∠ABO =∠OB 'A ',OA =A 'O ,∴△AOB≌△OA'B'(AAS),∴OB'=AB=4,A'B'=OB=3,∴点A'的坐标为(-4,3).22. 解:(1)如图所示,△A1B1C1即为所求(2)如图所示,△A2B2C2即为所求(3)三角形的形状为等腰直角三角形,OB=OA1=16+1=17,A1B=25+9=34,即OB2+OA12=A1B2,∴三角形的形状为等腰直角三角形23.解:由旋转的性质可知AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°,∴∠GAE=∠FAE.在△GAE和△FAE中,AG=AF,∠GAE=∠FAE,AE=AE,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x-2,FC=x-3.在Rt△EFC中,由勾股定理得EF2=EC2+FC2,即(x-2)2+(x-3)2=25.解得x=6(x=-1舍),∴AB=6,∴AH=6.24. 解:(1)证明;根据旋转的性质知,∠OCD=60°,CO=CD,∴△COD是等边三角形(2)当α=150°,即∠BOC=150°时,△AOD是直角三角形.理由如下:由旋转的性质可知,△BOC≌△ADC,∴∠ADC=∠BOC=150°.又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC-∠ODC=90°,人教版九年级数学上册第23章23.1.2《旋转作图和应用》同步测试(含答案)即△AOD是直角三角形25解:(1)SAS,△AFE(2)∠B+∠D=180°(3)猜想:DE2=BD2+EC2.证明:把△AEC绕点A顺时针旋转90°得到△AE′B,连接DE′,∴△AEC≌△AE′B,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠C=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=∠EAD=45°,又AD=AD,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC211/ 11。
人教版九年级上册数学第23章测试题附答案(时间:120分钟满分:120分)姓名:______班级:______分数:______一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是(C)2.若点P(m-1,5)与点Q(3,2-n)关于原点成中心对称,则m+n 的值是(C)A.1B.3C.5D.73.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n 的最小值是(C)A.60 B.90 C.120 D.180第3题图第4题图4.如图所示,△ABC与△A′B′C′是中心对称的两个图形,下列说法不正确的是(D)A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ABO=S△A′B′C′5.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM =1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为( C)A.3 B.2 3 C.13 D.15第5题图第6题图6.将五个边长都为2 cm的正方形按如图所示的样子摆放,点A,B,C,D分别是四个正方形的中心,则图中四块阴影部分面积的和为(B)A.2 cm2B.4 cm2C.6 cm2D.8 cm2二、填空题(本大题共6小题,每小题3分,共18分)7.如图所示,等边三角形ABC经过顺时针旋转后成为△EBD,则其旋转中心是点B ,旋转角度是120° .第7题图第9题图第10题图8.下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是③.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=112°,则∠α的大小是__22°__. 10.如图,在△ABC中,∠B=15°,∠ACB=25°,AB=8 cm,△ABC 逆时针旋转一定角度后与△ADE重合,且点C恰好为AD的中点,则∠BAE=__80°__,AE的长为__4__cm.11.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A 在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC 绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的第11题图第12题图12.一幅三角板按如图所示叠放在一起,若固定三角板AOB,将三角板ACD绕着公共顶点A,按顺时针方向旋转α(0°<α<180°).当三角板ACD的边CD与三角板AOB的某一边平行时,相应的旋转角α的值是__30°或75°或165°__.三、(本大题共5小题,每小题6分,共30分)13.(1)如图所示,在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A顺时针旋转90°,画出旋转后的△AB′C′;解:△AB′C′即为所求.(2)如图所示,△ABC和△DEF是成中心对称的两个三角形,请找出它们的对称中心.解:如图,点O即为对称中心.14.直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.解:根据题意得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.15.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A 逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′的长等于多少?解:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP=AP′,∠PAP′=∠BAC=90°,∴△APP′为等腰直角三角形,∴PP′=2AP=2 2.16.(北京中考)如图,四边形ABCD顶点的坐标分别为A(-3,1),B(-3,-1),C(-1,-1),D(-1,1).将正方形ABCD分别作下列变换,求变换后各图形的顶点坐标.(1)沿CD翻折180°;(2)绕点D逆时针旋转180°;(3)关于坐标原点O成中心对称;(4)向下平移2个单位.解:(1)A(1,1),B(1,-1),C(-1,-1),D(-1,1).(2)A(1,1),B(1,3),C(-1,3),D(-1,1).(3)A(3,-1),B(3,1),C(1,1),D(1,-1).(4)A(-3,-1),B(-3,-3),C(-1,-3),D(-1,-1).17.如图,正方形ABCD中,E为CD上一点,F 为BC延长线上一点,CE=CF.(1)△DCF可以看做是△BCE绕点C旋转某个角度得到的吗?(2)若∠CEB=60°,求∠EFD的度数.解:(1)△DCF可以看做是△BCE绕点C顺时针旋转90°而得到的.(2)∵∠CEB=60°,∴∠CFD=60°,∵∠DCF=90°,CE=CF,∴∠CFE=∠CEF=45°,∴∠EFD=∠CFD-∠CFE=60°-45°=15°.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,D是BC上一点,DE ∥AC交AB于点E,DF∥AB交AC于点F.(1)求证:四边形AEDF是中心对称图形;(2)若AD平分∠BAC,求证:点E,F关于直线AD对称.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∴四边形AEDF是中心对称图形.(2)连接EF.∵AD平分∠BAC,∴∠BAD=∠CAD.又∵DE∥AC,∴∠CAD=∠ADE.∴∠BAD=∠ADE.∴AE=DE.又∵由(1),知四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴AD垂直平分EF.∴点E,F关于直线AD对称.19.将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=4,则CQ等于多少?(1)证明:∵将△A1B1C顺时针旋转45°,∴∠ACA1=45°,AC=A1C,∠A=∠A1.∵∠A1CB1=∠ACB=90°,∴∠BCA1=∠ACA1=45°,且AC=A1C,∠A=∠A1,∴△A1CQ≌△ACP1(ASA),∴CP1=CQ.(2)解:如图②,过点P1作P1E⊥AC.∵∠A=30°,AP1=4,P1E⊥AC,∴P1E=2.∵∠ACA1=45°,P1E⊥AC,∴CE=P1E=2,∴P1C=22,∴CQ=CP1=2 2.20.如图,点E,C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A =∠D=90°.(1)求证:AB=DE;(2)若AC交DE于M,且AB=3,ME=2,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.(1)证明:∵BE=FC,∴BC=EF,又∠ABC=∠DEF,∠A=∠D,∴△ABC≌△DEF,∴AB=DE;(2)解:∵∠DEF=∠B=45°,∴DE∥AB,∴∠CME=∠A=90°,∴AC=AB=3,MC=ME=2,CG=CE=2,由勾股定理得AG=1=12CG,∴∠ACG=30°,∴∠ECG=∠ACB-∠ACG=45°-30°=15°.五、(本大题共2小题,每小题9分,共18分)21.如图,在△ABC中,AB=AC,△ABC与△FEC关于点C对称,连接AE,BF.(1)试猜想线段AE与BF具有怎样的位置关系和数量关系,并说明理由;(2)若△ABC的面积为3,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?并说明理由.解:(1)AE∥BF且AE=BF.理由:∵△FEC与△ABC关于点C对称,∴AC=FC,BC=EC,∴四边形ABFE是平行四边形,∴AE∥BF且AE=BF.(2)在▱ABFE中,易知S△ABC=S△BCF=S△CEF=S△ACE,又∵S△ABC=3,∴S▱ABFE=4S△ABC=12.(3)当∠ACB=60°时,四边形ABFE是矩形.理由如下:∵∠ACB=60°,AB=AC,∴△ABC为等边三角形,即AB=AC=BC.又∵AC=FC,BC=EC,∴AF=BE,∴▱ABFE是矩形.22.把两个全等的等腰直角三角板ABC和EFG(其直角边均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕点O按顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角形的重叠部分(如图②),在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?请证明你的发现.解:BH=CK,四边形CHGK的面积不变,始终为4,证明如下:∵△ACB及△EGF为全等的等腰直角三角形,O为AB中点,∴CG=12AB=BG.由旋转可知∠BGH=∠CGK,∠B=∠KCG=45°,故△BGH≌△CGK,∴BH=CK,又S四边形CHGK=S△CKG+S△CHG=S△BGH+S△CHG=S△CBG=12S△ACB=12×4×4×12=4,故当0<α<90 °,BH=CK,四边形CHGK的面积不变,始终为4.六、(本大题共12分)23.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)【思路梳理】∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB 与AD重合,∵∠ADG=∠B=90°,∴∠FDG=180°,点F,D,G 共线,根据SAS,易证△AFG≌△AFE,得EF=BE+DF;(2)【类比引申】如图②,四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在边BC,CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF;(3)【联想拓展】如图③,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC 上,且∠DAE=45°,猜想BD,DE,EC应满足的等量关系,并写出推理过程.解:猜想:DE2=BD2+EC2.理由:将△ABD绕点A逆时针旋转90°,则AB与AC重合,如图,连接ED′,则△ADE≌△AD′E,∴DE=D′E.又∵Rt△ABC中,∠B+∠ACB=90°,∠B=∠ACD′,∴∠ACD′+∠ACB=90°,即∠D′CE=90°,∴ED′2=EC2+CD′2,∴DE2=EC2+BD2.。
人教版九年级上册数学第二十三章《旋转》练习题一、单选题1.在下列四个图案中,不是中心对称图形的是()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列图形中,只是中心对称图形而不是轴对称图形的是()A. B. C. D.5.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A. ①B. ②C. ③D. ④7.下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.8.下列图案中,是中心对称图形的是()A. B. C. D.9.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转46°得到Rt△A′B′C,点A在边B′C 上,则∠ACB的大小为()A. 23°B. 44°C. 46°D. 54°10.下列图形,是中心对称图形的是( )A. B. C. D.11.将△ABC绕原点旋转180°得到△A′B′C′,设点A的坐标为(a,b),则点A′的坐标为()A. (−a,−b)B. (a,−b)C. (−a,b)D. (a,b)12.下列图形中,是中心对称图形,但不是轴对称图形的是()A. 平行四边形B. 线段C. 等边三角形D. 抛物线13.下列图形中,是中心对称图形的是()A. B. C. D.14.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.15.下列图形,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题16.如图,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,则四边形ABCD的面积为________.17.如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是________.18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为________.19.已知点A(﹣2,3)与A1关于点P(0,2)成中心对称,A1的坐标是________ .20.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为________度.21.一个长方形绕它的一条边旋转一周形成的几何体为________,将一个直角三角形绕着一条直角边旋转一周得到的几何体为________.22.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中̂,则图中阴影部分的面积为________.点C的运动路径为CC′23.如图,在Rt△ABC中,∠C=90°,∠B=30°,将△ABC绕着点C逆时针旋转后得到的△A′B′C的斜边A′B′经过点A,那么∠ACA'的度数是________ 度.24.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为________.25.如图,已知半⊙O的直径AB=8,将半⊙O绕A点逆时针旋转,使点B落在点B'处,AB'与半⊙O交于点C,若图中阴影部分的面积是8π,则弧BC的长为________.26.如图,在△ABC中,∠ACB=90°,且AC=BC.点D是△ABC内的一点,将△ACD以点C为中心顺时针旋转90°得到△BCE,若点A、D、E共线,则∠AEB的度数为________.27.如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动4次时,点P所经过的路程是________.28.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为________.29.点(﹣2,1)关于原点对称的点的坐标为________.30.如图,将△AOB绕点O按逆时针方向旋转45后,得到△COD,如果∠AOB=15,则∠AOD的度数是________.三、解答题31.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.∠ABC(0°<∠CBE<32.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=121∠ABC),以点B为旋转中心,将△BEC按逆时针旋转,得到△BE′A(点C与点A重合,点E到点E′处)连接2DE′.求证:DE′=DE.∠ABC(0°<∠CBE (2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=12<∠45°).求证:DE2=AD2+EC2.33.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;②若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.34.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).①把△ABC向右平移2个单位得△A1B1C1,请画出△A1B1C1,并写出点A1的坐标;②把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.35.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.36.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.37.以给出的图形“○,○,△,△, =”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.38.在平面直角坐标系中,∆ABC的顶点坐标是A(-7,1)、B(1,1)、C(1,7),线段DE的端点坐标是D(7,-1)、E(-1,-7)(1)试说明如何平移线段AC,使其与线段ED重合将线段AC先向______(上,下)平移_______个单位,再向_______(左,右)平移_______个单位;(2)将∆ABC绕坐标原点逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的∆DEF,并和∆ABC 同时绕坐标原点O逆时针旋转90o,画出旋转后的图形.39.如图,已知反比例函数y=m(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一x次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=√17(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.40.已知|2﹣m|+(n+3)2=0,点P1、P2分别是点P(m,n)关于y轴和原点的对称点,求点P1、P2的坐标.四、综合题41.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.42.将□OABC放在平面直角坐标系中,O为原点,点C(-6,0),点A在第一象限,OA=2,∠A=60°,AB 与y轴交于点N.(1)如图①,求点A的坐标:(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA'B'C',当点A的对应点A'落在y 轴正半轴上时,求旋转角及点B的对应点B'的坐标:(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.43.在数学课上,老师要求学生探究如下问题:(1)如图1,在等边三角形ABC内有一点P,PA=2,PB=√3,PC=1,试求∠BPC的度数.李明同学一时没有思路,当他认真分析题目信息后,发现以PA、PB、PC的长为边的三角形是直角三角形,他突然有了正确的思路:如图2,将△BPC绕点B逆时针旋转60°,得到△BP′A.连接PP',易得△P′PB 是正三角形,△P′PA是直角三角形,则得∠BPC=________;(2)如图3,在正方形ABCD内有一点P,PA=√5,PB=√2,PC=1,试求∠BPC的度数.(3)在图3中,若在正方形ABCD内有另一点Q,QA=a,QB=b,QC=c(a>b,a>c),试猜想当a,b,c满足什么条件时,∠BQC的度数与第(2)问中∠BPC的度数相等,请直接写出结论.44.如图1,四边形ABCD是边长为3√2的正方形,矩形AEFG中AE=4,∠AFE=30°。
旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
第二十三章旋转全章测试一、填空题1.如图,正方形ABCD和正方形CEFG中,BC⊥EC,它们的边长为10cm.1题图(1)正方形ABCD可看成是由正方形CEFG向______平移______cm得到的.(2)正方形ABCD又可看成是由正方形CEFG绕______点,旋转______角得到的,并且它们成______对称,对称中心是______.2.图形的旋转是由______和______决定的,图形在旋转过程中,它的______和______都不会发生变化.3.如图,若△ABD绕A点逆时针方向旋转60°得到△ACE,则旋转中心是______,旋转角度是______,△ABC和△ADE都是______.3题图4.如图,若O是正方形ABCD的中心,直角∠MON绕O点旋转,则∠MON与正方形围成的四边形的面积是正方形ABCD面积的______.4题图5.如图,当△AED绕正方形ABCD的顶点D旋转到与△DCF重合时,∠DEF的度数为______.5题图6.若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O对称,则m=______且n=______.二、选择题7.如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于E,F,则图中相等的线段有( ).A.3对B.4对C.5对D.6对8.下列关于旋转的说法不正确的是( ).A.旋转中心在旋转过程中保持不动B.旋转中心可以是图形上的一点,也可以是图形外的一点C.旋转由旋转中心、旋转方向和旋转角度所决定D.旋转由旋转中心所决定9.下列说法正确的是( ).A.中心对称图形是旋转对称图形B.旋转对称图形是中心对称图形C.轴对称图形是旋转对称图形D.轴对称图形是中心对称图形10.下列图形中,既是轴对称图形又是中心对称图形的是( )三、解答题11.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度?(2)连结CD,试判断△CBD的形状;(3)求∠BDC的度数.12.已知:两点A(-2,1),B(-3,0).(1)把△ABO绕O点顺时针旋转90°,得到△A1B1O,求A1,B1点的坐标;(2)把△A1B1O沿x轴向右平移2个单位长度,得到△A2B2C,求A2,B2,C点的坐标;(3)作△A 2B 2C 关于原点O 的对称图形,得到△A 3B 3D ,求A 3,B 3,D 点的坐标.13.已知:反比例函数⋅-=xy 6 (1)若将反比例函数xy 6-=的图象绕原点O 旋转90°,求所得到的双曲线C 的解析式并画图;(2)双曲线C 上是否存在到原点O 距离为13的点P ,若存在,求出点P 的坐标.14.已知:如图,P 是正方形ABCD 内一点,∠.7,1,135===AP BP APB 求PC 的长.答案与提示第二十三章 旋转全章测试1.(1)左,.210 (2)C ,180°,中心,C 点.2.旋转中心,旋转角,形状、大小. 3.A 点,60°,正三角形.4.⋅41 5.45°. 6.-1, -5. 7.C . 8.D . 9.A . 10.B .11.(1)150°;(2)等腰三角形;(3)15°.12.(1)A 1(1,2),B 1(0,3);(2)A 2(3,2),B 2(2,3),C (2,0);(3)A 3(-3,-2),B 2(-2,-3),D (-2,0).13.(1);6xy = (2)P 1(2,3),P 2(3,2),P 3(-2,-3),P 4(-3,-2).14.PC =3.提示:将△ABP 绕B 点顺时针旋转90°,这时A 点与C 点重合,P 点的对应点是P ',连结PP ′,则△ABP ≌△CBP ′,△PBP ′为等腰直角三角形,∠PP ′C =90°,.3)7()2(''2222=+=+=C P PP PC如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
人教版九年级上册数学第23章测试题(附答案)一、单选题(共12题;共24分)1.在平面直角坐标系中,将点绕坐标原点顺时针旋转,所得到的对应点的坐标为()A. B. C. D.2.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是( )A. B. C. D.3.下列四个字母是中心对称图形的是()A. MB. EC. HD. Y4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A. 40°B. 70°C. 80°D. 140°5.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A. 把△ABC绕点C逆时针方向旋转90°,再向下平移2格B. 把△ABC绕点C顺时针方向旋转90°,再向下平移5格C. 把△ABC向下平移4格,再绕点C逆时针方向旋转180°D. 把△ABC向下平移5格,再绕点C顺时针方向旋转180°6.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A. 内部B. 外部C. 边上D. 以上都有可能7.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.如图、将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,点A落在A′位置.若A′C⊥AB,则∠B′A′C 的度数是()A. 50°B. 60°C. 70°D. 80°9.如图,把△OAB绕点O逆时针旋转80°,到△OCD的位置,若∠AOB=45°,则∠AOD等于( ).A. 35°B. 90°C. 45°D. 50°10.如图,点A,点B的坐标分别是(0,1),(a,b),将线段AB绕A旋转180°后得到线段AC,则点C 的坐标为()A. (﹣a,﹣b+1)B. (﹣a,﹣b﹣1)C. (﹣a,﹣b+2)D. (﹣a,﹣b﹣2)11.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形,图中阴影部分的面积为()A. B. . C. D.12.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.将△ABC绕点C顺时针旋转得到△A′B′C ,连结AB′.若A、B′、A′在同一条直线上,则AA′的长为()A. 6B.C.D. 3二、填空题(共6题;共6分)13.点P(4,﹣3),则点P关于原点的对称点P′坐标是________.14.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=________°.15.如图,△ABC为等边三角形,△AO′B绕点A逆时针旋转后能与△AOC重合,则∠OAO′=________度.16.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A'B'C可以由△ABC绕点C顺时针旋转得到,其中点A'与点A是对应点,点B与点B是对应点,连接AB',且A、B’、A'在同一条直线上,则AA’的长为________.17.如图,将△ABC绕点A顺时针旋转60°得到△AED,若∠EAD=30°,则∠CAE的度数为________.18.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为________.三、解答题(共3题;共15分)19.如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)20.已知点P(x,y)的坐标满足方程,求点P分别关于x轴,y轴以及原点的对称点坐标.21.如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C 恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.四、作图题(共1题;共10分)22. (1)如图,在正方形网格中,每个小正方形的边长均为1个单位.将△ABC绕点C 逆时针旋转90°,得到△A'B'C',请你画出△A'B'C'(不要求写画法).(2)如图,已知点和,试画出与关于点成中心对称的图形.五、综合题(共3题;共30分)23.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.24.如图,在Rt△OAB中,∠OAB=90。
部编版人教初中数学九年级上册第23章(旋转)同步检测题(含答案)前言:该同步检测题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步检测题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步检测题)23.1 图形的旋转测试时间:25分钟一、选择题1.(2018遵义绥阳期中)下列物体的运动不是旋转的是( )A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.(2018广东肇庆端州期中)将图形按顺时针方向旋转90°后的图形是( )3.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A'B'C,连接AB',并有AB'=3,则∠A'的度数为( )A.125°B.130°C.135°D.140°二、填空题4.(2017天津期末)如图,把△ABC绕点C顺时针旋转35°,得到△A'B'C,A'B'交AC于点D,若∠A'DC=90°,则∠A=.5.(2018山东济宁期末)如图,P为正方形ABCD内的一点,PC=1,将△CDP绕点C逆时针旋转得到△CBE,则PE= .6.(2017辽宁大连甘井子期末)如图,在平面直角坐标系中,已知点A(-1,0),B(3,2),将线段AB绕点A旋转90°,得到线段AB',则点B'的坐标是____________________.三、解答题7.如图,在平面直角坐标系中,每个小正方形的边长为1 cm,△ABC各顶点都在格点上,点A,C的坐标分别为(-1,2),(0,-1),结合所给的平面直角坐标系解答下列问题:(1)AC的长等于;(2)画出△ABC向右平移2个单位得到的△A1B1C1,则A点的对应点A1的坐标是;(3)将△ABC绕点C按逆时针方向旋转90°,画出旋转后的△A2B2C2,则A点的对应点A2的坐标是.8.(2018广东汕头潮南期末)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,求AP的长.23.1 图形的旋转测试时间:25分钟一、选择题1.答案 C 骑自行车的人在前进的过程中没有发生旋转.故选C.2.答案 B 根据旋转的意义,知图形按顺时针方向旋转90°后可得选项B中图形.故选B.3.答案 C 如图,连接AA'.由题意得AC=A'C=2,A'B'=AB=1,∠ACA'=90°,∴∠AA'C=45°,AA'2=22+22=8.∵AB'2=32=9,A'B'2=12=1,∴AB'2=AA'2+A'B'2, ∴∠AA'B'=90°,∴∠B'A'C=90°+45°=135°,故选C.二、填空题4.答案55°解析∵△ABC绕着点C顺时针旋转35°,得到△A'B'C,∴∠ACA'=35°,∵∠A'DC=90°,∴∠A'=55°.∵∠A的对应角是∠A',∴∠A=∠A',∴∠A=55°.5.答案解析∵△CDP绕点C逆时针旋转得到△CBE,∴其旋转中心是点C,旋转角度是90°,∴∠PCE=90°,EC=PC,∵PC=1,∴EC=PC=1,∴△CPE是等腰直角三角形,∴PE===.6.答案(-3,4)或(1,-4)解析过点B作BC⊥x轴于点C.如图1,当AB绕点A逆时针旋转90°时,过点B'作B'D⊥x轴于点D,易知∠BAC+∠B'AD=90°,∵∠DB'A+∠B'AD=90°,∴∠BAC=∠DB'A,在△B'DA与△ACB中,∴△B'DA≌△ACB(AAS),∴AD=BC,B'D=AC.∵A(-1,0),B(3,2),∴BC=2,AC=4,∴B'(-3,4).如图2,当AB绕点A顺时针旋转90°时,过点B'作B'E⊥x轴于点E,同理,可求得B'(1,-4).故答案为(-3,4)或(1,-4).三、解答题7.解析(1)AC==(cm).故填 cm.(2)所画图形如下:的坐标是(1,2).A点的对应点A1(3)所画图形如下:的坐标是(-3,-2).A点的对应点A28.解析如图,∵AC=9,AO=3,∴CO=6.∵△ABC为等边三角形,∴∠A=∠C=60°.∵线段OP绕点O逆时针旋转60°得到线段OD,且点D恰好落在BC上,∴OD=OP,∠POD=60°.∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3.在△AOP和△CDO中,∴△AOP≌△CDO,∴AP=CO=6.即AP的长为6.23.2.1 中心对称测试时间:20分钟一、选择题1.下列说法中,正确的有( )①线段两端点关于它的中点对称;②菱形的一组对边关于对角线的交点对称;③成中心对称的两个图形一定全等;④如果两个图形全等,那么这两个图形一定关于某点成中心对称;⑤如果两个三角形的对应点连线都经过一点,那么这两个三角形成中心对称.( )A.2个B.3个C.4个D.5个2.如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,若AB=3,BC=4,那么阴影部分的面积为( )A.4B.12C.6D.3。
人教版九年级数学上册第二十三章测试卷一、选择题(每题3分,共30分)1.下列图形中是中心对称图形的是()2.点(-1,2)关于原点的对称点坐标是()A.(-1,-2) B.(1,-2) C.(1,2) D.(2,-1) 3.如图,该图形围绕圆心按下列角度旋转后,不能..与其自身重合的是() A.72°B.108°C.144°D.216°(第3题)(第4题)(第5题)(第6题)4.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°5.如图,点O是▱ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABOE和四边形CDOF的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C.S1=S2 D. 无法确定6.如图,四边形ABCD为正方形,O为对角线AC,BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°7.如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.41B.42 C.5 2 D.213(第7题) (第8题) (第9题)8.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ′,则点P ′的坐标为( ) A .(3,2)B .(3,-1)C .(2,-3)D .(3,-2)9.如图,点P 是等腰直角三角形ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP ′B =135°,P ′A ∶P ′C =1∶3,则P ′A ∶PB 等于( ) A .1∶ 2B .1∶2C.3∶2D .1∶ 310.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1;依此方式,绕点O 连续旋转2 022次得到正方形OA 2 022B 2 022C 2 022,那么点A 2 022的坐标是( )A.⎝ ⎛⎭⎪⎫22,-22 B .(-1,0)C.⎝ ⎛⎭⎪⎫-22,-22 D .(0,-1)二、填空题(每题3分,共24分)11.将如图所示的图案绕其中心旋转n °时与原图案完全重合,那么n 的最小值是________.(第11题) (第12题) (第13题) (第14题) 12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.13.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.14.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M的坐标是__________,点N的坐标是__________.15.如图,点A,B,C的坐标分别为(0,-1),(0,2),(3,0).从点M(3,3),N(3,-3),P(-3,0),Q(-3,1)中选择一个点,以点A,B,C与该点为顶点的四边形不是..中心对称图形,则该点是________.(第15题)(第16题)(第17题)(第18题) 16.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1.连接AA1,则四边形OAA1B1的面积为________.17.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=________.18.如图,将一个45°角的顶点与正方形ABCD的顶点A重合,在正方形的内部绕着点A旋转,角的两边分别与CD,CB边相交于F,E两点,与对角线BD交于N,M两点,连接EF,则下列结论:①AE=AF;②EF=BE+DF;③△CEF的周长等于正方形ABCD周长的一半;④S△AEF =S△ABE+S△ADF.其中正确的结论有____________(填序号).三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分) 19.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转角的度数;(2)求∠BAE的度数和AE的长.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.22.图①、图②都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影.(1)使得6个阴影小等边三角形组成一个轴对称图形;(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图①、图②中,均只需画出符合条件的一种情形)23.如图,△BAD是由△BEC在平面内绕点B旋转60°得到的,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.25.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,试判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α.答案一、1.B 2.B 3.B 4.C 5.C 6.C 7.D8.D9.B10.B二、11.12012.π13. 214.(-1,-3);(1,-3)15. P16. 3617.20°18. ②③④三、19.解:(1)旋转中心是点A.∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°.由旋转的性质得△ABC≌△ADE,∴AB=AD,AC=AE.又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2.∴AE=2.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.点B2的坐标为(4,-2),点C2的坐标为(1,-3).21.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.解得x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.22.解:(1)如图①所示.(答案不唯一)(2)如图②所示.(答案不唯一)23.(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°得到的,∴DB =CB ,∠ABE =∠DBC =60°. ∵AB ⊥BC , ∴∠ABC =90°. ∴∠CBE =30°. ∴∠DBE =30°. ∴∠DBE =∠CBE . 在△BDE 和△BCE 中,⎩⎨⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE (SAS). (2)解:四边形ABED 为菱形. 理由:由(1)得△BDE ≌△BCE , ∴EC =ED .∵△BAD 是由△BEC 旋转得到的, ∴△BAD ≌△BEC . ∴BA =BE ,AD =EC =ED . 又∵BE =CE , ∴BA =BE =AD =ED . ∴四边形ABED 为菱形. 24.解:(1)AE =DB ,AE ⊥DB .理由:由题意可知,CA =CB ,CE =CD ,∠ACE =∠BCD =90°, ∴Rt △ACE ≌Rt △BCD (SAS). ∴AE =DB .如图①,延长DB 交AE 于点M . ∵Rt △ACE ≌Rt △BCD ,∴∠AEC=∠BDC.又∵∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°.∴在△AMD中,∠AMD=180°-90°=90°.∴AE⊥DB.(2)DE=AF,DE⊥AF.理由:如图②,设ED与AF相交于点N,由题意易知BE=AD.∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF.又∵DB=DF,∴△EBD≌△ADF(SAS).∴∠E=∠F AD,DE=AF.∵∠E=45°,∴∠F AD=45°.又∵∠EDC=45°,∴∠AND=90°.∴DE⊥AF.25.解:(1)∠ABD=30°-1 2α.(2)△ABE为等边三角形.证明如下:连接AD,CD.∵线段BC绕点B逆时针旋转60°得到线段BD,∴BC=BD,∠DBC=60°.∴△BCD是等边三角形.∴BD=CD.又∵∠ABE=60°,∴∠ABD=60°-∠DBE=∠EBC=30°-1 2α.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,∴ △ABD ≌△ACD (SSS). ∴∠BAD =∠CAD =12∠BAC =12α. ∵∠BCE =150°,∴∠BEC =180°-⎝ ⎛⎭⎪⎫30°-12α-150°=12α. ∴∠BAD =∠BEC . 在△ABD 和△EBC 中,⎩⎨⎧∠BAD =∠BEC ,∠ABD =∠EBC ,BD =BC ,∴△ABD ≌△EBC (AAS). ∴AB =BE . 又∵∠ABE =60°, ∴△ABE 为等边三角形.(3)由(2)可知△BCD 为等边三角形,∴∠BCD =60°. ∵∠BCE =150°,∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴ △DCE 为等腰直角三角形, ∴DC =CE =BC . ∴∠CBE =∠BEC . ∵∠BCE =150°,∴∠EBC =180°-150°2=15°. 而由(2)知∠EBC =30°-12α,∴30°-12α=15°. ∴α=30°.。
人教版九年级上册数学第二十三章测试卷一、单选题1.如图,△ABC为等边三角形,将△ABC绕点A逆时针旋转75°,得到△AED,过点E作EF⊥AC,垂足为点F,若AC=8,则AF的长为( )A.4B.3 C.D.2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°4.下列英文字母是中心对称图形,但不是轴对称图形的是( )A.N B.D C.W D.O5.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.6.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△A′B'C′,连接BB',若AC′∥BB',则∠C′AB ′的度数为( )A.45°B.30°C.20°D.15°7.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(2,2-)B.(2-,2)C.(2,2)D.(3,3-)8.如图,A,B,C,三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到AC B''△,则tan B'的值为()A.12B.13C.14D29.将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(-2,0),∠ABO=30°.则ΔAOB旋转过程中所扫过的图形的面积为()A.11233π+B.33π+C.33πD.1133π10.如图,在R t△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A .B .6C .D .3二、填空题11.点与点关于原点对称,则点的坐标是_________.12.如图,点D 是等腰ABC 的底边AB 上的点,若AC BC =且100ACB ∠=,将ACD 绕点C 逆时针旋转,使它与'BCD 重合,则'D BA ∠=______度。
第二十三章二次函数周周测6一、选择题〔本大题共9小题,共分〕1.如图,图形是中心对称图形,那么对称中心是A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点2.如图,假设正六边形ABCDEF绕着中心点O旋转度后得到的图形与原来图形重合,那么的最小值为A.B.C.D.3.如图,在中,,在同一平面内,将绕点C顺时针旋转到的位置,使得,那么的度数为A. B. C. D.4.以下图形中,是中心对称图形的有A. 1个B. 2个C. 3 个D. 4个5.如图,O是等边内一点,,将线段BO以点B为旋转中心逆时针旋转得到线段,以下结论:可以由绕点B逆时针旋转得到;点O与的距离为4;;四边形AO的面积为;.其中正确的结论是A. B. C. D.6.如图,在中,,将绕点A逆时针旋转得到,其中点与点B是对应点,点与点C是对应点,且点C、、在同一条直线上,那么的长为A. 4B.C.D. 37.以下图中的“笑脸〞,由以下图按逆时针方向旋转得到的是A. B.C. D.8.如图,将绕点O按逆时针方向旋转后得到,假设,那么的度数是A.B.C.D.9.如图,中,,点D在边BC上,把绕着点D逆时针旋转度后,如果点B恰好落在初始的边上,那么m为A.B. 或C.D.二、填空题10.如图,在中,,点O为内一点,连接A0、BO、CO,且,按以下要求画图保存画图痕迹:以点B为旋转中心,将绕点B顺时针方向旋转,得到得到A、O的对应点分别为点、,那么______ ,______ .11.在英文大写字母H、K、J、K、L、M、N中,是中心对称的有______ 个12.假设两个图形关于某点成中心对称,那么以下说法:这两个图形一定全等;对称点的连线一定经过对称中心;对称点与旋转中心的连线所成的角都是旋转角;一定存在某条直线,沿该直线折叠后的两个图形能互相重合,其中正确的有______ 只填所有正确答案的序号13.在图形的平移、旋转、轴对称变换中,其相同的性质是______ .14.如图,在中,将绕点C按逆时针方向旋转得到,点A在边上,那么的大小为______ .三、解答题15.知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个局部.如图,直线m经过平行四边形ABCD对角线的交点O,那么______ 填“〞“〞“〞;如图,两个正方形如下图摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两局部;八个大小相同的正方形如下图摆放,求作直线将整个图形分成面积相等的两局部用三种方法分分割.16.如图,一个圆和一个平行四边形请你画出一条直线l,同时把这两个图形分成面积相等的两局部.17.综合与实践:问题情景:等腰,点分别是的中点,连接MN.问题:如图1,当点E在AB上,且点C和点D恰好重合时,探索MN与EC的数量关系,并加以证明;如图2,当点D在AB上,点E在外部时,中的结论还成立吗?假设成立,请给予证明,假设不成立,请说明理由.拓展探究:如图3,将图2中的等腰绕点A逆时针旋转,请猜测MN 与EC的位置关系和数量关系不必证明18.在中,,将以B为中心顺时针旋转,得到.求证:.19.在平面直角坐标系中的位置如下图.将绕原点O顺时针旋转得到,请画出;直接写出的坐标为______ ;直接写出点A在旋转过程中所经过的路线长为______ .【答案】1. D2. D3. A4. C5. C6. A7. A8. C9. B10. ;11. H、N12.13. 图形的形状、大小不变,只改变图形的位置14.15.16. 解:如下图:17. 解:与EC的数量关系为证明:点分别是的中点等腰成立证明:如图2,连接EM并延长至点F,使,连接在和中≌和为等腰直角三角形,在和中≌又点分别是的中点与EC的位置关系为:,数量关系为:.18. 证明:由旋转的性质得:≌,,,即,,.19. ;第二十四章二次函数周周测1一、选择题〔共16小题〕1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为〔〕A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,假设∠ADB=28°,那么∠AOC 的度数为〔〕A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,那么∠EOD等于〔〕A.10°B.20°C.40°D.80°4.如图,点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.那么以下结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是〔〕A.1 B.2 C.3 D.45.如图,圆心角∠BOC=78°,那么圆周角∠BAC的度数是〔〕A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,那么∠BOC等于〔〕A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,那么∠AEB的度数为〔〕A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC的度数是〔〕A.35°B.140°C.70°D.70°或140°9.以下四个图中,∠x是圆周角的是〔〕A.B.C.D.10.〔2021•龙岩〕如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,那么弦AB 的长为〔〕A.B.2 C.2D.411.如图,在⊙O中,∠OAB=22.5°,那么∠C的度数为〔〕A.135°B.122.5°C.115.5°D.112.5°12.如图,⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,那么∠BCD等于〔〕A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,那么∠AOB的度数是〔〕A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,那么∠A的度数是〔〕A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,那么∠ABD=〔〕A.20°B.46°C.55°D.70°二、填空题〔共13小题〕17.如图,点A、B、C、D在⊙O上,OB⊥AC,假设∠BOC=56°,那么∠ADB=______度.18.如图,点A、B、C在⊙O上,假设∠C=30°,那么∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,那么∠BOD=______.20.〔2021•盘锦〕如图,⊙O直径AB=8,∠CBD=30°,那么CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,那么这个圆的半径是______.22.如图,⊙O是△ABC的外接圆,假设∠BOC=100°,那么∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,那么α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,那么∠APB的范围是______.25.如下图⊙O中,∠BAC=∠CDA=20°,那么∠ABO的度数为______.26.点O是△ABC外接圆的圆心,假设∠BOC=110°,那么∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,那么⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,那么∠BOC=______度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,那么∠AED的余弦值是______.三、解答题〔共1小题〕30.〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20B 5C 10求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.答案一、选择题〔共16小题〕1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题〔共13小题〕17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题〔共1小题〕30.。
23.1图形的旋转(第二课时)
◆随堂检测
1、图形的平移、旋转、轴对称中,其相同的性质是_________.
2、如图,将△OAB绕点0按逆时针方面旋转至△0′A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=lcm,则A′B长是_______cm.
3、将平行四边形ABCD旋转到平行四边形A′B′C′D′的位置,下列结论错误的是()
A、AB=A′B′
B、AB∥A′B′
C、∠A=∠A′
D、△ABC≌△A′B′C′
4、观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?
◆典例分析
如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.
分析:本题虽然可以用全等三角形的知识解决,但不符合题目要求.要用旋转的思想说明就是要用旋转
中心、旋转角、对应点的知识来说明.
解:∵四边形ABCD 、四边形AKLM 是正方形,
∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°,
∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的.
∴BK=DM.
◆课下作业
●拓展提高
1、如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过_______次旋转而得到,每一次旋转_______度.
2、如图,在平面直角坐标系中,点A 的坐标为(1,4),将线段O A 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是___________.
3、下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度
.
4、过等边三角形的中心O 向三边作垂线,将这个三角形分成三部分.这三部分之间可以看作是怎样移动相互得到的?你知道它们之间有怎样的等量关系吗?
5、如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.
(1)求x 的取值范围;
(2)若△ABC 为直角三角形,求x 的值.
●体验中考 1、(2017年,泸州)如图l ,P 是正△ABC 内的一点,若将△BCP 绕点B 旋转到△BAP ’,则∠PBP ’的度数是( )
A 、45°
B 、60°
C 、90°
D 、120°
2、(2017年,株洲)如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆.
(1)线段1OA 的长是_____________,1AOB ∠的度数是_____________;
(2)连结1AA ,求证:四边形11OAA B 是平行四边形.
参考答案:
◆随堂检测
1、图形的形状、大小不变,只改变图形的位置.
2、3.
3、B.
4、解:图形(1)是通过一条线段绕点O 旋转360°而得到的;图形(2)可以看作是“一个Rt △ABC ”绕线段AC 旋转360°而得到的;图形(3)将矩形ABCD 绕AD 旋转一周而得到的.
◆课下作业
●拓展提高
1、4,72.
2、(4,-1).
3、解:△OAE 和△OBF ,△OEB 和△OFC ,△OAB 和△OBC ,旋转的角度为90°.
4、解:旋转120°相互得到,它们是全等四边形,它们的面积相等,对应线段相等,对应角相等.
5、解:(1)在△ABC 中,∵1=AC ,x AB =,x BC -=3.
∴⎩
⎨⎧>-+->+x x x x 3131,解得21<<x . (2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,无解.
②若AB 为斜边,则1)3(22+-=x x ,解得35=
x ,满足21<<x . ③若BC 为斜边,则221)3(x x +=-,解得34=
x ,满足21<<x . ∴35=x 或3
4=x . ●体验中考 1、B. ∵△ABC 是等边三角形,∴∠ABC=60°,当△
BCP 绕点B 旋转到△BAP ’时,旋转角为∠ABC 或∠PBP ’,∴∠PBP ’=60°.
2、解:(1)6,135°;(2)11190AOA OA B ∠=∠=︒,∴11//OA A B . 又11OA AB A B ==,∴四边形11OAA B 是平行四边形.。