概率统计概率统计习题共24页
- 格式:ppt
- 大小:1.50 MB
- 文档页数:24
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
概率统计复习题概率统计练习题一、选择题1.设AB,C 是三个随机事件,则事件“ A,B,C 不多于一个 发生”的对立事件是(B )A . A,B,C 至少有一个发生B . ^B,C 至少有两 个发生C. A,B,C 都发生D . A,B,C 不都发生2•如果(C )成立,则事件A 与B 互为对立事件。
(其 中S为样本空间)A • AB=fB. AUB=S c.篇二 SID . P(A B) 03 .设A,B 为两个随机事件,则P(A B) ( D ) A ・ P(A) P(B) B . P(A) P(B) P(AB)C.D . 1C. P(A) P(AB)D . P(A) P(B) P(AB)4.掷一枚质地均匀的骰子, 现4点的概率为(D )则在出现偶数点的条件下出 5 •设 X 〜N(1.5,4),贝V P{ 2 X 4}=(A .0.8543B . 0.1457C. 0.35413 )第3页0. 25436.设 X 〜N(l,4),则 P{0<X<\.6}= ( )oA ・ 0.3094 B. 0.1457 C. 0.3541D • 0.25437.设X 〜N(“&)则随着,的增大, P{X<p-a 2}=()A ・增大 B.减小C.不变D.无法确定8.设随机变量x 的概率密度/(小 [ex-2=|o E,则尸()o X<1A ・1B • 1 2C. -1D-1C. 一 1D-110.设连续型随机变量X 的分布函数和密度函数分别为F(x)、/(x),则下列选项中正确的是( )A ・ 0WF(x)SlB ・ 0</(x)<l C. P{X = x} = F(x) D.P{X = x}=f(x)11.若随机变量Y = X }+X 2,且尤,血相互独立。
N(O,1) (z = l,2 ), 则()o9.设随机变量x 的概率密度为/(心tx~2 X > 10 xSlA・y 〜N(0,l) B . Y 〜N(0,2) C. Y不服从正态分布D . Y~N(1,1)12 •设X 的分布函数为F(x),则丫 2X 1的分布函数G(y)为 ( )列结论正确的是()以上都不对14.设X 为随机变量,其方差存在,C 为任意非零常数, 则下列等式中正确的是( )A ・ D(X C) D(X)B . D(X C) D(X)C C. D(X C) D(X) CD . D(CX) CD(X)15 •设 X ~ N(0 1) , Y~N(11) , X,Y 相互独立,令 Z Y 2X ,则 Z~ ( )A ・ N( 2,5)B . N(1,5)C. N(1,6) D .N(2,9)16 •对于任意随机变量X,Y ,若E(XY) E(X)E(Y),则()A ・ D(XY) D(X)D(Y)B . D(X Y) D(X) D(Y) C. X,Y 相互独立D . X,Y 不相互独立17.设总体X ~ N , 2,其中未知,2已知,X1,X 2丄,X n为一组A . X 1 X 2B . P X 1 X 21C. D(X1 X 2) 3A・ B . F2y 1C. 2F(y) 1 13 •设随机变量X !, X 2相互独立,X 1 ~ N(0,1), X 2~N(0,2),下样本,下列各项不是 统计量的是()• •nC.-2(X i X)2 3 4 5i 118设总体X 的数学期望为,X -,X 2,X 3是取自于总体X 的简单随机样本, 则统计量()是 的无偏估计量 A •1X 11X 2-X3B亠11 1 X2 X3 2 3 42 3 5C.-X 1 1X 2 1X 3D .1 X 1 1 1 X 2X 3 23623 7:、填空题1 •设A, B 为互不相容的随机事件P(A) 0.2,P(B) 0.5,则P(AU B) _2 •设有10件产品,其中有2件次品,今从中任取1件为正品的概率是 _____________3 •袋中装有编号为1, 2, 3, 4, 5, 6, 7的7张卡片, 今从袋中任取3张卡片,则所取出的3张卡片中有“6” 无“ 4”的概率为 ______________4 •设A, B 为互不相容的随机事件,P(A) 0.1,P(B) 0.7,则P(AUB) _______________5・设A,B 为独立的随机事件,且P(A) 0.2,P(B) 0.5,则P(AUB) ___________________ 6・设随机变量X 的概率密度f(x) 0:其它 1则PX 0.3 ___________________7.设离散型随机变量X 的分布律为P {X k} ^,(k 1,234,5),5B . x- X 42(X i X)0.6贝H a = ______ .&设随机变量X的分布律为:贝y D(X)= _________________9 •设随机变量X的概率密度f(x) 6e X 0 则P{X 1}= 0x0. 6 -6x10 •设X ~ N(10,0.022),贝V P 9.95 X 10.05 = ______11 .已知随机变量X的概率密度是f(x) 1 e x2,则E(X) =12 •设D(X)=5 ,D(Y)=8, X,Y 相互独立。
概率统计练习题(职高)问题1某实验室进行调查,在1000名学生中,有350人喜欢打篮球,280人喜欢听音乐,150人既喜欢打篮球又喜欢听音乐。
请计算以下概率:a) 一个学生既喜欢打篮球又喜欢听音乐的概率是多少?已知320名学生喜欢打篮球或者喜欢听音乐,而150名学生既喜欢打篮球又喜欢听音乐,所以一个学生既喜欢打篮球又喜欢听音乐的概率可以用150除以320得到。
b) 一个学生既不喜欢打篮球也不喜欢听音乐的概率是多少?已知有1000名学生,而320名学生喜欢打篮球或者喜欢听音乐,所以一个学生既不喜欢打篮球也不喜欢听音乐的概率可以用(1000-320)除以1000得到。
问题2某网络游戏中,有80%的玩家选择国家A,20%的玩家选择国家B。
游戏开启后预计有5000名玩家参与,那么以下概率是多少?a) 选国家A的玩家数量是多少人?已知有80%的玩家选择国家A,所以选国家A的玩家数量可以用80%乘以5000得到。
b) 选国家B的玩家数量是多少人?已知有20%的玩家选择国家B,所以选国家B的玩家数量可以用20%乘以5000得到。
c) 选择国家A或者国家B的玩家数量是多少人?已知有80%的玩家选择国家A和20%的玩家选择国家B,所以选择国家A或者国家B的玩家数量可以用80%加上20%乘以5000得到。
d) 既不选择国家A也不选择国家B的玩家数量是多少人?已知有80%的玩家选择国家A和20%的玩家选择国家B,所以既不选择国家A也不选择国家B的玩家数量可以用(100% - (80% + 20%))乘以5000得到。
问题3某超市购买了100个苹果,其中30个苹果有瑕疵。
一个顾客在超市购买3个苹果,请计算以下概率:a) 顾客购买的3个苹果都没有瑕疵的概率是多少?已知有100个苹果中有30个有瑕疵,所以顾客购买的3个苹果都没有瑕疵的概率可以用(70/100)的连乘得到。
b) 顾客购买的3个苹果至少有一个有瑕疵的概率是多少?已知有100个苹果中有30个有瑕疵,所以顾客购买的3个苹果至少有一个有瑕疵的概率可以用1减去顾客购买的3个苹果都没有瑕疵的概率得到。
概率统计习题带答案概率论与数理统计习题及题解沈志军盛子宁第一章概率论的基本概念1.设事件A,B及A?B的概率分别为p,q及r,试求P(AB),P(AB),P(AB)及P(AB) 2.若A,B,C相互独立,试证明:A,B,C 亦必相互独立。
3.试验E为掷2颗骰子观察出现的点数。
每种结果以(x1,x2)记之,其中x1,x2分别表示第一颗、第二颗骰子的点数。
设事件A?{(x1,x2)|x1?x2?10},事件B?{(x1,x2)|x1?x2}。
试求P(B|A)和P(A|B) 4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:恰好第三次打开房门锁的概率?三次内打开的概率?如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n个白球、m个红球,乙袋中装有N个白球、M个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为,,在甲系统失灵的条件下乙系统也失灵的概率为。
试求下列事件的概率:仓库发生意外时能及时发出警报;乙系统失灵的条件下甲系统亦失灵?9.设A,B为两随机变量,试求解下列问题:已知P(A)?P(B)?1/3,P(A|B)?1/6。
求:P(A|B);已知P(A)?1/4,P(B|A)?1/3,P(A|B)?1/2。
求:P(A?B)。
10.先把长为l 的木棍折断为两部分,再把较大的那一部分折断成两部分。
试求所得三部分能成三角形的概率?11.甲、乙、丙三人向同一飞机射击,假设他们的命中率都是。
习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
概率统计练习题一、选择题1. 某事件A的概率为0.3,事件B的概率为0.5,且事件A和B互斥,那么事件A和B至少有一个发生的概率是多少?A. 0.2B. 0.5C. 0.8D. 0.32. 某工厂生产的产品中,有5%的产品是次品。
如果随机抽取100件产品,那么至少有5件次品的概率是多少?A. 0.95B. 0.99C. 0.05D. 0.013. 抛一枚均匀硬币两次,求出现至少一次正面的概率。
A. 0.25B. 0.5C. 0.75D. 1.04. 某机器发生故障的概率为0.01,如果该机器连续工作10天,那么至少发生一次故障的概率是多少?A. 0.01B. 0.1C. 0.62D. 0.995. 某次考试的及格率为70%,如果一个班级有30名学生,那么这个班级至少有20名学生及格的概率是多少?A. 0.95B. 0.5C. 0.05D. 0.01二、填空题6. 假设一个随机变量X服从二项分布,参数为n=10,p=0.4,那么P(X=3)的值是____________。
7. 某地区居民的平均寿命为75岁,标准差为10岁。
根据正态分布的性质,该地区寿命超过85岁的居民占总人口的百分比大约是____________。
8. 假设随机变量Y服从泊松分布,参数为λ=5,那么P(Y=3)的值是____________。
9. 某工厂生产的产品中,次品率是0.03。
如果随机抽取100件产品,那么恰好有3件次品的概率是____________。
10. 某公司有100名员工,其中60%是男性。
如果随机选取10名员工,那么至少有7名男性的概率是____________。
三、简答题11. 请简述什么是大数定律,并给出一个实际生活中的例子。
12. 请解释什么是中心极限定理,并说明为什么它在统计学中非常重要。
13. 描述什么是条件概率,并给出一个条件概率的计算例子。
14. 解释什么是统计推断,并简述其在数据分析中的作用。
15. 什么是假设检验?请简述其基本步骤。
《概率统计》习题(一)一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 (A )P (A+B) = P (A); (B )()P(A);P AB = (C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D )若A ,B 相互独立,那么A 与B 也相互独立。
5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=三、计算题1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
概率统计复习题1.一射手向目标射击3 次,i A 表示第i 次射击中击中目标这一事件)3,2,1(=i ,则3次射击 中至多2次击中目标的事件为( ): 321321321321)(;)(;)(;)(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 袋中有10个乒乓球,其中7个黄的,3个白的,不放回地依次从袋中随机取一球。
则第一次和第二次都取到黄球的概率是( );()715A ; ()49100B ; ()710C ; ()2150D3..将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.81 B. 83 C. 41 D.214、设事件A 与B 互不相容,则有( ) )()()()(B P A P B A P A = )()()(B P B A P B =)()()()(A P B P B A P C -= )()()()(AB P A P B A P D -=5.设事件A 与B 相互独立,且0)(,0)(>>B p A p ,则下列等式成立的是() A. φ=AB B. 0)|(=A B pC. )(1)(A p B p -=D. )()()(B p A p B A p =6.设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是() A. .;11,0,21)(其它<<-⎪⎩⎪⎨⎧=x x f B. .;11,0,2)(其它<<-⎩⎨⎧=x x fC .;11,0,)(其它<<-⎩⎨⎧=x x x f . D. .;11,,0)(2其它<<-⎩⎨⎧=x x x f7、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则{}2>X P 的值为( )[])2(12)(Φ-A 1)2(2)(-ΦB)2(2)(Φ-C )2(21)(Φ-B8、设随机变量X 的密度函数为⎩⎨⎧∈=其它0],0[2)(A x x x f ,则常数A=( )A 、41B 、21C 、 1D 、29. 设A 、B 是两个随机事件,且0)(=AB P ,则 ( )A 、A 和B 不相容; B 、A 和B 独立;C 、0)(0)(==B P A P 或;D 、)()(A P B A P =-10.加工一种零件需经过三道独立工序,各道工序的废品率为321,,p p p ,则加工该种零件的成品率为( ) 3211)(p p p A -)1)(1)(1)((321p p p B --- 3211)(p p p C --- 3213211)(p p p p p p D ----11.若A 与B 互为对立事件,则下式成立的是( ) A. P (AB )=P (A )P (B ) B P (A ⋃B )=ΩC. P (AB )=φD. P (A )=1-P (B )12.下列各函数中,可作为某随机变量概率密度的是( )A . ⎩⎨⎧-<<=其他,1;10,3)(2x x x fB .⎩⎨⎧<<-=其他,0;11,4)(3x x x fC . ⎩⎨⎧<<=其他,0;10,2)(x x x fD .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x f13.列函数中可作为某一随机变量X 的概率密度的是( )A.()⎩⎨⎧≤≤=其他00cos πx x x f B.()⎩⎨⎧≤≤=其他00sin 23πx x x f C.()⎩⎨⎧≤≤=其他00cos 2πx x x f D.()⎩⎨⎧≤≤-=其他0sin 22ππx x x f 14 。
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
第一章 随机事件及其概率习题一 、填空题:1.设A ,B ,C 为三个事件,用A 、B 、C 的运算关系表示(1)A 和B 都发生,而C 不发生为 ,(2)A 、B 、C 至少有两个发生的事件为 。
2.设A ,B 为两个互不相容的事件,P(A)=0.2, P(B)=0.4, P(A+B)= 。
3.设A ,B ,C 为三个相互独立的事件,已知P(A)=a, P(B)=b, P(C)=c,则A ,B ,C 至少有一个发生的概率为 。
4.把一枚硬币抛四次,则无反面的概率为 ,有反面的概率为 。
5.电话号码由0,1,……9中的8数字排列而成,则电话号码后四位数字全都不相同的概率表示为 。
6.设公寓中的每一个房间都有4名学生,任意挑选一个房间,则这4人生日无重复的概率表示为 (一年以365天计算)。
7. 设A ,B 为两个事件,P(A)=0.4, ,P(B)=0.8,P(B A )=0.5,则P(B|A)= 。
8.设A ,B ,C 构成一个随机试验的样本空间的一个划分,且7.0)(,5.0)(==B P A P ,则P(C)= ,P(AB)= 。
9.设A ,B 为两个相互独立的事件,P(A)=0.4,P(A+B)=0.7,则P(B)= 。
10.3个人独立地猜一谜语,他们能够猜出的概率都是31,则此谜语被猜出的概率为 。
二 、选择题 :1. 设A 与B 是两随机事件,则AB 表示( )(A )A 与B 都不发生 (B )A 与B 同时发生(C )A 与B 中至少有一个发生 (D )A 与B 中至少有一个不发生 2.设c B A P b B P a A P =⋃==)(,)(,)(,则)(B A P 为 (A )b a -(B )b c -(C ))1(b a -(D ))1(c a -3.若A ,B 是两个互不相容的事件,P (A )>0,P (B )>0,则一定有( ) (A )P (A )=1—P (B ) (B ) P (A|B )=0 (C ) P (A|B )=1 (D )P (A |B )=04. 每次试验失败的概率为p (0<p<1),则在3次重复试验中至少成功一次的概率为( )(A ))1(3p - (B)3)1(p -(C) 31p - (D)13C 3)1(p p -三、计算:1.掷两颗质地均匀的骰子,求出现的两个点数之和等于5的概率。