概率公式大全
- 格式:doc
- 大小:72.00 KB
- 文档页数:1
概率问题基本公式
概率问题基本公式有以下几种:
1. 总体概率公式:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A包含的样本点数,n(S)表示样本空间中的总样本点数。
2. 条件概率公式:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A 和事件B同时发生的概率,P(B)表示事件B的概率。
3. 乘法法则:P(A∩B) = P(A) * P(B|A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。
4. 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A和事件B至少发生一个的概率,P(A)和P(B)分别表示事件A和事件B分别发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
5. 全概率公式:P(A) = ∑[P(A|Bi) * P(Bi)],其中P(A)表示事件A发生的概率,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,∑表示对所有可能的Bi进行求和。
这些公式是概率论中的基本公式,常用于求解概率问题。
考研概率论与数理统计公式大全一、概率论部分:1.概率公式:-事件的概率:P(A)=n(A)/n(S),其中n(A)表示事件A发生的可能性,n(S)表示样本空间S中的样本个数。
-互斥事件的概率:P(A∪B)=P(A)+P(B)。
-非互斥事件的概率:P(A∪B)=P(A)+P(B)-P(A∩B)。
2.条件概率公式:-事件A在事件B发生的条件下发生的概率:P(A,B)=P(A∩B)/P(B)。
3.乘法公式:-事件A、B同时发生的概率:P(A∩B)=P(A)*P(B,A)=P(B)*P(A,B)。
4.全概率公式:-事件A可以由一系列互斥且构成样本空间的事件B1、B2、..、Bn发生的概率:P(A)=P(A∩B1)+P(A∩B2)+...+P(A∩Bn)=ΣP(A∩Bi)。
5.贝叶斯公式:-已知事件A发生的条件下事件B发生的概率:P(B,A)=P(A∩B)/P(A)=P(A,B)*P(B)/P(A)。
6.重要的离散概率分布:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中n为试验次数,k为成功次数,p为每次成功的概率。
-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!,其中λ为单位时间(或单位面积)内随机事件发生的平均次数。
7.重要的连续概率分布:-均匀分布:f(x)=1/(b-a),其中a为最小值,b为最大值。
-正态分布:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
二、数理统计部分:1.基本概念:-总体:研究对象的全体。
-样本:从总体中抽取的一部分个体。
-参数:总体的特征数值。
-统计量:样本的特征数值。
2.基本统计量:- 样本均值:x̄ = (x1 + x2 + ... + xn) / n,其中x1、x2、..、xn为样本数据,n为样本容量。
- 样本方差:s^2 = ((x1-x̄)^2 + (x2-x̄)^2 + ... + (xn-x̄)^2) / (n-1)。
概率公式大全概率公式大全(上篇)概率公式在概率论中起着非常重要的作用,它们用于描述随机事件的发生概率以及事件之间的关系。
本文将介绍一些常见的概率公式,帮助读者更好地理解和应用概率论。
1. 基本概率公式1) 事件的概率公式:在概率论中,事件的概率通常用P(A)表示,其中A表示一个事件。
事件A的概率可以用下述公式计算:P(A) = N(A) / N(S)其中,N(A)表示事件A发生的次数,N(S)表示样本空间S 中的总次数。
2) 样本空间的概率公式:当样本空间S的每个样本点发生的概率相同且为1/N(S)时,我们可以使用下述公式计算事件A的概率:P(A) = N(A) / N(S)这个公式在实际问题中应用广泛,是基本的概率公式之一。
2. 条件概率公式1) 条件概率的定义:在事件B发生的条件下,事件A发生的概率称为A在B 条件下的条件概率,用P(A|B)表示。
条件概率的计算公式如下:P(A|B) = P(A ∩ B) / P(B)其中,P(A ∩ B)表示事件A与事件B同时发生的概率。
2) 乘法公式:乘法公式是条件概率的推广形式,用于计算两个事件同时发生的概率。
根据乘法公式,我们可以得到:P(A ∩ B) = P(A|B) * P(B)这个公式在计算复杂事件的概率时非常有用。
3. 全概率公式全概率公式用于计算一个事件发生的总概率,它假设事件发生的样本空间可以划分为若干个互斥事件。
全概率公式如下:P(A) = Σi P(A|Bi) * P(Bi)其中,Bi表示样本空间S的一个划分,P(A|Bi)表示在Bi条件下事件A发生的概率。
这个公式可以在一些复杂问题中计算事件发生的概率,非常实用。
4. 贝叶斯公式贝叶斯公式是条件概率公式的逆运算,用于通过已知的条件概率反推出相反的条件概率。
根据贝叶斯公式,可以得到:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A)和P(B)分别表示事件A和事件B的概率。
概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
A A A吸收律:A A AA (AB) A A (A B)A B AB A (AB)反演律:A B AB AB A Bn n n n A概率公式整理1.随机事件及其概率A i 1Ai 1Ai 1Ai 12•概率的定义及其计算P(a X b) P(XF(b)5.离散型随机变量(1) 0 -1分布k 1p (1 p)P(X k)(2)二项分布B(n, p) P(X k) C:p k(1* Possion 定理lim np nnP(A) 1 P(A)P(B A) P(B) P(A)有Hm Cn p k(1 对任意两个事件A, B,有P(B A) P(B) P(AB)加法公式:对任意两个事件A, B,有P(A B) P(A) P(B) P(AB)P(A B) P(A) P(B)b) P(X a)F(a)k, kn kp)P n)0,10,1, , nk!0,1,2,⑶ Poisson分布P(kP(X k) e订,k6.连续型随机变量0,1,2 ,nP(i 1A)3.条件概率乘法公式P(A) 1P(AB) P(A) P B A P(AA2 A n)全概率公式P(A)i 1Bayes公式P(B k A)P(A i A j)nP(AB)丽(P(A) 0)nP(AAjA)j k n(1)(均匀分布(AA2(明)1b af(x)0,0,其他P(AJPA2 A(P(AA2P(AB i)P(AB k)P(A)4.随机变量及其分布分布函数计算A n | A1 A A n1) 0)P(B i) P(A B i) 1P(BQP(ABQ nP(B i)P(AB i) i 1F(x)A n 1(2)指数分布f (x)F(x)E(0, 其他0,1 e(3)正态分布1f(x)石(xX彳 (t 厂F(x) 一 X e 亍* N (0,1)— 标准正态分布x 2 Tdt fYx(yx )f (x,y) f x (X )f x|Y (x y) f Y (y)f x (X )(x)2 e10.随机变量的数字特征数学期望E(X)t 2乏dt X k P k 1(x)...一 V2 7•多维随机变量及其分布 二维随机变量(X ,Y )的分布函数 x y f (u, v)dvdu E(X)xf (x)dx随机变量函数的数学期望阶原点矩E(X k ) F(x, y) 边缘分布函数与边缘密度函数 阶绝对原点矩E(|X|k )F x (x) f (u,v )dvduk阶中心矩E((X E(X))) f x (X )f (x, v)dv 方差 E((X E(X))2) D(X)F y (y)f (u,v)dudv X ,丫的k + l 阶混合原点矩E(X k Y l) f y (y) f(u,y)du X ,Y 的 k + l 阶混合中心矩8.连续型二维随机变量 (1)区域G 上的均匀分布, E(X k lE(X)) (Y E(Y))X ,Y 的 二阶混合原点矩E(XY) 1f (X, y) A , 0, (x, y) G 其他 X ,Y 的二阶混合中心矩X ,Y 的协方差(2)二维正态分布 f (x,y ) 21 2(12)E (X E(X))(YE(Y))X ,丫的相关系数(x 1)2 2 (x 1)(y 2) 21(y 2)222E (X E(X))(YE(Y))vD(Xh D(Y)X 的方差D (X ) =E ((X - E(X))2)2 2D(X) E(X ) E (X)XYf(x, y)f x (x)f Yx (yx) f x (x) 0 f Y (y)f x|Y (x y) f Y (y) o f x (x) f (x, y)dy f xY (xy) f Y (y)dy f Y (y)f(x,y)dx f Yx (yx) f x (x)dxf xY (xy) f(x,y) f Y (y)f Y|x (yx) f x (x) f Y (y)9.二维随机变量的条件分布 协方差cov(X,Y) 相关系数XYE (X E(X))(Y E(Y))E(XY) E(X)E(Y)-D(X Y) D(X) D(Y)2cov(X,Y) D(X)、D(Y)。
概率公式大全范文概率公式是数学中一类形式化表示概率的数学等式或等价关系的公式。
在概率论与数理统计中,概率公式可用于计算事件的概率、独立事件的联合概率、条件概率等。
以下是一些常见的概率公式:1.基本概率公式:-对于一个事件A,其概率可以表示为P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间S中的总次数。
2.加法公式:-对于两个事件A和B,其并集事件A∪B的概率可以表示为P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A∩B)表示事件A和B的交集的概率。
3.乘法公式:-对于两个事件A和B,其交集事件A∩B的概率可以表示为P(A∩B)=P(A)×P(B,A),其中P(B,A)表示在事件A已经发生的条件下,事件B发生的概率。
4.全概率公式:-对于一系列互斥事件A1,A2,...,An,其并集事件A的概率可以表示为P(A)=P(A,A1)P(A1)+P(A,A2)P(A2)+...+P(A,An)P(An),其中P(A,Ai)表示在事件Ai已经发生的条件下,事件A发生的概率。
5.贝叶斯公式:-对于一系列互斥事件A1,A2,...,An,且事件A的概率不为零,给定事件B发生的条件下,事件Ai发生的概率可以表示为P(Ai,B)=(P(B,Ai)×P(Ai))/P(B),其中P(B,Ai)表示在事件Ai已经发生的条件下,事件B发生的概率。
6.期望值公式:- 对于一个离散随机变量X,其期望值E(X)可以表示为E(X) = Σ(xi × P(X = xi)),其中xi 是X的可能取值,P(X = xi)表示X取值为xi的概率。
7.方差公式:- 对于一个随机变量X,其方差Var(X)可以表示为Var(X) = E(X^2) - (E(X))^2,其中E(X)表示X的期望值。
8.二项分布的概率公式:-对于n个独立的重复试验,每个试验的成功概率为p,其中x次成功的概率可以表示为P(X=x)=C(n,x)×p^x×(1-p)^(n-x),其中C(n,x)表示组合数。
概率论公式1.随机事件及其概率吸收律:AAB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)( )(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni in i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P)()(A P AB P乘法公式 ())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P全概率公式 ∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = pn k p p C k X P k n k k n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有 ,2,1,0!)1(lim ==---∞→k k e p p C kk n n k n kn n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (m , s 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xy dvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( ⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) ⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布 0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()( )(y x f Y X )(),(y f y x f Y = )()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征数学期望 ∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X EX 的 k 阶中心矩)))(((k X E X E -X 的 方差)()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X EX ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫ ⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ(注:素材和资料部分来自网络,供参考。
第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章 二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ∑≤==≤=xk k X P x X P x F )()()(概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp ()对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤b adx x f b X a P )()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )(1)(b x a a b x f ≤≤-=联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k k P x X E )(⎰+∞∞-⋅=dx x f x X E )()(∑=kk k p x g X g E )())((方差定义式 常用计算式常用公式 当X 、Y 相互独立时: 方差的性质D(a)=0,其中a 为常数D(a+bX)= abD(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)协方差与相关系数协方差的性质∑∑=i j iji p x X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关独立必定不相关、相关必定不独立、不相关不一定独立第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P (1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P。
概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。
这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。
本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。
一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。
概率公式整理
1.随机事件及其概率
吸收律:A
AB A A A A =⋃=
∅⋃Ω
=Ω⋃)(
A
B A A A A
A =⋃⋂∅=∅⋂=Ω⋂)(
反演律:B A B A =⋃ B A AB ⋃=
2.概率的定义及其计算
若B A ⊂ )()()(A P B P A B P -=-⇒ 对任意两个事件A , B , 有
)()()(AB P B P A B P -=-
加法公式:对任意两个事件A , B , 有
)
()
1()()
()()(211
111
1
n n n
n
k j i k
j
i
n
j i j
i
n
i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++
-
=∑∑∑3.条件概率 ()=A B P
)
()
(A P AB P
乘法公式
()())
0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式 Bayes 公式
4.随机变量及其分布 分布函数计算
5.离散型随机变量 (1) 0 – 1 分布 (2) 二项分布 ),(p n B 若P ( A ) = p *Possion 定理
有
,2,1,0!)
1(lim ==---∞
→k k e
p p C k
k
n n k n
k n
n λλ
(3) Poisson 分布 )(λP 6.连续型随机变量 (1) 均匀分布 ),(b a U (2) 指数分布 )(λE
(3) 正态分布 N (? , ? 2 ) *N (0,1) — 标准正态分布 7.多维随机变量及其分布
二维随机变量( X ,Y )的分布函数
边缘分布函数与边缘密度函数 8. 连续型二维随机变量
(1) 区域G 上的均匀分布,U ( G ) (2)二维正态分布
+∞
<<-∞+∞<<∞-⨯-=
⎥⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢⎣⎡-+------y x e
y x f y y x x ,121),(2
222212121212)
())((2)()1(212
21σμσσμμρσμρρ
σπσ9. 二维随机变量的 条件分布
10.随机变量的数字特征 数学期望
随机变量函数的数学期望 X 的 k 阶原点矩)(k
X E X 的 k 阶绝对原点矩)|(|k
X E
X 的 k 阶中心矩)))(((k
X E X E -
X 的 方差)()))(((2
X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l
k
Y X E
X ,Y 的 k + l 阶混合中心矩
X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差 X ,Y 的相关系数 X 的方差
D (X ) =
E ((X - E (X ))2) 协方差 相关系数)
()()
,cov(Y D X D Y X XY =ρ。