雷达的目标识别技术
- 格式:doc
- 大小:207.00 KB
- 文档页数:21
雷达目标识别特征时域频域极化域雷达目标识别是雷达技术应用的一个重要方向,其目的是通过分析和提取目标的特征信息,实现对目标的自动识别和分类。
在雷达目标识别中,时域、频域和极化域是常用的特征表示方式。
本文将从这三个方面介绍雷达目标识别的特征提取方法和应用。
一、时域特征时域特征是指雷达回波信号在时间上的变化规律。
时域特征包括回波信号的脉冲宽度、脉冲重复频率、脉冲重复间隔等。
这些特征能够反映目标的物理尺寸、运动状态等信息。
例如,目标的尺寸越大,回波信号的脉冲宽度就越宽;目标的速度越快,脉冲重复频率就越高。
通过分析时域特征,可以实现对目标的运动状态和形态的判断。
二、频域特征频域特征是指雷达回波信号在频率上的变化规律。
频域特征包括回波信号的频谱分布、频率偏移、频率调制等。
这些特征能够反映目标的散射特性、材料成分等信息。
例如,回波信号的频谱分布可以反映目标的散射截面积,不同目标具有不同的频谱分布特性。
通过分析频域特征,可以实现对目标的散射特性和材料成分的识别。
三、极化域特征极化域特征是指雷达回波信号的极化状态。
雷达回波信号可以分为水平极化和垂直极化两个方向。
目标的极化特性可以通过分析回波信号的极化矩阵来描述。
极化矩阵包括目标对水平极化和垂直极化的散射系数,可以用来表征目标对不同极化状态的响应差异。
通过分析极化域特征,可以实现对目标的极化特性和材料性质的判断。
时域、频域和极化域是雷达目标识别中常用的特征表示方式。
通过分析这些特征,可以提取出目标的运动状态、形态、散射特性、材料成分和极化特性等信息,实现对目标的自动识别和分类。
在实际应用中,可以根据目标的不同特征选择合适的特征提取方法,并结合机器学习算法进行目标识别。
雷达目标识别技术在军事、航空、交通等领域具有重要的应用价值,对提高雷达系统的性能和智能化水平有着重要意义。
雷达的目标识别技术摘要:对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。
一.引言随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。
地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。
1.一维距离成象技术一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。
信号带宽与时间分辨率成反比。
例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。
其基本原理如图1所示。
2.极化成象技术电磁波是由电场和磁场组成的。
若电场方向是固定的,例如为水平方向或垂直方向,则叫做线性极化电磁波。
线性极化电磁波的反射与目标的形状密切相关。
当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。
根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。
通过计算目标散射矩阵便可以识别目标的形状。
该方法对复杂形状的目标识别很困难。
3.目标振动声音频谱识别技术根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。
通过解调反射电磁波的频率调制,复现目标振动频谱。
根据目标振动频谱进行目标识别。
传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。
点状目标的回波宽度等于入射波宽度。
一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。
通过目标回波宽度的变化可估计目标的大小。
目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。
雷达测量中的目标识别与跟踪技术引言雷达技术作为一种广泛应用于军事、航空、航海和交通领域的测量技术,一直以来都备受关注和研究。
在雷达应用领域中,目标识别与跟踪技术是十分重要的一个研究方向,主要用于确定被测目标的特征或性质,随后跟踪该目标的运动变化。
本文将深入探讨雷达测量中的目标识别与跟踪技术。
一、雷达目标识别技术1. 散射截面及目标特征分析雷达识别某一特定目标的首要问题是确定目标的散射截面。
散射截面的值决定了目标对雷达波的反射程度,与目标的形状、大小和边缘特性等有关。
目标特征分析可以帮助确定不同目标之间的差异,并提供用于识别目标的信息。
2. 多普勒特征分析多普勒效应是指由于目标的运动而引起的接收信号频率发生变化的现象。
通过分析接收信号的多普勒频移,可以获得目标的运动状态、速度和方向,从而进一步识别目标。
3. 反射波束特征分析雷达工作时产生的波束会与目标发生相互作用,反射出的信号会带有目标的形状和结构信息。
通过分析返回信号的波束特征,可以推测出目标的形状、方位和内部结构等,为目标识别提供重要线索。
二、雷达目标跟踪技术1. 滤波器与滤波技术针对目标跟踪问题,滤波器是一种常用的处理手段。
常见的滤波器有卡尔曼滤波器、粒子滤波器和无迹卡尔曼滤波器等。
这些滤波器通过对雷达信号进行滤波处理,估计目标的状态并持续跟踪目标运动。
2. 目标运动模型目标运动模型是描述目标运动规律的数学模型。
常见的目标运动模型有匀速模型、自由加速度模型和粒子模型等。
通过建立适当的目标运动模型,可以更好地预测目标的运动行为,提高目标跟踪的准确性和鲁棒性。
3. 数据关联算法数据关联算法是在已知目标状态的情况下,根据测量数据关联目标和测量结果,并进行目标跟踪的一种方法。
常见的数据关联算法有最近邻算法、卡尔曼滤波算法和粒子滤波算法等。
这些算法能够有效处理多目标跟踪问题,提高跟踪性能。
三、雷达目标识别与跟踪在实际应用中的挑战与展望1. 复杂环境下的干扰雷达目标识别与跟踪在实际应用中面临着复杂的环境干扰,比如地形变化、气象条件和其他电磁源等。
雷达信号处理中的目标识别与特征提取方法雷达信号处理是一种关键的技术,在许多领域中都有广泛的应用。
目标识别与特征提取是雷达信号处理的重要任务之一。
通过分析雷达接收到的信号,我们可以识别出不同的目标,并提取出与目标相关的特征信息。
本文将介绍雷达信号处理中常用的目标识别与特征提取方法。
一、目标识别方法目标识别是指将雷达接收到的信号与已知目标模型进行比对,从而确定目标的类别。
常用的目标识别方法包括以下几种:1. 信号处理与匹配滤波:匹配滤波是一种经典的目标识别方法。
它利用目标的特征信息构建一个滤波器,将雷达接收到的信号与滤波器进行卷积运算,得到目标的匹配度。
通过设置合适的阈值,即可识别目标。
2. 统计判决方法:统计判决方法利用目标的统计特征进行目标识别。
常用的统计判决方法包括贝叶斯判决、最小距离判决等。
这些方法通过建立目标的统计模型,并根据观测到的信号特征进行判决,从而实现目标的识别。
3. 特征匹配方法:特征匹配方法利用目标的特征信息进行目标识别。
常用的特征匹配方法包括相关匹配、相位匹配等。
这些方法通过计算目标特征之间的相似度,从而确定目标的类别。
特征匹配方法具有较高的准确性和鲁棒性,广泛应用于雷达目标识别中。
二、特征提取方法特征提取是指从雷达接收到的信号中提取出与目标相关的特征信息。
目标的特征信息可以包括目标的形状、尺寸、运动状态等。
常用的特征提取方法包括以下几种:1. 波形特征提取:波形特征提取是从雷达接收到的信号波形中提取出目标的特征信息。
常用的波形特征包括峰值、频率、幅度等。
通过分析这些波形特征,可以识别出目标的一些基本特征。
2. 多普勒频谱特征提取:多普勒频谱特征提取是从雷达接收到的信号的多普勒频谱中提取出目标的特征信息。
通过分析多普勒频谱的幅度、频率等特征,可以识别出目标的运动状态。
3. 极化特征提取:极化特征提取是从雷达接收到的信号的极化信息中提取出目标的特征信息。
雷达信号的极化信息包括目标的极化散射矩阵等。
激光雷达的原理与目标识别技术激光雷达是一种利用激光束进行测距和目标识别的高精度传感器。
它通过发射激光束并测量返回的激光信号来获取目标的位置、速度和形状等信息。
激光雷达的工作原理基于光的传播和反射原理,它在自动驾驶、机器人导航、环境感知等领域有着广泛的应用。
激光雷达的工作原理可以简单地描述为:它通过发射激光束,并记录激光束从发射到接收所经历的时间,然后根据光速和时间差计算出目标与雷达的距离。
同时,激光雷达还可以通过测量激光束的强度来获取目标的反射率,从而进一步分析目标的性质和形状。
激光雷达的核心部件是激光发射器和激光接收器。
激光发射器通常使用固态激光器或半导体激光器,它们能够产生高功率、高频率的激光束。
激光接收器则用于接收返回的激光信号,并将其转化为电信号进行处理和分析。
激光雷达还包括扫描系统,用于控制激光束的方向和范围,以实现对目标的全方位扫描和测量。
激光雷达的目标识别技术是激光雷达应用的关键之一。
目标识别是指通过分析激光雷达返回的信号,判断目标的类型、形状和状态等信息。
目标识别技术可以分为几何识别和语义识别两种。
几何识别是指通过分析目标的几何特征,如形状、大小和轮廓等,来判断目标的类型和形态。
几何识别技术通常通过对激光雷达返回的点云数据进行处理和分析来实现。
点云数据是激光雷达返回的一系列离散点的坐标信息,它可以表示目标的三维形状和位置。
几何识别技术可以通过对点云数据进行聚类、分割和拟合等操作,来提取目标的几何特征,并进行目标分类和形态分析。
语义识别是指通过分析目标的语义特征,如颜色、纹理和运动等,来判断目标的类型和状态。
语义识别技术通常通过对激光雷达返回的强度和反射率等信息进行处理和分析来实现。
强度信息可以反映目标的反射率和反射强度,从而判断目标的材质和表面特征。
反射率信息可以用于判断目标的颜色和纹理等特征。
运动信息可以通过对激光雷达返回的多个时间点的数据进行比较和分析,来判断目标的运动状态和轨迹。
雷达目标识别技术1.引言雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。
目前,经过国内外同行的不懈努力,应该说雷达目标识别技术已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,雷达目标识别技术已成功应用于星载或机载合成孔径雷达地面侦察、毫米波雷达精确制导等方面。
但是,雷达目标识别技术还远未形成完整的理论体系,现有的雷达目标识别系统在功能上都存在一定程度的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。
本文讨论了目前理论研究和应用比较成功的几类雷达目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了问题的可能解决思路。
2. 雷达目标识别技术的回顾雷达目标识别的研究始于20世纪50年代,早期雷达目标特征信号的研究工作主要是研究目标的有效散射截面积。
但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。
几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。
雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。
目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。
原则上,任何一个雷达目标识别系统均可模化为图1所示的基本结构。
雷达信号处理中的目标识别与跟踪研究雷达(Radar)是一种利用电磁波进行探测和测距的技术。
它通过发射脉冲电磁波并接收其反射信号,利用信号的时间延迟和频率特征来探测和跟踪周围的目标物体。
在雷达信号处理中,目标识别与跟踪是两个重要的研究方向,它们对于实现雷达的自主目标探测和跟踪具有重要作用。
目标识别是在雷达信号中确定目标的位置、速度和其他特征属性的过程。
它的主要任务是将雷达接收到的信号与预先建立的目标模型进行匹配,通过特征提取和目标比对算法来判断目标是否存在。
目标识别可以分为传统方法和深度学习方法两种。
传统的目标识别方法主要依靠数学模型和信号处理算法。
常见的方法包括卡尔曼滤波器、最小二乘估计以及基于特征提取的算法等。
这些方法通过对信号的频谱、时频分析和特征提取等技术手段,对目标进行匹配和判断。
虽然传统方法在一定程度上可以实现目标识别,但是在处理复杂场景和目标变化较大的情况下效果有限。
近年来,深度学习方法在目标识别领域取得了显著的成果。
深度学习利用神经网络模型对大量数据进行训练,实现对数据的高级特征提取和模式识别。
在雷达信号处理中,深度学习可以利用卷积神经网络(CNN)和循环神经网络(RNN)等网络结构,对雷达信号进行直接处理和分类。
这种端到端的学习方式能够更好地解决目标识别中的非线性、多样性和时变性等问题。
目标跟踪是在目标识别基础上,在雷达扫描过程中连续追踪目标运动状态的过程。
目标跟踪的主要任务是通过对雷达接收到的连续信号进行滤波和关联,预测目标的位置和运动轨迹,实现实时监测和跟踪。
目标跟踪可以分为基于滤波的方法和基于关联的方法两种。
基于滤波的目标跟踪方法主要应用卡尔曼滤波器和扩展卡尔曼滤波器等算法。
这些方法通过建立目标的状态空间模型,对目标位置和速度进行状态估计和预测。
通过更新观测信息,不断优化目标的运动轨迹。
这种方法简单且实时性较好,适用于快速目标跟踪。
基于关联的目标跟踪方法主要利用关联算法对连续的雷达信号进行处理。
基于多普勒雷达的目标识别与跟踪技术研究引言:多普勒雷达是一种能够实时监测和跟踪目标运动状态的重要工具。
在现代军事、民用航空和交通管理等领域,多普勒雷达的应用日益广泛。
通过利用多普勒效应,多普勒雷达可以通过测量目标返回的雷达信号频率变化,精确地计算目标的运动状态和速度,从而实现目标的识别和跟踪。
本文将重点研究基于多普勒雷达的目标识别与跟踪技术,探讨其原理、方法和应用。
一、多普勒雷达原理多普勒效应是物理学中的一个基本原理,它描述了当一个物体相对于观察者运动时,物体的频率会发生变化。
多普勒雷达利用这一原理来识别目标的运动状态。
多普勒雷达在发射脉冲信号后,通过接收目标返回的回波信号,测量信号频率的变化。
根据多普勒效应,当目标向雷达靠近时,回波信号频率会增大;当目标远离雷达时,回波信号频率会减小。
通过计算回波信号频率的变化,可以确定目标的运动速度和方向。
二、多普勒雷达目标识别技术1. 频谱分析法频谱分析法是一种基于频谱特征的目标识别技术。
通过分析回波信号的频谱特征,可以确定目标的速度。
当目标的速度超过雷达系统的测量范围时,回波信号的频谱将出现模糊,难以识别。
因此,频谱分析法在目标速度较小的情况下应用较为广泛。
2. 脉冲压缩技术脉冲压缩技术是一种通过增加脉冲信号的带宽来提高雷达分辨率的方法。
通过将发射的脉冲信号与接收到的回波信号进行相关运算,可以实现对目标的高分辨率识别。
脉冲压缩技术可以有效地识别高速运动目标。
3. 频域分析法频域分析法是一种基于频域特征的目标识别技术。
通过将回波信号转换到频域,可以获得目标的频谱特征。
不同目标由于尺寸、材料和运动状态的不同,其频域特征也会有所差异。
通过对比目标的频域特征和参考库中的特征,可以实现目标的识别和分类。
三、多普勒雷达目标跟踪技术1. 单目标跟踪技术单目标跟踪技术是一种基于目标运动特征的跟踪方法。
通过计算目标的速度和方向,可以预测目标的运动轨迹,并实时更新目标的位置信息。
雷达目标识别技术研究及应用引言雷达目标识别技术作为一项重要的军事技术,在军事领域的应用已经非常广泛。
随着科技的不断发展,雷达目标识别技术也得到了不断的更新和升级,使得其在军事上的应用越来越广泛、越来越强大。
本文将就雷达目标识别技术进行深入的研究和分析,并对其在广泛应用中所取得的优异成果进行深入探讨。
一、雷达目标识别技术的概述雷达目标识别技术,简单来说,就是通过雷达技术,对目标的形态、特征、物性等进行采集和分析,将目标与其他物体进行区分的技术。
在军事领域中,雷达目标识别技术被广泛应用于敌我识别、空中情报、目标跟踪、导弹制导、防空预警等领域,在实现战场手段的精细化、多样化上发挥了重要的作用。
目前,雷达目标识别技术主要分为多个方向,其中常见的方向包括基于物理特征的目标识别、基于雷达信号特征的目标识别和基于图像处理的雷达目标识别。
这些方向分别有其优点和缺点,在实际应用中,需要根据不同场景、不同任务需求,精选合适的方向和技术手段。
二、基于物理特征的目标识别技术基于物理特征的雷达目标识别技术,主要是通过对目标物理特性的分析来识别目标。
目前应用较广的方法包括极化特征、形态特征、散射截面等。
其中,通过极化分析,可以利用目标表面的材料、纹理等特征进行目标识别;而通过形态分析,则可利用目标的几何形态、表面形态等进行目标识别。
基于物理特征的雷达目标识别技术以其识别准确率高、鲁棒性好等特点,被广泛的应用于目标识别任务。
在飞机、舰船、车辆等目标的识别中取得了显著的成果。
但是,同时也存在着目标复杂性高,目标表面特征丰富,识别算法繁琐等问题。
三、基于雷达信号特征的目标识别技术基于雷达信号特征的目标识别技术,主要是通过对目标信号的特征进行分析,确定目标的种类和型号。
其主要依托于雷达工作原理中的回波信号处理理论,通过分析接收到的目标雷达信号的频率、振幅、相位等参数,从而实现目标识别。
基于雷达信号特征的目标识别技术具有所需数据量少、识别自动化程度高等优点,已经得到广泛的应用。
基于雷达数据的目标识别与跟踪技术研究目标识别与跟踪技术在现代雷达应用中扮演着至关重要的角色。
通过准确地识别和跟踪目标,雷达系统能够提供关键的信息,用于军事、民用和科研等领域。
本文将讨论基于雷达数据的目标识别与跟踪技术的研究进展和应用。
一、目标识别技术研究目标识别是雷达中的一个关键任务,旨在将雷达数据转化为可理解的目标信息。
目标识别技术可以通过提取目标的特征来实现,例如目标的形状、尺寸、运动模式等。
1.1 特征提取技术特征提取是目标识别的核心环节。
雷达数据中的目标特征包括雷达散射截面、速度、加速度、运动方向等。
通过分析目标的散射特性和运动状态,可以有效地区分目标与背景杂波,从而实现目标识别。
1.2 机器学习方法机器学习在目标识别技术中扮演着重要的角色。
通过对大量的雷达数据进行训练和学习,可以构建有效的分类模型,实现目标的自动识别。
常用的机器学习算法包括支持向量机(SVM)、人工神经网络(ANN)和决策树等。
二、目标跟踪技术研究目标跟踪是指通过连续观测,估计目标的位置、速度和方向等参数的技术。
在雷达应用中,目标跟踪技术被广泛用于跟踪移动目标,如飞机、船只和车辆等。
2.1 滤波器方法滤波器方法是目标跟踪中常用的技术之一。
常见的滤波器包括卡尔曼滤波器、粒子滤波器和扩展卡尔曼滤波器等。
这些滤波器通过观测数据和状态方程来预测和更新目标的状态,从而实现目标跟踪。
2.2 轨迹关联方法轨迹关联是在多个雷达观测周期内识别和关联目标的独立轨迹的技术。
轨迹关联方法可以通过分析目标的运动模式、速度差异和相对距离等参数,实现目标的跟踪和关联。
三、目标识别与跟踪技术的应用目标识别与跟踪技术在军事、民用和科研等领域有着广泛的应用。
3.1 军事应用在军事领域,目标识别与跟踪技术被广泛用于军事侦察、目标导航和作战决策等方面。
通过实时准确地识别和跟踪敌方目标,可提供关键的情报支持,增强军事作战的效能和胜算。
3.2 民用应用在民用领域,目标识别与跟踪技术被应用于雷达气象、交通监控和智能驾驶等方面。
雷达信号处理中的目标识别技术雷达作为现代武器系统中不可缺少的一部分,具有广泛的应用。
在使用过程中,雷达需要将接收到的信号进行处理,以实现对目标的探测与识别。
其中,目标识别技术是雷达信号处理中的重要组成部分,也是决定雷达性能和作战效果的关键因素之一。
一、目标特征提取目标识别技术的核心是目标特征提取,即通过对雷达接收到的信号进行分析和处理,提取出与目标相关的特征信息。
目标特征主要包括散射特征、运动特征和形态特征等。
其中,散射特征是指目标使雷达接收到的电磁波在空间和时间上的分布特性,通常用雷达截面积(RCS)来描述;运动特征是指目标运动的速度、方向和加速度等,可以通过多普勒频移和相位变化等特征进行提取;形态特征是指目标的几何形状、轮廓和纹理等,常用的提取方法包括边缘检测、轮廓提取、特征点匹配等。
目标特征的提取方法有很多种,如时域分析、频域分析、小波分析、深度学习等。
其中,时域分析是最基本和常用的方法之一,目标的散射信号通常通过时域信号处理进行分析和处理,得到目标的距离、径向速度和加速度等信息;频域分析则是通过傅里叶变换等方法将信号变换到频域,从而获得目标的频率和幅值等信息;小波分析是一种新型的信号处理方法,它通过小波变换将信号分解为多个不同频率的子带,以提高信号处理的精度和效率;深度学习则是近年来兴起的一种人工智能技术,通过神经网络等方法对海量数据进行学习和训练,以实现目标特征的高效提取和识别。
二、目标分类和识别目标特征提取后,还需要对目标进行分类和识别,即根据特征信息将目标归类到不同的目标库中,并判断目标是否是敌我识别。
目标分类和识别的方法主要包括基于特征匹配、基于统计分类、基于神经网络等多种方法。
基于特征匹配的方法是将目标特征与目标库中已知的目标特征进行比对,通过一定的相似度判断将目标归类到相应的目标类型中。
该方法需要建立大量的目标库,对目标特征的匹配精度以及库中目标的类型和数量要求较高,适用于目标类型比较固定的场景。
雷达的目标识别技术摘要:对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明: 采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。
一 .引言随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。
地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。
1.一维距离成象技术一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。
信号带宽与时间分辨率成反比。
例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。
其基本原理如图1所示。
滤波器图1侑号海波示意图2.极化成象技术电磁波是由电场和磁场组成的。
若电场方向是固定的,例如为水平方向或垂直方向,则叫做线性极化电磁波。
线性极化电磁波的反射与目标的形状密切相关。
当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。
根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。
通过计算目标散射矩阵便可以识别目标的形状。
该方法对复杂形状的目标识别很困难。
3.目标振动声音频谱识别技术根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。
通过解调反射电磁波的频率调制,复现目标振动频谱。
根据目标振动频谱进行目标识别。
传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。
点状目标的回波宽度等于入射波宽度。
一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。
通过目标回波宽度的变化可估计目标的大小。
目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。
雷达目标识别雷达目标识别是一种利用雷达技术来识别目标的方法。
雷达(Radar)是一种利用电磁波进行探测和测量的技术,其工作原理类似于声纳。
通过发送一束电磁波并接收其反射回来的信号,雷达可以探测到目标物体的存在和位置,并进一步对目标进行识别和特征提取。
目标识别是雷达技术中一个重要的应用领域。
目标识别主要通过对雷达返回信号进行分析,从中提取目标的特征信息,并与事先建立的目标数据库进行比对,进而确定目标的身份和属性。
目标识别可以应用于多个领域,如军事防御、航空航天、交通监控等。
在雷达目标识别中,首先需要对雷达返回信号进行预处理,以去除噪声和杂波干扰,并提取目标的特征信息。
常用的特征包括目标的尺寸、形状、速度、方向等。
这些特征可以通过波形分析、频谱分析、图像处理等方法来提取。
在目标识别过程中,可以根据目标的特征信息进行分类和识别。
常见的分类方法包括基于模式识别的方法、基于机器学习的方法等。
基于模式识别的方法主要是通过比对目标的特征信息与事先建立的目标数据库,来确定目标的身份。
而基于机器学习的方法则是通过将大量的目标数据输入到机器学习模型中,从中学习并建立目标的识别规则。
在雷达目标识别中,有一些常用的算法和技术,如相关器识别算法、最小二乘法、径向基函数网络等。
这些算法和技术可以对目标进行分类、特征提取和参数估计,从而实现对目标的准确识别。
总之,雷达目标识别是一种利用雷达技术对目标进行识别和分类的方法。
通过对雷达返回信号进行分析和处理,可以提取目标的特征信息,并与目标数据库进行比对,从而实现对目标的准确识别。
雷达目标识别在军事、航空航天、交通等领域具有重要的应用价值,可以为相关领域的决策提供有效支持。
雷达跟踪系统中的目标探测与识别技术雷达技术一直在航空、导航、军事等领域扮演着重要的角色。
雷达跟踪系统中的目标探测与识别技术是其中至关重要的一环。
本文将探讨雷达目标探测与识别的相关技术,以及当前的研究和发展趋势。
第一部分:目标探测技术雷达目标探测是指利用雷达系统进行目标的探测与确认。
传统上,雷达系统使用连续波雷达或脉冲雷达进行目标的探测。
连续波雷达通过发送连续的电磁波并接收被目标散射的波,根据接收到的信号来判断目标是否存在。
脉冲雷达则利用发射短时脉冲的方式来检测被目标反射的脉冲信号。
然而,随着科技的不断发展,新的目标探测技术也应运而生。
比如,目标探测技术中的成像雷达,它能够获取目标的图像信息,从而实现对目标的更准确的探测。
成像雷达通过发射短脉冲序列,并利用波束形成和合成孔径雷达技术,可以获取目标的三维形状和位置信息。
第二部分:目标识别技术雷达目标识别是指根据目标的雷达特性,对目标进行分类和识别。
传统上,目标识别主要依靠目标的回波信号的特征,如目标的反射截面、多普勒频移等。
基于这些特征,通过与数据库进行匹配或者使用特征提取算法,可以对目标进行分类和识别。
近年来,随着人工智能和深度学习的发展,新的目标识别技术也逐渐兴起。
深度学习技术可以从大量的数据中学习和识别特征,从而实现对目标的自动分类和识别。
例如,通过构建深度神经网络模型,并使用大量的雷达图像数据进行训练,可以实现对雷达目标的高效自动识别。
第三部分:研究和发展趋势雷达目标探测与识别技术正不断地发展和演进。
未来的研究和发展趋势有以下几个方向:1. 多传感器融合:将雷达与其他各种传感器技术相结合,如红外传感器、光学传感器等,以形成更完整、准确的目标探测与识别系统。
2. 多维信息提取:除了传统的距离和速度等信息外,还可以提取更多维度的信息,比如目标的形状、材料组成等,以更全面地识别和判别目标。
3. 实时目标跟踪:目标跟踪是对目标在时间上的连续追踪。
未来的目标跟踪技术将更加注重对目标的轨迹、运动模式等动态信息的捕捉和分析。
利用雷达数据进行目标识别及跟踪雷达是一种电子测量技术,利用无线电波在空间中传播,并接收和处理由目标反射回来的反射波。
利用雷达技术对目标进行识别和跟踪已经成为现代军事和民用领域中的重要应用。
本文将探讨如何通过雷达数据实现目标识别和跟踪。
一、雷达技术的基本原理雷达技术的基本原理是通过发射无线电波,将它们从目标上反射回来,并测量其时间和频率,以确定目标的位置、速度和方向。
雷达系统由发射机、接收机、天线和处理器组成。
发射机产生连续的射频信号,经天线后发射出去。
当信号碰到目标时,会被反射回来,信号经天线再次进入接收机。
接收机会对信号进行放大和处理,以提取目标信息。
处理器将提取的信息转换成有用的数据,如目标的位置、速度和方向等。
二、雷达数据的分析与处理雷达数据的分析与处理是雷达技术中最重要的环节之一。
雷达数据可以包含大量的信息,如目标反射强度、距离、速度、方位角和高程等。
在进行目标识别之前,需要对雷达数据进行预处理和滤波。
预处理的主要任务是将原始数据转换成可视化的格式,以方便对数据进行分析和处理。
滤波则是为了去除噪声,保留有用的信号,以提高目标识别的准确性和可靠性。
进行目标识别时,需要根据目标的特征进行分类。
目标的特征包括反射强度、速度、方位角和高程等。
通过对这些特征的分析和处理,可以确定目标的类别和属性。
三、雷达数据的目标跟踪目标跟踪是利用雷达数据对目标的运动轨迹进行预测和跟踪的过程。
目标跟踪的主要任务是在目标动态变化的情况下,对其位置进行准确预测和跟踪。
目标跟踪的算法可以分为传统算法和智能算法两类。
传统算法主要包括卡尔曼滤波、贝叶斯滤波和粒子滤波等。
智能算法则包括人工神经网络、遗传算法和模糊逻辑等。
四、雷达技术在军事上的应用雷达技术在军事上的应用主要包括目标识别和跟踪、雷达导航、目标指引和武器制导等。
其中,目标识别和跟踪是一项关键技术,可以帮助军事指挥部对敌方军事活动进行监测和预警。
在现代战争中,雷达技术的发展已经成为军事优势的重要标志之一。
激光雷达目标识别技术激光雷达是一种使用激光束测量和捕捉周围环境的传感器。
它能够提供高精度、高分辨率的三维空间信息,被广泛应用于自动驾驶、机器人导航、工业测绘等领域。
在这些应用中,激光雷达的目标识别技术起着至关重要的作用。
激光雷达目标识别技术的核心是根据激光束与目标物体之间的交互作用,提取目标物体的特征信息,并将其与已知的目标特征进行比对和匹配,从而实现目标的识别和分类。
首先,激光雷达通过发射激光束并感知回波信号来获取周围环境的点云数据。
然后,通过对点云数据进行处理和分析,提取出目标物体的特征信息。
常见的目标特征包括目标的形状、尺寸、高度、位置等。
在目标特征提取的过程中,常用的算法包括点云分割、特征提取和特征描述。
点云分割算法通过将点云数据分割成多个区域,将目标物体从周围的背景中分离出来。
特征提取算法利用目标物体的局部特征,如曲率、法线方向等,来描述目标的形状和表面特征。
特征描述算法将提取到的特征进行编码和压缩,以便于后续的识别和分类。
目标识别是激光雷达应用中的关键问题之一。
根据目标的不同特征,可以将目标分为点云目标和物体目标两类。
点云目标是指具有明显表面特征的目标,如建筑物、道路、树木等;物体目标是指具有立体结构和形状的目标,如车辆、行人、动物等。
针对点云目标的识别,常用的方法是基于图像处理的技术。
首先,将点云数据转化成二维图像,然后利用图像处理的算法和技术进行目标的检测、分割和分类。
这种方法能够利用图像处理的成熟技术和算法,有效地提取目标的表面特征,但对于复杂的场景和目标物体,识别的准确度和鲁棒性有一定的局限性。
针对物体目标的识别,常用的方法是基于点云的几何特征和形状特征。
对于车辆目标的识别,可以利用车辆的几何特征,如车身的形状、尺寸和旋转角度等进行识别和分类。
对于行人目标的识别,可以利用行人的立体结构和运动特征进行识别和分类。
这种方法在目标的几何特征和形状特征的提取上更具优势,能够实现高精度的目标识别和分类。
雷达测量中的目标识别与跟踪技术雷达是一种广泛应用于军事和民用领域的无线电探测设备,可以通过发射和接收电磁波来探测和跟踪目标。
雷达测量中的目标识别与跟踪技术在现代社会中发挥着重要作用,不仅有助于军事作战,还广泛应用于航空、航海、气象、交通等领域。
一、雷达目标识别技术雷达目标识别技术是指通过分析雷达回波信号的特征,确定目标的类型和性质。
目标识别可以通过目标的尺寸、形状、反射截面以及运动轨迹等特征来实现。
在雷达目标识别中,一种常见的方法是基于目标的回波信号的频率谱。
不同目标对电磁波的反射能力不同,因此其回波信号的频谱也不同。
通过比对已知目标的频谱特征和实际回波信号的频谱,可以对目标进行识别。
另一种常用的目标识别技术是基于目标的散射特性。
目标与电磁波相互作用,产生散射现象。
通过分析目标的散射信号,可以了解目标的形状、结构以及材料成分,从而实现目标的识别。
此外,雷达目标识别还可以通过目标的运动特征来实现。
不同类型的目标在运动过程中表现出不同的特征,比如速度、加速度等。
通过分析目标的运动特征,可以对目标进行分类和识别。
二、雷达目标跟踪技术雷达目标跟踪技术是指通过分析雷达回波信号,实时追踪目标的位置、速度和轨迹等信息。
目标跟踪是雷达应用于实际场景中的重要环节,对于实现有效的目标探测和监测至关重要。
在雷达目标跟踪中,一种常见的方法是基于比较分析目标的回波强度变化。
通过寻找回波强度最强的点,可以确定目标的位置。
同时,结合雷达的扫描方式,可以得到目标的速度和运动方向信息。
通过不断更新目标的位置、速度和方向信息,可以实现目标的跟踪。
另一种常用的目标跟踪技术是基于多普勒效应。
多普勒效应指的是当目标相对雷达运动时,雷达接收到的回波频率会发生变化。
通过分析回波频率的变化,可以推测目标的速度和运动方向,从而实现目标的跟踪。
除此之外,雷达目标跟踪还可以利用图像处理和信号处理技术。
通过对雷达回波信号进行图像化处理,可以直观地观察目标的位置和运动轨迹。
基于雷达技术的目标识别与跟踪系统设计在现代社会,雷达技术被广泛应用于军事、民用、航空航天等领域。
其中,雷达目标识别与跟踪系统是其中一个重要的组成部分。
雷达目标识别与跟踪系统的设计,可以帮助人们更准确地进行目标的监测、追踪和控制,提高了人类在各种领域中的管理和应用水平。
一、雷达技术的原理雷达是一种利用电波来探测目标位置和运动状态的技术。
雷达系统通过向目标发射连续或间歇的电磁波,然后接收反射回来的信号,并对其进行处理,从而获得目标的位置、运动速度等信息。
雷达的核心是收发设备和信号处理系统,其中收发设备主要包括雷达天线、发射机和接收机等。
二、雷达目标识别技术雷达目标的识别是指通过对目标反射回来的信号特征进行分析和处理,从而判断目标的种类及其特征。
目标识别技术的目标是实现对目标情况的准确分析和对目标种类的自动判断。
在雷达目标识别中,常用的方法有SAR成像、HRR特征识别、频谱分析等。
其中,SAR(合成孔径雷达)具有对地面目标进行成像、探测以及识别的能力。
HRR(高分辨率雷达)技术可以获得高质量的目标特征数据,进而实现目标的识别。
三、雷达目标跟踪技术雷达目标跟踪是指系统能够对目标的位置、速度等参数进行实时检测,从而对其进行追踪。
目标跟踪技术是雷达技术应用的重要组成部分,主要是通过对目标的位置和运动状态进行实时分析和计算,来实现目标的跟踪。
在实际应用中,经常采用的目标跟踪算法有传统卡尔曼滤波、扩展卡尔曼滤波、粒子滤波和平滑滤波等。
四、基于雷达技术的目标识别与跟踪系统设计基于雷达技术的目标识别与跟踪系统设计的目的是能够快速且准确地识别和跟踪目标,为后续的分析和决策提供有效的数据支持。
该系统主要由雷达设备、数据采集与处理模块、目标识别算法模块和目标跟踪算法模块等组成。
1.雷达设备部分,主要是对雷达设备进行选型和配置。
针对不同类型的目标,需要选择不同类型的雷达设备。
同时,也需要考虑设备性能、探测距离、探测精度等因素,选择合适的雷达设备。
雷达的目标识别技术摘要:对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。
一.引言随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。
地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。
1.一维距离成象技术一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。
信号带宽与时间分辨率成反比。
例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。
其基本原理如图1所示。
2.极化成象技术电磁波是由电场和磁场组成的。
若电场方向是固定的,例如为水平方向或垂直方向,则叫做线性极化电磁波。
线性极化电磁波的反射与目标的形状密切相关。
当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。
根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。
通过计算目标散射矩阵便可以识别目标的形状。
该方法对复杂形状的目标识别很困难。
3.目标振动声音频谱识别技术根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。
通过解调反射电磁波的频率调制,复现目标振动频谱。
根据目标振动频谱进行目标识别。
传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。
点状目标的回波宽度等于入射波宽度。
一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。
通过目标回波宽度的变化可估计目标的大小。
目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。
这类波型图叫作波色图。
根据波色图内子峰的形状,可获得一些目标信息。
熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。
雷达目标识别器在国外已成功应用。
我国自行研制雷达目标识别器很有必要。
用飞机的发动机振动声音频谱进行目标识别可用于电子欺骗对抗。
下面就研制雷达振动声音频谱目标识别的技术问题进行讨论。
二.工作原理不同型号的飞机有不同的发动机振动声音频谱,通过飞机的特征频谱用电脑或人工方式判别飞机的类型。
飞机的声音是传不远的,需要借助其它手段。
用电磁波来照射飞机,飞机的振动和运动对电磁波进行多普勒频率调制。
用飞机的反射波与入射波进行混频,获得由飞机运动引起频移后的振动频谱,再与由飞机运动引起的频率差频,获得飞机的声音频谱。
经滤波放大后通过喇叭可复现飞机的声音。
通过声音识别确定飞机类型。
三.雷达目标识别的特点、分类及方法雷达目标识别相对于目标的定位、跟踪,具有更大的不确定性,这主要是由于在目标识别中特征既与目标尺寸及雷达参数有关,又与雷达所处的环境特性有关。
同对,采用不同的处理方式时,所得到的特征也可能不同。
因而,难于提取稳健(鲁棒)的、能区分目标的本原特征。
同时,不同雷达提供的用于目标识别的测量数据有很大的差异性,它们关于目标识别的结果具有不同的致信度,并且可能是在不同的层次上的。
目标识别按目标是否与雷达合作,可分为合作式目标识别和非合作式目标识别。
合作式目标识别最常见的是采用敌我识别器,通过雷达和敌我识别器的配合,既可获得目标的位置和运动特征,也可获得目标的敌我属性特征。
除合作式目标识别以外的其他目标识别都称为非合作式目标识别,我们通常所说的雷达目标识别均指非合作式目标识别。
由于雷达目标识别中包含很大的不确定性,因此,为了得到稳健的目标识别,有效的途径之一是使用多雷达一多特征目标融合识别。
如果从雷达目标融合识别的角度对目标进行分类,则可根据对输人数据的不同层次的抽象,通常可以将目标融合识别分为数据级(或称为像素级)目标识别融合、特征级目标融合识别和决策级目标融合识别三类,如图3所示。
其中,数据级目标融合识别的优点是信息损失少,缺点是对通信和计算量的要求太大,难以实时实现;决策级目标融合识别的优点是对通信容量和计算量的要求比较低,容易实现,但信息损失相对较大;而特征级目标融合识别则介于二者之间,若兼顾性能和复杂性,特征级目标识别融合是一种最佳的选择,也是目前在雷达目标识别中采用最广的方法。
图3 雷达目标融合识别分类为了能在目标识别中更充分地利用雷达提供的信息,近来又把目标融合识别在原来的数据、特征、决策三类的基础上进一步细分为“数据入一数据出(DAI—DAO)”、“数据人一特征出(DAI—FEO)”、“特征人一特征出 (FEI—FEO)”、“特征人一决策出(FEI—DEO)”和“决策入一决策出(DEI—DE0)”五类,如图4所示。
虽然该分类方法有些复杂,但对构建灵活、高性能的雷达目标融合识别系统结构具有指导意义。
目前用于目标识别的方法有很多种。
这些方法有:模板匹配、加权平均、表决准则、最小错误准则、贝叶斯最小风险准则、专家系统、神经网络、模糊推理、贝叶斯理论、证据理论、符号推理等,各种方法均有其优缺点,需要根据具体的应用进行认真的选择,有时还需将几种方法穿插渗透,综合利用,以期达到最佳的识别效果。
例如,可以把模糊集与神经网络识别技术相结合,也可以把证据理论与神经网络相结合,等等。
图4 目标融合识别5类模型四、雷达目标识别的发展历史及现状雷达目标识别的研究始于20世纪50年代末期。
当时,美国的D.K。
BaIton通过分析AN/FPS~16型跟踪雷达记录的前苏联人造卫星spunlikⅡ的回波信号,推断出该人造卫星上带有角反射器,并由此推理出前苏联当时的卫星跟踪网是由第二次世界大战时使用的低威力雷达所组成。
推断标志着雷达目标识别的开始。
此后,雷达目标识别得到了很大的发展,并已成为当今雷达发展的一个重要方向。
在弹道导弹防御目标识别方面,60年代的弹道导弹预警系统(BMEWS)中的AN/FPS一49弹道导弹预警和跟踪雷达就采用了轨道比较法进行目标识别,通过计算机区别真假目标,并测出目标速度、航向和弹道。
70年代的“卫兵”系统用相控阵雷达代替机扫雷达实现潜射弹道导弹预警和地球卫星跟踪。
80年代的“星球大战计划”(SDI)将收集弹道导弹各部分和再入飞行体的特征数据列为重要项目,设想利用SPQ一11相控阵雷达和新研制雷达来获取目标的微波特性数据,以实时成像识别为重点,建立目标特性的模型和数据库。
90年代以来,随着NMD和俄D的提出,雷达目标识别再次成为热门研究课题。
美国的多目标特性测量雷达主要朝着相控阵技术与逆合成孔径成像技术相结合、并形成模型和数据库的方向发展,用以解决多目标跟踪和多目标识别两大问题。
到目前为止,美国共进行了8次国家导弹防御(NMD)系统试验,其中5次成功,3次失败。
‘总的看来,美国的目标识别处于国际领先,其目标识别技术也由早期的基于单一传感器的目标识别向多传感器融合识别发展,并且一些技术开始进入实用阶段,其中,利用高分辨率雷达的目标识别已进入实用阶段,基于ISAR的雷达目标识别已得到验证,基于GBR的真假弹头目标识别已突破许多关键技术。
五.用于目标识别的雷达类型1.现有的二坐标雷达现有的警戒雷达大多数为脉冲非连续波体制,重复周期大于800 la S,即重频f<1.2kHz。
根据抽样定理可知,对声频大于f/2=600Hz 的振动声音调制信号不能再现。
而飞机的发动机声音频率远大于600Hz,因此用现有的脉冲体制的雷达无法复现飞机发动机振动声音。
2.目标识别雷达(1)连续波雷达过去主要将连续波雷达用于目标识别。
为了获得足够的反射波能量,发射功率要求大,而且在发射的同时进行接收,技术难度较大,而大功率发射增加了雷达的成本和难度。
目标识别雷达作用距离较小。
(2)高重频相参高重频雷达由抽样定理可知,当雷达重频大于2倍的飞机运动引起频移后的飞机振动声音频率时,就能复现频移后的飞机振动声音频谱。
再与由飞机运动引起频率差频,获得飞机声音A/D量化值。
经D/A滤波放大后通过喇叭可复现飞机的振动声音。
通过适当调整发射重频,使目标回波落在不发射的时间窗内,如图5所示。
这样发射机和接收机交替工作,雷达构成简单。
图5 回波示意图这时需要对雷达接收信号进行数字处理,才能复现飞机声音。
要设计相应的数字系统。
该方案雷达系统简单易于研制。
并且可选择不同距离窗的飞机进行识别。
雷达作用距离较远。
(3)高重频相参脉冲压缩雷达为了提高雷达作用距离,降低雷达的发射峰值功率,可采用相参脉冲压缩体制。
该体制由于发射峰值功率小,便于隐没在电磁环境中,不易被发现。
由于发射峰值功率小,发射电路技术要求低,成本低。
该雷达为脉冲体制,雷达的收和发在时间上交替进行,这样从技术难度和成本控制上皆为成熟技术。
这时,数字处理电路较复杂,但现有技术可以设计出相应的数字系统。
为了降低雷达的体积,提高灵活性,可采用3厘米频段雷达。
3.工作流程雷达网提供目标的距离(最好还有高度)引导目标识别雷达天线指向目标,根据目标距离选择雷达重频,数字处理电路解算出飞机声音,用飞机声音进行飞机型号识别。
4.电子欺骗对抗用飞机的振动声音进行目标识别还可用于转发型电子欺骗对抗。
在转发型电子欺骗中很难模拟出由飞机运动引起频移的发动机振动细谱,复现的声音也将与真实飞机振动声音不同,从而区分判断出假目标。
5.应用雷达目标识别具有重要意义。
能进行目标识别的雷达必须符合一定的要求。
为了能有效地进行目标识别,可以针对性研制一些低成本专用雷达,也可以在某些雷达设计中(例如测高雷达中)设置目标识别工作模式,在不同的时刻分别完成原有功能和目标识别功能。
六.发展方向现代雷达大多采用数字压缩技术,回波宽度被量化。
其量化精度从目标录取的角度是合适的。
但若进行目标识别,用其来观察目标回波宽度的微小变化则精度不够。
根据目前的技术发展,应接收中频回波,用数字中频接收及脉压处理直接提取高精度的目标回波,进行目标识别。
关于一维距离成象技术。
我们应从图象显示技术和数字中频处理技术两方面入手,开发雷达终端的目标识别技术。
即提取高距离分辨率的回波信号,开发针对性的显示方法。
关于振动频谱识别技术。
可以通过中频回波信号及本振信号,采用数字中频处理技术,并结合目标航迹直接提取目标的振动声音频谱,进行目标识别。
七、雷达目标识别中的特征及特征提取特征选择及提取是雷达正确识别目标的基础和关键,这里以弹道导弹防御为例分析雷达目标识别中可利用的特征及特征提取方法。
弹道导弹飞行过程的目标特性可以从目标的运动学特性、目标的光学特性和目标的电磁散射特性等多个方面加以描述。
弹道导弹的飞行过程是通过主动段、中段和再入段飞行到达地面目标区的。