第三章半纤维素
- 格式:pptx
- 大小:1.37 MB
- 文档页数:53
第一章结晶度:纤维素中的结晶区重量对纤维素总重量的百分比水解纤维素:纤维素的水解产物的混合物,组成和纤维素相同。
氧化纤维素:被氧化剂氧化的纤维素,不是单一的物质,由醇羟基受氧化剂作用而产生。
碱纤维素:制备纤维素酯或纤维素醚的中间产物。
由羟基与浓碱作用产生。
r值:纤维素酯化,取代反应中,每100个葡萄糖基环内起反应的羟基数.纤维素的水化:纤维素与浓碱发生作用同时伴有放热现象,但纤维素的体积并无变化。
纤维素的溶胀:纤维素在碱溶液中伴随放热产生最大的溶胀量,且重量可为原重量的200%。
水化度:阳离子在无限多量的水中所结合的水的物质的量。
铜值:100g纤维素使氧化铜还原氧化释放出的铜的kg重量。
碘值:测定1g纤维素消耗0.05ml/L碘溶液ml量蛋白质的等电点pI: 调节溶液PH值,使蛋白质分子上正负离子数目相等,即此时溶液PH 值为pI。
动电电位:固体相对液体运动在扩散双点层的滑移面产生的电位差的大小和符号。
第二章表面张力:作用于气-液界面之间使其表面收缩的力。
表面自由能:一个分子从液体内部移到界面上克服内部分子的吸引力而消耗的功转变为多余的表面分子自由能。
临界胶束浓度CMC:溶液中表面活性剂开始形成胶束的浓度为临界胶束浓度。
亲水亲油平衡值HLB:反映表面活性剂中两端不同基团对表面活性剂亲油性或亲水性的综合影响程度。
阴离子型表面活性剂:溶解于水中时发生电离,与憎水基相连的亲水基是阴离子,其亲水端带负电荷。
阳离子:溶解于水中时发生电离,与憎水基相连的亲水基是阳离子,其亲水端带正电荷。
非离子型表面活性剂:在水溶液中不起电离作用,使用范围仅次于阴离子的表面活性剂。
两性离子表面活性剂:分子结构中同时具有两种性质离子的表面活性剂,也属于两性表面活性剂。
乳化液:一种分散体系,由两种互不相溶的液体组成,通常是油和水。
内相:即分散相,指乳化液中,以小液滴存在的那个相,如油外相:指连续或分散介质,如水在o/w型乳化液中乳化剂:能降低油、水界面的力,使一种液体以极小的液滴的形式均匀、稳定地分布在另一种液体中的表面活性物质。
第3章纺织材料学-植物纤维第三章植物纤维教学⽬标:1、了解棉纤维的基本知识,熟悉棉纤维的主要性能,了解棉纤维性能与纺纱⼯艺及成纱质量的关系,了解天然彩⾊棉的情况,掌握棉纤维主要性能的测试⽅法和品质评定的⽅法2、了解天然⿇纤维的种类,各种⿇纤维的特征主要性能及其应⽤情况。
3、了解维管束纤维(⽵纤维)的特征主要性能及其应⽤情况。
教学重点与难点:1、教学重点⼏种主要植物纤维的特性及其性能指标。
2、教学难点指标体系及表述。
3、解决⽅法建⽴清晰的概念,对在后⾯章节还会出现的长度、细度、强度等的概念和指标可采⽤螺旋上升的⽅法教学,成熟度要讲透。
主要内容:1.棉纤维的形成,棉纤维的截⾯形态、截⾯结构和纵⾯形态,棉纤维的主要组成物质及其耐酸耐碱性,棉花的种类和我国主要棉区,棉花初加⼯的概念以及锯齿棉,⽪辊棉的特点及原棉检验。
2.⿇纤维截⾯形态和纵⾯形态,主要组成物质及其耐酸耐碱性,长度和细度,吸湿性,强度和伸长率和柔软性。
3.⽵纤维的结构、性能简介。
教学与学习建议:1、教学建议授课形式:讲解与讨论准备四种天然纤维的实物样品和显微镜标样,让学⽣从宏观和微观两⽅⾯观察认识纤维。
2、学习建议通过观察四种天然纤维的实物样品和显微镜标样,从宏观和微观两⽅⾯观察认识纤维;通过记忆和理解,掌握纤维的主要特性;结合实验课学习,掌握主要性质的测试⽅法,熟悉有关国家标准。
教学内容:第⼀节种⼦纤维(棉、⽊棉)⼀、棉花的基本性状棉花原产热带、亚热带,本是⼀种多年⽣⽊本植物,当棉花逐渐地从热带传到温带以⾄北纬 40 ~50 °的地区时,由于⽓候的影响和⼈们长期的选择和培育,形成了今天我们常见的⼀年⽣半⽊本性⼩树,春季播种,当年开花结果,严寒来临,⽣命终⽌,完成⽣育周期。
棉花喜温好光。
棉花⼀⽣中,对温度要求较⾼,⽽且要适宜。
发育期间最适宜的温度为 25 ~30 ℃,低于20 ℃⽣长缓慢,⾼于36 ℃⽣长受抑制或停⽌。
不同⽣育期对温度要求也不同:种⼦发芽需要10 ℃以上的⽓温,⽓温愈⾼这⼀过程愈短;幼苗期形成真叶,要求⽓温达到 15 ~20 ℃,花蕾期⽓温宜在 25 ~30 ℃,低于20 ℃难以形成花蕾,同时⽇夜温差不宜过⼤;成熟期所需⽓温降低,⽇夜温差宜⼤,使⽣长缓和,养分集中于长桃,促进早熟。
木材学笔记:(有整理的一定要会,其他的还要自己结合书和笔记)第一章:木材的宏观构造与识别1、树木生长是高生长(顶端生长、初生长)和直径生长(次生长、侧向生长)的共同作用结果。
树木的生长包括高生长和直径生长。
树木中木质部的绝大部分是由直径生长形成,它是形成层原始细胞分生的结果。
所以木材的形成主要经过三个重要过程:形成层母细胞的分裂形成新(子)细胞;新生细胞和组织充分分化和成熟;成熟细胞的蓄积。
2、形成层原始细胞分为:1)射线原始细胞-分生出木射线和韧皮射线; 2)纺锤形原始细胞-分生出导管、管胞、木纤维等。
3心边材对材性和加工工艺的影响心边材在解剖构造上变化有限,在含水率相同时,心材由于浸渗物质较多,有时比边材材色深、重量略高(5%以上)、心材略硬、重、质脆,由于边材含有适于菌虫生长的养料故而招致腐朽、虫蛀。
心材浸渗物对菌虫有毒,故键全心材较边材耐久。
心材物质沉积在胞腔对气体和液体的渗透有不良影响,防腐改性等影响药液的渗透,心边材颜色的差异是细木工镶嵌工艺的很好材料。
但对胶合板制造因材色不一,会影响板面外观,对造纸纤维工业来说,需增加漂白工艺,否则会影响产品表观质量。
4、早晚材比较(1)构造上①早材在年轮内侧,生长初期形成,颜色浅,晚材则相反。
②早材细胞腔大壁薄,长度略短于晚材,宽度大于晚材。
如:水曲柳、柞木的早材导管的细胞腔肉眼下都能看见。
(2)材性上①早材较松软,密度小,晚材较致密,硬重,密度大。
②早材强度小耐磨性差,晚材强度大耐磨性好。
③早材横向干缩小,晚材横向干缩大。
5、阔叶材管孔的排列及分布:(1)环孔材(2)散孔材(3)半环孔材或半散孔材(4)辐射孔材(5)切线孔材(6)交叉孔材(或称花样孔材)6、阔叶材管孔的组合(1) 单管孔(2) 复管孔(3) 管孔链(4) 管孔团7、环孔材晚材管孔排列:①星散排列:管孔大多单独,分布均匀或比较均匀,呈星散排列如:水曲柳,橡树。
②径、斜列:管孔沿径向或斜向排列,可进一步区分为:a、单径列:管孔单引向排列、光叶黄、野梧桐。
第三章纤维的力学性质第一节纤维的拉伸性质纺织纤维在纺织加工和纺织品的使用过程中,会受到各种外力的作用,要求纺织纤维具有一定的抵抗外力作用的能力。
纤维的强度也是纤维制品其他物理性能得以充分发挥的必要基础,因此,纤维的力学性质是最主要的性质,它具有重要的技术意义和实际意义。
纺织纤维的长度比直径大1000倍以上,这种细长的柔性物体,轴向拉伸是受力的主要形式,其中,纤维的强伸性质是衡量其力学性能的重要指标。
一、拉伸曲线及拉伸性质指标1.纤维的拉伸曲线特征纤维的拉伸曲线由拉伸试验仪得到,图3-1是一试样长度为20cm,线密度为0.3 tex,密度为1.5R/cm3的纤维在初始负荷为零开始一直拉伸至断裂时的一根典型的纤维拉伸曲线。
它可以分成3个不同的区域:A为线性区(或近似线性区);B为屈服区,在B区负荷上升缓慢,伸长变形增加较快;C为强化区,伸长变形增加较慢,负荷上升较快,直至纤维断裂。
图3-1 纤维的拉伸曲线纤维的拉伸曲线可以是负荷-伸长曲线,也可以将它转换成应力-应变曲线,图形完全相同,仅坐标标尺不同而已。
纤维拉伸曲线3个不同区域的变形机理是不同的。
当较小的外力作用于纤维时,纤维产生的伸长是由于分子链本身的伸长和无定形区中缚结分子链伸展时,分子链间横向次价键产生变形的结果。
所以,A区的变形是由于分子链键长(包括横向次价键)和键角的改变所致。
变形的大小正比于外力的大小,即应力-应变关系是线性的,服从虎克定律。
当外力除去,纤维的分子链和横向连接键将回复到原来位置,是完全弹性回复。
由于键的变形速度与原子热振动速率相近,回复时间的数量级是10-13s,因此,变形的时间依赖性是可以忽略的,即变形是瞬时的。
当施加的外力增大时,无定形区中有些横向连接键因受到较大的变形而不能承受施加于它们的力而发生键的断裂。
这样,允许卷曲分子链伸直,接着分子链之间进行应力再分配,使其他的横向连接键受力增加而断裂,分子链进一步伸展。
在这一阶段,纤维伸长变得较容易,而应力上升很缓慢。
半纤维素化学式
半纤维素是一类含有大量羟基的多聚物,其化学式可以表示为(C6H10O5)n,其中n表示聚合度,表示单元数目,通常在100-10000之间。
半纤维素主要由三个单糖基组成,分别是葡萄糖、木糖和半乳糖。
这三个单糖基的结构是类似的,都含有一个醛基和多个羟基。
在半纤维素分子中,葡萄糖是最常见的单糖,它通过α-1,4键与其他葡萄糖单元连接在一起,形成一个链状结构。
相邻葡萄糖单元之间的羟基可以和其他化合物发生反应,例如与酸反应形成醚键,与醛反应形成假两性化合物,与酯反应形成酯键等。
木糖是半纤维素中的另一个常见单糖,它通常以β-1,4键的形式与其他单糖单元连接在一起。
木糖在半纤维素分子中的含量相对较低,但它具有较强的稳定性和耐酸性。
半乳糖是半纤维素分子中的第三个主要单糖,它与葡萄糖类似,通过α-1,4键与其他单糖单元连接在一起。
半乳糖的存在增加了半纤维素分子的多样性和稳定性。
半纤维素具有许多独特的化学性质和物理性质,使其在许多应用中发挥着重要的作用。
半纤维素具有良好的水溶性和表面活性,能够形成胶体溶液,因此在食品工业和化妆品工业中常用作增稠剂、乳化剂和稳定剂。
此外,半纤维素还具有一定的生物降解性和生物相容性,因此在医药领域中也有广泛的应用,例如用于修
复组织和制备缓控释药物。
总的来说,半纤维素是一类含有大量羟基的多聚物,化学式为(C6H10O5)n。
它由三个主要单糖基组成,即葡萄糖、木糖和半乳糖。
半纤维素具有丰富的化学性质和物理性质,广泛应用于食品工业、化妆品工业和医药领域中。
第三章生物质的结构及组成第3章生物质的结构及组成生物质是多种多样的,它包括植物、动物和微生物。
其组成成分也多种多样,主要成分有纤维素、半纤维素、木质素、淀粉、蛋白质、烃类等。
从能源利用的角度看,利用潜力较大的是由纤维素、半纤维素组成的全纤维素类生物质,因此,本章重点介绍植物类生物质的结构及组成。
3.1生物质的组成成分与化学结构生物质主要成分有纤维素、半纤维素、木质素、淀粉、蛋白质、烃类等。
树木主要是由纤维素、半纤维素、木质素组成的,草本作物也基本由上述三种主要组成,但组成比例不同。
而谷物含淀粉较多,污泥和家畜粪便则含有较多的蛋白质和脂质。
因此,不同种类的生物质,其成分差异很大。
上述组成成分,由于化学结构的不同,其反应特性也不同。
因此,根据生物质组成选择相应的能源转化方式十分重要。
3.1.1纤维素(cellulose)一、纤维素的分子结构吡喃葡萄糖酐(1-5)彼纤维素是天然高分子化合物。
经过长期的研究,确定其化学结构是由很多D—此以β(1-4)苷键连结而成的线形巨分子,其化学式为CHO,化学结构的实验分子式为(CHO)(n为61056105n聚合度),含碳44.44%,氢6.17%,氧49.39%三种元素组成。
棉花几乎100%由纤维素组成,而木材中还含有半纤维素和木质素,纤维素平均含量为40%~50%。
(1)葡萄糖环形结构?纤维素完全水解时得到99%的葡萄糖,其分子式为CHO,说明有一度的未饱和,其还原反应产物,6105证明相当于六个碳原子组成的直链,并存在着碳酰基。
?葡萄糖的碳酰基是半缩醛基(hemiacetal group),很多实验证明葡萄糖有一个醛基,这个醛基位于葡萄糖分子的端部,且是半缩醛的形式。
?葡萄糖半缩醛结构的立体环为(1-5)连接(已证明葡萄糖的半缩醛基由同一葡萄糖分子中的两种基团形成(所以是环状的半缩醛结构,位于C上的羟基优先与醛羰酰基起作用,形成C—C,糖苷键(glycosidic 5l5bond)连接的六环(吡喃环)结构。
第三章纤维素纤维的结构和性能天然纤维素纤维(棉、麻)纤维素纤维再生纤维素纤维(粘胶纤维、铜氨纤维、醋酯纤维)§3.1纤维素纤维的形态结构一棉纤维的形态结构棉纤维是种子纤维,其主要成分为纤维素、果胶、蜡质、灰分、含氮物质。
外形:上端尖而封闭,下端粗而敞口,细长的扁平带子状,有螺旋状扭曲,截面呈腰子形,中间干瘪空腔.最外层:初生胞壁从外到里分三层:中间:次生胞壁内部:胞腔1 初生胞壁决定棉纤维的表面性质,它又分为三层,最外层为果胶物质和蜡质所组成的皮层。
因而具有拒水性,在棉生长过程中起保护作用。
但在染整加工中不利。
2 次生胞壁纤维素沉积最后的一层,是构成纤维的主体部分,纤维素含量很高,其组成和结构决定棉纤维的主要性能.3 胞腔输送养料和水分的通道,蛋白质、色素等物质的残渣沉积胞壁上,胞腔是棉纤维内最大的空隙,是染色和化学处理时重要的通道.二麻纤维的形态结构麻纤维主要有:苎麻、亚麻是属于韧皮纤维,以纤维束形式存在单根纤维是一个厚壁、两端封闭、内有狭窄胞壁的长细胞苎麻两端呈锤头形或分支亚麻两端稍细呈纺锤形纵向有竖纹和横节主要化学组成和棉纤维一样是纤维素,但含量低.§3。
2纤维素大分子的分子结构纤维素是一种多糖物质,其大分子是由很多葡萄糖剩基连接而成,分子式为(C6H10O5)n 复杂的同系物混合物,n为聚合度, 棉聚合度为2500~10000,麻聚合度为10000~15000,粘胶纤维聚合度为250~ 500纤维素大分子的化学结构是由β—d—葡萄糖剩基彼此以1,4-甙键连接而成,结构如下每隔两环有周期性重复,两环为一个基本链节,链节数为(n-2)/2, n为葡萄糖剩基数,即纤维的聚合度,葡糖糖剩基上有三个自由存在的羟基,其中2,3位上是仲羟基,6位上伯羟基§3。
3棉纤维的超分子结构超分子结构也称为微结构,主要指棉纤维中次生胞壁纤维素大分子的聚集态结构,纤维素大分子的排列状态,排列方向,聚集紧密程度等。