农业温室大棚智能监控系统
- 格式:doc
- 大小:86.00 KB
- 文档页数:7
《智能温室大棚监控系统的研究与设计》篇一一、引言随着现代科技的不断进步,农业科技作为支撑现代农业发展的重要支柱,也正在逐步升级与优化。
智能温室大棚监控系统是这一进步的体现之一,它不仅为农业种植提供了精准的环境控制,还能显著提高农作物的产量与品质。
本文旨在探讨智能温室大棚监控系统的设计与实现,通过对其系统架构、技术运用以及实施效果的研究,为现代农业的智能化发展提供一定的理论支持与实践指导。
二、系统架构设计1. 硬件架构智能温室大棚监控系统的硬件架构主要包括传感器网络、数据传输设备、中央处理单元和控制执行设备等部分。
传感器网络负责实时监测温室内的环境参数,如温度、湿度、光照强度等;数据传输设备将收集到的数据传输至中央处理单元;中央处理单元对数据进行处理与分析,并发出控制指令;控制执行设备则根据指令调整温室内的环境条件。
2. 软件架构软件架构则包括数据采集模块、数据处理与分析模块、控制指令输出模块以及用户交互界面等部分。
数据采集模块负责从传感器网络中获取数据;数据处理与分析模块对数据进行处理与存储,并运用算法进行环境预测与优化;控制指令输出模块根据分析结果发出控制指令;用户交互界面则提供友好的操作界面,方便用户进行系统操作与监控。
三、关键技术运用1. 传感器技术传感器技术是智能温室大棚监控系统的核心之一。
通过使用高精度的传感器,系统能够实时监测温室内的环境参数,如温度、湿度、光照强度等,为后续的数据处理与分析提供准确的数据支持。
2. 数据处理与分析技术数据处理与分析技术是智能温室大棚监控系统的关键环节。
通过对传感器收集到的数据进行处理与分析,系统能够实时掌握温室内的环境状况,并运用算法进行环境预测与优化,为控制指令的发出提供依据。
3. 控制执行技术控制执行技术是实现智能温室大棚监控系统精确控制的关键。
通过控制执行设备,系统能够根据中央处理单元发出的指令,调整温室内的环境条件,如开启或关闭通风口、调整遮阳设备等。
智能农业大棚控制系统的介绍
一、简介
智能农业大棚控制系统是一种新型的智能农业网络系统,它可以实现
温室大棚内环境参数(如温度、湿度、光照、土壤温度、土壤湿度等)的
监测、控制和调节,以保证大棚内环境条件的良好,可以为农业生产提供
最优的农业环境。
二、智能农业大棚控制系统的功能
1、温湿度控制:通过温湿度控制,可以实现温室大棚内部温度和湿
度的监测,以达到良好的温室环境条件,从而促进农作物生长发育。
2、气象参数检测:包括大气温度,大气湿度,大气压,大气温度,
风速,风向,降水。
这些参数可以提供及时准确的气象信息,以促进种植
体系之间的协调,使种植顺利进行。
3、植保控制:系统可以对农药,农膜,灌溉,温室照明,空气循环,农肥,种子等进行控制,以节约成本,保证植物健康生长发育。
4、自动灌溉控制:通过检测土壤湿度,可以自动控制灌溉,以保证
植物得到充足的水分,减少灌溉时间,节约农业水源。
5、远程控制:系统支持远程连接,可以通过手机,网络或其他移动
设备来进行智能化管理,实现远程监控和控制。
三、智能农业大棚控制系统的特点。
《基于物联网的设施农业温室大棚智能控制系统研究》篇一一、引言随着科技的不断进步,物联网(IoT)技术已经广泛应用于各个领域,特别是在设施农业领域,其应用更是日益广泛。
物联网技术以其强大的信息感知、传输和处理能力,为设施农业的现代化、智能化提供了有力支撑。
本文针对基于物联网的设施农业温室大棚智能控制系统进行研究,旨在提高农业生产效率,实现精准农业和可持续发展。
二、物联网在设施农业中的应用物联网技术通过将传感器、网络通信、云计算等技术相结合,实现了对农业生产环境的实时监测和控制。
在设施农业中,物联网技术的应用主要体现在温室大棚的智能控制系统中,通过感知环境参数、分析数据、自动调节设施设备等手段,实现对温室环境的精准控制。
三、温室大棚智能控制系统的设计1. 系统架构基于物联网的温室大棚智能控制系统主要包括感知层、传输层、平台层和应用层四个部分。
感知层通过各类传感器实时采集温室环境参数,如温度、湿度、光照、CO2浓度等;传输层通过无线通信技术将感知层采集的数据传输到平台层;平台层对数据进行处理和分析,实现智能决策和控制;应用层则是用户与系统进行交互的界面,用户可以通过手机、电脑等设备对系统进行远程控制和监测。
2. 关键技术(1)传感器技术:传感器是系统感知环境参数的关键设备,应选用具有高精度、高稳定性的传感器,以保障数据的准确性。
(2)无线通信技术:无线通信技术是实现数据传输的关键,应选用具有高可靠性、低功耗的通信技术,以保证数据的实时传输。
(3)云计算和大数据技术:云计算和大数据技术是实现智能决策和控制的核心,通过对历史数据的分析和挖掘,实现精准预测和决策。
四、系统功能与实现1. 系统功能温室大棚智能控制系统应具备以下功能:实时监测温室环境参数、自动调节设施设备、远程控制和监测、数据分析和挖掘等。
通过这些功能,实现对温室环境的精准控制,提高农业生产效率。
2. 实现方式系统通过传感器实时采集温室环境参数,将数据通过无线通信技术传输到平台层。
《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的发展,智慧农业成为了农业领域发展的重要方向。
智慧农业大棚监控系统是智慧农业的重要组成部分,通过集成物联网、传感器、大数据等先进技术,实现对农业大棚环境的实时监测和智能调控,提高农业生产效率和产品质量。
本文将介绍智慧农业大棚监控系统的设计与实现过程。
二、系统设计1. 系统架构设计智慧农业大棚监控系统采用分层设计的思想,主要包括感知层、传输层、应用层。
感知层负责采集大棚环境数据,传输层负责将数据传输到服务器端,应用层负责数据的处理和展示。
2. 硬件设计(1)传感器:传感器是智慧农业大棚监控系统的核心组成部分,主要包括温度传感器、湿度传感器、光照传感器、CO2浓度传感器等,用于实时监测大棚环境参数。
(2)控制器:控制器负责接收传感器数据,并根据预设的阈值进行相应的调控操作,如调节温室遮阳帘、通风口等。
(3)网络设备:网络设备包括无线通信模块和有线网络设备,用于将传感器数据传输到服务器端。
3. 软件设计(1)数据采集与处理:软件系统通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。
(2)数据分析与展示:软件系统对采集的数据进行分析和挖掘,通过图表、报表等形式展示给用户,帮助用户了解大棚环境状况和作物生长情况。
(3)智能调控:软件系统根据预设的阈值和调控策略,自动或手动调节温室设备,如调节温室遮阳帘、通风口等,以保持大棚环境在最佳状态。
三、系统实现1. 硬件实现硬件设备选型与采购:根据系统需求,选择合适的传感器、控制器和网络设备,并进行采购。
设备安装与调试:将硬件设备安装在大棚内,并进行调试,确保设备能够正常工作并采集准确的数据。
2. 软件实现(1)数据采集与处理模块:通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。
采用数据库技术对数据进行管理和维护。
(2)数据分析与展示模块:通过数据分析算法对采集的数据进行分析和挖掘,以图表、报表等形式展示给用户。
智慧农业监控系统解决方案清晨的第一缕阳光透过窗帘的缝隙,洒在键盘上,闪烁着未来农业的希望。
作为一位有着十年方案写作经验的老手,我深知,每一个字的敲击都关乎着农业的未来。
那么,我们就直接进入主题吧。
智慧农业监控系统是什么?它是一套基于物联网、大数据、云计算等现代信息技术的集成应用,目的是实现农业生产过程的智能化、自动化,提高生产效率,减少资源浪费。
下面,我将一步步为大家展开这个方案的细节。
一、系统架构想象一下,整个智慧农业监控系统就像是一个神经网络,农田、气象站、传感器、数据中心,它们都是这个网络中的节点。
农田里安装的各种传感器,就像神经末梢,实时收集土壤湿度、温度、光照强度等数据。
气象站提供的大气数据,则是神经网络中的中枢,指导着整个系统的运作。
1.数据采集层:包括农田、温室、大棚等种植基地的传感器,以及气象站的各种设备。
2.数据传输层:利用无线或有线网络,将采集的数据传输到数据中心。
3.数据处理层:对收集到的数据进行清洗、分析和处理,形成有价值的信息。
4.应用层:根据分析结果,自动调节灌溉、施肥、温湿度等农业生产条件。
二、功能模块1.环境监测模块:实时监测农田的土壤湿度、温度、光照强度等指标,确保作物生长环境的稳定。
2.气象监测模块:收集气象数据,预测未来天气变化,为农业生产提供参考。
3.生长监测模块:通过图像识别技术,实时监测作物生长状况,发现病虫害及时处理。
4.自动控制模块:根据监测数据,自动调节灌溉、施肥、温湿度等生产条件,实现智能化管理。
5.数据分析模块:对历史数据进行分析,找出规律,为农业生产提供决策支持。
三、实施方案1.在农田、温室、大棚等种植基地安装传感器,收集数据。
2.在气象站安装监测设备,收集气象数据。
3.建立数据中心,对收集到的数据进行处理和分析。
4.根据分析结果,制定农业生产计划,实现智能化管理。
5.定期对系统进行维护和升级,确保系统稳定运行。
四、效益分析1.提高生产效率:通过智能化管理,减少人力投入,降低生产成本。
设施农业(温室大棚)环境智能监控系统解决方案1、系统简介该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。
同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。
本系统适用于各种类型的日光温室、连栋温室、智能温室。
2、系统组成该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。
620)this.style.width=620;" border=0>(1)传感终端温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。
环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。
(2)通信终端及传感网络建设温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。
前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。
温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。
620)this.style.width=620;" border=0>(3)控制终端温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。
根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。
可编辑修改精选全文完整版现代农业温室大棚智能监测和控制解决方案一、背景介绍近年来,农业温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。
种植环境中的温度、湿度、光照度、土壤湿度、CO2浓度等环境因子对作物的生产有很大的影响。
传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。
针对目前温室大棚发展的趋势,提出了一种大棚远程监控系统的设计。
根据大棚监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。
基于490MHz、GPRS 的农业温室大棚智能监控管理系统使这些成为可能。
二、系统方案1、系统概述深圳信立科技有限公司现代温室大棚智能监测和控制系统集传感器、自动化控制、通讯、计算等技术于一体,通过用户自定仪作物生长所需的适宜环境参数,搭建温室智能化软硬件平台,实现对温室中温度、湿度、光照、二氧化碳等因子的自动监测和控制。
农业大棚温室智能监控系统可以模拟基本的生态环境因子,如温度、湿度、光照、CO2浓度等,以适应不同生物生长繁育的需要,它由智能监控单元组成,按照预设参数,精确的测量温室的气候、土壤参数等,并利用手动、自动两种方式启动或关闭不同的执行结构(喷灌、湿帘水泵及风机、通风系统等),程序所需的数据都是通过各类传感器实时采集的。
该系统的使用,可以为植物提供一个理想的生长环境,并能起到减轻人的劳动强度、提高设备利用率、改善温室气候、减少病虫害、增加作物产量等作用。
2、系统组成:整个系统主要三大部分组成:数据采集部分、数据传输部分、数据管理中心部分。
A、数据管理层(监控中心):硬件主要包括:工作站电脑、服务器(电信、移动或联通固定IP专线或者动态ip域名方式);软件主要包括:操作系统软件、数据中心软件、数据库软件、温室大棚智能监控系统软件平台(采用B/S结构,可以支持在广域网进行浏览查看)、防火墙软件;B、数据传输层(数据通信网络):采用移动公司的GPRS网络或490MHz传输数据,系统无需布线构建简单、快捷、稳定;移动GPRS无线组网模式具有:数据传输速率高、信号覆盖范围广、实时性强、安全性高、运行成本低、维护成本低等特点;C、数据采集层(温室硬件设备):远程监控设备:远程监控终端;传感器和控制设备:温湿度传感器、二氧化碳传感器、光照传感器、土壤湿度传感器、喷灌电磁阀、风机、遮阳幕等;3、系统拓扑图:XL68、XL65支持490MHz上传方式,系统通讯网络示意如下(一片区域现场节点多,可选此种方案)XL68、XL65支持GPRS上传方式,系统通讯网络示意如下(一片区域现场节点少,可选此种方案)。
智能温室大棚环境监测系统一、产品介绍智能温室大棚环境监测系统是由超声波气象传感器、土壤温度水分传感器、土壤温度水分电导率三合一变送器、气象监控主机和LED显示屏构成,可以实现对温室大棚内的温度、湿度、光照、土壤温度、土壤含水量、CO,浓度等与农作物生长紧密相关环境参数的实时采集,并将数据实时上传竞道农业四情测报平台。
二、监测内容针对温室大棚的空气温度、湿度、二氧化碳和光照强度的连续监测实时告警。
三、监测效果通过安装超声波气象传感器对温室大棚环境温度、湿度、二氧化碳和光照强度进行实现监测。
变送器通过RS485智能接口及通讯协议接入气象监控主机,由4G无线传输或RJ45网口将数据上传至服务器,发送到农业四情测报平台进行实时监测。
当温度、湿度、二氧化碳和光照强度超过设置的上下阈值时,系统自动触发短信、语音、邮件告警,通知管理人员紧急处理。
四、监测功能超声波气象传感器采纳ASA工程塑料材质,体积小、重量轻,采纳优质抗紫外线材质,使用寿命长,采纳高灵敏度的探头,信号稳定,精度高。
关键部件采纳进口器件,稳定牢靠,具有测量范围宽、线形度好、防水性能好、使用便利、便于安装、传输距离远等特点。
五、监测参数空气温度:—40—60℃(0.3℃);2、空气湿度:0—100%RH(3%RH);3、PM2.5:0—1000ug/m3(10%)4、PM10:0—1000ug/m3(10%)5、土壤水分:测量范围:0—100%,精度:3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢6、土壤温度:测温范围—40+125℃,测量精度0.5℃,辨别率:0.1℃7、土壤电导率:测量范围可选量程:0—5000us/cm,10000us/cm,20000us/cm,测量精度0—10000us/cm范围内为3%;10000—20000us/cm范围内为5%,辨别率0—10000us/cm内10us/cm,100000—20000us/cm内50us/cm。
智慧农业大棚监控系统的设计与实现随着科技的不断发展,智慧农业大棚监控系统的设计与实现已经成为现代农业发展的必然趋势。
智慧农业大棚监控系统可以通过对大棚内环境的实时监测和数据分析,提供更加精准的种植管理方案,有效提高农作物的产量和质量,同时降低生产成本和人力资源的浪费。
智慧农业大棚监控系统的设计主要需要考虑以下几个方面:环境参数监测:为了能够及时了解大棚内的环境情况,需要对大棚内的温湿度、土壤水分、二氧化碳浓度等环境参数进行实时监测。
这些数据可以通过各种传感器采集,再通过数据传输模块传输到控制中心进行数据分析。
数据处理与分析:通过对采集的数据进行处理和分析,可以得出大棚内环境的变化趋势和规律,进而提供更加精准的种植管理方案。
例如,通过对土壤水分和温湿度数据的分析,可以得出大棚内的灌溉需求和通风需求等。
控制系统:根据数据分析结果,控制系统可以自动调节大棚内的环境参数,例如开启或关闭通风窗、灌溉设备等。
控制系统还可以通过智能算法实现自动化种植管理,提高农作物的生长效率和产量。
报警系统:为了确保大棚内的环境参数始终处于最佳状态,需要设置报警系统。
当监测到异常数据时,报警系统会立即发出警报,及时通知农民或管理人员采取相应的措施。
云平台与APP:为了方便远程监控和管理,智慧农业大棚监控系统可以搭载云平台和手机APP,让用户可以通过互联网或移动设备随时随地了解大棚内的环境情况和数据变化趋势,进而实现远程种植管理。
为了实现智慧农业大棚监控系统,需要以下关键技术的支持:传感器技术:传感器技术是实现环境参数监测的关键技术之一。
针对不同的环境参数监测需求,需要选择不同的传感器。
例如,温湿度传感器可以监测空气中的温湿度数据;土壤水分传感器可以监测土壤中的水分含量;二氧化碳浓度传感器可以监测空气中的二氧化碳浓度等。
数据传输技术:为了能够将监测到的数据实时传输到控制中心,需要使用数据传输技术。
常用的数据传输技术包括无线通信、物联网等。
智能温室大棚系统,自动控温调湿,打造智慧农业方案随着物联网技术的不断应用,己经应用到农业种植生产中。
智能温室大棚系统是结合农业现代化大趋势,将环境监测、调控等技术积累与农业物联网应用相结合,专门各类型的温室大棚实现现代农业,提供技术方案。
系统概述智能温室大棚系统解决方案,将环境要素监测、设备控制、网络化应用等技术,融合成一套面向现代农业的自动化系统。
由监测与控制系统、智慧农业监控平台、无线通讯模块等部分构成。
通过采集温室内空气温湿度、土壤温湿度、光照、二氧化碳等环境参数,并根据农作物生长所需进行控制,自动开关对应的环境调节设备,通过手机电脑等信息终端,随时随地管理温室大棚。
应用技术1■.无线传感器技术一个网络内可实现多达几百个节点的组网观测,观测范围可覆盖上百个温室。
同时,采用低功耗设计,支持市电或太阳能电池板两种供电方式,解决了在农田温室里的走线问题。
2 .物联网技术采用物联网技术,实现万物互联、互联互通。
农户能够在任何时间、任何地点,通过手机、电脑查看实时环境数据及图像数据,远程管理大棚。
3 .云计算技术温室环境检测 土壤墉情检测将数据存放在网络云端,可大大降低系统支出成本,农户不需要部署系统运行所需的软硬件环境。
4.模块化设计系统由多模块组成,各观测单元独立,可通过灵活的加减配置,实现大规模集群化应用。
组成部分系统安装在农业种植企业或种植户的温室大棚内,通常一座大棚需要应用一套监测与控制系统,监控平台可N座大棚共用一个平台。
大棚的环境信息通过远程网络,直接上报监控平台上,进行数据统计、智能调控、气象预警、历史数据管理等统筹操作。
采集模块:主要完成温室内环境要素数据的采集,具体模块可令活选配,一个温室监测系统可包含多个采集模块。
控制模块:完成对现场温室中的各种设备进行管理控制,控制包括照明、加热、灌溉系统、通风、卷帘、阀门、电机等设备,执行系统发送的开关命令,并监测控制设备的执行状态。
监控平台:基于物联网云平台开发而来的管理平台,以安卓/IOS手机APP、电脑网页/软件形式应用,负责收集实时环境监控数据及接收图像数据,并提供数据查询、后续数据分析及决策,远程管理温室大棚。
温室大棚监控系统的设计与优化方案1. 引言温室大棚是一种用于种植蔬菜、水果和花卉的人工环境。
随着农业生产的现代化和科技进步,温室大棚的种植方式也发生了变化。
为了实现对温室环境的精细化管理,温室大棚的监控系统成为农民和种植者的重要工具。
本文将介绍温室大棚监控系统的设计与优化方案,以提高作物的生长质量和农作物的产量。
2. 系统设计(1)传感器选择在温室大棚监控系统中,合适的传感器选择是关键。
常用的传感器包括温度传感器、湿度传感器、光照传感器和CO2浓度传感器等。
这些传感器可以实时检测温室大棚的气候条件,以便及时调整环境参数。
(2)数据采集与传输传感器所采集到的数据需要采集和传输给监控系统。
可以采用有线或无线的方式进行数据传输。
无线传输系统可以提供更灵活的数据传输方式,能够及时将数据传输给监控系统进行分析和处理。
(3)监控系统温室大棚监控系统应包括数据存储、数据分析和报警功能。
数据存储用于保存传感器所采集到的数据,以便后续分析和查询。
数据分析功能可以根据不同作物的需求,对温室环境参数进行分析和优化,以提高作物的生长质量。
报警功能可以在温室环境异常时,及时向农民或种植者发送警报信息,以便采取相应的措施。
3. 系统优化(1)智能控制算法为了提高温室大棚的生产效率,可以引入智能控制算法。
这些算法可以根据不同的环境条件和作物需求,自动调整温室环境参数,并实现温室大棚的自动化管理。
例如,根据作物的生长阶段,调整光照、温度和湿度等参数,以提高作物的生长速度和产量。
(2)远程监控和控制为了方便农民和种植者的管理,可以实现温室大棚的远程监控和控制。
通过手机应用或者网页端,可以实时查看温室大棚的环境参数和作物情况。
农民和种植者可以随时随地监控温室大棚的状态,并进行远程控制。
4. 系统应用温室大棚监控系统的应用可以帮助农民和种植者实现对温室大棚的精细化管理,提高作物的生长质量和产量。
同时,该系统可以帮助减少资源的浪费,提高农业生产的效益。
《基于物联网的设施农业温室大棚智能控制系统研究》篇一一、引言随着科技的不断进步,物联网(IoT)技术已广泛应用于农业领域,特别是在设施农业中,其对于提高农业生产力、减少资源浪费以及提升农业管理效率起到了显著作用。
本篇论文旨在探讨基于物联网的设施农业温室大棚智能控制系统的研究与应用。
该系统通过对温室环境的实时监控和自动调控,为作物生长提供最佳的生态环境,从而提高作物的产量和质量。
二、物联网在设施农业中的应用物联网技术为设施农业提供了全新的发展思路。
通过物联网技术,我们可以实时监测温室内的环境参数,如温度、湿度、光照、CO2浓度等,并根据作物的生长需求进行自动调控。
此外,物联网技术还可以实现远程监控和智能控制,使农业生产者可以随时随地对温室环境进行管理和调整。
三、智能控制系统架构基于物联网的设施农业温室大棚智能控制系统主要包括硬件和软件两部分。
硬件部分包括传感器、执行器、控制器等,软件部分则包括数据采集、数据处理、决策控制等模块。
传感器负责实时采集温室内的环境参数,如温度、湿度、光照等。
执行器则根据控制器的指令对温室环境进行调控,如开启或关闭通风口、调节遮阳网等。
控制器是整个系统的核心,它通过接收传感器采集的数据,根据预设的算法对数据进行处理,然后根据处理结果发出控制指令给执行器。
四、系统功能与实现基于物联网的设施农业温室大棚智能控制系统具有以下功能:1. 环境监测:实时监测温室内的环境参数,如温度、湿度、光照等。
2. 自动调控:根据作物的生长需求和预设的算法,自动调节温室环境,为作物提供最佳的生态环境。
3. 远程监控:农业生产者可以通过手机、电脑等设备随时随地对温室环境进行远程监控。
4. 智能控制:系统可以根据实时的环境参数和作物的生长状态,自动做出决策并发出控制指令。
系统实现过程中,首先需要搭建物联网平台,包括传感器、执行器、控制器等硬件设备的选型与配置。
然后,需要开发相应的软件系统,包括数据采集、数据处理、决策控制等模块的实现。
《温室大棚分布式监控系统设计与实现》篇一一、引言随着现代农业技术的不断发展,温室大棚种植已成为提高农作物产量和品质的重要手段。
然而,传统的大棚管理方式存在着效率低下、人力成本高、无法实时监控等问题。
为了解决这些问题,本文提出了一种温室大棚分布式监控系统的设计与实现方案。
该系统通过分布式传感器网络、数据传输技术和云计算平台,实现对温室大棚环境的实时监控、智能控制和数据分析,提高了大棚管理的效率和农作物的产量与品质。
二、系统设计1. 硬件设计温室大棚分布式监控系统的硬件部分主要包括传感器节点、数据传输设备和云计算平台。
传感器节点负责采集温室大棚内的环境参数,如温度、湿度、光照强度等。
数据传输设备负责将传感器节点的数据传输到云计算平台。
云计算平台则负责存储、处理和分析这些数据,为管理者提供决策支持。
在传感器节点的选择上,我们采用了低功耗、高精度的传感器,以便长时间工作并获取准确的环境参数。
数据传输设备采用无线通信技术,实现了传感器节点与云计算平台的无线连接,方便了布线和维护。
2. 软件设计软件部分包括分布式传感器网络软件、数据传输协议软件和云计算平台软件。
分布式传感器网络软件负责协调各传感器节点的工作,确保数据的实时采集和传输。
数据传输协议软件负责定义传感器节点与云计算平台之间的通信协议,确保数据的可靠传输。
云计算平台软件则负责数据的存储、处理和分析,以及为用户提供友好的界面和操作接口。
三、系统实现1. 传感器网络部署首先,根据温室大棚的实际情况,选择合适的传感器节点并部署在关键位置。
这些位置应能够反映温室大棚内的环境变化情况。
然后,通过无线通信技术将传感器节点与云计算平台连接起来,形成分布式传感器网络。
2. 数据传输与处理传感器节点实时采集环境参数,并通过无线通信技术将数据传输到云计算平台。
云计算平台对接收到的数据进行预处理和存储,然后进行进一步的分析和挖掘。
这些分析结果可以通过界面展示给用户,为用户提供决策支持。
基于物联网技术的智能温室大棚控制系统随着人们生活水平的提高和环境污染的加重,在农业生产环境中,使用无公害的技术已经成为了国内外的趋势。
智能温室大棚控制系统是一种完全自动化的,集照明、空气调节、温度调节、湿度调节、二氧化碳调节、水分配等多种功能于一体的智能化设备。
该系统主要是通过物联网技术实现管理,不仅能够优化温室大棚的耕种环境,还能够有效地节约人力、物力、财力等资源,提高农产品生产的效率和质量,从而实现高效、智能和无公害农业生产的目标。
一、设计思想1.1开放性智能化的温室大棚控制系统应该是开放的,不仅可以与其他系统进行数据共享,而且可以通过数据来不断升级自身的功能,更好地服务于温室大棚的耕种环境。
1.2可靠性智能化的温室大棚控制系统需要具有高可靠性,系统的任何一个部分出现故障都会对农产品的生产造成严重的影响,因此系统需要具有自我诊断、自我维护等功能,能够及时发现、排除故障,保证温室大棚的正常运行。
智能化的温室大棚控制系统应该是可扩展的,能够根据用户的需求和市场的变化进行升级和扩展,增加新的功能和模块,适应不同的耕种环境。
二、系统结构智能化的温室大棚控制系统采用客户端/服务器结构,客户端主要采用单片机或嵌入式系统来实现,服务器端采用云端或大规模数据库来实现。
系统的整体结构如图1所示:三、系统功能智能化的温室大棚控制系统具有以下功能:3.1 温室大棚环境参数实时监测温室大棚内部环境参数的实时监测是系统的核心功能之一,温室大棚内部的环境参数包括光照强度、温度、湿度、二氧化碳浓度等多个方面。
系统需要通过传感器和控制器来实现这些参数的实时监测,并将监测到的数据上传到服务器端,进行进一步的处理和分析。
温室大棚安全设施的实时监控是系统的一个重要功能,因为温室大棚内部会使用较多的电器和设备,如果这些设备发生故障或出现其他问题,可能会对温室大棚内部的环境造成损坏或危害农民的生命安全。
系统需要通过安装不同类型的传感器来实现对温室大棚内部环境的实时监控,包括温度传感器、湿度传感器、烟雾传感器、二氧化碳传感器等等,如出现故障或异常行为,在第一时间进行报警或通知农民。
智能温室大棚监测系统解决方案设计一、温室大棚监测系统概述随着国民经济的迅速发展,现代农业得到了长足的进步,温室工程已成为高效农业的一个重要组成部分。
计算机自动控制的智能温室自问世以来,已成为现代农业发展的重要手段和措施。
它的功能在于以先进的技术和现代化设施,人为控制作物生长的环境条件,使作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。
温室大棚环境监控系统是用通用组态软件结合自动化设备在现代农业上的一个典型应用,该系统很好地完成了温室大棚环境监控的各项需求,为此类需求呈现了一个成熟的方案。
二、温室大棚监测系统功能叙述温室环境包括非常广泛的内容,但通常所说的温室环境主要指空气与土壤的温湿度、光照、CO2浓度等。
计算机通过各种传感器接收各类环境因素信息,通过逻辑运算和判断控制相应温室设备运作以调节温室环境。
输出和打印设备可帮助种植者作全面细致的数据分析,保存历史数据。
本系统主要具备以下几部分功能:2.1综合环境控制采用计算机实现环境参数比较分析,四季连续工况调控系统。
,比例调节环境温度、湿度与通风。
CO2 发生装置按需比例调节环境CO2浓度,夏季室外屋顶喷淋,在保证室内光照强度的前提下,组合调节环境温度与通风,达到强制降低环境温度的效果。
通过计算机对温室各电动执行器进行整体调节,自动调控到作物生长所需求的温、湿、光、水、气等条件,另外通过臭氧消毒净化器对温室进行消毒。
2.2肥水灌溉控制采用计算机肥水灌溉运筹系统。
根据作物区的需要,对水培区的营养液成分,PH和EC值进行综合调控。
对基培和土培区主要是根据作物生产需要,设定基质、土壤的水势值,自动调节滴灌、喷灌系统的灌溉时间和次数。
2.3紧急状态处理采用计算机实测环境参数、状态极限值反馈报警保护系统。
根据作物的各项参数设定温室环境的极限值和作物生长环境参数极限值报警保护系统,提高了整个系统安全性。
2.4信息处理采用计算机集散控制信息管理系统。
信息与电气工程学院电子信息工程CDIO一级项目(2014/2015学年第一学期)题目:农业温室大棚智能监控系统专业班级:电子信息学生姓名:学号:指导教师:马永强老师设计周数:16周(分散)设计成绩:2014年12月26 日1 项目设计目的及任务基于嵌入式和zigbee的农业温室大棚智能监控系统,该系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度等,通过模型分析,可以自动控制温室湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备。
同时,系统还可以通过手机、计算机等信息终端向管理者推送实时监测信息、报警信息,实现温室大棚信息化、智能化远程管理,充分发挥物联网技术在设施农业生产中的作用保证温室大棚内环境最适宜作物生长实现精细化的管理,为作物的高产、优质、高效、生态、安全创造条件,帮助客户提高效率、降低成本、增加收益。
2 项目设计背景近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用,种植环境中的温度、湿度、光照度、CO浓度等环境因子对作物的生产有很大的影响。
2传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。
针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计,根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互联网或者手机信息了解区域大棚的实时状况。
基于GPRS的智能大棚监控系统使这些成为可能。
3 项目设计思路3.1 智能报警系统(1) 系统可以灵活的设置各个温室不同环境参数的上下阀值。
一旦超出阀值,系统可以根据配置,通过手机短信、系统消息等方式提醒相应管理者。
(2) 报警提醒内容可根据模板灵活设置,根据不同客户需求可以设置不同的提醒内容,最大程度满足客户个性化需求。
(3) 可以根据报警记录查看关联的温室设备,更加及时、快速远程控制温室设备,高效处理温室环境问题。
(4) 可及时发现不正常状态设备,通过短信或系统消息及时提醒管理者,保证系统稳定运行。
3.2 远程自动控制(1) 系统通过先进的远程工业自动化控制技术,让用户足不出户远程控制温室设备。
(2) 可以自定义规则,让整个温室设备随环境参数变化自动控制,比如当土壤湿度过低时,温室灌溉系统自动开始浇水。
(3) 提供手机客户端,客户可以通过手机在任意地点远程控制温室的所有设备。
3.3历史数据分析(1) 系统可以通过不同条件组合查询和对比历史环境数据。
(2) 支持列表和图表两种不同方式查看,用户可以更直观看到历史数据曲线。
(3) 与农业生产数据建立统一的数据模型,系统通过数据挖掘等技术可以分析更适合农作物生长、最能提高农作物产量的环境参数,辅助决策。
3.4手机客户端(1) 用户可以通过文朗润诚-农业温室智能监控系统手机客户端,随时随地查看自己负责温室的环境参数。
(2) 用户可以使用手机端及时接受、查看温室环境报警信息。
(3) 通过手机端,用户可以远程自动控制温室环境设备,如自动灌溉系统、风机、顶窗等。
(10米宽,60米长大约1亩。
)4 项目分析4.1 系统组成4.1.1大棚现场采集控制终端大棚现场采集控制终端负责24小时采集温室内温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数4.1.2无线传输设备前端采用四信F8914 ZigBee模块,通过232/485(端子接口)和采集器相连接,Zigbee 作为一种无线连接,可工作在2. 14 GHz(全球流行) 、868 MHz (欧洲流行)和915 MHz (美国流行) 3个频段上,分别具有最高至250 kbit/ s、20 kbit/ s、40 kbit/ s的传输速率。
该型号设备一般为终端节点,完成信息的发送和接收。
ZigBee中心节点采用四信F8114 ZigBee+GPRS模块,中心节点收到的数据可以通过串口直接是输出到服务器上(前端与服务器的距离较近);还可有通过GPRS把其收到的数据发送的远端的服务器上,GPRS部分采用国际标准TCP/IP通信协议,且两种方式都是实现数据透明传输功能。
省去了每个终端的GPRS模块,只需要中心节点一个,节约了成本。
数据中心对现场实时采集的温室内温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数进行分析处理,不仅进行完成的统计做出相应的统计报表,并做出趋势分析,且以直观的图表和曲线的方式显示给用户,并根据种植作物的需求提供各种声光报警信息。
当温湿度超过设定值的时候,自动开启或者关闭指定设备。
4.2 系统总架构4.2.1 F8914 --- F8914组网F8914(前端)通过标准的232/485与路灯监控一级终端里的PLC连接通信,获取的数据直接通过2.4G频率发送到F8914(中心节点)。
F8914(中心节点)通过串口与服务器连接,把数据送到后台,后台管理软件对数据进行分析4.2.2 F8914----F8114组网4.2.2.1 原理框架F8114首先进行GPRS拨号上网,然后自动向数据管理中心发起TCP连接,握手成功后开始数据透明传输。
路灯监控终端把数据集中采集通过PLC把数据传给F8914,F8914接到数据后即时的将数据通过ZigBee网络传送到F8114。
F8114通过GPRS数据管理中心将上传的数据进行分析处理,得出直观的结果和相应的指令通过GPRS网络发送给F8114,再通过ZigBee网络传送到F8914即时通过232/485传送给采集端,采集端根据指令对相应的控制处理。
4.3 系统总架构4.3.1 F8914 --- F8914组网F8914(前端)通过标准的232/485与路灯监控一级终端里的PLC连接通信,获取的数据直接通过2.4G频率发送到F8914(中心节点)。
F8914(中心节点)通过串口与服务器连接,把数据送到后台,后台管理软件对数据进行分析。
如图3所示4.3.2 F8914----F8114组网4.3.2.1 原理框架F8114首先进行GPRS拨号上网,然后自动向数据管理中心发起TCP连接,握手成功后开始数据透明传输。
路灯监控终端把数据集中采集通过PLC把数据传给F8914,F8914接到数据后即时的将数据通过ZigBee网络传送到F8114。
F8114通过GPRS数据管理中心将上传的数据进行分析处理,得出直观的结果和相应的指令通过GPRS网络发送给F8114,再通过ZigBee网络传送到F8914即时通过232/485传送给采集端,采集端根据指令对相应的控制处理。
4.3.3系统实现功能1:可在线实时24小时连续的采集和记录监测点位的温度、湿度、风速、二氧化碳、光照、空气洁净度、供电电压电流等各项参数情况,以数字、图形和图像等多种方式进行实时显示和记录存储监测信息,监测点位可扩充多达上千个点。
2:可设定各监控点位的温湿度报警限值,当出现被监控点位数据异常时可自动发出报警信号,报警方式包括:现场多媒体声光报警、网络客户端报警、电话语音报警、手机短信息报警等。
上传报警信息并进行本地及远程监测,系统可在不同的时刻通知不同的值班人员;3:系统设计时预留有接口,可随时增加减硬软件设备,系统只要做少量的改动即可,可以在很短的时间内完成。
可根据政策和法规的改变随时增加新的内容。
4:数据集中器端提供具有信号输出协议的端口,可接通信设备(GPRS IP MODEM等)进行无线传输。
5:温湿度监控软件采用标准windows 98/2000/XP全中文图形界面,实时显示、记录各监测点的温湿度值和曲线变化,统计温湿度数据的历史数据、最大值、最小值及平均值,累积数据,报警画面。
6:监控主机端利用监控软件可随时打印每时刻的温湿度数据及运行报告。
7:强大的数据处理与通讯能力,采用计算机网络通讯技术,局域网内的任何一台电脑都可以访问监控电脑,在线查看监控点位的温湿度变化情况,实现远程监测。
系统不但能够在值班室监测,领导在自己办公室可以非常方便地观看和监控。
8:系统可扩充多种记录数据分析处理软件,能进行绘制棒图、饼图,进行曲线拟合等处理,可按TEXT格式输出,也能进入EXCEL电子表格等office的软件进行数据处理。
9:控制软件的编制采用软件工程管理,开放性与可扩充性极强,由于采用硬件功能的软件化的系统设计思想及系统硬件的模块化、通讯网络化设计,系统可根据需要升级软件功能与扩展硬件种类。
4.3.4 数据中心网络接入方式分析1.专线接入,中心采用APN专线,所有点都采用内网固定IP客户中心通过一条2M APN 专线接入移动公司GPRS网络,双方互联路由器之间采用私有固定IP地址进行广域连接,在GGSN与移动公司互联路由器之间采用GRE隧道。
为客户分配专用的APN,普通用户不得申请该APN。
用于GPRS专网的SIM卡才能进入专网APN,防止其他非法用户的进入。
用户在内部建立RADIUS服务器,作为内部用户接入的远程认证服务器(或在APN路由器内,启用路由器本地认证功能)。
只有通过认证的用户才允许接入,用以保证用户内部安全。
用户在内部建立DHCP服务器(或在APN路由器内,启用DHCP功能),为通过认证的用户分配用户内部地址。
移动终端和服务器平台之间采用端到端加密,避免信息在整个传输过程中可能的泄漏。
双方采用防火墙进行隔离,并在防火墙上进行IP地址和端口过滤。
此种方案无论实时性,安全性和稳定性较前一种方案都有大大提高,适合于安全性要求较高、数据点比较多、实时性要求较高的应用环境。
在资金允许的情况下之最佳组网方式。
2.ADSL拨号连接(动态公网IP地址)中心采用ADSL等INTELNET公网连接,采用公网动态IP+DNS解析服务的。
客户先与DNS服务商联系开通动态域名,IP MODEM先采用域名寻址方式连接DNS服务器,再由DNS服务器找到中心公网动态IP,建立连接。
此种方式可以大大节约公网固定IP的费用,但稳定性受制于DNS服务器的稳定,所以要寻找可靠的DNS 服务商。
此种方案适合小规模应用。
3. 通过固定公网IP连接中心采用ADSL等INTELNET公网连接,采用公网固定IP服务的。
此种方案先向INTERNET运营商申请ADSL等宽带业务,中心有公网固定IP的。
IP MODEM 直接向中心发起连接。
运行可靠稳定,推荐此种方案5 方案特点(1)传输模块采用无线接入GPRS网络,目前GPRS网络在国内已经运营了十几年,网络稳定,技术成熟,覆盖率广。
(2)传输模块采用工业级ZigBee模块,标准频段IEEE802.15.4 ISM2.4GHz,通信距离90m,户外通信距离800m,发射功率22dBm,接受灵敏度-104dBm;低功耗设计,支持多级休眠和唤醒模式,最大限度降低功耗,内置实时时钟(RTC),支持定时开关机功能,定时关机状态下功耗小于1mA。