成才之路人教B高中数学选修23习题 第一章 计数原理 第1课时 含解析
- 格式:doc
- 大小:94.50 KB
- 文档页数:5
第一章§1一、选择题1.已知x∈{2,3,7},y∈{-31,-24,4},则x·y可表示成不同的值的个数是()A.1+1=2 B.1+1+1=3C.2×3=6 D.3×3=9[答案] D[解析]因为按x、y在各自的取值集合中各选一个值去做积这件事,可分两步完成:第一步,x在集合{2,3,7}中任取一个值有3种方法;第二步,y在集合{-31,-24,4}中任取一个值有3种方法.根据分步乘法计数原理有3×3=9个不同的值.故选D.2.(2014·陕西宝鸡中学高二期末)图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有()种不同的取法.()A.120 B.16C.64 D.39[答案] B[解析]由分类加法计数原理知,共有不同取法3+5+8=16种.3.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种类共有()A.6种B.8种C.36种D.48种[答案] D[解析]参观路线分步完成:第一步选择三个“环形”路线中的一个,有3种方法,再按逆时针或顺时针方向参观有2种方法;第二步选择余下两个“环形”路线中的一个,有2种方法,也按逆时针或顺时针方向参观有2种方法;最后一个“环形”路线,也按逆时针或顺时针方向参观有2种方法.由分步计数原理知,共有3×2×2×2×2=48(种)方法.二、填空题4.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有________种不同的取法.[答案]242[解析]任取两本不同的书,有三类:(1)取数学、语文各一本,(2)取语文、英语各一本,(3)取数学、英语各一本.然后求出每类取法,利用分类加法计数原理即可得解.取两本书中,一本数学、一本语文,根据分步乘法计数原理有10×9=90种不同取法;取两本书中,一本语文、一本英语,有9×8=72种不同取法;取两本书中,一本数学、一本英语,有10×8=80种不同取法.综合以上三类,利用分类加法计数原理,共有90+72+80=242种不同取法.故填242.5.如果一条直线与一个平面垂直,那么称此直线与平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成“正交线面对”的个数是________.[答案]36[解析]用分类加法计算原理:第一类,正方体的一条棱与面有两个“正交线面对”,共有24个;第二类,正方体的一条面对角线与对角面有一个“正交线面对”,共有12个.所以共有“正交线面对”的个数是24+12=36.三、解答题6.从1到200的这二百个自然数中,各个位数上都不含数字8的共有多少个?[分析]本题涉及分类加法计数原理与分步乘法计数原理,在分类中又包含分步,“类”、“步”交融,应注意根据所学知识认真分析,及对于一些“步”中分类的问题要学会具体对待.[解析]应分三类来解决该问题.第一类:一位数中除8以外符合要求的数有8个;第二类:二位数中,十位数除0、8以外有8种选法,而个位数除8以外有9种选法,故二位数中符合要求的数有8×9=72(个);第三类:三位数中①百位数为1,十位数和个位数上的数字除8以外都有9种选法,故三位数中,百位数为1的符合要求的数有9×9=81(个).②百位数为2的只有200这一个符合要求,∴三位数中符合要求的数有81+1=82(个).由分类加法计数原理,符合要求的数字共有N=8+72+82=162(个).[点评]考虑问题的原则是先分类而后分步,要注意在分类(或分步)时,必须做到不重不漏.一、选择题1.从集合{1,2,3,…,11}中任选两个元素作为椭圆方程x2m2+y2n2=1中的m和n,则能组成落在矩形区域B={(x,y)||x|<11,且|y|<9}内的椭圆的个数为() A.43个B.72个C.86个D.90个[答案] B[解析]由题意,m可能的取值为1,2,…,10;n可能的取值为1,2,…,8,先确定m 有10种方法,再确定n有8种方法,按分步计数原理共有80种方法,但其中包括m=n的情况共8种,故能组成落在矩形区域内的椭圆个数为72个.故选B.2.四个同学,争夺三项冠军,冠军获得者可能有的种类是()A.4B.24C.43D.34[答案] C[解析]依分步乘法计数原理,冠军获得者可能有的种数是4×4×4=43.故选C.3.(2014·安徽理,8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对[答案] C[解析]如图,上底面的一条对角线为例共4对,这样的对角线共12条,∴共有12×4=48对.本题也可以用排除法,C212-6-12求得.4.2014年南京青奥会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的路线距离(单位:百公里)见下表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是()A.20.6C.22 D.23[答案] B[解析]由于“以A为起点,E为终点,每个城市经过且只经过一次”,并且求“最短路线的距离”,由选项判断,A中20.6在表中只有C和E之间的距离8.6是出现小数部分的,故CE是必定经过的路线,又因为A为起点,E为终点,故如果A正确,那么线路必须是:1.A-B-D-C-E或2.A-D-B-C-E,进行验证:线路1的距离和为5+6+9+8.6=28.6,故线路1不符合;线路2的距离之和为5+6+7+8.6=26.6,线路2也不符合,故排除A;再验证选项B,发现线路A-C-D-B-E的距离之和为4+9+6+2=21符合,故选B.5.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.60条B.62条C.71条D.80条[答案] B[解析]本题考查抛物线、计数原理.由题意知a≠0,且b≠0,下面分2类:若c=0,ay=b2x2,不同抛物线有5×4-6=14条,若c≠0,不同抛物线有5×4×3-12=48,共48+14=62条.分类要全面,要不重不漏.二、填空题6.若一个m,n均为非负整数的有序数对(m,n)在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1942的“简单的”有序数对的个数是________.[答案]300[解析]由题意可知m+n=1942,当m,n中一个数确定时,另一个数也就唯一确定了,所以不妨设m=1000x1+100x2+10x3+x4,则x1有2种不同取法,x2有10种不同取法,x3有5种不同取法,x4有3种不同取法,所以所求的有序数对的个数为2×10×5×3=300.7.如图所示,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有________种(用数字作答).[答案]390[解析]给四个格子编号如答图所示,由题意①号格子有6种不同涂色方法,②号格子有5种不同的涂色方法,若③号格子与①号格子同色,则④号格子有5种不同涂色方法(可以与②号同色),由乘法原理有6×5×5=150(种)涂色方法;若③号格子与①号格子不同色,则③号格子有4种不同涂色方法,此时④号格子只能与①号或②号同色,因而有2种涂色方法,由乘法原理有6×5×4×2=240(种)涂色方法,最后由加法原理共有150+240=390(种)不同的涂色方法,故填390.三、解答题8.甲、乙、丙、丁4个人各写1张贺卡,放在一起,再各取1张不是自己所写的贺卡,共有多少种不同取法?[分析]由题目可获取以下主要信息:①有4个人、4张贺卡;②取别人写的贺卡.解答本题可根据自己写的卡的情况,最简捷的办法是用分步乘法计数原理设计完成这件事的步骤.[解析]方法一(枚举法):(1)甲取得乙卡,分配方案如表.此时乙有甲、丙、丁3种取法.若乙取甲的卡,则丙取丁的、丁取丙的,若乙取丙的卡,则丙取丁的,丁取丙的,故有3种分配方案.(2)甲取得丙卡,分配方案按甲、乙、丙、丁4人依序可取贺卡如下:丙甲丁乙,丙丁甲乙,丙丁乙甲.(3)甲取得丁卡,分配方案按甲、乙、丙、丁4人依序可取贺卡如下:丁甲乙丙、乙丙甲乙、丁丙乙甲.由分类加法计数原理,共有N=3+3+3=9(种).方法二(间接法):4人各取1张贺卡.甲先取1张贺卡有4种方法,乙再取1张贺卡有3种方法,然后丙取1张贺卡有2种方法,最后丁仅有1种方法.由分步乘法计数原理,4个人各取1张贺卡共有4×3×2×1=24(种).4个人都取自己写的贺卡有1种方法;2个人取自己写的贺卡,另2个人不取自己所写贺卡的方法有6种(即4个人中选出取自己写的贺卡的2人有甲乙、甲丙、甲丁、乙丙、乙丁、丙丁);1个人取自己写的贺卡,另3个人不取自己所写贺卡方法有8种(从4个人中选出取自己写的贺卡的1个人有4种方法.而其余3个人都不取自己所写贺卡的方法有2种方法).因此,4个人都不取自己所写贺卡的取法有N=24-(1+6+8)=9(种).方法三(分步法).第一步甲取1张不是自己所写的那张贺卡,有3种取法;第二步由甲取的那张贺卡的写卡人取,也有3种取法;第三步由剩余两个中任1个人取,此时只有1种取法;第四步最后1个人取,只有1种取法.由分步乘法计数原理,共有N=3×3×1×1=9(种).[点评]对于有限制条件的选取、抽取问题的计数,一般地,当数目不很大时,可用枚举法,但为保证不重不漏,可用树形图、框图及表格进行枚举;当数目较大,符合条件的情况较多时,可用间接法计数;否则直接用分类或分步计数原理计数.但一般根据选(抽)取顺序分步或根据选(抽)取元素的特点分类.9.将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点颜色不同,如果只有5种颜色可供使用,求不同的染色方法种数是多少?[解析]可分两步进行,先将四棱锥一侧的三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.如图所示,由题设,四棱锥S-ABCD的顶点S,A,B所染颜色互不相同,它们共有5×4×3=60种染色方法.当S,A,B已染好时,不妨设其颜色分别为颜色1,2,3;若C颜色为2,则D可染颜色3,4,5之一,有3种染色法;若C染颜色4,则D可染颜色3或5,有2种染法;若C染颜色5,则D可染颜色3或4,也有2种染法,可见,当S,A,B已染好时,C与D还有7种染法,因此不同的染色方法共有60×7=420种.[点评]关于涂色问题,我们一般先给涂色部位依次标上相应的序号,以便分析问题.具体涂色时,看先给哪个部位涂色较简单.本例中首先须涂顶点S,其次A→B,涂C时要分类进行,分类标准是C同A和C不同于A两类.10.如图所示的5×3方格中有多少个矩形(每个小正方形的边长为1)?[解析]标准就能做到不重不漏.(1)面积为1的矩形有15个.(2)面积为2的矩形有两类:一是横向的,有4×3=12个;二是竖向的,有2×5=10个,故共有12+10=22个.(3)面积为3的矩形有3×3+5=14个.(4)面积为4的矩形有:横向的有2×3=6个;正方形的有2×4=8个,共有6+8=14个.(5)面积为5的矩形有3个.(6)面积为6的矩形有3×2+4=10个.(7)面积为8的矩形有2×2=4个.(8)面积为9的矩形有3个.(9)面积为10的矩形有2个.(10)面积为12的矩形有2个.(11)面积为15的矩形有1个.故共有矩形15+22+14+14+3+10+4+3+2+2+1=90个.[点评]本题中,可以用直接法一一地数出这些矩形的个数,但在“数”的过程中,容易出现重复和遗漏.而在这里以“面积”的大小作为分类标准,就可以避免重复和遗漏,并且它将一个大的计数问题分解成若干个小的计数问题,从而降低了思维难度,简化了解题过程,避免了错误的发生.。
第一章DIYIZHANG计数原理§1分类加法计数原理和分步乘法计数原理第1课时1.某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为()A.8B.15C.18D.30解析:共有5+3=8种不同的选法.答案:A2.从A地到B地要经过C地和D地,从A地到C地有3条路,从C地到D地有2条路,从D地到B地有4条路,则从A地到B地不同的走法有()A.9种B.1种C.24种D.3种解析:由分步乘法计数原理知,从A地到B地不同走法有2×3×4=24(种).答案:C3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A.30个B.42个C.36个D.35个解析:要完成这件事可分两步,第一步确定b(b≠0)有6种方法,第二步确定a有6种方法,故由分步乘法计数原理知共有6×6=36个虚数,故选C.答案:C4.某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有()A.510种B.105种C.15种D.50种解析:每名乘客都有在5个车站中的任何一个车站下车的可能,由分步乘法计数原理得,下车的可能方式有5×5×5×5×5×5×5×5×5×5=510种.答案:A5.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理得监考的方法共有3+3+3=9(种).答案:B6.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10解析:①当a=0时,2x+b=0总有实数根,所以(a,b)的取值有4个.②当a≠0时,需Δ=4-4ab≥0,所以ab≤1.a=-1时,b的取值有4个,a=1时,b的取值有3个,a=2时,b的取值有2个.所以(a,b)的取法有9个.综合①②知,(a,b)的取法有4+9=13个.答案:B7.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行半决赛,获胜者角逐冠亚军,败者角逐第3,4名,则大师赛共有场比赛.解析:每个小组赛有6场比赛,两个小组有6+6=12场比赛,半决赛和决赛共有2+2=4场比赛,根据分类加法计数原理,共有12+4=16场比赛.答案:168.导学号43944001一学习小组有4名男生,3名女生,任选一名学生当数学课代表,共有种不同选法;若选男、女生各一名当组长,共有种不同选法.解析:任选一名当数学课代表可分两类,一类是从男生中选,有4种选法;另一类是从女生中选,有3种选法.根据分类加法计数原理,共有4+3=7种不同选法.若选男、女生各一名当组长,需分两步:第1步,从男生中选一名,有4种选法;第2步,从女生中选一名,有3种选法.根据分步乘法计数原理,共有4×3=12种不同选法.答案:7129.导学号43944002有一项活动,需从3位老师、8名男同学和5名女同学中选人参加.(1)若只需1人参加,有多少种不同的选法?(2)若需老师、男同学、女同学各1人参加,有多少种不同的选法?(3)若需1位老师、1名同学参加,有多少种不同的选法?解(1)选1人,可分三类:第一类从老师中选1人,有3种不同的选法;第二类从男同学中选1人,有8种不同的选法;第三类从女同学中选1人,有5种不同的选法,共有3+8+5=16种不同的选法.(2)选老师、男同学、女同学各1人,则分3步进行,第一步选1位老师,有3种不同的选法;第二步选1位男同学,有8种不同的选法;第三步选1位女同学,有5种不同的选法,共有3×8×5=120种不同的选法.(3)选1位老师、1名同学,可分两步进行,第一步选1位老师,有3种不同的选法,第二步选1位同学,有8+5=13种不同的选法,共有3×13=39种不同的选法.10.已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中a i,b j(i=1,2,3,4,j=1,2)均为实数.(1)从集合A到集合B能构成多少个不同的映射?(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?解(1)因为集合A中的元素a i(i=1,2,3,4)与集合B中元素的对应方法都有2种,由分步乘法计数原理,可构成A→B的映射有N=24=16个.(2)在(1)的映射中,a1,a2,a3,a4均对应同一元素b1或b2的情形.此时构不成以集合A为定义域,以集合B为值域的函数,这样的映射有2个.所以构成以集合A为定义域,以集合B为值域的函数有M=16-2=14个.。
选修2-3第一章 1.1第1课时一、选择题1.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为导学号03960017()A.13种B.16种C.24种D.48种[答案] A[解析]应用分类加法计数原理,不同走法数为8+3+2=13(种).故选A.2.(a1+a2)(b1+b2)(c1+c2+c3)完全展开后的项数为导学号03960018()A.9 B.12C.18 D.24[答案] B[解析]每个括号内各取一项相乘才能得到展开式中的一项,由分步乘法计数原理得,完全展开后的项数为2×2×3=12.3.定义集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B},若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为导学号03960019()A.34B.43C.12 D.24[答案] C[解析]显然(a,a)、(a,c)等均为A*B中的元素,确定A*B中的元素是A中取一个元素来确定x,B中取一个元素来确定y,由分步乘法计数原理可知A*B中有3×4=12个元素.故选C.4.如下图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开从不同的路线同时传递,则单位时间内传递的最大信息量为导学号03960020()A.26 B.24C.20 D.19[答案] D[解析]因信息可以分开沿不同的路线同时传递,由分类加法计数原理,完成从A向B 传递有四种方法:12→5→3,12→6→4,12→6→7,12→8→6,故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19,故选D.5.有四位老师在同一年级的4个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是导学号03960021() A.8种B.9种C.10种D.11种[答案] B[解析]设四个班级分别是A、B、C、D,它们的老师分别是a、b、c、d,并设a监考的是B,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a监考C、D时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,由分类加法计数原理知共有3+3+3=9(种)不同的安排方法.另外,本题还可让a先选,可从B、C、D中选一个,即有3种选法.若选的是B,则b从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有3×3×1×1=9(种)不同的安排方法.6.从0、2中选一个数字,从1、3、5中选两个数字,组成无重复数字的三位数,其中奇数的个数为导学号03960022()A.24 B.18C.12 D.6[答案] B[解析](1)当从0,2中选取2时,组成的三位奇数的个位只能奇数,只要2不排在个位即可,先排2再排1,3,5中选出的两个奇数,共有2×3×2=12(个).(2)当从0,2中选取0时,组成的三位奇数的个位只能是奇数,0必须在十位,只要排好从1,3,5中选出的两个奇数.共有3×2=6(个).综上,由分类加法计数原理知共有12+6=18(个).二、填空题7.已知直线方程Ax+By=0,若从0、1、2、3、5、7这6个数字中每次取两个不同的数作为A、B的值,则可表示不同的直线________条.导学号03960023[答案]22[解析]当A或B中有一个为零时,则可表示出2条不同的直线;当AB≠0时,A有5种选法,B有4种选法,则可表示出5×4=20条不同的直线.由分类加法计数原理知,共可表示出20+2=22条不同的直线.8.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B 的值,则可表示________条不同的直线.导学号03960024[答案]22[解析]若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.9.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有________种.(用数字作答)导学号03960025[答案]48[解析]本题可分为两类完成:两老一新时,有3×2×2=12(种)排法;两新一老时,有2×3×3×2=36(种)排法,即共有48种排法.三、解答题10.有不同的红球8个,不同的白球7个.导学号03960026(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?[解析](1)由分类加法计数原理得,从中任取一个球共有8+7=15种;(2)由分步乘法计数原理得,从中任取两个不同颜色的球共有8×7=56种.一、选择题1.(2016·石家庄高二检测)用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为导学号03960027()A.243 B.252C.261 D.279[答案] B[解析]用0,1,…,9十个数字,可以组成的三位数的个数为9×10×10=900,其中三位数字全不相同的为9×9×8=648,所以可以组成有重复数字的三位数的个数为900-648=252.2.(2016·天津高二检测)设m∈{1,2,3,4},n∈{-12,-8,-4,-2},则函数f(x)=x3+mx+n在区间[1,2]上有零点的概率是导学号03960028()A .12B .916C .1116D .1316[答案] C[解析] 根据题意,f ′(x )=3x 2+m ,又因为m >0,所以f ′(x )=3x 2+m >0; 故f (x )=x 3+mx +n 在R 上单调递增, 若函数f (x )=x 3+mx +n 在区间[1,2]上有零点, 则只需满足条件f (1)≤0且f (2)≥0. ∴m +n ≤-1且2m +n ≥-8, ∴-2m -8≤n ≤-m -1, 当m =1时,n 取-2,-4,-8; m =2时,n 取-4,-8,-12; m =3时,n 取-4,-8,-12; m =4时,n 取-8,-12;共11种取法,而m 有4种选法,n 有4种选法,则函数f (x )=x 3+mx +n 情况有4×4=16种,故函数f (x )=x 3+mx +n 在区间[1,2]上有零点的概率是1116,故选C . 二、填空题3.一个科技小组中有4名女同学,5名男同学,从中任选一名同学参加学科竞赛,共有不同的选派方法______种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法________种.导学号 03960029[答案] 9 20[解析] 由分类加法计数原理得从中任选一名同学参加学科竞赛共5+4=9种,由分步乘法计数原理得从中任选一名女同学和一名男同学参加学科竞赛共5×4=20种.4.圆周上有2n 个等分点(n 大于2),任取3点可得一个三角形,恰为直角三角形的个数为________.导学号 03960030[答案] 2n (n -1)[解析] 先在圆周上找一点,因为有2n 个等分点,所以应有n 条直径,不过该点的直径应有n -1条,这n -1条直径都可以与该点形成直角三角形,一个点可以形成以该点为直角顶点的n -1个直角三角形,而这样的点有2n 个,所以一共有2n (n -1)个符合题意的直角三角形.三、解答题5.已知集合A ={a 1,a 2,a 3,a 4},集合B ={b 1,b 2},其中a i 、b j (i =1、2、3、4,j =1、2)均为实数.导学号03960031(1)从集合A到集合B能构成多少个不同的映射?(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?[解析](1)因为集合A中的每个元素a i(i=1、2、3、4)与集合B中元素的对应方法都有2种,由分步乘法计数原理,可构成A→B的映射有N=24=16个.(2)在(1)的映射中,a1、a2、a3、a4均对应同一元素b1或b2的情形.此时构不成以集合A为定义域,以集合B为值域的函数,这样的映射有2个.所以构成以集合A为定义域,以集合B为值域的函数有M=16-2=14个.6.集合A={1,2,-3},B={-1,-2,3,4}.现从A,B中各取一个元素作为点P(x,y)的坐标.导学号03960032(1)可以得到多少个不同的点?(2)在这些点中,位于第一象限的有几个?[解析](1)一个点的坐标由x,y两个元素确定,若它们有一个不同,则表示不同的点,可分为两类:第一类:选A中的元素为x,B中的元素为y,有3×4=12(个)不同的点;第二类:选A中的元素为y,B中的元素为x,有4×3=12(个)不同的点.由分类加法计数原理得不同的点的个数为12+12=24(个).(2)第一象限内的点x,y必须为正数,从而只能取A、B的正数,同样可分为两类,类似于(1).由分类加法计数原理得适合题意的不同点的个数为2×2+2×2=8(个).。
人教B版数学选修2-3《1.1基本计数原理》说课稿各位老师,大家好,我今天说课的课题是《基本计数原理》,我将从教材、学情、教学策略、教学过程、板书设计、教学反思等几个方面对本节课进行说明。
一、教材分析本节课是人教B版的数学教材选修2-3第一章第一节第一课,本节课所讲授的两个基本计数原理,即分类加法原理与分步乘法原理,是本章继续学习排列、组合的基础,学生能否理解并能应用两个基本原理,是学好本章知识的一个关键,本节课建议安排两课时,本节为第一课时,根据其在教材中的地位,结合课标的要求,设置了如下的教学目标:1、知识目标理解分类加法计数原理和分步乘法计数原理,并能应用两个基本原理分析、解决一些简单的应用问题。
2、能力目标在概念形成的过程中培养学生的总结与概括能力,在解决实际问题过程中锻炼学生逻辑思维能力。
3、情感目标让学生体验知识从生活中来又应用到生活中去得过程,培养学生用数学的眼光观察世界和用数学的思想思考世界的习惯。
教学重点是两个基本计数原理的内容。
难点是如何正确是用两个基本计数原理来解决实际问题。
二、学情分析高二学段的高中生已经具备较好的计算能力和基本的逻辑思维能力,但是对于实际问题的生活背景了解不多,对问题中创设的实际背景和如何完成一件事的含义的理解将成为学生运用两个基本计数原理解决问题是的瓶颈,所以找到如何完成一项实际任务的方法,是应用过程中难点。
三、教学策略本课由于内容比较简单学生通过预习多都能够看懂,在实际授课时,我将使用更能贴近学生生活的实例,以激发学生的求知欲和学习热情。
采用教师启发、学生小组合作学习方式进行教学,利用多媒体课件展示引例的问题环境,引导学生思维,具体的分析比较进而归纳出两个基本计数原理,遵循从特殊到一般的思维过程,在学生现有的认知基础上,促使其获取知识,让学生始终保持高水平的思维活动水平,增强学习效果。
四、教学过程1、设置情景,引入新课使用多媒体课件展示郑板桥《咏雪》让学生齐读古诗并请学生对古诗进行自由鉴赏。
高中数学第一章计数原理知能基础测试新人教B版选修2-3时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种[答案] B[解析]因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种,进行排列共有C23A33=18种.故选B.2.已知C7n+1-C7n=C8n(n∈N*),则n等于( )A.14 B.12C.13 D.15[答案] A[解析]因为C8n+C7n=C8n+1,所以C7n+1=C8n+1.∴7+8=n+1,∴n=14,故选A.3.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是( )A.8 B.12C.16 D.24[答案] B[解析]∵A2n=n(n-1)=132.∴n=12.故选B.4.(1+x)7的展开式中x2的系数是( )A.42 B.35C.28 D.21[答案] D[解析]展开式中第r+1项为T r+1=C r7x r,T3=C27x2,∴x2的系数为C27=21.5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!)3C.(3!)4D.9![答案] C[解析]本题考查捆绑法排列问题.由于一家人坐在一起,可以将一家三口人看作一个整体,一家人坐法有3!种,三个家庭即(3!)3种,三个家庭又可全排列,因此共(3!)4种.注意排列中在一起可用捆绑法,即相邻问题.6.某校园有一椭圆型花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有( )A.48种B.36种C.30种D.24种[答案] A[解析]由于相邻两块不能种同一种颜色,故至少应当用三种颜色,故分两类.第一类,用4色有A44种,第二类,用3色有4A33种,故共有A44+4A33=48种.7.若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=( )A.9 B.10C.-9 D.-10[答案] D[解析]x10的系数为a10,∴a10=1,x9的系数为a9+C910·a10,∴a9+10=0,∴a9=-10.故应选D.另解:∵[(x+1)-1]2+[(x+1)-1]10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,显然a9=C110(-1)=-10.8.(2015·黑龙江省龙东南四校高二期末)从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A.48种B.36种C.18种D.12种[答案] B[解析] 分两种情况:(1)小张小赵去一人:C 12C 12A 33=24;(2)小张小赵都去:A 22A 23=12,故有36种,应选B.9.(2015·湖北理,3)已知(1+x )n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29[答案] D[解析] 由题意可得,二项式的展开式满足T r +1=C r n x r ,且有C 3n =C 7n ,因此n =10.令x =1,则(1+x )n =210,即展开式中所有项的二项式系数和为210;令x =-1,则(1+x )n=0,即展开式中奇数项的二项式系数与偶数项的二项式系数之差为0,因此奇数项的二项式系数和为12(210+0)=29.故本题正确答案为D.10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种[答案] B[解析] 由题意不同的放法共有C 13C 24=18种.11.(2015·四川理,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个[答案] B[解析] 据题意,万位上只能排4、5.若万位上排4,则有2×A 34个;若万位上排5,则有3×A 34个.所以共有2×A 34+3×A 34=5×24=120个.选B.12.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A .24对 B .30对 C .48对 D .60对[答案] C[解析] 解法1:先找出正方体一个面上的对角线与其余面对角线成60°角的对数,然后根据正方体六个面的特征计算总对数.如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C 、BC 1、C 1D 、CD 1、A 1D 、AD 1、A 1B 、AB 1共8条,同理与BD 成60°角的面对角线也有8条,因此一个面上的对角线与其相邻4个面的对角线,共组成16对,又正方体共有6个面,所有共有16×6=96对.因为每对都被计算了两次(例如计算与AC 成60°角时,有AD 1,计算与AD 1成60°角时有AC ,故AD 1与AC 这一对被计算了2次),因此共有12×96=48对.解法2:间接法.正方体的面对角线共有12条,从中任取2条有C 212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C 212-6-12=48对.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.(2015·上海理,8)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选法有________种(用数值表示)[答案] 120[解析] 由题意得,去掉选5名教师情况即可:C 59-C 56=126-6=120.14.(2015·新课标Ⅱ,15)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[答案] 3[解析] 由已知得(1+x )4=1+4x +6x 2+4x 3+x 4,故(a +x )(1+x )4的展开式中x 的奇数次幂项分别为4ax,4ax 3,x,6x 3,x 5,其系数之和为4a +4a +1+6+1=32,解得a =3.15.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有________种(用数字作答).[答案] 264[解析] 由条件上午不测“握力”,则4名同学测四个项目,有A 44;下午不测“台阶”但不能与上午所测项目重复,如“立定”、“肺活量”中一种有3×3=9,故A44(2+9)=264种.16.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,能被3整除的数有________个.[答案]228[解析]一个数能被3整除的条件是它的各位上的数字之和能被3整除.根据这点,分为如下几数:(1)三位数各位上的数字是1,4,7或2,5,8这两种情况,这样的数有2A33=12(个).(2)三位数的各位上只含0,3,6,9中的一个,其他两位上的数则从(1,4,7)和(2,5,8)中各取1个,这样的数有C14C13C13A33=216(个),但要除去0在百位上的数,有C13C13A22=18(个),因而有216-18=198(个).(3)三位数的各位上的数字是0,3,6,9中的3个,但要去掉0在百位上的,这样应有3×3×2=18(个),综上所述,由0到9这10个数字所构成的无重复数字且能被3整除的3位数有12+198+18=228(个).三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)一个小组有10名同学,其中4名男生,6名女生,现从中选出3名代表,(1)其中至少有一名男生的选法有几种?(2)至多有1名男生的选法有几种?[解析](1)方法一:(直接法).第一类:3名代表中有1名男生,则选法种数为C14·C26=60(种);第二类:3名代表中有2名男生,则选法种数为C24·C16=36(种);第三类:3名代表中有3名男生,则选法种数为C34=4(种);故共有60+36+4=100(种).方法二:(间接法).从10名同学中选出3名同学的选法种数为C310种.其中不适合条件的有C36种.故共有C310-C36=100(种).(2)第一类:3名代表中有一名男生,则选法为C14C26=60(种);第二类:3名代表中无男生,则选法为C36=20(种);故共有60+20=80(种).18.(本题满分12分)从-1、0、1、2、3这5个数中选3个不同的数组成二次函数y =ax 2+bx +c (a ≠0)的系数.(1)开口向上的抛物线有多少条?(2)开口向上且不过原点的抛物线有多少条? [解析] (1)要使抛物线的开口向上,必须a >0, ∴C 13·A 24=36(条).(2)开口向上且不过原点的抛物线,必须a >0,c ≠0, ∴C 13·C 13·C 13=27(条).19.(本题满分12分)求(x -3x )9的展开式中的有理项. [解析] ∵T r +1=C r 9·(x 12)9-r ·(-x 13)r =(-1)r ·C r9·x 27-r 6,令27-r 6∈Z ,即4+3-r6∈Z ,且r ∈{0,1,2,…,9}. ∴r =3或r =9.当r =3时,27-r 6=4,T 4=(-1)3·C 39·x 4=-84x 4;当r =9时,27-r 6=3,T 10=(-1)9·C 99·x 3=-x 3.∴(x -3x )9的展开式中的有理项是:第4项,-84x 4和第10项,-x 3. 20.(本题满分12分)有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法?(2)恰有一个盒不放球,有多少种放法? (3)恰有一个盒内有2个球,有多少种放法?[解析] (1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有44=256(种).(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有C 24种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计算原理,共有放法:C 14·C 24·C 13·A 22=144(种).(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.21.(本题满分12分)(2015·北京高二质检)已知(3x 2+3x 2)n展开式中各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.[解析] 令x =1得展开式各项系数和为(1+3)n =4n, 又展开式二项式系数和为C 0n +C 1n +…+C n n =2n, 由题意有4n -2n=992.即(2n )2-2n -992=0,(2n -32)(2n+31)=0, 所以n =5.(1)因为n =5,所以展开式共6项,其中二项式系数最大项为第三、四两项,它们是T 3=C 25(3x 2)3·(3x 2)2=90x 6.T 4=C 35(3x 2)2(3x 2)3=270x 223. (2)设展开式中第k +1项的系数最大.又T k +1=C k 5(3x 2)5-k ·(3x 2)k =C k 53k x 10+4k 3,得⎩⎪⎨⎪⎧C k 5·3k ≥C k -15·3k -1C k 5·3k ≥C k +15·3k +1⇒⎩⎪⎨⎪⎧3k ≥16-k 15-k ≥3k +1⇒72≤k ≤92. 又因为k ∈Z ,所以k =4,所以展开式中第5项系数最大.T 5=C 4534x263=405x 263. 22.(本题满分14分)已知(1+2x )n展开式中,某一项的系数恰好是它的前一项系数的2倍,且等于它后一项系数的56,试求该展开式中二项式系数最大的项.[解析] T r +1=C rn (2x )r=2r·C rn ·x x2,它的前一项的系数为2r -1·C r -1n , 它的后一项的系数为2r +1·C r +1n ,根据题意有⎩⎪⎨⎪⎧2r·C rn =2·2r -1·C r -1n ,2r ·C r n =56·2r +1·C r +1n ,⎩⎪⎨⎪⎧2r -1=n ,8r +3=5n ,∴⎩⎪⎨⎪⎧n =7,r =4.∴展开式中二项式系数最大的项为第4项和第5项.3 2,T5=C47(2x)4=560x2.T4=C37(2x)3=280x。
新课程标准数学选修2—3第一章课后习题解答第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 练习(P6)1、(1)要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9; (2)要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6.2、(1)要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12; (2)要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60.3、因为要确定的是这名同学的专业选择,并不要考虑学校的差异, 所以应当是6+4-1=9(种)可能的专业选择. 练习(P10)1、要完成的“一件事情”是“得到展开式的一项”.由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法. 根据分步乘法计数原理,展开式共有3×3×5=45(项).2、要完成的“一件事情”是“确定一个电话号码的后四位”. 分四步完成,每一步都是从0~9这10个数字中取一个,共有10×10×10×10=10000(个).3、要完成的“一件事情”是“从5名同学中选出正、副组长各1名”. 第一步选正组长,有5种方法;第二步选副组长,有4种方法. 共有选法5×4=20(种).4、要完成的“一件事情”是“从6个门中的一个进入并从另一个门出去”. 分两步完成:先从6个门中选一个进入,再从其余5个门中选一个出去. 共有进出方法6×5=30(种). 习题1.1 A 组(P12)1、“一件事情”是“买一台某型号的电视机”. 不同的选法有4+7=11(种).2、“一件事情”是“从甲地经乙地或经丙地到丁地去”. 所以是“先分类,后分步”,不同的路线共有2×3+4×2=14(条).3、对于第一问,“一件事情”是“构成一个分数”. 由于1,5,9,13是奇数,4,8,12,16是偶数,所以1,5,9,13中任意一个为分子,都可以与4,8,12,16中的任意一个构成分数. 因此可以分两步来构成分数:第一步,选分子,有4种选法;第二步,选分母,也有4种选法. 共有不同的分数4×4=16(个).对于第二问,“一件事情”是“构成一个真分数”. 分四类:分子为1时,分母可以从4,8,12,16中任选一个,有4个;分子为5时,分母可以从8,12,16中选一个,有3个;分子为9时,分母从12,16中选一个,有2个;分子为13时,分母只能选16,有1个. 所以共有真分数4+3+2+1=10(个).4、“一件事情”是“接通线路”. 根据电路的有关知识,容易得到不同的接通线路有3+1+2×2=8(条).5、(1)“一件事情”是“用坐标确定一个点”. 由于横、纵坐标可以相同,因此可以分两步完成:第一步,从A中选横坐标,有6个选择;第二步,从A中选纵坐标,也有6个选择. 所以共有坐标6×6=36(个).(2)“一件事情”是“确定一条直线的方程”. 由于斜率不同截距不同、斜率不同截距相同、斜率相同截距不同的直线都是互不相同的,因此可分两步完成:第一步,取斜率,有4种取法;第二步,取截距,有4种取法. 所以共有直线4×4=16(条).习题1.1 B组(P13)1、“一件事情”是“组成一个四位数字号码”. 由于数字可以重复,最后一个只能在0~5这六个数字中拨,所以有号码10×10×10×6=6000(个).2、(1)“一件事情”是“4名学生分别参加3个运动队中的一个,每人限报一个,可以报同一个运动队”. 应该是人选运动队,所以不同报法种数是43.(2)“一件事情”是“3个班分别从5个风景点中选择一处游览”. 应该是人选风景点,故不同的选法种数是35. 1.2排列与组合 练习(P20)1、(1),,,,,,,,,,,ab ac ad ba bc bd ca cb cd da db dc ;(2),,,,,,,,,,,,,,,,,,,ab ac ad ae ba bc bd be ca cb cd ce da db dc de ea eb ec ed .2、(1)4151514131232760A =⨯⨯⨯=; (2)777!5040A ==; (3)4288287652871568A A -=⨯⨯⨯-⨯⨯=; (4)87121277121255A A A A ==.3、4、(1)略. (2)876777787677778788A A A A A A A -+=-+=.5、3560A =(种). 6、3424A =(种). 练习(P25)1、(1)甲、乙, 甲、丙, 甲、丁, 乙、丙, 乙、丁, 丙、丁; (2)2、ABC ∆,ABD ∆,ACD ∆,BCD ∆.3、3620C =(种). 4、246C =(个). 5、(1)26651512C ⨯==⨯; (2)3887656123C ⨯⨯==⨯⨯; (3)3276351520C C -=-=; (4)328532356210148C C -=⨯-⨯=.6、()1111(1)!!11(1)![(1)(1)]!!!m mn n m m n n C C n n m n m m n m +++++=⋅==++++-+- 习题1.2 A 组(P27)1、(1)325454*********A A +=⨯+⨯=; (2)12344444412242464A A A A +++=+++=. 2、(1)315455C =; (2)19732002001313400C C ==; (3)346827C C ÷=; (4)22211(1)(1)(1)22n n n n nn nn n n n CCCC n -++--⋅=⋅=+⋅=.3、(1)12111(1)n n n n n n n n n n n n A A n A A nA n A +-+--=+-==;(2)(1)!!(1)!!(1)!!(1)!!!n n n k n n k n k k k k ++-⋅-+-==-. 4、由于4列火车各不相同,所以停放的方法与顺序有关,有481680A =(种)不同的停法.5、4424A =. 6、由于书架是单层的,所以问题相当于20个元素的全排列,有2020A 种不同的排法.7、可以分三步完成:第一步,安排4个音乐节目,共有44A 种排法;第二步,安排舞蹈节目,共有33A 种排法;第三步,安排曲艺节目,共有22A 种排法. 所以不同的排法有432432288A A A ⋅⋅=(种).8、由于n 个不同元素的全排列共有!n 个,而!n n ≥,所以由n 个不同的数值可以以不同的顺序形成其余的每一行,并且任意两行的顺序都不同. 为使每一行都不重复,m 可以取的最大值是!n .9、(1)由于圆上的任意3点不共线,圆的弦的端点没有顺序,所以共可以画21045C =(条)不同的弦;(2)由于三角形的顶点没有顺序,所以可以画的圆内接三角形有310120C =(个). 10、(1)凸五边形有5个顶点,任意2个顶点的连线段中,除凸五边形的边外都是对角线,所以共有对角线2555C -=(条);(2)同(1)的理由,可得对角线为2(3)2n n n C n --=(条).说明:本题采用间接法更方便. 11、由于四张人民币的面值都不相同,组成的面值与顺序无关,所以可以分为四类面值,分别由1张、2张、3张、4张人民币组成,共有不同的面值1234444415C C C C +++=(种). 12、(1)由“三个不共线的点确定一个平面”,所确定的平面与点的顺序无关,所以共可确定的平面数是3856C =;(2)由于四面体由四个顶点唯一确定,而与四个点的顺序无关,所以共可确定的四面体个数是410210C =. 13、(1)由于选出的人没有地位差异,所以是组合问题,不同的方法数是3510C =. (2)由于礼物互不相同,与分送的顺序有关系,所以是排列问题,不同方法数是3560A =;(3)由于5个人中每个人都有3中选择,而且选择的时间对别人没有影响,所以是一个“可重复排列”问题,不同方法数是53243=;(4)由于只要取出元素,而不必考虑顺序,所以可以分两步取元素:第一步,从集合A 中取,有m 种取法;第二步,从集合B 中取,有n 种取法. 所以共有取法mn 种. 说明:第(3)题是“可重复排列”问题,但可以用分步乘法计数原理解决.14、由于只要选出要做的题目即可,所以是组合问题,另外,可以分三步分别从第1,2,3题中选题,不同的选法种数有32143224C C C ⋅⋅=. 15、由于选出的人的地位没有差异,所以是组合问题.(1)225460C C ⋅=; (2)其余2人可以从剩下的7人中任意选择,所以共有2721C =(种)选法;(3)用间接法,在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为449791C C -=; 如果采用直接法,则可分为3类:只含男甲;只含女乙;同时含男甲女乙,得到符合条件的方法数为33277791C C C ++=;(4)用间接法,在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为444954120C C C --=. 也可以用直接法,分别按照含男生1,2,3人分类,得到符合条件的选法数为132231545454120C C C C C C ++=.16、按照去的人数分类,去的人数分别为1,2,3,4,5,6,而去的人大家没有地位差异,所以不同的去法有12345666666663C C C C C C +++++=(种). 17、(1)31981274196C =; (2)142198124234110C C ⋅=; (3)51982410141734C =; (4)解法1:3141982198125508306C C C =⋅=. 解法2:55200198125508306C C -=. 说明:解答本题时,要注意区分“恰有”“至少有”等词. 习题1.2 B 组(P28)1、容易知道,在737C 注彩票中可以有一个一等奖.在解决第2问时,可分别计算37选6及37选8中的一等奖的中奖机会,它们分别是637112324784C =和8371138608020C =. 要将一等奖的机会提高到16000000以上且不超过1500000,即375000006000000nC ≤<, 用计算机可得,6n =,或31n =.所以可在37个数中取6个或31个.2、可以按照I ,II ,III ,IV 的顺序分别着色:分别有5,4,3,3种方法,所以着色种数有5×4×3×3=180(种).3、“先取元素后排列”,分三步完成:第一步,从1,3,5,7,9中取3个数,有35C 种取法;第二步,从2,4,6,8中取2个数,有24C 种取法;第三步,将取出的5个数全排列,有55A 种排法. 共有符合条件的五位数3255457200C C A ⋅⋅=(个). 4、由于甲和乙都没有得冠军,所以冠军是其余3人中的一个,有13A 种可能;乙不是最差的,所以是第2,3,4名中的一种有13A 种可能;上述位置确定后,甲连同其他2人可任意排列,有33A 种排法. 所以名次排列的可能情况的种数是11333354A A A ⋅⋅=. 5、等式两边都是两个数相乘,可以想到分步乘法计数原理,于是可得如下分步取组合的方法.在n 个人中选择m 个人搞卫生工作,其中k 个人擦窗,m k -个人拖地,共有多少种不同的选取人员的方法?解法1:利用分步计数原理,先从n 个人中选m 个人,然后从选出的m 个人中再选出k 个人擦窗,剩余的人拖地,这样有m knm C C 种不同的选取人员的方法; 解法2:直接从n 个人中选k 个人擦窗,然后在剩下的n k -个人中选m k -个人拖地,这样,由分步计数原理得,共有k m knn k C C --种不同的人员选择方法. 所以,k m k m knn k n m C C C C --=成立. 说明:经常引导学生从一个排列组合的运算结果或等式出发,构造一个实际问题加以解释,有助于学生对问题的深入理解,检查结果,纠正错误. 1.3二项式定理 练习(P31)1、7652433425677213535217p p q p q p q p q p q pq q +++++++.2、2424236(2)(3)2160T C a b a b =⋅=. 3、231(1)(2n rr r n rrr r nn r T C C x --+-=⋅=.4、D . 理由是5105555511010(1)T C x C x -+=-=-. 练习(P35)1、(1)当n 是偶数时,最大值2nn C ;当n 是奇数时,最大值12n nC-.(2)1311111111111210242C C C +++=⋅=. (3)12.2、∵0122knn nn n n n C C C C C ++++++=,2、∵0122knn nn n n n C C C C C ++++++=,0213nn n n C C C C ++=++∴012knnn n n n C C C C C ++++++0213()()n n n n C C C C =+++++022()2n n n C C =++=∴021222nn n nnnC C C -+++==. 3、略.习题1.3 A 组(P36)1、(1)011222(1)(1)(1)(1)n n n r n rr nn nn n n n C P C P P C P P C P P C P ---+-+-++-++-;(2)0122222nn n nn n n n n C C C C ++++.2、(1)9965432(9368412612684a a a a a b a a a b =+++23369a b ab b(2)27311357752222222172135(7016822412821283282x x x x x x x x ----=-+-+-+-.3、(1)552(1(122010x x ++=++; (2)11114412222(23)(23)192432x x x x x x ---+--=+. 4、(1)前4项分别是1,30x -,2420x ,33640x -; (2)91482099520T a b =-; (3)7924T =; (4)展开式的中间两项分别为8T ,9T ,其中78711815((6435T C x y =-=-87811915((6435T C x y =-=5、(1)含51x 的项是第6项,它的系数是5510163()28C -=-; (2)常数项是第6项,5105561012()2522T C -=⋅-=-.6、(1)2221221()(1)r n r r r r n rr n n T C x C xx --+=-=- 6、(1)2221221()(1)r n r r r r n rr n n T C x C xx--+=-=- 由220n r -=得r n =,即21()n x x-的展开式中常数项是12(1)n rn n T C +=-(2)!(1)!!nn n n =- 12345(21)2(1)!!n n nn n ⋅⋅⋅⋅⋅⋅-⋅=-…[135(21)][2462](1)!!n n n n n ⋅⋅⋅⋅-⋅⋅⋅⋅=-……[135(21)]2!(1)!!n nn n n n ⋅⋅⋅⋅-⋅⋅=-…135(21)(2)!nn n ⋅⋅⋅⋅-=-…(2)2(1)n x +的展开式共有21n +项,所以中间一项是12135(21)(2)!n nn n n n T C x x n +⋅⋅⋅⋅-==…7、略.8、展开式的第4项与第8项的二项式系数分别是3n C 与7n C , 由37n n n C C -=,得37n =-,即10n =.所以,这两个二项式系数分别是310C 与710C ,即120.习题1.3 B 组(P37)1、(1)∵1122221(1)111n n n n n n n n n n n n C n C n C n C n ----+-=++++++- 1122222n n n n nn n n C n C n C n n ---=+++++2213242(1)n n n n nn n n n C n C n C ----=+++++∴(1)1n n +-能被2n 整除; (2)∵1010991(1001)1-=--1019288291010101010010010010010011C C C C =-⋅+⋅++⋅-⋅+- 1019288210101010010010010010100C C C =-⋅+⋅++⋅-⨯1711521381010101000(101010101)C C C =-⋅+⋅++⋅-∴10991-能被1000整除.2、由0112211(21)222(1)2(1)n n n n n n n nnn n n n C C C C C -----=⋅-⋅+⋅++-⋅⋅+-,得112211222(1)2(1)1n n n n n n nn n C C C -----⋅+⋅++-⋅⋅+-=.第一章 复习参考题A 组(P40)1、(1)2n ;说明:这里的“一件事情”是“得到展开式中的一项”. 由于项的形式是i j a b ,而,i j 都有n 种取法.(2)3276525C C ⋅=; (3)1545480A A ⋅=,或2454480A A ⋅=; 说明:第一种方法是先考虑有限制的这名歌手的出场位置,第二种方法是先考虑有限制的两个位置. (4)45C ;说明:因为足球票无座,所以与顺序无关,是组合问题. (5)53;说明:对于每一名同学来说,有3种讲座选择,而且允许5名同学听同一个讲座,因此是一个“有重复排列”问题,可以用分步乘法原理解答. (6)54;说明:对角线的条数等于连接正十二边形中任意两个顶点的线段的条数212C ,减去其中的正十二边形的边12条:21212111212542C ⨯-=-=. (7)第1n +项.说明:展开式共有21n +项,且各系数与相应的二项式系数相同.2、(1)1234566666661956A A A A A A +++++=;说明:只要数字是1,2,3,4,5,6中的,而且数字是不重复的一位数、二位数、三位数、四位数、五位数和六位数都符合要求.(2)552240A =. 说明:只有首位数是6和5的六位数才符合要求.3、(1)3856C =; (2)1234555530C C C C +++=. 4、468898C C +=.说明:所请的人的地位没有差异,所以是组合问题. 按照“其中两位同学是否都请”为标准分为两类.5、(1)2(1)2n n n C -=; 说明:任意两条直线都有交点,而且交点各不相同. (2)2(1)2n n n C -=. 说明:任意两个平面都有一条交线,而且交线互不相同. 6、(1)59764446024C =; (2)23397442320C C ⋅=; (3)2332397397446976C C C C ⋅+⋅=. 7、34533453103680A A A A ⋅⋅⋅=. 说明:由于不同类型的书不能分开,所以可以将它们看成一个整体,相当于是3个元素的全排列. 但同类书之间可以交换顺序,所以可以分步对它们进行全排列. 8、(1)226x -;说明:第三项是含2x 的项,其系数是22112244553(23)(2)26C C C C ⋅+⋅-⨯+--. (2)18118(9)(rr r r T C x -+=,由题意有1802rr --= 解得12r =,1318564T =;(3)由题意得98102n n n C C C =+,即2!!!9!(9)!8!(8)!10!(10)!n n n n n n ⋅=+---化简得2373220n n -+=,解得14n =,23n =;(4)解法1:设1r T +'是10(1)x -展开式的第1r +项,由题意知,所求展开式中4x 的系数为41T +',31T +'与21T +'的系数之和.444110()T C x +'=-,333110()T C x +'=-,222110()T C x +'=-,因此,4x 的系数432101010135C C C =-+=. 解法2:原式39(1)(1)x x =--3223344999(1)(19)x x C x C x C x =--+-++因此,4x 的系数499135C =+=. 9、5555559(561)9+=-+5515454555556565619C C =-⋅++⋅-+ 551545455555656568C C =-⋅++⋅+由于551545455555656568C C -⋅++⋅+中各项都能被8整除,因此55559+也能被8整除.第一章 复习参考题B 组(P41)1、(1)121121n n n C C -++==,即1(1)212n n +⋅=,解得6n =; (2)1144244224192A A A ⋅⋅=⨯⨯=; 说明:先排有特殊要求的,再排其他的. (3)433333⨯⨯⨯=,34444⨯⨯=;说明:根据映射定义,只要集合A 中任意一个元素在集合B 中能够找到唯一对应的元素,(4)2426106500000A ⨯=; (5)481258C -=; 说明:在从正方体的8个顶点中任取4个的所有种数48C 中, 排除四点共面的12种情况,即正方体表面上的6种四点共 面的情况,以及如右图中ABC D ''这样的四点共面的其他 6种情况,因此三棱锥的个数为481258C -=(6)1或1-.说明:令1x =,这时(12)n x -的值就是展开式中各项系数的和,其值是1,(12)(1)1n n n n -⎧-=-=⎨⎩是奇数,是偶数2、(1)先从1,3,5中选1个数放在末位,有13A 种情况;再从除0以外的4个数中选1个数放在首位,有14A 种情况;然后将剩余的数进行全排列,有44A 种情况. 所以能组成的六位奇数个数为114344288A A A ⋅⋅=. (2)解法1:由0,1,2,3,4,5组成的所有没有重复数字的正整数的个数是1555A A ⋅,其中不大于201345的正整数的个数,当首位数字是2时,只有201345这1个;当首位数字是1时,有55A 个. 因此,所求的正整数的个数是155555(1)479A A A ⋅-+=. 解法2:由0,1,2,3,4,5组成的没有重复数字的正整数中,大于201345的数分为以下几种情况:前4位数字为2013,只有201354,个数为1;同理,前3位数字为201,个数为1222A A ⋅;前2位数字为20,个数为1333A A ⋅; 首位数字为2,个数为1444A A ⋅;首位数字为3,4,5中的一个,个数为1535A A ⋅; 根据分类计数原理,所求的正整数的个数是12131415223344351479A A A A A A A A +⋅+⋅+⋅+⋅=. 3、(1)分别从两组平行线中各取两条平行线,便可构成一个平行四边形,所以可以构成的平行四边形个数为221(1)(1)4m n C mn m n ⋅=--; (2)分别从三组平行平面中各取两个平行平面,便可构成一个平行六面体,所以可以构成的平行六面体个数为2221(1)(1)(1)8mn l C C C mnl m n l ⋅⋅=---. 4、(1)先排不能放在最后的那道工序,有14A 种排法;再排其余的4道工序,有44A 种排法. 根据分步乘法计数原理,排列加工顺序的方法共有144496A A ⋅=(种);(2)先排不能放在最前和最后的那两道工序,有23A 种排法;再排其余的3道工序,有33A 种排法,根据分步乘法计数原理,排列加工顺序的方法共有233336A A ⋅=(种).5、解法1:由等比数列求和公式得33342(1)(1)(1)(1)(1)n n x x x x x x+++-+++++++=,上述等式右边分子的两个二项式中含2x 项的系数分别是33n C +,33C ,因此它们的差23333(611)6n n n n CC +++-=,就是所求展开式中含2x 项的系数.解法2:原式中含2x 项的系数分别是23C ,24C ,…,22n C +,因此它们的和就是所求展开式中含2x 项的系数. 与复习参考题B 组第2题同理,可得22223334233(611)6n n n n n C C CCC +++++++=-=修2—3第二章课后习题解答第二章 随机变量及其分布 2.1离散型随机变量及其分布列 练习(P45)1、(1)能用离散型随机变量表示. 可能的取值为2,3,4,5,6,7,8,9,10,11,12. (2)能用离散型随机变量表示. 可能的取值为0,1,2,3,4,5. (3)不能用离散型随机变量表示.说明:本题的目的是检验学生是否理解离散型随机变量的含义. 在(3)中,实际值与规定值之差可能的取值是在0附近的实数,既不是有限个值,也不是可数个值. 2、可以举的例子很多,这里给出几个例子: 例1 某公共汽车站一分钟内等车的人数; 例2 某城市一年内下雨的天数;例3 一位跳水运动员在比赛时所得的分数;例4 某人的手机在1天内接收到电话的次数.说明:本题希望学生能观察生活中的随机现象,知道哪些量是随机变量,哪些随机变量又是离散型随机变量. 练习(P49)1、设该运动员一次罚球得分为X ,X 是一个离散型随机变量,其分布列为说明:这是一个两点分布的例子,投中看作试验成功,没投中看作试验失败. 通过这样的例子可以使学生理解两点分布是一个很常用的概率模型,实际中大量存在. 虽然离散型随机变量的分布列可以用解析式的形式表示,但当分布列中的各个概率是以数值的形式给出时,通常用列表的方式表示分布列更为方便.2、抛掷一枚质地均匀的硬币两次,其全部可能的结果为{正正,正反,反正,反反}. 正面向上次数X 是一个离散型随机变量,1(0)({})0.254P X P ====反反 2(1)({}{})0.54P X P ====正反反正1(2)({})0.25P X P ====正正因此X 的分布列为说明:这个离散型随机变量虽然简单,但却是帮助学生理解随机变量含义的一个很好的例子. 试验的全部可能的结果为{正正,正反,反正,反反},随机量X 的取值范围为{0,1,2},对应关系为正正→2 正反→1 反正→1 反反→0在这个例子中,对应于1的试验结果有两个,即“正反”和“反正”,因此用随机变量X 不能表示随机事件{正反}. 这说明对于一个具体的随机变量而言,有时它不能表示所有的随机事件.可以通过让学生们分析下面的推理过程存在的问题,进一步巩固古典概型的知识. 如果把X 所有取值看成是全体基本事件,即{0,1,2}Ω=.根据古典概型计算概率的公式有 1(1)({1})3P X P ===. 这与解答的结果相矛盾. 原因是这里的概率模型不是古典概型,因此上面式中的最后一个等号不成立. 详细解释下:虽然Ω中只含有3个基本事件,但是出现这3个基本事件不是等可能的,因此不能用古典概型计算概率的公式来计算事件发生的概率.3、设抽出的5张牌中包含A 牌的张数为X ,则X 服从超几何分布,其分布列为5448552()i iC C P X i C -==,i =0,1,2,3,4. 因此抽出的5张牌中至少3张A 的概率为(3)(3)(4)0.002P X P X P X ≥==+=≈.说明:从52张牌任意取出5张,这5张牌中包含A 的个数X 是一个离散型随机变量. 把52张牌看成是52件产品,把牌A 看成次品,则X 就成为从含有四件次品的52件产品中任意抽取5件中的次品数,因此X 服从超几何分布.本题的目的是让学生熟悉超几何分布模型,体会超几何分布在不同问题背景下的表现形式. 当让本题也可以用古典概型去解决,但不如直接用超几何分布简单. 另外,在解题中分布列是用解析式表达的,优点是书写简单,一目了然.4、两点分布的例子:掷一枚质地均匀的硬币出现正面的次数X 服从两点分布;射击一次命中目标的次数服从两点分布.超几何分布的例子:假设某鱼池中仅有鲤鱼和鲑鱼两种鱼,其中鲤鱼200条,鲑鱼40条,从鱼池中任意取出5条鱼,这5条鱼包含鲑鱼的条数X 服从超几何分布.说明:通过让学生举例子的方式,帮助学生理解这两个概率模型.习题2.1 A组(P49)1、(1)能用离散型随机变量表示.设能遇到的红灯个数为X,它可能的取值为0,1,2,3,4,5.事件{X=0}表示5个路口遇到的都不是红灯;事件{X=1}表示5个路口其中有1个路口遇到红灯,其他4个路口都不是红灯;事件{X=2}表示5个路口其中有2个路口遇到红灯,其他3个路口都不是红灯;事件{X=3}表示5个路口其中有3个路口遇到红灯,剩下2个路口都不是红灯;事件{X=4}表示5个路口其中有4个路口遇到红灯,另外1个路口都不是红灯;事件{X=5}表示5个路口全部都遇到红灯.(2)能用离散型随机变量表示.定义12345X⎧⎪⎪⎪=⎨⎪⎪⎪⎩,成绩不及格,成绩及格,成绩中,成绩良,成绩优则X是一个离散型随机变量,可能的取值为1,2,3,4,5.事件{X=1}表示该同学取得的成绩为不及格;事件{X=2}表示该同学取得的成绩为及格;事件{X=3}表示该同学取得的成绩为中;事件{X=4}表示该同学取得的成绩为良;事件{X=5}表示该同学取得的成绩为优.说明:本题是考查学生是否理解离散型随机变量的含义. 在(2)中,需要学生建立一个对应关系,因为随机变量的取值一定是实数,但这个对应关系不是唯一的,只要是从五个等级到实数的意义映射即可.2、某同学跑1 km所用时间X不是一个离散型随机变量. 如果我们只关心该同学是否能够取得优秀成绩,可以定义如下的随机变量:01km 4min 11km 4min Y >⎧=⎨≤⎩,跑所用的时间,跑所用的时间它是离散型随机变量,且仅取两个值:0或1.事件{1}Y =表示该同学跑1 km 所用时间小于等于4 min ,能够取得优秀成绩;事件{0}Y =表示该同学跑1 km 所用时间大于4 min ,不能够取得优秀成绩.说明:考查学生在一个随机现象中能否根据关心的问题不同定义不同的随机变量,以简化问题的解答. 可以与教科书中电灯泡的寿命的例子对比,基本思想是一致的.3、一般不能. 比如掷一枚质地均匀的硬币两次,用随机变量X 表示出现正面的次数,则不能用随机变量X 表示随机事件{第1次出现正面且第2次出现反面}和{第1次出现反面且第2次出现正面}. 因为{X =1}={第1次出现正面且第2次出现反面}∪{第1次出现反面且第2次出现正面},所以这两个事件不能分别用随机变量X 表示.说明:一个随机变量是与一个事件域相对应的,一个事件域一般是由部分事件组成,但要满足一定的条件. 对离散型随机变量,如果它取某个值是由几个随机变量组成,则这几个随机事件就不能用随机变量表示,比如从一批产品中依次取出几个产品,用X 表示取出的产品中次品的个数,这时我们不能用X 表示随机事件{第i 次取出次品,其他均为合格品}. 4、不正确,因为取所有值的概率和不等于1.说明:考查学生对分布列的两个条件的理解,每个概率不小于0,其和等于1,即 (1)0i p ≥,1,2,,i n =;(2)11ni i p ==∑.5、射击成绩优秀可以用事件{X ≥8}表示,因此射击优秀的概率为P {X ≥8}=(8)(9)(10)0.280.290.220.79P X P X P X =+=+==++=说明:本题知识点是用随机变量表示随机事件,并通过分布列计算随机事件的概率. 6、用X 表示该班被选中的人数,则X 服从超几何分布,其分布列为104261030()i i C C P X i C -==, i =0,1,2,3,4. 该班恰有2名同学被选到的概率为2842610304!26!1902!2!8!18!(2)0.31230!60910!20!C C P X C ⨯⨯⨯====≈⨯.说明:本题与49页练习的第3题类似,希望学生在不同背景下能看出超几何分布模型. 习题2.1 B 组(P49)1、(1)设随机抽出的3篇课文中该同学能背诵的 篇数为X ,则X 是一个离散型随机变量,它可能的 取值为0,1,2,3,且X 服从超几何分布,分布列 为即(2)该同学能及格表示他能背出2或3篇,故他能及格的概率为112(2)(2)(3)0.667263P X P X P X ≥==+==+==. 说明:本题是为了让学生熟悉超几何分布模型,并能用该模型解决实际问题.2、用X 表示所购买彩票上与选出的7个基本号码相同的号码的个数,则X 服从超几何分布,其分布列为7729736()i i C C P X i C -==, i =0,1,2,3,4,5,6,7. 至少中三等奖的概率为52617072972972977736363697(5)0.00192752C C C C C C P X C C C ≥=++=≈. 说明:与上题类似同样是用超几何分布解决实际问题,从此题的结算结果可以看出至少中三等奖的概率近似为1/1000. 2.2二项分布及其应用 练习(P54)1、设第1次抽到A 的事件为B ,第2次抽到A 的事件为C ,则第1次和第2次都抽到A 的事件为BC .解法1:在第1次抽到A 的条件下,扑克牌中仅剩下51张牌,其中有3张A ,所以在第1次抽到A 的条件下第2次也抽到A 的概率为3()51P C B =. 解法2:在第1次抽到A 的条件下第2次也抽到A 的概率为()433()()45151n BC P C B n B ⨯===⨯. 解法3:在第1次抽到A 的条件下第2次也抽到A 的概率为43()35251()451()515251P BC P C B P B ⨯⨯===⨯⨯.说明:解法1是利用缩小基本事件范围的方法计算条件概率,即分析在第1次抽到A 的条件下第2次抽取一张牌的随机试验的所有可能结果,利用古典概型计算概率的公式直接得到结果. 解法2实际上是在原来的基本事件范围内通过事件的计数来计算条件概率. 第3种方法是利用条件概率的定义来计算. 这里可以让学生体会从不同角度求解条件概率的特点.2、设第1次抽出次品的时间为B ,第2次抽出正品的事件为C ,则第1次抽出次品且第2次抽出正品的事件为BC .解法1:在第1次抽出次品的条件下,剩下的99件产品中有4件次品,所以在第1次抽出次品的条件下第2次抽出正品的概率为95()99P C B =. 解法2:在第1次抽出次品的条件下第2次抽出正品的概率为()59595()()59999n BC P C B n B ⨯===⨯. 解法3:在第1次抽出次品的条件下第2次抽出正品的概率为595()9510099()599()9910099P BC P C B P B ⨯⨯===⨯⨯. 说明:与上题类似,可以用不同方法计算条件概率.3、例1 箱中3张奖券中只有1张能中奖,现分别由3人无放回地任意抽取,在已知第一个人抽到奖券的条件下,第二个人抽到奖券的概率或第三个人抽到奖券的概率,均为条件概率,它们都是0.例2 某班有45名同学,其中20名男生,25名女生,依次从全班同学中任选两名同学代表班级参加知识竞赛,在第1名同学是女生的条件下,第2名同学也是女生的概率.说明:这样的例子很多,学生举例的过程可以帮助学生理解条件概率的含义.练习(P55)1、利用古典概型计算的公式,可以求得()0.5P A =,()0.5P B =,()0.5P C =,()0.25P AB =,()0.25P BC =,()0.25P AC =,可以验证()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =.所以根据事件相互独立的定义,有事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.说明:本题中事件A 与B 相互独立比较显然,因为抛掷的两枚硬币之间是互不影响的. 但事件B 与C 相互独立,事件A 与C 相互独立不显然,需要利用定义验证, 从该习题可以看出,事件之间是否独立有时根据实际含义就可做出判断,但有时仅根据实际含义是不能判断,需要用独立性的定义判断.2、(1)先摸出1个白球不放回的条件下,口袋中剩下3个球,其中仅有1个白球,所以在先摸出1个白球不放回的条件下,再摸出1个白球的概率是1/3.(2)先摸出1个白球后放回的条件下,口袋中仍然有4个球,其中有2个白球,所以在先摸出1个白球后放回的条件下,再摸出1个白球的概率是1/2.说明:此题的目的是希望学生体会有放回摸球与无放回摸球的区别,在有放回摸球中第2次摸到白球的概率不受第1次摸球结果的影响,而在无放回摸球中第2次摸到白球的概率受第1次摸球结果的影响.3、设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B .(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为()()()0.20.30.06P AB P A P B ==⨯=(2)甲、乙两地都不降雨的事件为AB ,所以甲、乙两地都不降雨的概率为()()()0.80.70.56P AB P A P B ==⨯=(3)其中至少一个地方降雨的事件为()()()AB AB AB ,由于事件AB ,AB 和AB 两两互斥,根据概率加法公式和相互独立事件的定义,其中至少一个地方降雨的概率为()()()0.060.20.70.80.30.44P AB P AB P AB ++=+⨯+⨯=.说明:与例3类似,利用事件独立性和概率的性质计算事件的概率,需要学生复习《数学3(必修)》中学过的概率性质.4、因为()()A AB AB =,而事件AB 与事件AB 互斥,利用概率的性质得到()()()P A P AB P AB =+所以()()()P AB P A P AB =-.。
本章整合知识网络专题探究专题一:正确运用两个计数原理【应用1】从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O,Q和数字0至多只出现一个的不同排法种数是__________.(用数字作答)解析:把排法分成三类:①当无字母O,Q和数字0时,有排法C23·C29·A44种;②当无字母O,Q,但有数字0时,有排法C23·C19·A44种;③当无数字0,但有字母O,Q其中之一时,有排法C12·C13·C29·A44种.综上,符合题意的不同排法种数是C23·C29·A44+C23·C19·A44+C12·C13·C29·A44=8 424.答案:8 424【应用2】随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照组成办法,每个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?提示:按照新规定,牌照可以分为2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤.解:将汽车牌照分为2类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法;第2步,从剩下的25个字母中选1个,放在第2位,有25种选法;第3步,从剩下的24个字母中选1个,放在第3位,有24种选法;第4步,从10个数字中选1个,放在第4位,有10种选法;第5步,从剩下的9个数字中选1个,放在第5位,有9种选法;第6步,从剩下的8个字母中选1个,放在第6位,有8种选法.根据分步乘法计数原理,字母组合在左的牌照共有26×25×24×10×9×8=11 232 000(个).同理,字母组合在右的牌照也有11 232 000个.所以,共能给11 232 000+11 232 000=22 464 000辆汽车上牌照.专题二:解排列组合应用题区别排列与组合的重要标志是“有序”与“无序”,无序的问题用组合知识解答,有序的问题属于排列问题.解含有约束条件的排列、组合问题,应先观察取出的元素是否有顺序,从而确定是排列问题还是组合问题,然后仔细审题,弄清怎样才算完成一件事,从而确定是分类完成,还是分步完成.分类时需要满足两个条件:(1)类与类之间要互斥(保证不重复);(2)总数要完备(保证不遗漏).分步时应按事件发生的连贯过程进行分步,做到步与步之间相互独立、互不干扰,并确保连续性.解决受条件限制的排列、组合问题的一般策略有:(1)特殊元素优先安排的策略;(2)正难则反、等价转化的策略;(3)相邻问题捆绑处理的策略;(4)不相邻问题插空处理的策略;(5)定序问题排除法处理的策略;(6)“小集团”排列问题中先整体后局部的策略;(7)平均分组问题运用除法处理的策略;(8)构造模型的策略.【应用1】7名学生站成一排,下列情况各有多少种不同排法?(1)甲、乙必须排在一起;(2)甲不在排头,乙不在排尾;(3)甲、乙、丙互不相邻;(4)甲、乙之间必须隔一人.解:(1)(捆绑法)先将甲、乙看作一个人,有A66种排法,然后对甲、乙进行排列,所以不同的排法有A22·A66=1 440(种).(2)(间接法)甲在排头或乙在排尾排法共2A66种,其中都包含甲在排头且乙在排尾的情形,故有不同的排法A77-2A66+A55=3 720(种).(3)(插空法)把甲、乙、丙插入其余4名学生产生的5个空中,有A44·A35=1 440(种)排法.(4)先从其余5人中选1人有5种选法,放在甲、乙之间,将三人看作一个整体有A55种排法,然后甲乙换位有A22种,共有5A55·A22=1 200(种)排法.【应用2】有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒不放球,有多少种放法?(3)恰有一个盒内有2个球,有多少种放法?解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有44=256(种).(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有C24种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:C14·C24·C13·A22=144(种).(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.【互动探究】本例中的4个小球若只放入4个盒子中的两个盒子,即只有两个空盒子,共有多少种放法?解:先从四个盒子中任意拿走两个有C24种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有C34·C12种放法;第二类:有C24种放法.因此共有C34·C12+C24=14(种).由分步乘法计数原理得“恰有两个盒子不放球”的放法有C24·14=84(种).专题三:二项式定理应用【应用1】 ⎝⎛⎭⎫x 2+2x 8的展开式中x 4的系数是( ) A .16 B .70C .560D .1 120解析:设二项展开式的第(r +1)项含有x 4,则T r +1=C r 8(x 2)8-r ⎝⎛⎫2x r =C r 8·2r ·x 16-3r,令16-3r =4,求得r =4.所以x 4的系数为C 48·24=1 120. 答案:D【应用2】 若⎝⎛⎭⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20C .30D .120解析:利用二项式系数的性质和通项公式求常数项.⎝⎛⎭⎫x +1x n 展开式的二项式系数和为C 0n +C 1n +C 2n +…+C n n =64=2n ,解得n =6.设第(r +1)项为常数项,则T r +1=C r 6·x 6-r ·⎝⎛⎭⎫1x r =C r 6·x 6-2r,令6-2r =0,解得r =3,所以T r +1=T 4=C 36=20.答案:B【应用3】 设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:采用赋值法,要使等式右边为a 0+a 1+a 2+…+a 11,应该令x +2=1,即x =-1,于是可得a 0+a 1+a 2+…+a 11=2×(-1)9=-2.答案:A。
第一章§2一、选择题1.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A.240种B.360种C.480种D.720种[答案] C[解析]本题考查了排列问题的应用.由题意,甲可从4个位置选择一个,其余元素不限制,所以所有不同次序共有A14A55=480.利用特殊元素优先安排的原则分步完成得到结论.2.由1、2、3、4、5组成没有重复数字的四位数,按从小到大的顺序排成一个数列{a n},则a72等于()A.1543 B.2543C.3542 D.4532[答案] C[解析]容易得到千位为1时组成四位数的个数为A34=24,则千位为2、3、4、5时均有四位数24个,由于24×3=72,四位数由小到大排列,可知第72个数为千位为3的最大的四位数即3542,故选C.3.(2014·辽宁理,6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120C.72 D.24[答案] D[解析]采用插空法.任两人隔1椅,共有2A33=12,有两个隔2椅,共有A22·A33=12,共有12+12=24(种)方法.4.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种[答案] B[解析]分两类解决:第一类:甲排在第一位,共有A44=24种排法.第二类:甲排在第二位,共有A13·A33=18种排法.所以节目演出顺序的编排方案共有24+18=42种.5.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88C29C.A88A27D.A88C27[答案] A[解析]不相邻问题用插空法,8种学生先排有A88种,产生9个空,2位老师插空有A29种排法,故选A.二、填空题6.2014年南京青奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种(用数字作答).[答案]96[解析]先安排最后一棒,有A12种方案;再安排第一棒,有A12种方案;最后安排中间四棒,有A44种方案.所以不同的传递方案共有A12·A12·A44=96种.7.将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.[答案]96[解析]5张参观券分为4堆,有2个连号的有4种分法,每一种分法中的不同排列有A44种,因此共有不同的分法4A44=4×24=96种.8.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答) [答案] 2 400[解析]此为有限制条件的排列应用题.要注意排列顺序.先安排甲、乙两人在后5天值班,有A25=20种排法,其余5人再进行排列,有A55=120种排法,所有共有20×120=2 400种安排方法.三、解答题9.有同一排的电影票6张,3个教师和3个学生按下述要求入座,有多少种坐法?(1)师生相间;(2)3个学生要相邻坐在一起.[解析](1)设6个座位编号为1,2,3,4,5,6,若教师坐在1,3,5位置,学生坐在2,4,6位置,坐法有A33A33种;若教师坐在2,4,6位置,学生坐在1,3,5位置,坐法有A33A33种.因此符合条件的坐法为2A33A33=72种.(2)先排教师,有A33种排法;将3个学生看作一个整体,插入3个教师形成的4个“空”中,有A14种排法,而3个学生有A33种排法,因此符合条件的坐法有A33A14A33=144种.10.书架上某层有6本书,新买了3本书插进去,要保持原来6本书原有顺序,问有多少种不同插法?[解析]解法一:9本书按一定顺序排在一层,考虑到其中原来的6本书保持原有顺序,原来的每一种排法都重复了A66次.所以有A99÷A66=504(种).解法二:把书架上的这一层欲排的9本书看作9个位置,将新买的3本书放入这9个位置中的3个,其余的6本书按着原来顺序依次放入.则A39=504(种).解法三将新买来的3本书逐一插进去.空档中选1个,有7种选法,第2本书可从现在的7本书的8个空档中选1个,有8种选法,最后1本可从现在的8本书9个空档中选1个有9种选法;3本书都插进去,这件事才算做完,根据乘法原理,共有7×8×9=504(种)不同的插入方法.一、选择题1.(2014·郑州网校期中联考)从6个人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()A.300种B.240种C.144种D.96种[答案] B[解析]先从除甲、乙外的4人中选取1人去巴黎,再从其余5人中选3人去伦敦、悉尼、莫斯科,共有不同选择方案,A14·A35=240种.2.在由数字1、2、3、4、5组成的没有重复数字的5位数中,大于23 145且小于43 521的数共有()A.56个B.57个C.58个D.60个[答案] C[解析]首位为3时,有A44=24;首位为2时,千位为3,则有A12A22+1=5,千位4或5时,A12A33=12;首位为4时,千位为1或2,则A12A33=12,千位为3,则有A12A22+1=5,∴共有24+5+12+12+5=58.3.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种[答案] A[解析]本题考查了分步计数原理的应用.利用分步计数原理,先填写最左上角的数,有3种;再填写右上角的数为2种;再填写第二行第一列的数有2种,一共有3×2×2=12种.故选A.解题的关键是正确地利用分步计数原理合理地分步计算.4.(2014·四川理,6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种[答案] B[解析]分两类:最左端排甲有A55=120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有C14A44=96种不同的排法,由加法原理可得满足条件的排法共有216种.解决排列问题,当有限制条件的问题要注意分类讨论,做到不重、不漏.二、填空题5.(2014·辽宁省协作联校三模)航空母舰“辽宁舰”在某次飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有________种.[答案]36种[解析]∵甲、乙相邻,∴将甲、乙看作一个整体与其他3个元素全排列,共有2A44=48种,其中甲乙相邻,且甲丁相邻的只能是甲乙丁看作一个整体,甲中间,有A22A33=12种,∴共有不同着舰方法48-12=36种.6.(1)若A2n=7A2n-4,则n=________;(2)若A5n+A4nA3n=4,则n=________.[答案](1)7(2)5[解析](1)将A2n=7A2n-4按排列数公式展开得n(n-1)=7(n-4)(n-5)(n≥6,n为正整数),解得n=7.(2)将A5n+A4nA3n=4改写为阶乘形式为n!(n-5)!+n!(n-4)!n!(n-3)!=(n-3)!(n-5)!+(n-3)!(n-4)!=(n-3)(n-4)+(n-3)=4(n≥5,n为正整数),解得n=5.三、解答题7.从7名运动员中选出4人参加4×100米接力,求满足下述条件的安排方法的种数:(1)甲、乙二人都不跑中间两棒;(2)甲、乙二人不都跑中间两棒.[解析](1)从甲、乙之外的5人中选2人安排在中间两棒有A25种方法,再从所有余下5人中安排首、末棒有A25种方法,故符合要求的共有A25·A25=400(种)方法.(2)从7人中选4人安排到各接力区有A47种方法,去掉甲、乙两人都跑中间两棒的种数为A25·A22.即得甲、乙二人不都跑中间两棒的有A47-A25·A22=800(种)方法.[反思总结]本题主要考查了体育中4×100米接力的要求和排列知识,考查了应用数学知识的能力,解决此类问题的关键在于从题目情景中提炼出“序”的实质.8.由0、1、2、3、4、5共六个数字组成没有重复数字的六位数,其中小于50万又不等于5的倍数的数有多少个?[解析]解法一:因为0和5不能排在首位或个位,先将它们排在中间4个位置上有A24种排法,再排其他4个数有A44种排法,由分步乘法计数原理,共有A24·A44=12×24=288个符合要求的六位数.解法二:因为首位和个位上不能排0和5,所以先从1、2、3、4中任选2个排在首位和个位,有A24种排法,再排中间4位数有A44种排法,由分步乘法计数原理,共有A24·A44=12×24=288个符合要求的六位数.解法三:六个数字的全排列共有A66个,其中有0排在首位或个位上的有2A55个,还有5排在首位或个位上的也有2A55个,它们都不合要求应减去,但这种情况都包含0和5分别在首位或个位上的排法2A44种,所以有A66-4A55+2A44=288个符合要求的六位数.。
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
第一章 1.3 第2课时一、选择题1.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =( )A .6B .7C .8D .9[答案] B[解析] 本题主要考查二项式定理中二项展开式的通项公式的应用.二项式(1+3x )n 展开式的通项公式为T r +1=3r C r n x r ,∴x 5与x 6的系数分别为35C 5n ,36C 6n .由条件知:35C 5n =36C 6n ,即C 5n =3C 6n ,∴n !5!(n -5)!=3·n !6!(n -6)!,∴n =7,选B. 2.若二项式(2x +a x )7的展开式中1x3的系数是84,则实数a =( ) A .2 B.54 C .1 D.24 [答案] C[解析] 二项式(2x +a x )7的通项公式为T r +1=C r 7(2x )7-r (a x)r =C r 727-r a r x 7-2r ,令7-2r =-3,得r =5.故展开式中1x3的系数是C 5722a 5=84,解得a =1. 3.已知⎝⎛⎭⎫x -a x 8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28 [答案] C[解析] T r +1=C r 8·x 8-r ·⎝⎛⎭⎫-a x r =C r 8·(-a )r ·x 8-2r .当r =4时,T r +1为常数项,此时T 5=C 48(-a )4=70a 4=1120.∴a =±2.令x =1,则⎝⎛⎭⎫x -a x 8=(1±2)8=1或38.故选C. 4.233除以9的余数是( )A .1B .2C .4D .8[答案] D[解析] 233=811=(9-1)11=911-C 111910+…+C 10119-1,∴余数为8.故选D.5.若9n +C 1n +1·9n -1+…+C n -1n +1·9+C n n +1是11的倍数,则自然数n 为( ) A .偶数B .奇数C .3的倍数D .被3除余1的数[答案] B [解析] 原式=19[(9+1)n +1-1]=19[10n +1-1]是11的倍数,∴10n +1-1是99的倍数,∴n 为奇数.故选B.6.在(1-x )11的展开式中,含x 奇次幂的各项系数的和是( )A .-210B .210C .-211D .211 [答案] A[解析] 令f (x )=(1-x )11=a 0+a 1x +…+a 11x 11,f (1)=a 0+a 1+…+a 11=0,f (-1)=a 0-a 1+…-a 11=211,f (1)-f (-1)=2(a 1+a 3+…+a 11)=-211.∴含x 奇次幂的系数的和为a 1+a 3+…+a 11=-210.故选A.7.(1+2x )2(1-x )5=a 0+a 1x +…+a 7x 7,则a 1-a 2+a 3-a 4+a 5-a 6+a 7等于( )A .32B .-32C .-33D .-31 [答案] D[解析] 令x =0,得a 0=1.令x =-1,得25=a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7,∴a 1-a 2+a 3-a 4+a 5-a 6+a 7=1-25=-31.二、填空题8.(2015·重庆理,12)⎝⎛⎭⎫x 3+12x 5的展开式中x 8的系数是________(用数字作答). [答案] 52[解析] 由二项式定理得T r +1=C r 5(x 3)r (12x )5-r =C r 5x 3r ⎝⎛⎭⎫125-r x r 2-52=C r 5(12)5-r x 7r 2-52当72r -52=8时,易得r =3,故x 8系数为C 35(12)2=52. 9.设(2x +3)4=a 0+a 1x +…+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为________.[答案] 1[解析] (a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)(a 0-a 1+a 2-a 3+a 4),在(2x +3)4=a 0+a 1x +…+a 4x 4中,令x =1,得a 1+a 1+a 2+a 3+a 4=(2+3)4;令x =-1,得a 0-a 1+a 2-a 3+a 4=(3-2)4,由此得(2+3)4(3-2)4=1.三、解答题10.在⎝⎛⎭⎫x -2x 28的展开式中, (1)系数的绝对值最大的项是第几项?(2)求二项式系数最大的项;(3)求系数最大的项;(4)求系数最小的项.[解析] (1)设第r +1项系数的绝对值最大,即⎩⎪⎨⎪⎧ C r 8·2r ≥C r -18·2r -1,C r 8·2r ≥C r +18·2r +1.∴⎩⎪⎨⎪⎧ 2r ≥19-r ,18-r ≥2r +1.从而有5≤r ≤6.故系数绝对值最大的项是第6项和第7项.(2)二项式系数最大的项为中间项,即为第5项.∴T 5=C 48(x )4·⎝⎛⎭⎫-2x 24=1 120x 6. (3)由(1)知展开式中的第6项及第7项的系数绝对值最大,而第6项系数为负,第7项的系数为正.则系数最大的项为T 7=C 68·(x )2⎝⎛⎭⎫-2x 26=1 792x11. (4)系数最小的项为T 6=C 58·(x )3⎝⎛⎭⎫-2x 25=-1792x x 9=-1 792x -172.一、选择题1.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是首项为-2,公差为3的等差数列的第几项( )A .13B .18C .11D .20[答案] D[解析] 含x 4项的系数为C 45+C 46+C 47=C 58-1=55. 设它为等差数列的第k 项,则-2+3(k -1)=55.∴k =20.故选D.2.若a 为实数,且(ax -1x)2015的展开式中各项系数的和为1,则该展开式第2015项为( ) A.1x 2015 B .-1x 2015 C.4030x 2013 D .-4030x 2013 [答案] C[解析]由条件知,(a -1)2015=1,∴a -1=1,∴a =2.∴展开式的第2015项为:T 2015=C 20142015·(2x )·(-1x)2014 =2C 12015·x -2013=4030x 2013,故选C. 3.若(1+a )+(1+a )2+(1+a )3+…+(1+a )n =b 0+b 1a +b 2a 2+…+b n a n ,且b 0+b 1+b 2+…+b n =30,则自然数n 的值为( )A .3B .4C .5D .6[答案] B[解析] 令a =1得:b 0+b 1+b 2+...+b n =2+22+23+ (2)=2(2n -1)2-1=2n +1-2=30. ∴2n +1=32.∴n =4.故选B.二、填空题4.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n =________.[答案] 63[解析] 逆用二项式定理,得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729.即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.5.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.[答案] 10[解析] 本题考查二项式定理的展开式.x 5=[(x +1)-1]5=(x +1)5-C 15(x +1)4+C 25(x +1)3-C 35(x +1)2+C 45(x +1)-C 55(x +1)0,∴a 3=C 25=10.适当的变形将问题简化.三、解答题6.已知(2x -3)7=a 0(x -1)7+a 1(x -1)6+…+a 6(x -1)+a 7.(1)求a 0+a 1+a 2+…+a 7;(2)求a 0-a 7.[解析] (1)令x =2,得a 0+a 1+a 2+…+a 7=(4-3)7=1.(2)令x =1,得a 7=(2×1-3)7=-1,x 7的系数a 0=C 0727(-3)0=128,∴a 0-a 7=129.7.已知⎝ ⎛⎭⎪⎫x +13x n 的展开式中偶数项的二项式系数的和比(a +b )2n 展开式中奇数项的二项式系数的和小120,求第一个展开式的第三项.[解析] (a +b )2n 展开式中奇数项的二项式系数的和为22n -1,⎝⎛⎭⎪⎫x +13x n 展开式中偶数项的二项式系数的和为2n -1.依题意,有2n -1=22n -1-120,即(2n )2-2n -240=0.解得2n =16,或2n =-15(舍).∴n =4. 于是,第一个展开式中第三项为T 3=C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x.8.(2015·胶州市期中)已知(1+m x)n(m是正实数)的展开式的二项式系数之和为256,展开式中含x项的系数为112.(1)求m,n的值;(2)求展开式中奇数项的二项式系数之和;(3)求(1+m x)n(1-x)的展开式中含x2项的系数.[解析](1)由题意可得2n=256,解得n=8.含x项的系数为C28m2=112,解得m=2,或m=-2(舍去).故m,n的值分别为2,8.(2)展开式中奇数项的二项式系数之和为C18+C38+C58+C78=28-1=128.(3)(1+2x)8(1-x)=(1+2x)8-x(1+2x)8所以含x2的系数为C4824-C2822=1008.。
第一章 1.3 第1课时一、选择题1.(2021·湖南理,6)已知⎝⎛⎭⎫x -a x 5的开放式中含x 32的项的系数为30,则a =( )导学号98570107 A. 3 B .- 3 C .6 D .-6[答案] D[解析] T r +1=C r 5(-1)r a r x 52-r ,令r =1,可得-5a =30⇒a =-6,故选D. 2.S =(x -1)4+4(x -1)3+6(x -1)2+4x -3,则S 等于( ) 导学号98570108 A .(x -2)4 B .x 4 C .(x +1)4 D .x 4+1[答案] B[解析] S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1=[(x -1)+1]4=x 4.故应选B. 3.⎝ ⎛⎭⎪⎫ax -x a 26的开放式的第三项为( ) 导学号98570109 A.15x B .-15xC .-6x 2a 2D.20a 2 [答案] A [解析]T 3=T 2+1=C 26⎝⎛⎭⎫a x 4·⎝⎛⎭⎫-x a 22=15x.故应选A. 4.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的开放式中,含x 3项的系数是( ) 导学号98570120 A .74 B .121 C .-74 D .-121[答案] D[解析] (1-x )5,(1-x )6,(1-x )7,(1-x )8中x 3项的系数分别为-C 35,-C 36,-C 37,-C 38,故所求x 3项的系数为-(C 35+C 36+C 37+C 38)=-121.5.(12x -2y )5的开放式中x 2y 3的系数是( ) 导学号98570121A .-20B .-5C .5D .20[答案] A[解析] 开放式的通项公式为T r +1=C r 5(12x )5-r ·(-2y )r =(12)5-r ·(-2)r C r 5x 5-r y r . 当r =3时为T 4=(12)2(-2)3C 35x 2y 3=-20x 2y 3,故选A. 6.(2021·日照高二检测)在⎝⎛⎭⎪⎫32x -1220的开放式中,系数是有理数的项共有( )导学号98570122 A .4项 B .5项 C .6项 D .7项[答案] A[解析] T r +1=C r 20(32x )20-r ⎝⎛⎭⎫-12r =⎝⎛⎭⎫-22r ·(32)20-r C r 20·x 20-r =⎝⎛⎭⎫-12r ·C r 20·240+r 6·x 20-r ., ∵系数为有理数.且0≤r ≤20. ∴r =2,8,14,20.故选A.7.(x +12x )8的开放式中常数项为( ) 导学号98570123A.3516B.358C.354 D .105 [答案] B[解析] T r +1 =C r 8(x )8-r (12x )r =C r 8·12r ×x 8-2r 2,当r =4时,T r +1为常数,此时C 48×124=358,故选B. 二、填空题8.(2022·全国卷Ⅰ,14)(2x +x )5的开放式中,x 3的系数是________.(用数字填写答案)导学号 98570124[答案] 10[解析] 由(2x +x )5得T r +1=C r 5(2x )5-r (x )r =25-r C r 5x 5-r 2,令5-r 2=3得r =4,此时系数为10. 9.已知二项式(x -1x )n 的开放式中含x 3的项是第4项,则n 的值为____________.导学号98570125 [答案] 9[解析] ∵通项公式T r +1=C r n (-1)r x n -2r, 又∵第4项为含x 3的项, ∴当r =3时,n -2r =3,∴n =9. 三、解答题10.(1)求(1+2x )7的开放式中第四项的系数;导学号98570126(2)求⎝⎛⎭⎫x -1x 9的开放式中x 3的系数及二项式系数. [解析] (1)(1+2x )7的开放式的第4项为T 3+1=C 37(2x )3=280x 3,∴(1+2x )7的开放式中第四项的系数是280. (2)∵⎝⎛⎭⎫x -1x 9的开放式的通项为 T r +1=C r 9x 9-r ⎝⎛⎭⎫-1x r =(-1)r ·C r 9x 9-2r . 令9-2r =3,r =3, ∴x 3的系数为(-1)3C 39=-84. x 3的二项式系数为C 39=84.一、选择题1.(4x -2-x )6(x ∈R )开放式中的常数项是( ) 导学号98570127 A .-20 B .-15 C .15 D .20[答案] C[解析] 设第r +1项为常数项,T r +1=C r 622x (6-r )(-2-x )r =(-1)r ·C r 6212x -2rx -rx , ∴12x -3rx =0,∴r =4.∴常数项为T 5=(-1)4C 46=15.2.在(1-x 3)(1+x )10的开放式中x 5的系数是( ) 导学号98570128 A .-297 B .-252 C .297 D .207[答案] D[解析] x 5应是(1+x )10中含x 5项与含x 2项.∴其系数为C 510+C 210(-1)=207.3.使(3x +1x x )n(n ∈N +)的开放式中含有常数项的最小的n 为( ) 导学号98570129A .4B .5C .6D .7[答案] B[解析] 由二项式的通项公式得T r +1=C r n 3n -rxn -52r ,若开放式中含有常数项,则n -52r =0,即n =52r ,所以n 最小值为5.选B.二、填空题4.(2022·天津卷理,10)(x 2-1x )8的开放式中x 7的系数为________.(用数字作答)导学号 98570130[答案] -56[解析] 二项开放式的通项T r +1=C r 8(x 2)8-r (-1x)r =(-1)r C r 8x 16-3r ,令16-3r =7,得r =3,故x 7的系数为-C 38=-56. 5.设a =⎠⎛0πsin xdx ,则二项式(a x -1x)6的开放式中的常数项等于________. 导学号98570131[答案] -160[解析] a =⎠⎛0πsin xdx =(-cos x )|π0=2,二项式(2x -1x )6开放式的通项为T r +1=C r 6(2x )6-r ·(-1x )r =(-1)r ·26-r ·C r 6x 3-r ,令3-r =0得,r =3,∴常数项为(-1)3·23·C 36=-160.三、解答题6.已知⎝⎛⎭⎫x +2x 2n 的开放式中第5项的系数与第3项的系数之比为563,求开放式中的常数项.导学号98570132[解析] T 5=C 4n (x )n -424x -8=16C 4nx n -202, T 3=C 2n (x )n -222x -4=4C 2n x n -102. 由题意知,16C 4n4C 2n =563,解得n =10.T k +1=C k 10(x )10-k 2k x -2k =2k C k 10x10-5k2, 令5-5k2=0,解得k =2,∴开放式中的常数项为C 21022=180.7.求(1+x +x 2)8开放式中x 5[解析] 解法1:(1+x +x 2)8=[1+(x +x 2)]8.∴T r +1=C r 8(x +x 2)r ,则x 5的系数由(x +x 2)r 来打算. T ′k +1=C k r x r -k x 2k =C k r xr +k ,令r +k =5, ∵k ≤r ,∴⎩⎪⎨⎪⎧ r 1=5k 1=0;或⎩⎪⎨⎪⎧ r 2=4k 2=1;或⎩⎪⎨⎪⎧r 3=3k 3=2.∴含x 5的系数为C 58C 05+C 48C 14+C 38C 23=504.解法2:(1+x +x 2)=[(1+x )+x 2]8=C 08(1+x )8+C 18(1+x )7·x 2+C 28(1+x )6·(x 2)2+C 38(1+x )5·(x 2)3+…,则开放式中含x 5的系数为C 08C 58+C 18C 37+C 28C 16=504.8.在⎝⎛⎭⎪⎫2x 2-13x 8的开放式中,求:(1)第5项的二项式系数及第5项的系数;(2)倒数第3[解析] 要求开放式中某些特定的项或特定的系数时,可以不必写出全部的开放式,只需利用通项公式即可.(1)∵T 5=C 48·(2x 2)8-4·⎝ ⎛⎭⎪⎫13x 4=C 48·24·x 203, ∴第5项的二项式系数是C 48=70,第5项的系数是C 48·24=1 120. (2)解法1:开放式中的倒数第3项即为第7项,T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎫-13x 6=112x 2. 解法2:在⎝ ⎛⎭⎪⎫2x 2-13x 8开放式中的倒数第3项就是⎝ ⎛⎭⎪⎫13x -2x 28开放式中的第3项,T 3=C 28·⎝ ⎛⎭⎪⎫13x 8-2·(2x 2)2=112x 2.。
第一章 1.2 第1课时一、选择题1.A 67-A 56A 45等于( )导学号98570042A .12B .24C .30D .36[答案] D [解析]A 67=7×6×A 45,A 56=6×A 45,所以原式=36A 45A 45=36. 2.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) 导学号98570043A .192种B .216种C .240种D .288种[答案] B[解析] 分两类:最左端排甲有A 55=120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有A 14A 44=96种不同的排法,由加法原理可得满足条件的排法共有120+96=216种.3.若A n 10-A n9=n !·126(n ∈N +),则n 等于( ) 导学号98570044 A .4 B .5 C .6 D .5或6[答案] D[解析] 本题不易直接求解,可考虑用代入验证法.故选D.4.(2021·抚顺高二检测)6名同学排成一排,其中甲、乙两人必需在一起的不同排法共有( )种( 导学号98570045A .720B .360C .240D .120[答案] C[解析] 因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人全排列共有A 55种排法,但甲、乙两人有A 22种排法,由分步计数原理可知:共有A 55·A 22=240种不同的排法.故选C.5.3名男生和3名女生排成一排,男生不相邻的排法有多少种( ) 导学号98570046A .144B .90C .260D .120[答案] A[解析] 3名女生先排好,有A 33种排法,让3个男生去插空,有A 34种方法,故共有A 33·A 34=144种.故选A.6.六个停车位置,有3辆汽车需要停放,若要使三个空位连在一起,则停放的方法数为( 导学号98570047A .A 44B .A 36C .A 46D .A 33[答案] A[解析] 把3个空位看作一个元素与3辆汽车共4个元素全排列.故选A. 7.6个人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为( )导学号98570048 A .720 B .144 C .576 D .684[答案] C[解析] “不能都站在一起”与“都站在一起”是对立大事,由间接法可得A 66-A 33A 44=576.故选C. 二、填空题8.(2021·广东理,12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答) 导学号98570049[答案] 1 560[解析] 同学两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A 240=40×39=1 560条毕业留言.9.甲、乙、丙3位志愿者支配在周一至周五的5天中参与某项志愿者活动,要求每人参与一天且每天至多支配一人,并要求甲支配在另外两位前面,则不同的支配方法共有____________种.导学号98570050[答案] 20 三、解答题10.(1)从4名同学中选出两名参与数学竞赛,共有多少种选法?导学号98570051 (2)从4名同学中选出两名担当班长和副班长,共有多少种选法?[解析] (1)由于被选出的两名同学选出后没有挨次,所以不是排列问题.设四名同学分别为A ,B ,C ,D ,则可能选AB ,AC ,AD ,BC ,BD ,CD ,共有6种选法.(2)由于从4名同学中选出两名当班长和副班长是有挨次的,因此符合排列条件,可用排列数公式计算:有A24=4×3=12(种)不同的选法.一、选择题1.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()导学号98570052A.144 B.120C.72 D.24[答案] D[解析]就座3人占据3张椅子,在其余3张椅子形成的四个空位中,任意选择3个,插入3张坐人的椅子,共有A34=24种不同坐法,故选D.2.为了迎接2021年长春城运会,某大楼安装了5个彩灯,它们闪亮的挨次不固定.每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5s.假如要实现全部不同的闪烁,那么需要的时间至少是() 导学号98570053A.1 205s B.1 200sC.1 195s D.1 190s[答案] C[解析]由题意每次闪烁共5s,所以不同的闪烁为A55=120s,而间隔为119次,所以需要的时间至少是5A55+(A55-1)×5=1 195s.说明:本题情景新颖,考查了排列学问在生活中的应用以及运用数学学问解决实际问题的力量、分析解决问题的力量.3.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有() 导学号98570054A.108种B.186种C.216种D.270种[答案] B[解析](间接法)考虑“至少有1名女生”的对立大事“全部为男生”则有A34=24种方案,不考虑男女差异则共有A37=210种方案,∴“至少有1名女生”有210-24=186种选派方案.故选B.二、填空题4.在全部无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有________个.导学号98570055[答案]448[解析]千位数字比个位数字大2,有8种可能,即(2,0),(3,1)…(9,7)前一个数为千位数字,后一个数为个位数字.其余两位无任何限制.∴共有8A28=448个.5.航空母舰“辽宁舰”在某次飞行训练中,有5架歼-15飞机预备着舰.假如甲、乙两机必需相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有________种.导学号98570056[答案]36[解析]∵甲、乙相邻,∴将甲、乙看作一个整体与其他3个元素全排列,共有2A44=48种,其中甲、乙相邻,且甲、丙相邻的只能是甲、乙、丙看作一个整体,甲中间,有A22A33=12种,∴共有不同着舰方法48-12=36种.三、解答题6.解方程:3A3x=2A2x+1+6A2x.导学号98570057[解析]原方程可化为3x(x-1)(x-2)=2(x+1)x+6x(x-1),即3x2-17x+10=0,解得x=5或x=23(舍去),∴x=5.7.某校为庆祝2021年老师节,支配了一场文艺演出,其中有3个舞蹈节目和4个小品节目,按下面要求支配节目单,有多少种方法:导学号98570058(1)3个舞蹈节目互不相邻;(2)3个舞蹈节目和4个小品节目彼此相间.[解析](1)先支配4个小品节目,有A44种排法,4个小品节目中和两头共5个空,将3个舞蹈节目插入这5个空中,共有A35种排法,∴共有A44·A35=1 440(种)排法.(2)由于舞蹈节目与小品节目彼此相间,故小品只能排在1,3,5,7位,舞蹈排在2,4,6位,支配时可分步进行.解法1:先支配4个小品节目在1,3,5,7位,共A44种排法;再支配舞蹈节目在2,4,6位,有A33种排法,故共有A44·A33=144(种)排法.解法2:先支配3个舞蹈节目在2,4,6位,有A33种排法;再支配4个小品节目在1,3,5,7位,共A44种排法,故共有A33·A44=144(种)排法.8.用0,1,2,3,4,5这六个数字可以组成多少个符合下列条件的无重复数字的数?(1)六位数且是奇数;(2)个位上的数字不是5的六位数;(3)不大于4310的四位数且是偶数.[解析](1)方法一:从特殊位置入手(直接法).第一步:排个位,从1,3,5三个数字中选1个,有A13种排法;其次步:排十万位,有A14种排法;第三步:排其他位,有A44种排法.故可以组成无重复数字的六位数且是奇数的共有A13A24A44=288(个).方法二:从特殊元素入手(直接法).0不在两端有A14种排法;从1,3,5中任选一个排在个位上,有A13种排法;其他数字全排列有A44种排法.故可以组成无重复数字的六位数且是奇数的共有A14A13A44=288(个).方法三:(排解法)6个数字全排列有A66种排法;0,2,4,在个位上的排列有3A55个;1,3,5在个位上且0在十万位上的排有3A44个,故可以组成无重复数字的六位数且是奇数的有A66-3A55-3A44=288(个).(2)方法一:(排解法)0在十万位上的排列,5在个位上的排列都不是符合题意的6位数,故符合题意的六位数共有A66-2A55+A44=504(个).方法二:(直接法)十万位上的数字的排法因个位上排0与不排0而有所不同,因而分两类.第一类:当个位上排0时,有A55种排法;其次类:当个位上不排0时,有A14A14A44种排法.故符合题意的六位数共有A55+A14A14A44=504(个).(3)当千位上排1,3时,有A12A13A24种排法;当千位上排2时,有A12A24种排法;当千位上排4时,形如40××,42××的偶数各有A13个,形如41××的偶数有A12A13个,形如43××的偶数只有4310和4302这两个数满足题意.故不大于4310的四位数且是偶数的共有A12A13A24+A12A24+2A13+A12A13+2=110(个).。
第一章 1.1一、选择题1.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有()导学号98570011A.8种B.12种C.16种D.20种[答案] B[解析]在正方体ABCD-A1B1C1D1中,选取3个面有2个不相邻,则必选相对的2个面,所以分3类.若选ABCD和A1B1C1D1两个面,另一个面可以是ABB1A1,BCC1B1,CDD1C1和ADD1A1中的一个,有4种.同理选另外相对的2个面也有4种.所以共有4×3=12(种).2.有一排5个信号的显示窗,每个窗可亮红灯、绿灯或者不亮灯,则共可以发出的不同信号有()种导学号98570012A.25B.52C.35D.53[答案] C3.将5名高校毕业生全部安排给3所不同的学校,不同的安排方案有()导学号98570013A.8 B.15C.125 D.243[答案] D4.用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为()导学号98570014A.243 B.252C.261 D.279[答案] B[解析]用0,1,…,9十个数字,可以组成的三位数的个数为9×10×10=900,其中三位数字全不相同的为9×9×8=648,所以可以组成有重复数字的三位数的个数为900-648=252.5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作点的坐标,则在直角坐标系中,第一、其次象限不同点的个数为() 导学号98570015A.18 B.16C.14 D.10[答案] C[解析]可分为两类.以集合M中的元素做横坐标,N中的元素做纵坐标,集合M中取一个元素的方法有3处,要使点在第一、其次象限内,则集合N中只能取5、6两个元素中的一个有2种.依据分步计数原理有3×2=6(个).以集合N的元素做横坐标,M的元素做纵坐标,集合N中任取一元素的方法有4种,要使点在第一、其次象限内,则集合M中只能取1、3两个元素中的一个有2种,依据分步计数原理,有4×2=8(个).综合上面两类,利用分类计数原理,共有6+8=14(个).故选C.6.(2021·潍坊高二检测)某公共汽车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有(导学号98570016A.510种B.105种C.50种D.以上都不对[答案] A[解析]任何一个乘客可以在任一车站下车,且相互独立,所以每一个乘客下车的方法都有5种,由分步计数原理知N=510.故选A.7.已知x∈{2,3,7},y∈{-31,-24,4},则x·y可表示不同的值的个数是()导学号98570017A.1+1=2 B.1+1+1=3C.2×3=6 D.3×3=9[答案] D[解析]由分步计数原理N=3×3=9(种).故选D.二、填空题8.已知a∈{3,4,5},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同圆的个数为____________个.导学号98570018[答案]24[解析]确定圆的方程可分三步:确定a有3种方法,确定b有4种方法,确定r有2种方法,由分步计数原理知N=3×4×2=24(个).9.用数字1,2,3组成三位数.导学号98570019(1)假如数字可以重复,共可组成____________个三位数;(2)其中数字不重复的三位数共有____________个;(3)其中必需有重复数字的有____________个.[答案](1)27(2)6(3)21[解析](1)排成数字允许重复的三位数,个位、十位、百位都有3种排法,∴N=33=27(个).(2)当数字不重复时,百位排法有3种,十位排法有两种,个位只有一种排法,∴N=3×2×1=6(个)(也可先排个位或十位).(3)当三数必需有重复数字时分成两类:三个数字相同,有3种,只有两个数字相同,有3×3×2=18(个),∴N=3+18=21(个).三、解答题10.某文艺小组有20人,每人至少会唱歌或跳舞中的一种,其中14人会唱歌,10人会跳舞.从中选出会唱歌与会跳舞的各1人,有多少种不同选法?导学号98570020[解析]只会唱歌的有10人,只会跳舞的有6人,既会唱歌又会跳舞的有4人.这样就可以分成四类完成:第一类:从只会唱歌和只会跳舞的人中各选1人,用分步乘法计数原理得10×6=60(种);其次类:从只会唱歌和既会唱歌又会跳舞的人中各选1人,用分步乘法计数原理得10×4=40(种);第三类:从只会跳舞和既会唱歌又会跳舞的人中各选1人,用分步乘法计数原理得6×4=24(种);第四类:从既会唱歌又会跳舞的人中选2人,有6种方法.依据分类加法计数原理,得出会唱歌与会跳舞的各选1人的选法共有60+40+24+6=130(种).一、选择题1.已知函数y=ax2+bx+c,其中a、b、c∈{0,1,2,3,4},则不同的二次函数的个数共有() 导学号98570021A.125 B.15C.100 D.10[答案] C[解析]由二次函数的定义知a≠0.∴选a的方法有4种.选b与c的方法都有5种.只有a、b、c都确定后,二次函数才确定.故由乘法原理知共有二次函数4×5×5=100个.故选C.2.满足a、b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为() 导学号98570022A.14 B.13C.12 D.10[答案] B[解析]①当a=0时,2x+b=0总有实数根,∴(a,b)的取值有4个.②当a≠0时,需Δ=4-4ab≥0,∴ab≤1.a=-1时,b的取值有4个,a=1时,b的取值有3个,a=2时,b的取值有2个.∴(a,b)的取法有9个.综合①②知,(a,b)的取法有4+9=13个.3.(2022·全国卷Ⅱ理,5)如图,小明从街道的E处动身,先到F处与小红会合,再一起到位于G处的老年公寓参与志愿者活动,则小明到老年公寓可以选择的最短路径条数为导学号 98570023()A.24 B.18C.12 D.9[答案] B[解析]由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.二、填空题4.大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不小于20的积的结果有____________种.导学号98570024[答案] 5[解析] 第1个正方体向上的面标有的数字必大于等于4.假如是3,则3与其次个正方风光上标有数字最大者6的积3×6=18<20,4×5=5×4=20,4×6=6×4=24,5×5=25, 5×6=6×5=30,6×6=36,以上积的结果为20,24,25,30,36共五种.5.在一块并排10垄的田地中,选择2垄分别种植A ,B 两种作物,每种作物种植一垄,为有利于作物生长,要求A ,B 两种作物的间隔不小于6垄,则不同的选垄方法有________[答案] 12[解析] 第一类:第1垄种植作物A ,B 作物种植在第8,9,10垄中的任一垄,有3种选法; 其次类:第2垄种植A 作物,B 作物种植在第9,10垄中的任一垄,有2种选法; 第三类:第3垄种植A 作物,B 作物种植在第10垄中,有1种选法; 第四类:第8垄种植A 作物,B 作物种植在第1垄,有1种选法;第五类:第9垄种植A 作物,B 作物种植在第1,2垄中的任一垄,有2种选法; 第六类:第10垄种植A 作物,B 作物种植在第1,2,3垄中的任一垄,有3种选法. 由分类加法计数原理,共有3+2+1+1+2+3=12种不同的方法. 三、解答题6.若x ,y ∈N +,且x +y ≤6,试求有序自然数对(x ,y)[解析] 按x 的取值进行分类,x =1时,y =1,2,…,5,共构成5个有序自然数对.x =2时,y =1,2,…,4,共构成4个有序自然数对.……x =5时,y =1共构成1个有序自然数对,依据分类加法计数原理,共有N =5+4+3+2+1=15个有序自然数对.7.设椭圆x 2a +y 2b =1的焦点在y 轴上,其中a ∈{1,2,3,4,5},b ∈{1,2,3,4,5,6,7},求满足上述条件的椭圆的[解析] 由于椭圆的焦点在y 轴上,所以b >a . 则当a =1时,b 可取2,3,4,5,6,7,有6种取法;当a =2时,b 可取3,4,5,6,7,有5种取法; 当a =3时,b 可取4,5,6,7,有4种取法; 当a =4时,b 可取5,6,7,有3种取法; 当a =5时,b 可取6,7,有2种取法.故共有6+5+4+3+2=20个满足条件的椭圆.8.(2021·锦州期中)某单位职工义务献血,在体检合格的人中,O 型血的共有28人,A 型血的共有7人,B 型血的共有9人,AB 型血的有3(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?[解析] 从O 型血的人中选1人有28种不同的选法.从A 型血的人中选1人有7种不同的选法,从B 型血的人中选1人有9种不同的选法,从AB 型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选择哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步乘法计数原理,共有28×7×9×3=5292种不同的选法.。
第一章 1.3 第1课时
一、选择题
1.(2015·湖南理,6)已知⎝
⎛⎭
⎫x -
a x 5的展开式中含x 3
2的项的系数为30,则a =( )
A. 3 B .- 3 C .6 D .-6
[答案] D
[解析] T r +1=C r 5(-1)r a r x 52
-r ,令r =1,可得-5a =30⇒a =-6,故选D. 2.S =(x -1)4+4(x -1)3+6(x -1)2+4x -3,则S 等于( ) A .(x -2)4 B .x 4 C .(x +1)4 D .x 4+1
[答案] B
[解析] S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1=[(x -1)+1]4=x 4.故应选B. 3.⎝
⎛⎭
⎪⎫a x -x a 26
的展开式的第三项为( )
A.15x B .-15x
C .-6x 2
a 2
D.20a
2 [答案] A
[解析] T 3=T 2+1=C 26
⎝⎛⎭⎫a x 4·⎝⎛⎭⎫-x
a 22=15x
.故应选A. 4.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3项的系数是( ) A .74 B .121 C .-74 D .-121
[答案] D
[解析] (1-x )5,(1-x )6,(1-x )7,(1-x )8中x 3项的系数分别为-C 35,-C 36,-C 37,-C 3
8,故所求x 3项的系数为-(C 35+C 36+C 37+C 38
)=-121. 5.(1
2x -2y )5的展开式中x 2y 3的系数是( )
A .-20
B .-5
C .5
D .20
[解析] 展开式的通项公式为T r +1=C r 5(12x )5-r ·(-2y )r =(12)5-r ·(-2)r C r 5x 5-r y r . 当r =3时为T 4=(12
)2(-2)3C 35x 2y 3=-20x 2y 3
,故选A. 6.(2015·日照高二检测)在⎝
⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项共有( )
A .4项
B .5项
C .6项
D .7项
[答案] A
[解析] T r +1=C r 20(32x )20-r ⎝
⎛⎭⎫-12r =⎝⎛⎭⎫-22r ·(32)20-r C r 20·x 20-r =⎝⎛⎭⎫-12r ·C r 20·240+r 6·x 20-r
.,
∵系数为有理数.且0≤r ≤20. ∴r =2,8,14,20.故选A.
7.(x +12x )8
的展开式中常数项为( )
A.3516
B.358
C.354 D .105
[答案] B
[解析] T r +1 =C r 8(x )8-r (12x
)r =C r 8·12r ×x 8-2r 2,当r =4时,T r +1为常数,此时C 48×124=35
8
,故选B. 二、填空题 8.(2x -
1x
)6
的二项展开式中的常数项为________.(用数字作答) [答案] -160
[解析] 考查二项式定理特殊项的求法.由题意知,设常数项为T r +1,则T r +1=C r 6(2x )
6
-r ·(-
1x
)r =C r 626-r (-1)r x 6-r 2·x -r 2,∴3-r =0,∴r =3,∴T r +1=-160,注意常数项是x 的次数为0.
9.已知二项式(x -1
x
)n 的展开式中含x 3的项是第4项,则n 的值为____________.
[解析] ∵通项公式T r +1=C r n (-1)r x
n -2r
, 又∵第4项为含x 3的项, ∴当r =3时,n -2r =3,∴n =9. 三、解答题
10.(1)求(1+2x )7的展开式中第四项的系数; (2)求⎝⎛⎭⎫x -1
x 9的展开式中x 3的系数及二项式系数. [解析] (1)(1+2x )7的展开式的第4项为
T 3+1=C 37(2x )3=280x 3
,
∴(1+2x )7的展开式中第四项的系数是280. (2)∵⎝⎛⎭⎫x -1
x 9的展开式的通项为 T r +1=C r 9x 9-r ⎝⎛⎭⎫-1x r =(-1)r ·C r 9x 9-2r . 令9-2r =3,r =3, ∴x 3的系数为(-1)3C 39=-84. x 3的二项式系数为C 39=84.
一、选择题
1.(4x -2-
x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .20
[答案] C
[解析] 设第r +1项为常数项,
T r +1=C r 622x (6-r )(-2-x )r =(-1)r ·C r 62
12x -2rx -rx , ∴12x -3rx =0,∴r =4.∴常数项为T 5=(-1)4C 46=15. 2.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207
[答案] D
[解析] x 5应是(1+x )10中含x 5项与含x 2项.
∴其系数为C 510+C 210(-1)=207.
3.使(3x +1x x )n
(n ∈N +)的展开式中含有常数项的最小的n 为( )
A .4
B .5
C .6
D .7
[答案] B
[解析] 由二项式的通项公式得T r +1=C r n 3n -r
xn -52r ,若展开式中含有常数项,则n -52r =0,即n =5
2
r ,所以n 最小值为5.选B.
二、填空题
4.(2015·徐州期末)在(1+2x )5的展开式中,x 3的系数为________.(用数字作答) [答案] 80
[解析] 在(1+2x )5的展开式中,x 3的系数为C 35·23=80.
5.设a =⎠⎛0
πsin xdx ,则二项式(a x -
1x
)6
的展开式中的常数项等于________. [答案] -160
[解析] a =⎠⎛0
πsin xdx =(-cos x )|π0=2,二项式(2x -1x )6
展开式的通项为T r +1=C r 6(2x )
6
-r ·(-
1x
)r
=(-1)r ·26-r ·C r 6x 3-r ,令3-r =0得,r =3,∴常数项为(-1)3·23·C 36=-160.
三、解答题
6.已知⎝⎛⎭⎫x +2
x 2n 的展开式中第5项的系数与第3项的系数之比为563,求展开式中的常数项.
[解析] T 5=C 4n (x )n -424x -8
=16C 4n x n -202, T 3=C 2n (x )n -222x -4=4C 2n x n -102
. 由题意知,16C 4
n 4C 2n =56
3
,解得n =10.
T k +1=C k 10(x )10-k 2k x -2k =2k C k 10
x 10-5k 2, 令5-5k
2
=0,解得k =2,
∴展开式中的常数项为C 21022
=180.
7.求(1+x +x 2)8展开式中x 5的系数. [解析] 解法1:(1+x +x 2)8=[1+(x +x 2)]8.
∴T r +1=C r 8(x +x 2)r ,则x 5的系数由(x +x 2)r 来决定. T ′k +1=C k r x r -k x 2k =C k r x
r +k ,令r +k =5, ∵k ≤r ,∴⎩⎪⎨⎪⎧ r 1=5k 1=0;或⎩⎪⎨⎪⎧ r 2=4k 2=1;或⎩⎪⎨⎪⎧
r 3=3k 3=2
.
∴含x 5的系数为C 58C 05+C 48C 14+C 38C 2
3=504.
解法2:(1+x +x 2)=[(1+x )+x 2]8=C 08(1+x )8+C 18(1+x )7·x 2+C 28
(1+x )6·(x 2)2+C 38(1+x )5·(x 2)3+…,则展开式中含x 5的系数为C 08C 58+C 18C 37+C 28C 16=504.
8.在⎝
⎛⎭⎪⎫
2x 2-13x 8
的展开式中,求:(1)第5项的二项式系数及第5项的系数;(2)倒数第3
项.
[解析] 要求展开式中某些特定的项或特定的系数时,可以不必写出全部的展开式,只需利用通项公式即可.
(1)∵T 5=C 48·
(2x 2)8-4·⎝ ⎛⎭
⎪⎫13x 4=C 48
·24·x 203
, ∴第5项的二项式系数是C 48=70,第5项的系数是C 48·
24=1 120. (2)解法1:展开式中的倒数第3项即为第7
项,T 7=C 68·
(2x 2)8-6·⎝
⎛
⎭
⎪⎫
-
13x 6=112x 2. 解法2:在⎝ ⎛⎭⎪⎫2x 2-13x 8
展开式中的倒数第3项就是⎝ ⎛⎭
⎪⎫
13
x -2x 28展开式中的第3项,T 3=C 28
·⎝ ⎛⎭
⎪⎫
13
x 8-2·
(2x 2)2=112x 2.。