漫反射光谱详解演示文稿
- 格式:ppt
- 大小:1.53 MB
- 文档页数:27
固体样品的紫外-可见漫反射光谱(UV-Vis DRS)测定一、实验目的1.掌握紫外-可见漫反射原理;2.了解紫外-可见分光光度计的类型和结构;3.数据处理及分析。
二、实验原理1.紫外-可见漫反射光谱与紫外一可见吸收光谱相比,所测样品的局限性要小很多。
吸收光谱符合朗伯-比尔定律,溶液必须是稀溶液才能测量。
而漫反射光谱,所测样品可以是浑浊溶液、悬浊溶液、固体和固体粉末等,试样产生的漫反射符合Kublka-Munk方程式:()2-=R R K S12//∞∞式中:K——吸收系数S——散射系数R∞——表示无限厚样品的反射系数R的极限值,其数值为一个常数。
实际上,一般不测定样品的绝对反射率,而是以白色标准物质为参比(本实验采用BaSO4,其反射系数在紫外-可见区高达98%左右)比较测量得到的相对反射率R∞(样品)/R∞(参比),将此比值对波长作图,构成一定波长范围内该物质的反射光谱。
积分球是漫反射测量中的常用附件之一,其内表面的漫反射物质反射系数高达98%,使得光在积分球内部的损失接近零。
漫反射光是指从光源发出的的光进入样品内部,经过多次反射、折射、散射及吸收后返回样品表面的光。
这些光在积分球内经过多次漫反射后到达检测器。
2.固体漫反射吸收光谱漫反射光谱是一种不同于一般吸收光谱的在紫外、可见和近红外区的光谱,是一种反射光谱,与物质的电子结构有关。
D:漫反射S:镜面反射固体漫反射示意图当光照射固体样品时,固体样品的外层电子产生跃迁。
νλE=h=h*C/式中:E为禁带能h=6.626⨯10-34J⋅S(普朗克常数)C=8⨯108m⋅S-1λ为截止波长,待测本实验测试仪器为岛津公司生产的UV-3600(大附件MPC-3100)分光光度计。
三、实验过程1.打开分光光度计预热20-30min;2.通过UVProbe软件设置相应参数;3.样品漫反射光谱测试;4.数据处理及分析。
四、实验报告及要求1.掌握实验原理以及相关知识;2.参数设置时的技巧;3.计算所测半导体材料的带隙,附图谱。
有机物的电子跃迁包括 n- n -n 跃迁等将放在紫外可见分光分度法中来介绍。
紫外可见漫反射光谱基本原理刖言:1. 紫外可见光谱利用的哪个波段的光?紫外光的波长范围为:10-400 nm;可见光的波长范围:400-760 nm;波长大于760 nm 为红外光 波长在10-200 nm 范围内的称为远紫外光,波长在 200-400 nm 的为近紫外光。
而对于紫外可见光谱仪而言,人们一般利用近紫外光和可见光,一般测试范围为能量-2.紫外可见漫反射光谱可以做什么?紫外可见漫反射(UV-Vis DRS )可用于研究固体样品的光吸收性能,催化剂表面过渡金属离子 及其配合物的结构、氧化状态、配位状态、配位对称性等。
备注:这里不作详细展开,我们后面会结合实例进行分析。
3. 漫反射是什么?当光束入射至粉末状的晶面层时, 一部分光在表层各晶粒面产生镜面反射(specular reflection ); 另一部分光则折射入表层晶粒的内部,经部分吸收后射至内部晶粒界面,再发生反射、折射吸收。
如此多次重复,最后由粉末表层朝各个方向反射岀来, 这种辐射称为漫反射光(diffuse reflection )Specular reflection DifTuse retie cl ion 4.紫外可见光谱的基本原理对于紫外可见光谱而言,不论是紫外可见吸收还是紫外可见漫反射,其产生的根本原因多为电子200-800 nm.200tvnEit i400 tunf OCtLin2. 5 \1 波七:X-15 A跃迁.对于无机物而言:a. 在过渡金属离子-配位体体系中,一方是电子给予体,另一方为电子接受体。
在光激发下,发生电荷转移,电子吸收某能量光子从给予体转移到接受体, 在紫外区产生吸收光谱。
其中,电荷从金属(Metal )向配体(Ligand )进行转移,称为MLCT;反之,电荷从配体向金属转移,称为LMCT.4| 卜唯 transitions ・.(st mi con ductors )b. 当过渡金属离子本身吸收光子激发发生内部d 轨道内的跃迁(d-d )跃迁,引起配位场吸收带,需要能量较低,表现为在可见光区或近红外区的吸收光谱。