2.1负数的引入
- 格式:ppt
- 大小:4.06 MB
- 文档页数:26
2.1正数和负数(第一课时)教学目标:知识与技能:通过实例,感受引入负数的必要性;会判断一个数是正数还是负数;会用正负数表示互为相反意义的量。
过程与方法:通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。
情感态度与价值观:通过归纳,让学生体会思维的一般过程是从具体到抽象;从特殊到一般的过程,使他们培养良好的思维习惯和探索精神,通过对学生进行爱国主义思想教育,培养学生良好的个性品质。
教学重点:会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义。
教学难点:理解负数、数0表示的量的意义。
教村分析:会判断正数、负数及理解对数0表示量的意义,能为下一节课讲述有理数的分类,大小的比较等打下基础,因此成为本节课的重点,由于用负数表示实际问题对学生来说很不习惯,因此成为本节课的教学难点。
本节课是在小学所学算术数之后数的X围的第一次扩充,是算术数到有理数的衔接,而且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
本节课从学生熟悉的实例出发,通过一系列探索和讨论过程,着重培养学生学会观察、分析、总结和归纳,使传授知识与培养能力融为一体,使学生不仅学到科学探究的方法,而且让他们在学习过程中获得愉快和进步,同时培养他们爱国主义精神。
教学方法:情境教学法、启发式教学法、讨论法课时安排:一课时教具:投影仪(电脑)附板书设计:正数和负数(一)正数像+1.8,+14200,+30, +10%等在已学过的数 (0除外)的前面添上 “+”的数叫正数。
教学反思:本节课采取启发式教学法和情感教学,创设问题情境,引导学生主动思考,总结和归纳,取得了较好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养,重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师,但在引入正负数概念时,学生由得到的具体数总结归纳时,仍然感到有些难度,教师有些包办代替,还是应该多举些实例,完全由学生得出更好。
负数减负数知识点总结一、负数的概念1.1 负数的引入负数的引入是为了解决减法运算中被减数小于减数时无法直接计算的问题。
例如,当我们计算7-9时,显然结果是负数-2。
为了能够进行这样的减法运算,人们引入了负数的概念。
负数是整数的一种,它用于表示小于零的数。
在数轴上,负数位于原点的左侧,表示比零小的数,例如-1、-2、-3等。
1.2 负数的定义负数可以用来表示欠债、亏损、温度等与实际生活中相对应的概念。
在数学上,负数可以用以下方式定义:当a和b是两个整数,且a >b时,我们可以说a比b大。
如果我们用a-b来表示a减去b的差,那么当a>b时,a-b即代表了一个新的数,这个数比零小,即负数。
1.3 负数的性质负数具有与正数不同的性质,主要包括:(1)负数与正数相加的结果可能是正数、零或负数。
例如,-3+5 =2,-3+3 =0,-3+(-5)=-8。
(2)负数的绝对值是它本身的相反数。
例如,|-3| =3,|-5| =5等。
(3)负数之间的加法和减法满足结合律、交换律和分配律。
1.4 负数的表示负数可以用符号和绝对值的形式表示。
按照通用的数学规范,一般使用“-”符号来表示负数,例如,-3、-7、-10等。
此外,负数也可以用括号或下标的形式来表示,如(3)、10(-)等。
在计算机编程中,负数通常用补码来表示。
二、负数减法的规则和性质2.1 负数减法的规则与整数减法相似,负数减法也有一定的规则和运算步骤。
其主要规则包括:(1)两个负数相减,先求绝对值之差,再加负号。
例如,-5-(-2) =-5+2 =-3。
(2)一个负数减去另一个负数,变为加法运算,即先求绝对值之和,再加负号。
例如,-5-2 =-7。
(3)一个正数减去一个负数,变为加法运算,即先求绝对值相加,再保持原符号。
例如,5-(-3) =5+3 =8。
2.2 负数减法的性质负数减法具有以下性质:(1)减法消去律:对于任意数a、b、c,如果a+b =c,则a=c-b;如果a-b=c,则a=c+b。
负数的发展历史引言概述:负数作为数学中的一个重要概念,起初并未被广泛接受和理解。
然而,随着人们对数学的深入研究和应用,负数逐渐被认可并在各个领域中得到广泛应用。
本文将介绍负数的发展历史,从其最初的引入到现代应用的多样性。
一、负数的引入1.1 负数的起源在公元前3世纪,印度数学家布拉马古普塔首次提出了负数的概念。
他将负数称为“负债”,并认为负数可以用来解决一些实际问题,如债务和负利率等。
1.2 负数的争议负数的引入一度引发了激烈的争议。
古希腊数学家们对负数持怀疑态度,认为它们没有实际意义,并且会导致数学的矛盾。
然而,随着时间的推移,人们逐渐接受了负数的存在,并开始深入研究其性质和应用。
1.3 负数的符号表示在13世纪,意大利数学家斯卡拉曼格达首次引入了负数的符号表示法。
他使用“-”符号表示负数,并将正数用“+”符号表示。
这一表示法为负数的运算和表达提供了便利。
二、负数的性质和运算2.1 负数的性质负数具有一些独特的性质。
首先,两个负数相加的结果是一个更小的负数。
其次,负数乘以正数的结果是一个负数。
这些性质使得负数在数学运算中具有重要的作用。
2.2 负数的运算规则负数的运算遵循一定的规则。
首先,两个负数相加时,绝对值较大的负数的绝对值会减去绝对值较小的负数的绝对值。
其次,负数与正数相乘时,结果的符号取决于负数的个数。
2.3 负数的应用负数在现实生活和各个领域中都有广泛的应用。
在金融领域,负数用于表示债务和负利率。
在物理学中,负数用于表示方向和电荷等概念。
在计算机科学中,负数用于表示补码和浮点数等。
三、负数的数轴表示3.1 数轴的引入为了更好地理解和表示负数,数轴的概念被引入。
数轴是一条直线,上面标有正数和负数,可以帮助我们直观地理解负数的大小和相对位置。
3.2 负数在数轴上的表示在数轴上,负数位于原点的左侧,其绝对值越大,与原点的距离越远。
负数的表示使得我们可以更直观地比较和运算负数。
3.3 数轴在教学中的应用数轴在数学教学中被广泛应用。
负数的发展历史引言概述:负数是数学中一种重要的概念,它在数学运算、物理学、经济学等领域中都有广泛的应用。
本文将从负数的起源开始,逐步探讨负数的发展历史,包括负数的概念建立、负数的运算规则、负数的应用以及负数在现代科学中的重要性。
正文内容:1. 负数的概念建立1.1 负数的起源- 负数的概念最早可以追溯到公元前2000年的古巴比伦时代,当时人们用负数来表示债务。
1.2 负数的定义- 负数是指小于零的数,用负号“-”表示。
它在数轴上表示为向左的方向。
1.3 负数的引入- 负数的引入是为了解决一些实际问题,如温度的正负、债务的表示等。
2. 负数的运算规则2.1 负数的加法- 负数的加法规则是将两个负数相加,结果为更小的负数;将一个正数和一个负数相加,结果为两数之差的负数。
2.2 负数的减法- 负数的减法规则是将两个负数相减,结果为两数之差的正数;将一个正数和一个负数相减,结果为两数之和的负数。
2.3 负数的乘法- 负数的乘法规则是两个负数相乘得到正数;一个正数和一个负数相乘得到负数。
2.4 负数的除法- 负数的除法规则是两个负数相除得到正数;一个正数和一个负数相除得到负数。
3. 负数的应用3.1 负数在经济学中的应用- 负数可以表示债务和亏损,匡助人们进行经济计算和决策。
3.2 负数在物理学中的应用- 负数可以表示向左的方向、向下的速度等物理量,匡助人们描述和解决物理问题。
3.3 负数在计算机科学中的应用- 负数在计算机科学中有广泛的应用,如表示补码、图象处理等方面。
4. 负数在现代科学中的重要性4.1 负数在数学运算中的重要性- 负数在数学运算中起到了重要的作用,如解方程、解不等式等。
4.2 负数在物理学中的重要性- 负数在物理学中有着广泛的应用,如描述运动的方向、速度的变化等。
4.3 负数在经济学中的重要性- 负数在经济学中匡助人们进行经济计算、制定决策,对经济发展起到了重要的作用。
总结:综上所述,负数作为数学中的重要概念,在数学运算、物理学、经济学等领域中有着广泛的应用。
学思达教育初一(上)数学2012年暑假2.1 负数的引入一、知识要点1、负数我们在小学时学过了自然数,分数(小数),学生举实例在生活中大家见到过负数吗?净胜球“-3”;某地某日温度“-12℃”;某精密仪器上的钛金属零件的误差一定要控制在“±0.002”毫米以内;“-3”“-12℃”“-0.002”这样的“负数”已经在我们生活中北广泛地应用了。
“负数“表示一类量的多少的,他们有一个共同的特征:一定存在与它们意义相反的量。
输赢球,温度高低正数:我们原来学过的除0以外的自然数和分数。
负数:在正数前面加上一个“—”号(读作“负号”),得到的数就叫做负数。
注意:0既不是正数也不是负数,0是整数,0是自然数,0是非负数,0是非整数;0不仅仅表示没有(0的实际意义)。
2、(1)有理数定义:整数和分数统称为有理数。
(2)有理数分类(3)习惯上将“正有理数和0”称作非负有理数(即非负数)。
(4)最小的正整数是1,最大的负整数是-1,没有最大、最小的整数。
最小的自然数是0.二、典型例题例1、设向东行驶为正,则向东行驶30m记做,向西行驶20m记做,原地不动记做,-5m表示向行驶5m,+16m表示向行驶16m。
例2、收入-2000元,表示。
三、课堂练习判断:1、一个数,如果不是正数,一定就是负数。
2、正有理数是正整数和正分数的统称。
3、一个有理数不是分数就是正数。
4、整数不是奇数就是偶数。
5、0是最小的有理数。
6、正整数和负整数统称为整数。
7、有理数包括整数和分数。
8、0是自然数,不是整数。
9、没有最小的有理数。
四、课后作业Page 1 of 1。
2.1(1)正数与负数(第一课时)教学目标:1、结合温度、海拔等角度认识具有相反意义的量。
2、知道正负数所表示的实际含义。
3、初步会用正负数表示简单实际问题中具有相反意义的量。
4、感悟正数与负数在生活中的应用。
教学重点及难点:重点:会用正负数表示简单实际问题中具有相反意义的量。
难点:认识具有相反意义的量与正负数之间的关系。
教学用具准备卡片、练习纸、多媒体设备教学过程设计一、情景引入1、在我们的生活中有很多表示相反意义的量,请大家找找这里哪些数量的意义是相反的?用线连一连。
上车5人下降10米运进出200吨下车8人上升9米运进98吨减少54辆增加36辆通过刚才的连线,我们发现“上车5人与下车8人”是一对意义相反的量,我们可以这样说:上车的人数与下车的人数是一对具有相反意义的量。
请学生也说说其它几组数量中意义相反的量2、举例:请同桌两人也举例说一对生活中表示相反意义的量。
[说明]教师要引导学生说出什么与什么是一对具有相反意义的量,鼓励学生思考、交流生活中表示相反意义的量,在小组交流中教师要积极参与学生的讨论,及时纠正错例。
通过教师的引导和学生的举例参与,可以让学生充分体验什么是意义相反的量,由此引发后面的学习。
二、探究新知(一)、认识相反意义的量:1、海拔高度:演示珠穆拉玛峰和马里亚纳海沟图片如果以海平面为分界点,珠穆拉玛峰位于海平面以上,马里亚纳海沟位于海平面以下,我们说海平面以上的高度和海平面以下的深度也是一对具有相反意义的量。
2、温度计:演示海口与哈尔滨的温度我们说零上温度和零下温度也是一对具有相反意义的量。
(二)、认识正数和负数:1、引入“+、-”:为了区别零上温度和零下温度,人们规定在零上温度前面添上这个符号“+”,而在零下温度的前面添上这个符号“-”请学生试读这两个符号这两个符号在这里不是运算符号,我们不能读作加、减。
“+”这是正号,读作“正”,“-”这是负号,读作“负”,海口的最低气温可以表示成正12摄氏度,读作正12摄氏度,哈尔滨的最低气温可以表示成-25摄氏度,读作负25摄氏度。
整数和负数4一、教学目标:1。
使学生体会具有相反意义的量,并能用有理数表示.2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义.3.会求有理数的相反数和绝对值(绝对值符号内不含字母)。
4。
会比较有理数的大小。
5。
了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。
6。
会用计算器进行有理数的简单运算。
7.理解有理数的运算律,并能用运算律简化运算.8.能运用有理数的运算解决简单的问题。
9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断.二、教材的特点:1。
本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。
教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2.本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。
同时引进了计算器来完成一些有理数的运算.教学中要注意正确地把握.3。
数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
4.本章的导图是天气预报图,是引入负数的实际情景。
应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。
三、课时安排:本章的教学时间大约需要23课时,建议分配如下:§2。
1正数和负数———-—-—-—--——--2课时§2。
2数轴--—————-——--—-———----——--2课时§2。
3相反数—-——---—-——--——-—-——————1课时§2.4绝对值-------————---—-———-——1课时§2.5有理数的大小比较—-—-——---—1课时§2。
6有理数的加法——--——---—--——2课时§2。
7有理数的减法--—-——————--—-—-1课时§2.8 有理数的加减法混合运算----——-—2课时§2.9 有理数的乘法————-—-----———--2课时§2。