平面向量专题练习(带答案详解)
- 格式:docx
- 大小:39.36 KB
- 文档页数:11
A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。
,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。
=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。
=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。
= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。
一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。
平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
数学平面向量多选题专项训练练习题含答案一、平面向量多选题1.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( )A .若a b →→=,则a b →→=B .若a c b c →→→→⋅=⋅,则a b →→=C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥ 答案:ACD【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断.【详解】对应,若,则向量长度相等,方向相同,故,故正确;对于,当且时,,但,可以不相等,故错误;对应,若,,则方向相同解析:ACD【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断.【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.2.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=答案:BCD【分析】.向量数量积不满足结合律进行判断.判断两个向量是否共线即可.结合向量数量积与夹角关系进行判断.根据向量线性运算进行判断【详解】解:.向量数量积不满足结合律,故错误,.,解析:BCD【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确, C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0mn <成立, 当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-, 则23λ=,23μ=-,则22033λμ+=-=,故D 正确 故正确的是BCD ,故选:BCD .【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.3.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7; C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是 答案:ABD【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误.【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误.【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得R =ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()23B B B π=+=+ 14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD.【点睛】本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.4.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( )A .14,33⎛⎫ ⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭ C .14,33⎛⎫-- ⎪⎝⎭ D .(7,9)答案:ABC【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可.【详解】由点,,则选项A . ,所以A 选项正确.选项B. ,所以B 选项正确.选项C . ,所以C 选解析:ABC【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可.【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭ 选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭ ,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC【点睛】 本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.5.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+ B .2AB EF →→=C .1133CP CA CB →→→=+ D .2233CP CA CB →→→=+ 答案:AC【分析】由已知结合平面知识及向量共线定理分别检验各选项即可.【详解】如图:根据三角形中线性质和平行四边形法则知,, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心解析:AC【分析】由已知结合平面知识及向量共线定理分别检验各选项即可.【详解】如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的; 因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误.故选:AC【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.6.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( )A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<答案:ABD【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可.解:由正弦定理得,故正确;对于,,选项:如图解析:ABD【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可.【详解】 解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确; 对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数.易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个. 故B ,D 正确,C 错误.故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.7.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AFCE G =,则( )A .12AF AD AB =+B .1()2EF AD AB =+C .2133AG AD AB =- D .3BG GD =答案:AB由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误【详解】,即A 正确,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有∴,即C 错误同理,解析:AB【分析】 由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确 连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1||||2GF GE AG CG == ∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C 错误 同理21212()()33333BG BF BA BC CF BA AD AB =+=++=- 211()333DG DF DA AB DA =+=+,即1()3GD AD AB =- ∴2BG GD =,即D 错误【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系8.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC =B .ABC ∆是钝角三角形 C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆外接圆半径为7 答案:ACD【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可.【详解】因为所以可设:(其中),解得:所以,所以A 正确;由上可知:边最大,所以三角形中角最大,又 ,所以角为解析:ACD【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可.【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x === 所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确;由上可知:c 边最大,所以三角形中C 角最大, 又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小, 又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos 2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭ 所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin C ==所以2R =,解得:R =D 正确. 故选:ACD.【点睛】本题考查了正弦定理和与余弦定理,属于基础题.9.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( )A .BD AD AB -=B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-答案:BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确;对于C 选项:,故正确;对于D 选项:,而,故解析:BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错;对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确; 对于C 选项:cos 248BD BA BC BA BC B BA BC BA ⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确.故选:BC.【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.10.下列各组向量中,不能作为基底的是( )A .()10,0e =,()21,1=eB .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=- ⎪⎝⎭e D .()12,6=e ,()21,3=--e答案:ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.11.有下列说法,其中错误的说法为( ).A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ=答案:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当时,与不一定共线,故A 错误;对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确;对于选项C ,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可. 【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确;对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD 【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.12.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±答案:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反解析:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ⋅=,故选项B 错误;因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确. 故选:ACD. 【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.13.已知ABC ∆的面积为32,且2,b c =,则A =( ) A .30°B .60°C .150°D .120°答案:BD 【分析】由三角形的面积公式求出即得解. 【详解】 因为, 所以, 所以,因为, 所以或120°. 故选:BD 【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.解析:BD 【分析】由三角形的面积公式求出sin 2A =即得解. 【详解】 因为13sin 22S bc A ==,所以13222A ⨯=,所以sin 2A =,因为0180A ︒︒<<, 所以60A =或120°. 故选:BD 【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 14.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同答案:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据解析:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.15.题目文件丢失!二、平面向量及其应用选择题16.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( ) A .1233AB AC -+ B .2133AB AC - C .1233AB AC - D .2133AB AC -+ 解析:A 【分析】作出图形,利用AB 、AC 表示AO ,然后利用平面向量减法的三角形法则可得出OC AC AO =-可得出结果. 【详解】如下图所示:D 为BC 的中点,则()1122AD AB BD AB BC AB AC AB =+=+=+-1122AB AC =+, 2AO OD =,211333AO AD AB AC ∴==+, 11123333OC AC AO AC AB AC AB AC ⎛⎫∴=-=-+=-+ ⎪⎝⎭,故选:A. 【点睛】本题考查利用基底表示向量,考查了平面向量减法和加法三角形法则的应用,考查计算能力,属于中等题.17.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】 设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB y AB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭, 又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭.【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.18.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2 B .-2C .4D .-4解析:D 【分析】将已知向量关系变为:12333m OA OB OC +=,可得到3mOC OD =且,,A B D 共线;由AOB ABC O S S DCD∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】由2OA OB mOC +=得:12333mOA OB OC += 设3m OC OD =,则1233OA OB OD += ,,A B D ∴三点共线 如下图所示:OC 与OD 反向共线 3OD mm CD∴=- 734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D 【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系.19.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:②ABC ∆③ABC ∆的周长为4+④ABC ∆外接圆半径3R =这四个结论中一定成立的个数是( ) A .1个 B .2个C .3个D .4个解析:C 【分析】由正弦定理可得三角形的外接圆的半径;由三角函数的恒等变换化简2A π=或sin 2sin B A =,即2b a =;分别讨论,结合余弦定理和三角形面积公式,计算可得所求值,从而可得结论. 【详解】4c =,3C π∠=,可得42sin sin 3c R C π===,可得ABC ∆外接圆半径R =④正确;()sin sin 2sin2C B A A +-=,即为()()sin sin 2sin2A B B A A ++-=,即有sin cos cos sin sin cos cos sin 2sin cos 4sin cos A B A B B A B A B A A A ++-==, 则cos 0A =,即2A π=或sin 2sin B A =,即2b a =;若2A π=,3C π=,6B π=,可得2a b =,①可能成立;由4c =可得3a =,3b =,则三角形的周长为4+123bc =; 则②③成立;若2b a =,由2222222cos 316c a b ab C a b ab a =+-=+-==,可得3a =,3b =则三角形的周长为4a b c ++=+11sin sin 223333S ab C π==⋅⋅=; 则②③成立①不成立;综上可得②③④一定成立,故选C . 【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,考查三角函数的恒等变换,属于中档题.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20.已知D,E,F分别是△ABC的边BC,CA,AB的中点,且BC a CA b==,,AB c=,则①AD=-b-12a;②BE=a+12b;③CF=-12a+12b;④AD+BE+CF=0.其中正确的等式的个数为( )A.1B.2C.3D.4解析:D【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案.【详解】①如图可知AD=AC+CD=AC+12CB=-CA-12BC=-b-12a,故①正确.②BE=BC+CE=BC+12 CA=a+12b,故②正确.③CF=CA+AE=CA+12AB=b+12(-a-b)=-12a+12b,故③正确.④AD+BE+CF=-DA+BE+CF =-(DC+CA)+BE+CF=-(12a+b)+a+12b-12a+12b=0,故④正确.故选D.【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.21.已知向量(22cos m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2π D .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 解析:D 【详解】()22cos 2cos 2212sin(2)16f x x x x x x π=+=++=++,当12x π=时,sin(2)sin163x ππ+=≠±,∴f (x )不关于直线12x π=对称;当512x π=时,2sin(2)116x π++= ,∴f (x )关于点5(,1)12π对称; f (x )得周期22T ππ==, 当(,0)3x π∈-时,2(,)626x πππ+∈-,∴f (x )在(,0)3π-上是增函数. 本题选择D 选项.22.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2 B .52C .3D .72解析:B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.23.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( )A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形【分析】由数量积的定义判断B 角的大小,得三角形形状. 【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形. 故选:D . 【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 24.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4 B .4:5 C .2:3 D .3:5解析:A 【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.25.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定 D .若||b →确定,则θ唯一确定解析:B 【分析】2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a aθ⋅==时,222min244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案.2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈,所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1,所以2||b ta -的最小值也为1,即222min244()()14a b a b f t a-⋅==,222||cos 1b b θ-=,所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B 【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题.26.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥解析:A 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误; 对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误; 对于④:a b a b +≥+,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.27.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( )A .重心B .垂心C .外心D .内心 解析:B【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心.【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-=即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即有,,PA CB PB CA PC AB ⊥⊥⊥,则点P 为三角形ABC 的垂心.故选:B.【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平.28.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶2解析:B【分析】延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。
高考数学平面向量专题练习考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法。
3、掌握实数与向量的积,理解两个向量共线的充要条件。
4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。
6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。
1、已知向量b a 与不共线,且0||||≠=b a ,则下列结论中正确的是 A .向量b a b a -+与垂直 B .向量b a -与a 垂直C .向量b a +与a 垂直D .向量b a b a -+与共线2.已知在△ABC 中,OA OC OC OB OB OA ⋅=⋅=⋅,则O 为△ABC 的A .内心B .外心C .重心D .垂心3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC =,则AD 用b a ,表示为 。
4、已知21,e e 是两个不共线的向量,而→→→→→→+=-+=2121232)251(e e b e k e k a 与是两个共线向量,则实数k = .5、设→i 、→j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且→→+=j i OA 24,→→+=j i OB 43,则△OAB 的面积等于 :A .15B .10C .7.5D .56、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 ,将向量OC 按逆时针方向旋转90°得到向量OD ,则向量OD 的坐标是 . 7、已知)3,2(),1,(==AC k AB ,则下列k 值中能使△ABC 是直角三角形的值是A .23B .21-C .-5D .31-8、在锐角三角形ABC 中,已知ABC AC AB ∆==,1||,4||的面积为3,则=∠BAC ,AC AB ⋅的值为 .9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量AB 与CD 的位置关系是 A. 平行B. 垂直C. 相交但不垂直D. 无法判断10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围是:A .]4,0[π B .]125,4[ππ C .]125,12[ππ D .]2,125[ππ 11、若,4,,2||,3||π夹角为且b a b a ==则||b a +等于:A .5B .52C .21D .1712、已知→a =(6,2),→b =)21,4(-,直线l 过点A )1,3(-,且与向量→→+b a 2垂直,则直线l 的一般方程是 . 13、设]2,[,),()()(ππ--∈-+=R x x f x f x F 是函数)(x F 的单调递增区间,将)(x F 的图象按)0,(π=a 平移得到一个新的函数)(x G 的图象,则)(x G 的单调递减区间必是:A .]0,2[π-B .],2[ππC .]23,[ππ D .]2,23[ππ14、把函数3)2(log 2+-=x y 的图象按向量a 平移,得到函数1)1(log 2-+=x y 的图象,则a 为( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4)15、如果把圆)1,(02:22-==-+m a y y x C 沿向量平移后得到圆C ′,且C ′与直线043=-y x 相切,则m 的值为 .16、已知P 是抛物线122-=x y 上的动点,定点A (0,-1),若点M 分PA 所成的比为2,则点M 的轨迹方程是_____,它的焦点坐标是_________.17、若D 点在三角形的BC 边上,且4CD DB r AB sAC ==+,则3r s +的值为:A. 165B. 125C. 85D. 4518、若向量),sin ,(cos ),sin ,(cos ββb a ==αα则b a与一定满足:A.b a 与的夹角等于βα-B.)()(b a b a -⊥+C. b a //D.b a ⊥19、已知A (3,0),B (0,3),C (cos α,sin α).(1)若BC AC ⋅=-1,求sin2α的值; (2)若13||=+OC OA ,且α∈(0,π),求OB 与OC 的夹角.20、已知O 为坐标原点,a R a R x a x OB x OA ,,)(2sin 3,1(),1,cos 2(2∈∈+==是常数),若.OB OA y ⋅=(Ⅰ)求y 关于x 的函数解析式);(x f (Ⅱ)若]2,0[π∈x 时,)(x f 的最大值为2,求a 的值并指出)(x f 的单调区间.21、已知A (-2,0)、B (2,0),点C 、点D 满足).(21,2||AC AB AD AC +== (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 22、如图,已知△OFQ 的面积为S ,且 1=⋅FQ OF . (1)若21<S <2,求向量OF 与FQ 的夹角θ的取值范围; (2)设|OF | = c (c ≥2),S =c 43,若以O 为中心,F 为焦点的椭圆经过点Q ,当|OQ |取得最小值时,求此椭圆的方程.参考答案1、A ;2、D ;3、→→+b a 4341;4、231或;5、D ;6、)2,1(-,)1,2(--;7、D ;8、3π, 2;9、A ;10、C ;11、D ;12、0932=--y x ;13、D ;14、D ;15、35±;16、)0(162≠-=x x y ,)21,0(;17、C ;18、B19(1)解:(cos 3,sin )AC αα=-,(cos ,sin 3)BC αα=-∴BC AC ⋅=-1⇒cos (cos 3)sin (sin 3)1αααα-+-=- ∴2cos sin 3αα+=,∴224cos sin 2sin cos 9αααα++= ∴5sin 29α=- (2)∵(3cos ,sin )OA OC αα+=+=化简得1cos 2α=, ∵(0,)απ∈,∴sin 2α=∴3sin cos ,sin 3||||OB OC OB OC OB OC αα⋅<>====2 ∴OB 与OC 的夹角为6π20.(1),2sin 3cos 22a x x OB OA y ++=⋅=).](32,6[:).](6,3[:)(.1,23,3)(,]6,0[6,262.1)62sin(2)()2(.12sin 32cos )(Z k k kx Z k k kx x f a a a x f x x a x x f a x x x f ∈+-∈+--==++∈==+∴+++=+++=∴πππππππππππ单调减区间是的单调增区间是可解得函数解得由取最大值时解得 21.解:(I )设C 、D 点的坐标分别为C (),00y x ,D ),(y x ,则00,2(y x AC +=),)0,4(=AB则),6(00y x AC AB +=+,故)2,32()(2100y x AC AB AD +=+=又解得故⎪⎪⎩⎪⎪⎨⎧=+=++=.2,232),,2(00y y x x y x AD ⎩⎨⎧=-=.2,2200y y x x 代入2)2(||2020=++=y x AC 得122=+y x ,即为所求点D 的轨迹方程.(II )易知直线l 与x 轴不垂直,设直线l 的方程为)2(+=x k y ①.又设椭圆方程为)4(1422222>=-+a a y a x ②. 因为直线l 与圆122=+y x 相切.故11|2|2=+k k ,解得.312=k将①代入②整理得,0444)4(2422222222=+-++-+a a k a x k a x a k a , 而313=k ,即0443)3(24222=+-+-a a x a x a ,设M (),11y x ,N (),22y x ,则32221--=+a a x x ,由题意有)3(5423222>⨯=-a a a ,求得82=a .经检验,此时.0>∆ 故所求的椭圆方程为.14822=+y x 22.解:(1)由已知,得.2tan 1cos ||||)sin(||||21S FQ OF SFQ OF =⇒⎪⎩⎪⎨⎧==-⋅θθθπ ∵21<S <2,∴2<tan θ<4,则4π<θ<arctan4. (2)以O 为原点,OF 所在直线为x 轴建立直角坐标系,设椭圆方程为12222=+by a x (a >0,b >0),Q 的坐标为(x 1,y 1),则FQ =(x 1-c ,y 1),∵△OFQ 的面积为,43||211c y OF =⋅∴y 1 =23又由OF ·FQ =(c ,0)·⎪⎭⎫ ⎝⎛-23 ,1c x =(x 1-c )c = 1,得x 1 =491|| ,122121+⎪⎭⎫ ⎝⎛+=+=+c c y x OQ c c (c ≥2).当且仅当c = 2时|OQ |最小,此时Q 的坐标为⎪⎭⎫⎝⎛23 ,25,由此可得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=-=+6104149425222222b a b a b a , 故椭圆方程为161022=+y x .。
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
高三数学平面向量试题答案及解析1.已知,若共线,则实数x=A.B.C.1D.2【答案】B【解析】此题考查向量共线的条件;由已知得到,又因为共线,所以。
选B2.已知向量的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】故选C3.已知向量、的夹角为,且,,则向量与向量+2的夹角等于()A.150°B.90°C.60°D.30°【答案】D【解析】设量与向量+2的夹角为故选D4.设向量,是两个相互垂直的单位向量,一直角三角形两条边所对应的向量分别为,,,则的值可能是()A.或B.或C.或D.或【答案】C【解析】若则;若则若则无解;故选C5.已知,则实数k的值是。
【答案】-1【解析】略6.已知:(1)求关于x的表达式,并求的最小正周期;(2)若时,的最小值为5,求m的值.【答案】(1)(2)3【解析】7.已知向量,则实数k的值为()A.B.0C.3D.【答案】C【解析】,又,,即,解得【考点】平面向量的坐标运算。
8.已知平面向量,,,,,,若,则实数()A.4B.-4C.8D.-8【答案】D.【解析】∵,,∴,故选D【考点】平面向量共线的坐标表示.9.若向量,,则=()A.B.C.D.【答案】B【解析】因为向量,,所以.故选B.【考点】向量减法的坐标的运算.10.已知向量,满足,,则夹角的余弦值为( ) A.B.C.D.【答案】D【解析】,,则的夹角余弦值为.故选D.【考点】向量的基本运算.11.已知向量若与平行,则实数的值是()A.-2B.0C.2D.1【答案】C【解析】,根据题意有,解得,故选C.【考点】向量的运算,向量共线的坐标表示.12.(本小题满分12分)已知向量,函数.(1)若,求的值;(2)若,求函数的值域.【答案】(1);(2).【解析】本题主要考查平面向量的数量积的运算、三角函数中的恒等变换的应用、两角和与差的正弦公式、倍角公式、三角函数的值域、正弦函数的图象和性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,运用平面向量的数量积的坐标表示和两角差的正弦公式以及二倍角的余弦公式,即可得到结论;第二问,由,则可以得到,运用正弦函数的图象和性质,即可得到函数的值域.试题解析:(1)向量,则函数,,则,;(2)由,则,,则.则的值域为.【考点】平面向量的数量积的运算、三角函数中的恒等变换应用、三角函数的值域、正弦函数的图象和性质.13.设,,若,则= .【答案】【解析】因为,所以,解得,所以=.【考点】1、平面向量垂直的充要条件;2、平面向量的模.14.己知向量,满足||=||=2且,则向量与的夹角为.【答案】【解析】因为||=||=2,所以由数量积的运算律可将化为,即,所以,故向量与的夹角为.【考点】①向量数量积的运算律;②向量夹角计算公式.15.在△ABC中,若点D满足,则()A.B.C.D.【答案】A【解析】由于,因此.【考点】向量的加法法则.16.设向量,,且,则的值是()A.B.C.D.【答案】C【解析】由得,即,解得,故选C.【考点】向量垂直的条件,向量数量积坐标运算公式.17.已知,,,且与垂直,则实数的值为.【答案】.【解析】本题考查两个向量垂直,向量的数量积的计算,难度简单.由得.由得,所以.【考点】向量垂直,向量的数量积.18.设直角的三个顶点都在单位圆上,点M,则的最大值是()A.B.C.D.【答案】C【解析】由题意,,当且仅当共线同向时,取等号,即取得最大值,最大值是,故选:C.【考点】1.点与圆的位置关系;2.平面向量及应用.【思路点睛】由题意,,当且仅当共线同向时,取等号,即可求出的最大值.19.已知为同一平面内的四个点,若,则向量等于()A.B.C.D.【答案】C【解析】由得,即,故选C.【考点】向量的回头法运算及几何意义.20.已知点,,点在轴上,当取最小值时,点的坐标是()A.B.C.D.【答案】D【解析】设,则,所以,由二次函数的性质得,当时有最小值,所以点的坐标是.【考点】1.向量的运算;2.二次函数.21.已知向量,,,若向量与共线,则的值为()A.B.C.D.【答案】D【解析】由题意得,,故由与共线得,解得,故D项正确.【考点】平面向量的运算及共线定理.22.设是所在平面内一点,且,则()A.B.C.D.【答案】D【解析】,又,所以,即.故选D.【考点】向量的线性运算.23.已知向量的夹角为,,向量,的夹角为,,则与的夹角正弦值为,.【答案】,或【解析】作,则,向量,由题意可得为边长为的等边三角形,向量的夹角为,可得,由,可得四点共圆,在中,,由正弦定理可得,在中,,由余弦定理可得,解得,当在中,同理可得.【考点】平面向量的数量积的运算.24.设向量与的夹角为,且,则等于()A.B.C.D.6【答案】B【解析】,故选B.【考点】平面向量数量积的定义.25.已知向量,,则当时,的取值范围是___________.【答案】.【解析】根据向量的差的几何意义,表示向量终点到终点的距离,当时,该距离取得最小值为1,当时,根据余弦定理,可算得该距离取得最大值为,即的取值范围是,故填:.【考点】平面向量的线性运算.26.如图,在梯形ABCD中,AB∥CD,AB=4,AD=3,CD=2,.若=-3,则=.【答案】【解析】因为,所以【考点】向量数量积27.如图,中,,为的中点,以为圆心,为半径的半圆与交于点,为半圆上任意一点,则的最小值为()A.B.C.D.【答案】D【解析】以为坐标原点,所在直线为轴建立直角坐标系,所以,设且,所以,令,则,其中.所以当时有最小值.故选D.【考点】1、平面向量的数量积公式;2、圆的参数方程的应用.28.梯形中,,则()A.B.C.D.不能确定【答案】C【解析】由梯形易得:,所以,又,所以,由于,所以,可得,故选C.【考点】1、平面向量基本定理;2、向量的平行.29.设向量,若向量与向量垂直,则的值为()A.3B.1C.D.-1【答案】D【解析】因为向量,向量与向量垂直,所以,故选D.考点 1、向量的坐标表示;2、平面向量的数量积公式 .30.边长为的等边三角形中心为,是边上的动点,则()A.有最大值B.有最小值C.是定值D.与的位置有关【答案】C【解析】设是中点,则.故选C.【考点】向量的数量积.【名师】本题是求平面向量的数量积的问题,解题时要把动点与定点结合起来,如果能化动为静,则问题易解.为此可选取两个向量作为基底,其他向量都用它们表示,然后求解,在求数量积时,垂直的向量是我们要着重考虑的,因为垂直的数量积为0,计算时比较方便,易于求解.31.如图,四边形是三个全等的菱形,,设,,已知点在各菱形边上运动,且,,则的最大值为 .【答案】4【解析】根据条件知,G,O,C三点共线,连接OE,则OE⊥GC;∴分别以OC,OE所在直线为x轴,y轴,建立如图所示平面直角坐标系,设棱形的边长为2,则;设,则;∴;∴;∴;设,则,表示在y轴上的截距;当截距最大时,取到最大值;由图形可以看出当直线经过点时截距最大;∴;即x+y的最大值为4.【考点】向量的线性运算.【名师】考查向量的线性运算,通过建立平面直角坐标系,利用向量坐标解决向量问题的方法,能确定平面上点的坐标,以及向量坐标的加法和数乘运算,直线的点斜式方程,线性规划的运用.这是一道综合题,有一定的难度,对学生分析问题解决问题的能力要求较高.32.若向量,,则=()A.B.C.D.【答案】B【解析】由题意,向量,故选B.【考点】向量的运算.33.设是圆上不同的三个点,且,若存在实数,使得,则实数的关系为()A.B.C.D.【答案】A【解析】∵,两边平方得:,∵,∴,故选A.【考点】(1)直线与圆的方程的应用;(2)向量共线定理;(3)平面向量的垂直.【思路点晴】本题主要考查圆的定义及向量的模及其数量积运算,还考查了向量与实数的转化.在向量的加,减,数乘和数量积运算中,数量积的结果是实数,所以考查应用较多.由是圆上不同的三个点,可得,又,所以对两边平方即可得到结论.34.如图,正方形中,为的中点,若,则的值为()A.B.C.1D.-1【答案】A【解析】,又,所以,又,那么.故本题选A.【考点】1.平面向量的线性运算;2.平面向量的基本定理.35.已知角的顶点为坐标原点,始边为轴的正半轴,终边落在第二象限,是其终边上的一点,向量,若,则()A.B.C.D.【答案】D【解析】设与轴正向的夹角为,则,因为角的顶点为坐标原点,始边为轴的正半轴,终边落在第二象限且,所以,.故应选D.【考点】1、向量垂直的性质;2、两角和的正切公式.36.已知非零向量且对任意的实数都有,则有()A.B.C.D.【答案】C【解析】因为非零向量且对任意的实数都有,所以,,,即,,故选C.【考点】1、平面向量数量积公式;2、一元二次方程根与系数的关系.【方法点睛】本题主要考查平面向量数量积公式以及一元二次方程根与系数的关系,属于难题.对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间上的题型,一般采取列不等式组(主要考虑判别式、对称轴、的符号)的方法解答.37.已知向量,则下列结论正确的是()A.B.C.D.【答案】C【解析】因为,所以A错;因为,所以B错;因为,所以,所以,所以C正确,故选C.【考点】向量平行与垂直的充要条件.38.如图所示,矩形的对角线相交于点,的中点为,若(为实数),则()A.1B.C.D.【答案】C【解析】,,所以,故选C.【考点】平面向量基本定理39.已知向量=(-1,1),向量=(3,t),若∥(+),则t=________.【答案】-3【解析】,由∥(+)得,.【考点】向量平行.40.已知向量,若,则()A.B.C.D.【答案】C【解析】因,故代入可得,故应选C.【考点】向量坐标形式及运算.41.已知向量满足,那么向量的夹角为()A.30°B.60°C.150°D.120°【答案】D【解析】.【考点】向量运算.42.已知非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】若,则,即有,由,可得,即有,,由,可得与夹角的大小为.故选:D.【考点】向量的夹角.43.等腰直角三角形中,,,点分别是中点,点是(含边界)内任意一点,则的取值范围是()A.B.C.D.【答案】A【解析】以为坐标原点,边所在直线为轴,建立直角坐标系,则,,设,则且,,,令,结合线性规划知识,则,当直线经过点时,有最小值,将代入得,当直线经过点时,有最大值,将代入得,故答案为A.【考点】(1)平面向量数量积的运算;(2)简单线性规划的应用.【方法点睛】本题考查的知识点是平面向量的数量积运算及线性规划,处理的关键是建立恰当的坐标系,求出各点、向量的坐标,利用平面向量的数量积公式,将其转化为线性规划问题,再利用“角点法”解决问题.选择合适的原点建立坐标系,分别给出动点(含参数)和定点的坐标,结合向量内积计算公式进行求解.44.设向量,且,则的值是()A.2B.C.8D.【答案】C【解析】由已知得,∴.【考点】平面向量坐标运算.45.边长为的正三角形,其内切圆与切于点为内切圆上任意一点,则的取值范围为__________.【答案】【解析】以点为坐标原点,所在直线为轴建立平面直角坐标系,如图所示,则点,,内切圆的方程为,设点,则.【考点】向量的坐标运算;向量的数量积.【方法点晴】本题主要考查了平面向量的坐标运算、平面向量的数量接的运算等知识点的应用,解答中,以点为坐标原点,所在直线为轴建立平面直角坐标系,确定点的坐标,利用内切圆得出的坐标,利用向量的数量积的公式和坐标运算,即可求解的取值范围,着重考查了学生的推理与运算能力,属于中档试题.46.平面向量与的夹角为30°,已知,则()A.B.C.D.【答案】D【解析】因,故,故应选D.【考点】向量的有关运算.47.已知非零向量的夹角为,且,则()A.B.1C.D.2【答案】A【解析】由得,,解得,故选A.【考点】向量的数量积.48.在等腰梯形中,已知,点和点分别在线段和上,且,则的值为_____________.【答案】【解析】以为坐标原点,为轴的正方向建立平面直角坐标系,则,所以.【考点】向量的数量积、向量运算.【思路点晴】本题主要考查向量的数量积、向量运算,利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算.对向量与几何图形的综合问题,可通过向量的数量积运算把向量问题转化为代数问题来求解.49.已知是单位圆上的两点(为圆心),,点是线段上不与重合的动点.是圆的一条直径,则的取值范围是()A.B.C.D.【答案】A【解析】,点是线段上,,故选A.【考点】向量及其运算.50.设是单位向量,且,则的最小值为()A.-2B.C.-1D.【答案】D【解析】当时,,故选D.【考点】向量及其基本计算.51.在平行四边形中,为一条对角线,,,则=()A.(2,4)B.(3,5)C.(1,1)D.(-1,-1)【解析】,故选C.【考点】平面向量的线性运算.52.已知在内有一点,满足,过点作直线分别交、于、,若,,则的最小值为A.B.C.D.【答案】A【解析】由知P是的重心,则,所以,∵共线,∴,∴,当且仅当时取等号,∴的最小值为.故选A.【考点】平面向量基本定理,三点共线定理.【名师】设上直线外一点,,则三点共线的条件是.利用此共线定理可以解决平面向量中的共线点问题,通过它把几何问题代数化.53.已知是平面上一定点,是平面上不共线的三个点,动点满足,则点的轨迹一定通过的()A.重心B.垂心C.内心D.外心【答案】A【解析】由正弦定理得,所以,而,所以表示与共线的向量,而点是的中点,即的轨迹一定是通过三角形的重心,故选A.【考点】平面向量.【思路点晴】本题主要考查向量的加法和减法的几何意义,考查了解三角形正弦定理,考查了三角形四心等知识.在几何图形中应用平面向量加法和减法,往往要借助几何图形的特征,灵活应用三角形法则和平行四边形.当涉及到向量或点的坐标问题时,应用向量共线的充要条件解题较为方便.三角形的四心是:内心、外心、重心和垂心.54.已知向量,,且,则.【答案】【解析】因为,所以,所以.【考点】向量运算.55.已知菱形的对角线,则()A.1B.C.2D.【解析】在菱形中,,设相交于点,由向量数量积的几何意义可知,故选C.【考点】向量数量积的几何意义.56.已知向量,向量,则_____________.【答案】【解析】,所以.【考点】向量的坐标运算.57.已知向量满足,且,则___________.【答案】【解析】由于,两边平方得,因为.【考点】向量运算.58.已知向量,满足,,且(),则.【答案】【解析】设,则,又因为,即,所以,解得,即,解得.【考点】向量的坐标运算.59.已知向量_________.【答案】【解析】,解得,,那么,故填:.【考点】向量数量积的坐标表示60.已知向量,,且,则()A.B.C.D.【答案】A【解析】因为所以所以所以故答案选A【考点】向量的数量积;向量的模.61.设向量.若,则实数等于()A.-1B.1C.-2D.2【解析】,∴,得.故选C.【考点】向量的基本运算.62.已知向量,,若,则实数__________.【答案】【解析】因为向量,,所以有 , 若,则有,解得.63.已知,分别是椭圆的左、右焦点.(1)若点是第一象限内椭圆上的一点,,求点的坐标;(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.【答案】(1);(2).【解析】(1)首先得到焦点的坐标,点满足两个条件,一个是点在椭圆上,满足椭圆方程,另一个是将 ,转化为坐标表示,这样两个方程两个未知数,解方程组;(2)首项设过点的直线为,与方程联立,得到根与系数的关系,和,以及,根据向量的数量积可知,为锐角,即,这样代入根与系数的关系,以及,共同求出的取值范围.试题解析:(1)易知.,设,则,又.联立,解得,故.(2)显然不满足题设条件,可设的方程为,设,联立由,得.①又为锐角,又.②综①②可知的取值范围是【点睛】解析几何中的参数范围的考查是高考经常考的的问题,这类问题,要将几何关系转化为代数不等式的运算,必然会考查转化与化归的能力,将为锐角转化为 ,这样就代入根与系数的关系,转化为解不等式的问题,同时不要忽略.64.若向量,且∥,则实数_________.【答案】【解析】依题设,,由∥得,,解得.65.已知向量,若,则__________.【答案】11【解析】由题意可知,因为,所以∙=0,解得m=11.66.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点的直线与该图象交于,两点,则的值为()A.B.C.D.2【答案】D【解析】解:∵函数的周期,则,即C点是一个对称中心,根据向量的平行四边形法则可知: ,则: .本题选择D选项.67.已知向量,若向量与向量共线,则实数__________.【答案】【解析】因为,又因为向量与向量共线,所以,所以.68.(理科)已知平面上共线的三点和与这三点不共线的定点,若等差数列满足:,则数列的前38项之和为__________.【答案】19【解析】三点共线,,,,故答案为.69.已知向量满足,若,的最大值和最小值分别为,则等于()A.B.2C.D.【答案】C【解析】因为所以;因为,所以的最大值与最小值之和为,选C.70.已知向量,,且,则向量和的夹角为()A.B.C.D.【答案】C【解析】,则,,则向量和的夹角为,选C.【点睛】本题考查平面向量的有关知识及及向量运算,借助向量的模方和模,求向量的夹角,本题属于基础题.解决向量问题有两种方法,第一种是借助向量的几何意义,利用加法、减法、数乘、数量积运算,借助线性运算解题,另一种方法是建立适当的平面直角坐标系,利用向量的坐标运算解题.71.在中,,,,,是线段的三等分点,则的值为()A.B.C.D.【答案】B【解析】,,则【点睛】向量的运算有两种方法,一种是线性运算,如本题以为基底,把有关向量利用加法、减法及数乘运算表示出来,然后利用数量积运算计算出结果,另一种方法是建立直角坐标系,把相关点得坐标写出来,然后利用坐标运算公式计算出结果.72.在为所在平面内一点,且,则()A.B.C.D.【答案】A【解析】由题可知.故本题选.点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合.在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.73.已知,,则的最大值是__________.【答案】3【解析】,所以的最大值是3.74.设向量,.则与垂直的向量可以是A.B.C.D.【答案】A【解析】由题意可知:,本题选择A选项.75.已知的外接圆圆心为,且,若,则的最大值为__________.【答案】【解析】设三个角所对的边分别为,由于,,,所以,解得,.76.若向量,且,则的最大值是A.1B.C.D.3【答案】D【解析】× ,选D.77.设,向量且,若不等式恒成立,则实数k的最大值为____.【答案】【解析】由向量平行的充要条件有:,据此可得:,其中整理可得:,当时满足题意,否则:当时,由对称轴处的函数值可得恒成立,综上可得实数k的最大值为.78.已知向量,若与垂直,则实数的值是_________.【解析】,79.已知过抛物线的焦点的直线与抛物线交于,两点,且,抛物线的准线与轴交于点,于点,若四边形的面积为,则准线的方程为( ) A.B.C.D.【答案】A【解析】由题意,知,直线的方程为.设,则,.由,得,即①.设直线的方程为,代入抛物线方程消去,得,所以②.联立①②,得或(舍去),所以.因为=,将的值代入解得,所以直线的方程为,故选A.点睛:本题考查抛物线的几何性质、直线与抛物线的位置关系和平面向量的坐标运算.求解与向量交汇的圆锥曲线问题,通常利用点的坐标对已知的或所求的向量式进行转化,然后再利用解析几何的知识求解.80.(20分)已知为的外心,以线段为邻边作平行四边形,第四个顶点为,再以为邻边作平行四边形,它的第四个顶点为.(1)若,试用表示;(2)证明:;(3)若的外接圆的半径为,用表示.【答案】解:(1)由平行四边形法则可得:即(2)O是的外心,∣∣=∣∣=∣∣,即∣∣=∣∣=∣∣,而,=∣∣-∣∣=0,(3)在中,O是外心A=,B=于是∣∣2=(=+2+2=(),【解析】略81.已知向量a=(cosθ,sinθ),θ∈[0,π],向量b=(,-1).(1)若a⊥b,求θ的值;(2)若|2a-b|<m恒成立,求实数m的取值范围.【答案】(1)(2)(4,+∞)【解析】解:(1)∵a⊥b,∴cosθ-sinθ=0,得tanθ=,又θ∈[0,π],∴θ=.(2)∵2a-b=(2cosθ-,2sinθ+1),∴|2a-b|2=(2cosθ-)2+(2sinθ+1)2=8+8(sinθ-cosθ)=8+8sin(θ-),又θ∈[0,π],∴θ-∈[-,],∴sin(θ-)∈[-,1],∴|2a-b|2的最大值为16,∴|2a-b|的最大值为4,又|2a-b|<m恒成立,∴m>4.故m的取值范围为(4,+∞).82. [2014·牡丹江模拟]设e1,e2是两个不共线的向量,且a=e1+λe2与b=-e2-e1共线,则实数λ=()A.-1B.3C.-D.【答案】D【解析】∵a=e1+λe2与b=-e2-e1共线,∴存在实数t,使得b=ta,即-e2-e1=t(e1+λe2),- e2-e1=te1+tλe2,由题意,e1,e2不共线,∴t=-1,tλ=-,即λ=,故选D.83.已知,若,则__________.【答案】1【解析】因为,所以,,解得。
平面向量有关习题及答案平面向量是高中数学中的一个重要概念,也是许多学生感到困惑的内容之一。
在这篇文章中,我将为大家提供一些关于平面向量的习题及答案,希望能够帮助大家更好地理解和掌握这一概念。
1. 习题:已知向量A = (2, 3)和向量B = (4, -1),求向量A + B的坐标。
解答:向量A + B的坐标可以通过将A和B的相应坐标相加得到。
所以,A + B = (2 + 4, 3 + (-1)) = (6, 2)。
2. 习题:已知向量A = (3, -2)和向量B = (-1, 5),求向量A - B的坐标。
解答:向量A - B的坐标可以通过将A和B的相应坐标相减得到。
所以,A - B = (3 - (-1), -2 - 5) = (4, -7)。
3. 习题:已知向量A = (1, 2)和向量B = (3, 4),求向量A与向量B的数量积。
解答:向量A与向量B的数量积可以通过将A和B的相应坐标相乘,并将乘积相加得到。
所以,A·B = 1×3 + 2×4 = 11。
4. 习题:已知向量A = (2, 3),求向量A的模长。
解答:向量A的模长可以通过使用勾股定理计算得到。
所以,|A| = √(2^2 +3^2) = √(4 + 9) = √13。
5. 习题:已知向量A = (1, 2)和向量B = (3, 4),求向量A与向量B的夹角的余弦值。
解答:向量A与向量B的夹角的余弦值可以通过使用向量的数量积公式计算得到。
所以,cosθ = (A·B) / (|A| × |B|) = (1×3 + 2×4) / (√(1^2 + 2^2) × √(3^2 + 4^2)) = 11 / (√5 × √25) = 11 / (5 × 5) = 11 / 25。
通过以上习题及答案的解析,我们可以看到平面向量的运算和性质是相对简单的,只需要掌握一些基本的概念和计算方法就能够解决大部分的问题。
平面向量1.(2007年天津理15)如图,在ABC △中,12021B A C A B A C ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,BC =由正弦定理得sin C ∠=,则c o s C ∠=,在A D C ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则AD =coc ADC ∠=,138||||cos ,(33AD BC AD BC AD BC ⋅=⋅==-. 〖答案〗83-.2.(浙江省09年高考省教研室第一次抽样测试数学试题(理)5)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13 B 、12C 、 2D 、3 〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tb AP t -+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB=12. 〖答案〗B .3(江苏省南通市2008-2009学年度第一学期期末调研测试数学试卷13) .在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ . 〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.ABDCABOPab(第2题图)〖答案〗5π12. 4.【2010·茂名市二模】如右图,在ABC ∆中,04,30A B B C A B C ==∠=,AD 是边BC 上的高,则AD AC ⋅的值等于 ( )A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5(2007年山东理11). 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( )A .2AC AC AB =⋅ B . 2BC BA BC =⋅ C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除 B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C .6.(2009湖北卷理)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π答案 B解析 直接用代入法检验比较简单.或者设(,)a x y ''=v ,根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '7.(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________.第4题图答案: 4/3解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =-代入条件得2433u u λλ==∴+= 8. (2008·广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.(2009昆明市期末)在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32B .97 C .98 D .1答案:B10.(2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1]D.[-1,6]答案:A11.(2006四川)如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.(江西省五校2008届高三开学联考)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.(山东省博兴二中高三第三次月考)已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,=41,=21,AD 与BC 相交于点M ,设=a ,=b .试用a 和b 表示向量______OM a b =+. 解 设=m a +n b ,则=-=m a +n b -a =(m-1)a +n b .=-=21-=-a +21b . 又∵A 、M 、D 三点共线,∴与共线. ∴存在实数t,使得=t , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n tm ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵=-OC =m a +n b -41a =(m-41)a +n b .=-=b -41a =-41a +b .又∵C 、M 、B 三点共线,∴与共线. 8分∴存在实数t 1,使得=t 1,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴=71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=,e 2=, 则=+=-3e 2-e 1, =+=2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λ=-3λe 2-λe 1,a b∴=μ=2μe 1+μe 2,∴=-=(λ+2μ)e 1+(3λ+μ)e 2,另外BA =+=2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴=54,=53,∴AP ∶PM=4∶1. 方法二 设=λ, ∵AM =21(+)=21+43, ∴=2λ+43λ. ∵B 、P 、N 三点共线,∴-=t(-),∴=(1+t)-t AN∴⎪⎪⎩⎪⎪⎨⎧-=+=t t λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1. 16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C 17.( 2010年高考全国卷I 理科11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 4-(B)3-(C) 4-+(D)3-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB ∙22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()3PA PB ∙=-+.18.(2010年高考福建卷理科7)若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)3⎡-+∞⎣B. )3⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3x y x -=≥,解得220001(3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为0x ≥,所以当0x 时,O P F P ⋅取得最小值4313⨯+=3+OP FP ⋅的取值范围是[3)++∞,选B 。
平面向量专题训练知识点回顾1.向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。
每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:运 算图形语言符号语言坐标语言加法与减法→--OA +→--OB =→--OC→--OB -→--OA =→--AB记→--OA =(x 1,y 1),→--OB =(x 1,y 2) 则→--OA +→--OB =(x 1+x 2,y 1+y 2)AB OB --→=u u u r -→--OA =(x 2-x 1,y 2-y 1)→--OA +→--AB =→--OB实数与向量 的乘积→--AB =λ→aλ∈R记→a =(x,y) 则λ→a =(λx,λy)两个向量 的数量积→a ·→b =|→a ||→b | cos<→a ,→b >记→a =(x 1,y 1), →b =(x 2,y 2) 则→a ·→b =x 1x 2+y 1y 2(3)两个向量平行 :设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔a b λ=r r⇔x 1y 2-x 2y 1=0(4)两个向量垂直:设→a =(x 1,y 1), →b =(x 2,y 2),则→a ⊥→b⇔a 0b •=r r ⇔x 1x 2+y 1y 2=0 课堂精练一、选择题1. 已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线2. 已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( ) A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93--ECBA 3.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d 那么 ( ) A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向 4已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12),5.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r,则( )A.0PA PB +=u u u r u u u r rB.0PC PA +=u u u r u u u r rC.0PB PC +=u u u r u u u r rD.0PA PB PC ++=u u u r u u u r u u u r r6.已知向量a = (2,1),a ·b = 10,︱a + b ︱=b ︱=( ) 7.设a 、b 、c 是单位向量,且a ·b =0,则()()a c bc -•-的最小值为( )A.2-2C.1-D.18已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a( )A .1BC .2D .49平面向量a 与b 的夹角为060,(2,0)a =,1b= 则2ab +=( )B.10.若向量a=(1,1),b=(-1,1),c=(4,2),则c=( )A.3a+bB. 3a-bC.-a+3bD. a+3b11.如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 ( )A .0AD BE CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r rD .0BD BE FC --=u u u r u u u r u u u r r12.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r,那么( )A.AO OD =u u u r u u u rB.2AO OD =u u u r u u u rC.3AO OD =u u u r u u u rD.2AO OD =u u u r u u u r13.设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( )A .150° B.120° C.60° D.30°14.已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.1615.已知1,6,()2==-=g a b a b a ,则向量a 与向量b 的夹角是( )A .6πB .4π C .3π D .2π16.已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是 ( ) A .-2B .0C .1D .217.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r ,则AD =u u u r ( )A .2133+b cB .5233-c bC .2133-b c D .1233+b c 18.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则BD =u u u r ( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)19.设)2,1(-=,)4,3(-=,)2,3(=则=⋅+)2( ( )A.(15,12)-B.0C.3-D.11- 二、填空题1.若向量a r ,b r 满足12a b ==r r ,且a r 与b r 的夹角为3π,则a b +=r r .2.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ3.已知向量a 与b 的夹角为120o,且4==a b ,那么(2)+gb a b 的值为4.已知平面向量(2,4)a =r ,(1,2)b =-r .若()c a a b b =-⋅r r r r r ,则||c =r____________.5.a r ,b r 的夹角为120︒,1a =r,3b =r 则5a b -=r r .6.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是7.若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+=8.已知向量(3,1)a =r ,(1,3)b =r , (,2)c k =r ,若()a c b -⊥r r r则k = .9.已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = .10.在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为__________.平面向量专题训练答案:一选择题1 C2 D3 D 4D 5 B 6 C 7 D 8 C 9 B 10 B11 A 12 A 13 B 14 A 15 C 16 D 17 A 18 B 19 C 二 填空题2 23 0 _4 285 76 -37 -18 09 5 10_(0,-2)。
平面向量专题练习(带答案详解)一、单选题1.已知向量()1,2a =-,()1,1b =,则a b ⋅=( ) A .3B .2C .1D .02.已知向量()1,2a =-,()2,x b =,若//a b ,则x 的值是( ) A .-4B .-1C .1D .43.已知向量()()1,1,0,1,0,2a b ==-,且ka b +与2a b -互相垂直,则k 的值是( ) A .1B .15C .35D .754.等腰直角三角形ABC 中,2ACB π∠=,2AC BC ==,点P 是斜边AB 上一点,且2BP PA =,那么CP CA CP CB ⋅+⋅=( ) A .4-B .2-C .2D .45.设,a b 是非零向量,则2a b =是a ba b=成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件6.在ABC ∆中,4,3A b c E F π=+=、为边BC 的三等分点,则AE AF ⋅的最小值为()A .932B .83C .269D .37.若2a =,2b =,且()-⊥a b a ,则a 与b 的夹角是( ) A .6πB .4πC .3πD .2π8.已知非零向量,a b 满足||6||a b =,,a b 的夹角的余弦值为13,且()a a kb ⊥-,则实数k 的值为( ) A .18B .24C .32D .369.已知向量, m n 的夹角为60︒,且13213m m n -==,,则n =( )A .3212-B .3212+C .2132-D .210.已知向量0.52logsin log cos OA OB OC θθ=⋅+⋅,若A 、B 、C 三点共线,则sin cos θθ+=( )A .355-B .355C .55-D .5511.在ABC ∆中,22AB AC ==,60BAC ∠=︒,且2BD DC =,则AD BC ⋅=( ). A .1-B .1C .7D .7212.已知椭圆222:19x y C b +=的离心率为223,且,M N 是椭圆C 上相异的两点,若点()2,0P 满足PM PN ⊥,则PM MN ⋅的取值范围为( )A .125,2⎡⎤--⎢⎥⎣⎦B .15,2⎡⎤--⎢⎥⎣⎦C .[]25,1--D .[]5,1--13.已知向量()2,a m =-,()1,b n =,若a b b ∥,且2b =,则实数m 的值为( ) A .2B .4C .2-或2D .4-或414.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-15.已知向量a ,b 满足22a a b a b =⋅=-,,当a ,b 的夹角最大时,则a b ⋅=( ) A .0B .2C .22D .416.已知O 是ABC ∆的重心,且20OA OB BC λ++=,则实数λ=( )A .3B .2C .1D .1217.设a ,e 均为单位向量,当a ,e 的夹角为4π时,a 在e 方向上的投影为( )A .22-B .12C .22D .3218.若向量a ,b 满足||3a =,||26b =,且满足(2)a b a +⊥,则a 与b 的夹角为( )A .3πB .23πC .4πD .34π19.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8 B .−6 C .6 D .8二、填空题20.若D 点在三角形ABC 的边BC 上,且4CD DB r AB sAC ,则3r s +的值为__________.21.已知1a =,2b =,且()a ab ⊥-,则向量a 与向量b 的夹角是________. 22.已知在Rt △ABC 中,AC ⊥BC ,()()()1,,3,1,4,AC m AB BD n ===,若B 、C 、D 三点共线,则m +n =_____.23.ABC △中,2A B =,1BC =,则AC 的取值范围是__________,BA BC ⋅的取值范围是__________.24.已知向量(4,3)a =-,若向量(2,1)b =-,则向量a 在向量b 方向上的投影是_____. 25.已知()3,4a =,()2,1b =,则a 在b 方向上的投影为______.26.设向量(1,)AB m =,(2,1)BC m =-,其中[1,)m ∈-+∞,则AB AC ⋅的最小值为__________.27.设向量a ,b 满足10a b +=,6a b -=,则⋅=a b ___________28.已知||1,||2,0,()()0a b a b a c b c ==⋅=-⋅-=,则||c 的最大值为_________________.三、解答题29.已知以F 为焦点的抛物线2:2(0)C y px p =>过点(1,2)P -,直线l 与C 交于A ,B 两点,M 为AB 中点,且OM OP OF λ+=.(1)当3λ=时,求点M 的坐标; (2)当12OA OB ⋅=时,求直线l 的方程.30.已知OA a OB b ==,,对于任意点M ,点M 关于点A 的对称点为点S ,点S 关于点B 的对称点为点N . (1)用a ,b 表示向量MN ;(2)设122327a b MN ⎡⎤==∈⎣⎦,,,,求a 与b 的夹角θ的取值范围.参考答案1.C直接根据向量数量积的坐标表示即可得出结果. 【详解】∵()1,2a =-,()1,1b = ∴11211a b ⋅=-⨯+⨯=, 故选:C . 【点睛】本题主要考查了平面向量数量积的坐标表示,属于基础题. 2.A利用向量平行的坐标表示直接求解即可. 【详解】∵向量()1,2a =-,()2,x b =,//a b , ∴()122x ⨯=-⨯,解得4x =-, ∴x 的值为4-, 故选:A . 【点睛】本题主要考查向量平行的坐标表示,属于基础题. 3.D由ka b +与2a b -互相垂直得()()20a b ka b +⋅=-,再代入()()1,1,0,1,0,2a b ==-求解即可. 【详解】由题()()20a b ka b +⋅=-,即()()31,,202,,2k k --⋅=.故7332405k k k -+-=⇒= .故选:D 【点睛】本题主要考查了空间向量的基本运算与垂直的运用,属于基础题型. 4.D 【解析】【分析】将CP 用CA 与CB 进行表示,代入可得答案. 【详解】解:由题意得:1121()3333CP CA AP CA AB CA AC CB CA CB =+=+=++=+22218443333CP CA CP CB CA CB ⋅+⋅=+=+=,故选:D. 【点睛】本题主要考查平面向量的基本定理及平面向量的数量积,相对不难. 5.B利用||aa 的意义,即a 方向上的单位向量,再根据充分条件与必要条件的定义,即可求得答案. 【详解】由2a b =可知,a b 方向相同,||a a ,||b b 表示,a b 方向上的单位向量,所以||||a ba b =成立;反之不成立. 故选:B . 【点睛】本题考查单位向量的概念、向量共线、简易逻辑知识,考查逻辑推理能力和运算求解能力,求解时注意向量的方向. 6.C 【解析】()22122125 (33339)9AE AF AB AC AB AC AB AC AB AC ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭()()()()22222251212126992969649b c c b bc b c bc b c +=++⨯=+-≥+-⨯=(b c = 时等号成立),即AB AC 的最小值为269, 故选C. 【易错点晴】本题主要考查平面向量的基本运算以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).7.B根据相互垂直的向量数量积为零,求出a 与b 的夹角. 【详解】由题有()20a b a a b a -⋅=-⋅=,即22b a a ⋅==,故2cos 2cos 2b a a b θθ⋅=⨯⨯=⇒=,因为[]0,θπ∈,所以4πθ=.故选:B. 【点睛】本题考查了向量的数量积运算,向量夹角的求解,属于基础题. 8.A根据向量垂直关系和数量积运算公式()0a a kb ⋅-=,可得关于k 的方程,解得k . 【详解】由||6||a b =可设||b t =,则||6(0)a t t =>.因为221()||36603a a kb a ka b t k t t ⋅-=-⋅=-⨯⨯⨯=,所以18k =.故选:A . 【点睛】本题考查平面向量数量积及其运算,同时考查向量垂直关系的运算,属于简单题. 9.D把向量的模用向量的数量积表示出来,由数量积的定义求解. 【详解】222232(32)912cos 60413m n m n m m n n︒-=-=-+=,又1m=,∴22320n n--=,解得2n=,故选:D【点睛】本题考查求向量模,掌握数量积的定义和性质是解题关键.10.B由A、B、C三点共线和对数的运算性质,可得sin1cos2θθ=,再结合三角函数的基本关系式,求得12sin,cos55θθ==,即可求解.【详解】由题意,向量0.52log sin log cosOA OB OCθθ=⋅+⋅,若A、B、C三点共线,根据平面向量的基本定理,可得0.52log sin log cos1θθ+=,即0.50.5log sin log cos1θθ-=,即0.5sinlog1cosθθ=,可得sin1cos2θθ=,且sin0,cos0θθ,又由22sin cos1θθ+=,解得12sin,cos55θθ==,所以sin cosθθ+=355.故选:B.【点睛】本题主要考查了向量的共线定理,以及同角三角函数的基本关系式的应用,着重考查了推理与运算能力,属于基础题.11.A由向量的运算法则,可得1233AD AB AC=+,BC AC AB=-,结合向量的数量积的运算,即可求解,得到答案.【详解】由向量的运算法则,可得2212()3333AD AB BC AB AC AB AB AC=+=+-=+,BC AC AB =-,又由22AB AC ==,60BAC ∠=︒,所以AD BC ⋅=2212112()()33333AB AC AC AB AB AB AC AC +⋅-=--⋅+22112221cos6011333=-⨯-⨯⨯⨯+⨯=-.故选:A . 【点睛】本题主要考查了平面向量的基本定理,以及向量的数量积的运算,其中解答中熟记向量的基本定理,以及向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 12.A根据椭圆的离心率,求出b 的值,得到椭圆的标准方程,然后根据()PM MN PM PN PM ⋅=⋅-,结合PM PN ⊥,得到PM MN ⋅的坐标表示,得到关于x 的函数,结合x 的范围,得到答案. 【详解】椭圆222:19x y C b +=的3a =, 其离心率为223,所以223c a =,所以22c =,所以2221b a c =-=,所以椭圆标准方程为22+19x y =,设(),P x y ,[]3,3x ∈-,则()PM MN PM PN PM ⋅=⋅-2PM PN PM=⋅-因为PM PN ⊥,所以0PM PN ⋅=,所以()2222PM MN PM x y ⎡⎤⋅=-=--+⎣⎦()22219x x ⎡⎤=--+-⎢⎥⎣⎦2891942x ⎛⎫=--- ⎪⎝⎭所以PM MN ⋅是关于x 的二次函数,开口向下,对称轴为94x =,所以当94x =时,取得最大值为12-当3x =-时,取得最小值为25-,所以125,2PM MN ⎡⎤⋅∈--⎢⎥⎣⎦.故选:A. 【点睛】本题考查根据离心率求椭圆的标准方程,向量数量积的坐标表示,二次函数求值域,属于中档题. 13.C根据已知得到a b -的坐标,然后根据a b b ∥,2b =得到关于m ,n 的方程组,从而得到答案. 【详解】向量()2,a m =-,()1,b n =, 所以()3,a b m n -=--, 因为a b b ∥,2b =,所以()2312n m n n ⎧-=-⎨+=⎩,解得21m n =-⎧⎨=⎩或21m n =⎧⎨=-⎩ 所以m 的值为2-或2. 故选:C. 【点睛】本题考查根据向量平行求参数的值,根据向量的模长求参数的值,属于简单题. 14.D构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解. 【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点, 又M 为BC 中点,∴2AH OM =,M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.15.D先建系, 设(2,0),(,)OA a OB b x y ====,再结合平面向量数量积的坐标及运算性质,将a ,b 的夹角最大转化为直线OB 与抛物线相切,利用0∆=求出,即可(,)b x y =,即可解得所求.【详解】设(2,0),(,)OA a OB b x y ====,因为2||a b a b ⋅=-,所以2222(2)x x y =-+,即24(1)y x =-,为点B 的轨迹方程. 由上图易知,当直线OB 与抛物线相切时,,a b 的夹角最大.由24(1)y kx y x =⎧⎨=-⎩消去y 得22244016160,1k x x k k -+=∆=-==±,. 所以2x =,即点(2,2)B 或1(2,2)B -时,即(2,2)b =或(2,2)b =-时,,a b 的夹角最大.此时,4a b ⋅=.故选:D .【点睛】本题考查平面向量数量积的坐标运算,考查转化与化归思想, ,将a ,b 的夹角最大转化为直线OB 与抛物线相切,考查数形结合的解题思想,难度一般.16.C 将BC 用OA ,OB 表示出来,根据O 是重心,即可列方程求得参数的值.【详解】()()2220OA OB BC OA OB OC OB OA OB OC λλλλ++=++-=+-+= 因为O 是ABC ∆的重心,所以211λλ-=⎧⎨=⎩,解得1λ=. 故选:C.【点睛】本题考查向量的线性运算,涉及三角形重心的向量表示,属基础题.17.C 利用向量投影公式,结合向量数量积的运算,求得a 在e 方向上的投影.【详解】a 在e 方向上的投影为2cos 42a e a eπ⋅=⋅=. 故选:C【点睛】本小题主要考查向量投影的计算,属于基础题.18.D【解析】利用向量垂直关系,可得a b ⋅,然后根据向量夹角公式,可得结果.【详解】由(2)a b a +⊥,所以(2)0a b a +⋅=则220a a b +⋅=,又||3a =,所以6a b ⋅=-,由||26b =则2cos ,2ab ab a b⋅==-, 又[],0,a b π∈,所以3,4a b π= 故选:D【点睛】本题考查向量的垂直关系以及向量的夹角公式,掌握公式,细心计算,属基础题. 19.D由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】 ∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8. 故选D .【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题. 20.85根据4CD DB =得到4455CD AB AC ,再由CD r AB sAC =+,根据平面向量的基本定理,求得,r s 的值,代入即可求解.【详解】如图所示,由4CD DB =,可得444555CD CB AB AC ==-,又由CD r AB sAC =+,所以44,55r s ==-,所以44833555r s +=⨯-=, 故答案为:85. 【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中熟记向量的运算法则,以及平面向量的基本定理是解答的关键.着重考查了推理与计算能力,属于基础题. 21.4π根据()a a b ⊥-得到1a b =,再带入夹角公式即可.【详解】因为()a a b ⊥-,所以()0a a b ⋅-=.即20a a b -⋅=,10a b -⋅=,1a b ⋅=. 12cos 22a b a b θ===.所以夹角是4π. 故答案为:4π【点睛】本题主要考查向量的夹角公式,熟练掌握夹角公式为解题的关键,属于简单题。
平面向量第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(文)(2011·北京西城区期末)已知点A (-1,1),点B (2,y ),向量a =(1,2),若AB →∥a ,则实数y 的值为( )A .5B .6C .7D .8[答案] C[解析] AB →=(3,y -1),∵AB →∥a ,∴31=y -12,∴y =7.(理)(2011·福州期末)已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( )A .-2B .0C .1D .2[答案] D[解析] a +b =(3,x +1),4b -2a =(6,4x -2), ∵a +b 与4b -2a 平行,∴36=x +14x -2,∴x =2,故选D.2.(2011·蚌埠二中质检)已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( )A .-2B .-1C .1D .2[答案] B[解析] AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.3.(2011·北京丰台期末)如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( )A .-3B .2C .-17D.17[答案] A[解析] 由条件知,存在实数λ<0,使a =λb ,∴(k,1)=(6λ,(k +1)λ),∴⎩⎪⎨⎪⎧k =6λ(k +1)λ=1,∴k =-3,故选A.4.(文)(2011·北京朝阳区期末)在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则P A →·(PB →+PC →)等于( )A .-49B .-43C.43D.49[答案] A[解析] 由条件知,P A →·(PB →+PC →)=P A →·(2PM →) =P A →·AP →=-|P A →|2=-⎝⎛⎭⎫23|MA →|2=-49.(理)(2011·黄冈期末)在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC →分别为a 、b ,则AH →=( )A.25a -45bB.25a +45b C .-25a +45bD .-25a -45b[答案] B[解析] AF →=b +12a ,DE →=a -12b ,设DH →=λDE →,则DH →=λa -12λb ,∴AH →=AD →+DH →=λa+⎝⎛⎭⎫1-12λb , ∵AH →与AF →共线且a 、b 不共线,∴λ12=1-12λ1,∴λ=25,∴AH →=25a +45b .5.(2011·山东潍坊一中期末)已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( ) A .-3 B .-1 C .1 D .3[答案] D[解析] ∵a +b =(3,1+n ),∴|a +b |=9+(n +1)2=n 2+2n +10, 又a ·b =2+n ,∵|a +b |=a ·b ,∴n 2+2n +10=n +2,解之得n =3,故选D.6.(2011·烟台调研)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( ) A .最大值为8 B .是定值6 C .最小值为2 D .与P 的位置有关[答案] B[解析] 设BC 边中点为D ,则 AP →·(AB →+AC →)=AP →·(2AD →)=2|AP →|·|AD →|·cos ∠P AD =2|AD →|2=6.7.(2011·河北冀州期末)设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件[答案] B[解析] |a +b |=|a |+|b |⇔a 与b 方向相同,或a 、b 至少有一个为0;而a 与b 共线包括a 与b 方向相反的情形,∵a 、b 都是非零向量,故选B.8.(2011·甘肃天水一中期末)已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150°[答案] C[解析] 由条件知|a |=5,|b |=25,a +b =(-1,-2),∴|a +b |=5,∵(a +b )·c =52,∴5×5·cos θ=52,其中θ为a +b 与c 的夹角,∴θ=60°.∵a +b =-a ,∴a +b 与a 方向相反,∴a 与c 的夹角为120°.9.(文)(2011·福建厦门期末)在△ABC 中,∠C =90°,且AC =BC =3,点M 满足BM →=2MA →,则CM →·CB →等于( )A .2B .3C .4D .6[答案] B[解析] 解法1:如图以C 为原点,CA 、CB 为x 轴、y 轴建立平面直角坐标系,则A (3,0),B (0,3),设M (x 0,y 0),∵BM →=2MA →,∴⎩⎪⎨⎪⎧ x 0=2(3-x 0)y 0-3=2(-y 0),∴⎩⎪⎨⎪⎧x 0=2y 0=1,∴CM →·CB →=(2,1)·(0,3)=3,故选B. 解法2:∵BM →=2MA →,∴BM →=23BA →,∴CB →·CM →=CB →·(CB →+BM →)=|CB →|2+CB →·⎝⎛⎭⎫23BA → =9+23×3×32×⎝⎛⎭⎫-22=3.(理)(2011·安徽百校联考)设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最大值时,点B 的个数是( )A .1B .2C .3D .无数[答案] A[解析] x 2+y 2-2x -2y +1≥0,即(x -1)2+(y -1)2≥1,画出不等式组表示的平面区域如图,OA →·OB →=x +y ,设x +y =t ,则当直线y =-x 平移到经过点C 时,t 取最大值,故这样的点B 有1个,即C 点.10.(2011·宁夏银川一中检测)a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1·λ2+1=0D .λ1λ2-1=0[答案] D[分析] 由于向量AC →,AB →有公共起点,因此三点A 、B 、C 共线只要AC →,AB →共线即可,根据向量共线的条件可知存在实数λ使得AC →=λAB →,然后根据平面向量基本定理得到两个方程,消去λ即得结论.[解析] ∵A 、B 、C 共线,∴AC →,AB →共线,根据向量共线的条件知存在实数λ使得AC →=λAB →,即a +λ2b =λ(λ1a +b ),由于a ,b 不共线,根据平面向量基本定理得⎩⎪⎨⎪⎧1=λλ1λ2=λ,消去λ得λ1λ2=1.11.(文)(2011·北京学普教育中心)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量运算a ⊕b =(a 1,a 2)⊕(b 1,b 2)=(a 1b 1,a 2b 2).已知m =⎝⎛⎭⎫2,12,n =⎝⎛⎭⎫π3,0,点P (x ,y )在y =sin x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊕OP →+n (其中O 为坐标原点),则y =f (x )的最大值及最小正周期分别为( )A .2;πB .2;4π C.12;4π D.12;π [答案] C[解析] 设点Q (x ′,y ′),则OQ →=(x ′,y ′),由新定义的运算法则可得: (x ′,y ′)=⎝⎛⎭⎫2,12⊕(x ,y )+⎝⎛⎭⎫π3,0 =⎝⎛⎭⎫2x +π3,12y , 得⎩⎨⎧x ′=2x +π3y ′=12y,∴⎩⎪⎨⎪⎧x =12x ′-π6y =2y ′,代入y =sin x ,得y ′=12sin ⎝⎛⎭⎫12x ′-π6,则 f (x )=12sin ⎝⎛⎭⎫12x -π6,故选C. (理)(2011·华安、连城、永安、漳平一中、龙海二中、泉港一中六校联考)如图,在矩形OACB 中,E 和F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →其中λ,μ∈R ,则λ+μ是( )A.83B.32C.53 D .1[答案] B[解析] OF →=OB →+BF →=OB →+13OA →,OE →=OA →+AE →=OA →+13OB →,相加得OE →+OF →=43(OA →+OB →)=43OC →,∴OC →=34OE →+34OF →,∴λ+μ=34+34=32.12.(2011·辽宁沈阳二中阶段检测)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=-12,则△ABC 的形状为( )A .等腰非等边三角形B .等边三角形C .三边均不相等的三角形D .直角三角形 [答案] A[分析] 根据平面向量的概念与运算知,AB →|AB →|表示AB →方向上的单位向量,因此向量AB →|AB →|+AC→|AC →|平行于角A 的内角平分线.由⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0可知,角A 的内角平分线垂直于对边,再根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可求角A .[解析] 根据⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的内角平分线与BC 边垂直,说明三角形是等腰三角形,根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可知A =120°.故三角形是等腰非等边的三角形.[点评] 解答本题的关键是注意到向量AB →|AB →|,AC →|AC →|分别是向量AB →,AC →方向上的单位向量,两个单位向量的和一定与角A 的内角平分线共线.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(文)(2011·湖南长沙一中月考)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于________.[答案]5[解析] 3a +b =(3,6)+(-2,y )=(1,6+y ), ∵a ∥b ,∴-21=y2,∴y =-4,∴3a +b =(1,2),∴|3a +b |= 5.(理)(2011·北京朝阳区期末)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________.[答案] 2 3[解析] a ·b =|a |·|b |cos60°=2×1×12=1,|a +2b |2=|a |2+4|b |2+4a ·b =4+4+4×1=12, ∴|a +2b |=2 3.14.(2011·华安、连城、永安、漳平、龙海、泉港六校联考)已知a =(2+λ,1),b =(3,λ),若〈a ,b 〉为钝角,则λ的取值范围是________.[答案] λ<-32且λ≠-3[解析] ∵〈a ,b 〉为钝角,∴a ·b =3(2+λ)+λ=4λ+6<0, ∴λ<-32,当a 与b 方向相反时,λ=-3,∴λ<-32且λ≠-3.15.(2011·黄冈市期末)已知二次函数y =f (x )的图像为开口向下的抛物线,且对任意x ∈R 都有f (1+x )=f (1-x ).若向量a =(m ,-1),b =(m ,-2),则满足不等式f (a ·b )>f (-1)的m 的取值范围为________.[答案] 0≤m <1[解析] 由条件知f (x )的图象关于直线x =1对称,∴f (-1)=f (3),∵m ≥0,∴a ·b =m +2≥2,由f (a ·b )>f (-1)得f (m +2)>f (3), ∵f (x )在[1,+∞)上为减函数,∴m +2<3,∴m <1,∵m ≥0,∴0≤m <1.16.(2011·河北冀州期末)已知向量a =⎝⎛⎭⎫sin θ,14,b =(cos θ,1),c =(2,m )满足a ⊥b 且(a +b )∥c ,则实数m =________.[答案] ±522[解析] ∵a ⊥b ,∴sin θcos θ+14=0,∴sin2θ=-12,又∵a +b =⎝⎛⎭⎫sin θ+cos θ,54,(a +b )∥c , ∴m (sin θ+cos θ)-52=0,∴m =52(sin θ+cos θ),∵(sin θ+cos θ)2=1+sin2θ=12,∴sin θ+cos θ=±22,∴m =±522.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·甘肃天水期末)已知向量a =(-cos x ,sin x ),b =(cos x ,3cos x ),函数f (x )=a ·b ,x ∈[0,π].(1)求函数f (x )的最大值;(2)当函数f (x )取得最大值时,求向量a 与b 夹角的大小. [解析] (1)f (x )=a ·b =-cos 2x +3sin x cos x =32sin2x -12cos2x -12=sin ⎝⎛⎭⎫2x -π6-12. ∵x ∈[0,π],∴当x =π3时,f (x )max =1-12=12.(2)由(1)知x =π3,a =⎝⎛⎭⎫-12,32,b =⎝⎛⎭⎫12,32,设向量a 与b 夹角为α,则cos α=a ·b |a |·|b |=121×1=12, ∴α=π3.因此,两向量a 与b 的夹角为π3.18.(本小题满分12分)(2011·呼和浩特模拟)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证MF 1→·MF 2→=0.[解析] (1)解:∵e =2,∴可设双曲线方程为x 2-y 2=λ, ∵过(4,-10)点,∴16-10=λ,即λ=6, ∴双曲线方程为x 2-y 2=6.(2)证明:F 1(-23,0),F 2(23,0),MF 1→=(-3-23,-m ),MF 2→=(-3+23,-m ),∴MF 1→·MF 2→=-3+m 2,又∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0,即MF 1→⊥MF 2→.19.(本小题满分12分)(2011·宁夏银川一中月考,辽宁沈阳二中检测)△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(π4+B2),-1),m ⊥n .(1)求角B 的大小;(2)若a =3,b =1,求c 的值.[分析] 根据向量关系式得到角B 的三角函数的方程,解这个方程即可求出角B ,根据余弦定理列出关于c 的方程,解这个方程即可.[解析] (1)∵m ⊥n ,∴m ·n =0, ∴4sin B ·sin 2⎝⎛⎭⎫π4+B 2+cos2B -2=0, ∴2sin B [1-cos ⎝⎛⎭⎫π2+B ]+cos2B -2=0, ∴2sin B +2sin 2B +1-2sin 2B -2=0, ∴sin B =12,∵0<B <π,∴B =π6或56π.(2)∵a =3,b =1,∴a >b ,∴此时B =π6,方法一:由余弦定理得:b 2=a 2+c 2-2ac cos B , ∴c 2-3c +2=0,∴c =2或c =1. 方法二:由正弦定理得b sin B =asin A,∴112=3sin A ,∴sin A =32,∵0<A <π,∴A =π3或23π, 若A =π3,因为B =π6,所以角C =π2,∴边c =2;若A =23π,则角C =π-23π-π6=π6,∴边c =b ,∴c =1. 综上c =2或c =1.20.(本小题满分12分)(2011·山东济南一中期末)已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈[π2,π].(1)求a ·b 及|a +b |;(2)求函数f (x )=a ·b +|a +b |的最大值,并求使函数取得最大值时x 的值. [解析] (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos2x ,|a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22 =2+2⎝⎛⎭⎫cos 3x 2cos x 2-sin 3x 2sin x2 =2+2cos2x =2|cos x |, ∵x ∈[π2,π],∴cos x <0,∴|a +b |=-2cos x .(2)f (x )=a ·b +|a +b |=cos2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32 ∵x ∈[π2,π],∴-1≤cos x ≤0,∴当cos x =-1,即x =π时f max (x )=3.21.(本小题满分12分)(2011·河南豫南九校联考)已知OA →=(2a sin 2x ,a ),OB →=(-1,23sin x cos x +1),O 为坐标原点,a ≠0,设f (x )=OA →·OB →+b ,b >a .(1)若a >0,写出函数y =f (x )的单调递增区间;(2)若函数y =f (x )的定义域为[π2,π],值域为[2,5],求实数a 与b 的值.[解析] (1)f (x )=-2a sin 2x +23a sin x cos x +a +b =2a sin ⎝⎛⎭⎫2x +π6+b , ∵a >0,∴由2k π-π2≤2x +π6≤2k π+π2得,k π-π3≤x ≤k π+π6,k ∈Z .∴函数y =f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z )(2)x ∈[π2,π]时,2x +π6∈[7π6,13π6],sin ⎝⎛⎭⎫2x +π6∈[-1,12] 当a >0时,f (x )∈[-2a +b ,a +b ]∴⎩⎪⎨⎪⎧ -2a +b =2a +b =5,得⎩⎪⎨⎪⎧a =1b =4, 当a <0时,f (x )∈[a +b ,-2a +b ]∴⎩⎪⎨⎪⎧ a +b =2-2a +b =5,得⎩⎪⎨⎪⎧ a =-1b =3综上知,⎩⎪⎨⎪⎧ a =-1b =3或⎩⎪⎨⎪⎧a =1b =4 22.(本小题满分12分)(2011·北京朝阳区模拟)已知点M (4,0),N (1,0),若动点P 满足MN →·MP →=6|PN →|.(1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A ,B 两点,若-187≤NA →·NB →≤-125,求直线l 的斜率的取值范围.[解析] 设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ).由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,得x 24+y 23=1. 所以点P 的轨迹C 是椭圆,C 的方程为x 24+y 23=1. (2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为y =k (x -1),设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1 消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0.因为N 在椭圆内,所以Δ>0. 所以⎩⎪⎨⎪⎧ x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.因为NA →·NB →=(x 1-1)(x 2-1)+y 1y 2=(1+k 2)(x 1-1)(x 2-1)=(1+k 2)[x 1x 2-(x 1+x 2)+1]=(1+k 2)4k 2-12-8k 2+3+4k 23+4k 2=-9(1+k 2)3+4k 2, 所以-187≤-9(1+k 2)3+4k 2≤-125.解得1≤k 2≤3. 所以-3≤k ≤-1或1≤k ≤ 3.。
高中数学平面向量精选题目(附答案)一、平面向量的概念及线性运算1.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.[解析] ∵AM ―→=2MC ―→,∴AM ―→=23AC ―→. ∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→), ∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→ =12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16. [答案] 12 -16 注:向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( ) A .13 B .-13 C .9D .-9解析:选D ∵AB ―→=(-8,8),AC ―→=(3,y +6). 又∵AB ―→∥AC ―→,∴-8(y +6)-24=0.∴y =-9.3.如图,点A ,B ,C 是圆O 上不重合的三点,线段OC 与线段AB 交于圆内一点P .若OC ―→=m OA ―→+2m OB ―→,AP ―→=λAB ―→,则λ=( )A.56B.45C.34D.23解析:选D 由题意,设OP ―→=n OC ―→. 因为AP ―→=OP ―→-OA ―→=λ(OB ―→-OA ―→), 故n OC ―→-OA ―→=λ(OB ―→-OA ―→),n (m OA ―→+2m OB ―→)-OA ―→=λ(OB ―→-OA ―→), 即(mn +λ-1)OA ―→+(2mn -λ)OB ―→=0.而OA ―→与OB ―→不共线,故有⎩⎨⎧mn +λ-1=0,2mn -λ=0,解得λ=23.选D.4.如图,半径为1的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°.若OC ―→=λOA ―→+μOB ―→,则λ+μ=________.解析:由已知,可得OA ⊥OC ,以O 为坐标原点,OC ,OA 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则有C (1,0),A (0,1),B (cos 30°,-sin 30°),即B ⎝ ⎛⎭⎪⎫32,-12.于是OC ―→=(1,0),OA ―→=(0,1),OB ―→=⎝ ⎛⎭⎪⎫32,-12,由OC ―→=λOA ―→+μOB ―→,得(1,0)=λ(0,1)+μ⎝ ⎛⎭⎪⎫32,-12=⎝ ⎛⎭⎪⎫32μ,λ-12μ,∴⎩⎪⎨⎪⎧32μ=1,λ-12μ=0,解得⎩⎪⎨⎪⎧μ=233,λ=33.∴λ+μ= 3. 答案:3二、平面向量的数量积5.(1)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D.32(2)设四边形ABCD 为平行四边形,|AB ―→|=6,|AD ―→|=4.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .9D .6[解析] (1)c =a +kb =(1+k,2+k ), 又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.(2)如图所示,由题设知:AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,NM ―→=NC ―→-MC ―→=13AB ―→-14AD ―→, ∴AM ―→·NM ―→=⎝ ⎛⎭⎪⎫AB ―→+34 AD ―→ ·⎝ ⎛⎭⎪⎫13 AB ―→-14 AD ―→ =13|AB ―→|2-316|AD ―→|2+14AB ―→·AD ―→-14AB ―→·AD ―→=13×36-316×16=9. [答案] (1)A (2)C 注:(1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义;(2)可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行计算.6.已知△ABC 中,AB ―→=c ,BC ―→=a ,CA ―→=b ,若a ·b =b ·c 且c ·b +c ·c =0,则△ABC 的形状为( )A .锐角三角形B .等腰非直角三角形C .钝角三角形D .等腰直角三角形解析:选D 由c ·b +c ·c =c ·(b +c )=0,即AB ―→·(CA ―→+AB ―→)=AB ―→·CB ―→=0,可得∠B 是直角. 又由a ·b =b ·c ,可得b ·(a -c )=0, 即CA ―→·(BC ―→+BA ―→)=0, 所以CA 与CA 边的中线垂直, 所以△ABC 是等腰直角三角形.7.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2D .2解析:选B 由题意,知a 2=1,b 2=1,c 2=1,由a ·b =0及(a -c )·(b -c )≤0,知(a +b )·c ≥c 2=1.因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =3-2(a ·c +b ·c )≤1,故|a +b -c |的最大值为1.8.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________.解析:∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.答案:19.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ―→·BE ―→=1,则AB 的长为________.解析:设|AB ―→|=x ,x >0,则AB ―→·AD ―→=12x .又AC ―→·BE ―→=(AD ―→+AB ―→)·⎝ ⎛⎭⎪⎫AD ―→-12 AB ―→ =1-12x 2+14x =1,解得x =12,即AB 的长为12. 答案:12三、平面向量与三角函数的综合问题10.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值. [解] (1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3, ∴m ·n =|m |·|n |cos π3, 即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 注:在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.11.已知向量a =(6sin α,2)与向量b =(3,4sin α)平行,则锐角α=( ) A.π4B.π6C.π3D.5π12解析:选B 因为向量a =(6sin α,2)与向量b =(3,4sin α)平行,所以24sin 2α=6,所以sin 2α=14,sin α=±12.又α是锐角,所以sin α=12,α=π6.12.(2017·江苏高考)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x . 则tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3; 当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.巩固练习:1.如图所示,在△ABC 中,设AB ―→=a ,AC ―→=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP ―→=( )A.12a +12bB.13a +23bC.27a +47bD.47a +27b2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0B .1C .2 D. 53.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)D .(-6,3)4.已知平面向量a ,b 满足|a +b |=1,|a -b |=x ,a ·b =-38x ,则x =( ) A. 3 B .2 C. 5D .35.在△ABC 中,(BC ―→+BA ―→)·AC ―→=|AC ―→|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )A .6或 3B .6或 2 C. 2D .67.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 8.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 9.已知向量OA ―→=(1,7),OB ―→=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA ―→·MB ―→的最小值是________.10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.11.已知a =(cos α,sin α),b =(cos β,sin β),a 与b 满足|ka +b |=3|a -kb |,其中k >0.(1)用k 表示a ·b ;(2)求a ·b 的最小值,并求出此时a ,b 的夹角.12.已知平面上三个向量a ,b ,c 的模均为1,它们两两之间的夹角均为120°. (1)求证:(a -b )⊥c ;(2)若|ka +b +c |>1(k ∈R),求实数k 的取值范围.参考答案:1.解析:选C 连接BP ,则AP ―→=AC ―→+CP ―→=b +PR ―→, ① AP ―→=AB ―→+BP ―→=a +RP ―→-RB ―→. ② 由①+②,得2AP ―→=a +b -RB ―→.③ 又RB ―→=12QB ―→=12(AB ―→-AQ ―→)=12⎝ ⎛⎭⎪⎫a -12 AP ―→ ,④将④代入③,得2AP ―→=a +b -12⎝ ⎛⎭⎪⎫a -12 AP ―→ ,解得AP ―→=27a +47b .2.解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D.3.解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6).4.解析:选B |a +b |2=a 2+2a ·b +b 2=1,|a -b |2=a 2-2a ·b +b 2=x 2,两式相减得4a ·b =1-x 2.又a ·b =-38x ,所以1-x 2=-32x ,解得x =2或x =-12(舍去).故选B.5.解析:选C 由(BC ―→+BA ―→)·AC ―→=|AC ―→|2,得AC ―→·(BC ―→+BA ―→-AC ―→)=0,即AC ―→·(BC ―→+BA ―→+CA ―→)=0,∴2AC ―→·BA ―→=0,∴AC ―→⊥BA ―→,∴A =90°.故选C.6.解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝ ⎛⎭⎪⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝ ⎛⎭⎪⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝ ⎛⎭⎪⎫-12=-32, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝ ⎛⎭⎪⎫-1-3-32=3,∴|a +b +c |= 3. ∴|a +b +c |=6或 3.7.解析:∵|a +b |2=|a |2+|b |2+2a ·b =|a |2+|b |2, ∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-28.解析:∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0.∴m =-6. 答案:-69.解析:设M ⎝ ⎛⎭⎪⎫x ,12x ,则MA ―→=⎝ ⎛⎭⎪⎫1-x ,7-12x ,MB ―→=⎝ ⎛⎭⎪⎫5-x ,1-12x ,MA ―→·MB―→=(1-x )(5-x )+⎝ ⎛⎭⎪⎫7-12x ⎝ ⎛⎭⎪⎫1-12x =54(x -4)2-8.所以当x =4时,MA ―→·MB ―→ 取得最小值-8.答案:-810.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×(-6)+9=13.11.解:(1)将|ka +b |=3|a -kb |两边平方,得|ka +b |2=(3|a -kb |)2,k 2a 2+b 2+2ka ·b =3(a 2+k 2b 2-2ka ·b ),∴8ka ·b =(3-k 2)a 2+(3k 2-1)b 2, a ·b =(3-k 2)a 2+(3k 2-1)b 28k.∵a =(cos α,sin α),b =(cos β,sin β),∴a 2=1,b 2=1,∴a ·b =3-k 2+3k 2-18k =k 2+14k .(2)∵k 2+1≥2k (当且仅当k =1时等号成立),即k 2+14k ≥2k 4k =12,∴a ·b 的最小值为12.设a ,b 的夹角为γ,则a ·b =|a ||b |cos γ. 又|a |=|b |=1,∴12=1×1×cos γ,∴γ=60°,即当a ·b 取最小值时,a 与b 的夹角为60°.12.解:(1)证明:∵|a |=|b |=|c |=1,且a ,b ,c 之间的夹角均为120°, ∴(a -b )·c =a ·c -b ·c =|a ||c |cos 120°-|b ||c |·cos 120°=0,∴(a -b )⊥c . (2)∵|ka +b +c |>1,∴(ka +b +c )2>1, 即k 2a 2+b 2+c 2+2ka ·b +2ka ·c +2b ·c >1,∴k 2+1+1+2k cos 120°+2k cos 120°+2cos 120°>1. ∴k 2-2k >0,解得k <0或k >2.∴实数k 的取值范围为(-∞,0)∪(2,+∞).。
平面向量练习题大全及答案平面向量练习题大全及答案平面向量是数学中的重要概念,广泛应用于几何、物理等领域。
通过练习平面向量的题目,可以帮助我们巩固和深化对平面向量的理解。
本文将为大家提供一些平面向量的练习题,并给出详细的答案解析。
一、基础练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的和。
解析:向量的和等于对应分量相加,所以a + b = (2 + (-1), 3 + 4) = (1, 7)。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的差。
解析:向量的差等于对应分量相减,所以a - b = (3 - 5, -2 - 1) = (-2, -3)。
3. 已知向量a = (4, 5),求向量a的模长。
解析:向量的模长等于各分量平方和的平方根,所以|a| = √(4^2 + 5^2) =√(16 + 25) = √41。
4. 已知向量a = (3, -2),求向量a的单位向量。
解析:向量的单位向量等于将向量除以其模长,所以a的单位向量为a/|a| = (3/√41, -2/√41)。
二、综合练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的数量积。
解析:向量的数量积等于对应分量相乘再相加,所以a·b = 2*(-1) + 3*4 = -2 + 12 = 10。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的向量积。
解析:向量的向量积等于两个向量的模长乘以它们夹角的正弦值,所以a×b =|a|*|b|*sinθ,其中θ为a和b的夹角。
首先计算|a|和|b|:|a| = √(3^2 + (-2)^2) = √(9 + 4) = √13,|b| = √(5^2 +1^2) = √(25 + 1) = √26。
然后计算夹角θ的正弦值:sinθ = |a×b|/(|a|*|b|),其中|a×b|为向量a×b的模长。
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
24 C。
32 D。
369.已知向量 $m,n$ 的夹角为 $60^\circ$,且 $m=1$,$3m-2n=13$,则 $n$ 等于()A。
$3-\sqrt{21}$ B。
$3+\sqrt{21}$ C。
$\sqrt{21}-3$ D。
$2$10.已知向量$\overrightarrow{OA}=\log_{0.5}\sin\theta\cdot\overrightarrow{ OB}+\log_{2}\cos\theta\cdot\overrightarrow{OC}$,若$A,B,C$ 三点共线,则 $\sin\theta+\cos\theta$ 等于()A。
$-\frac{3\sqrt{5}}{5}$ B。
$\frac{3\sqrt{5}}{5}$ C。
$-\frac{\sqrt{5}}{5}$ D。
$\frac{\sqrt{5}}{5}$11.$\triangle ABC$ 中 $AB=2$,$AC=2\sqrt{3}$,$\angle BAC=60^\circ$,在 $\triangle ABC$ 中,且 $BD=2DC$,则$AD\cdot BC$ 等于()A。
$-1$ B。
$1$ C。
$7$ D。
$\frac{7}{2}$12.已知椭圆 $C:\frac{x^2}{4}+\frac{y^2}{9}=1$ 的离心率为 $\frac{2}{3}$,且 $M,N$ 是椭圆 $C$ 上相异的两点,若点$P(2,0)$ 满足 $PM\perp PN$,则 $PM\cdot MN$ 的取值范围为()A。
$[-2\sqrt{5},-1]$ B。
$[-\sqrt{5},-2]$ C。
$[-\frac{1}{2},\frac{1}{2}]$ D。
$[-5,-1]$13.已知向量 $a=(-2,m)$,$b=(1,n)$,若 $ab\parallel b$,且 $b=2a$,则 $m-n$ 的值为()A。
2 B。
4 C。
$-2$ 或 $2$ D。
无法确定答案详解:1.$a\cdot b=(-1)\times 1+2\times 1=1$,故选 C。
2.因为 $a\parallel b$,所以 $\frac{1}{2}=\frac{-1}{2}=\frac{x}{1}$,解得 $x=-1$,故选 B。
3.因为 $ka+b$ 与 $2a-b$ 垂直,所以 $(ka+b)\cdot(2a-b)=0$,即 $2k|a|^2+(k-1)|b|^2=0$,代入数值解得 $k=\frac{5}{3}$,故选 B。
4.由题意得 $AP=\frac{2}{3}AB=\frac{4}{3}$,$BP=\frac{1}{3}AB=\frac{2}{3}$。
$\vec{CP}=\vec{CB}+\vec{BP}=(1,1)+(\frac{2}{3},\frac{2}{3})=(\frac{5}{3},\frac{5}{3})$,$\vec{CA}=(-2,2)$,$\vec{CB}=(2,-2)$,故 $CP\cdot CA+CP\cdotCB=\frac{5}{3}\times(-2+2)+\frac{5}{3}\times 2=2$,故选 C。
5.因为 $a=2b$,所以 $a$ 与 $b$ 共线,即 $a$ 与 $b$ 的夹角为 $0$ 或 $\pi$,但 $a,b$ 是非零向量,故不可能共线,故选D。
6.由 $\cos\angle BAC=\frac{1}{2}$,$b+c=4$,$BE=\frac{1}{3}BC=\frac{2}{3}$,$CF=\frac{1}{3}CB=\frac{4}{3}$,$AE=\frac{2}{3}AC=\frac{4\sqrt{3}}{3}$,$AF=\frac{2}{3}AB=2$,故$AE\cdot AF=\frac{8\sqrt{3}}{3}$,故选 A。
7.因为 $a-b\perp a$,所以 $(a-b)\cdot a=0$,即 $a\cdotb=\frac{1}{2}|a|^2$,代入数值解得$\cos\theta=\frac{1}{\sqrt{2}}$,故选 B。
8.因为 $|a|=6|b|$,所以 $|a|^2=36|b|^2$,又因为 $a,b$ 的夹角的余弦值为 $\frac{1}{3}$,所以 $a\cdotb=\frac{1}{3}|a||b|=\frac{1}{3}\sqrt{|a|^2|b|^2}\cos\theta=\frac{1} {3}\sqrt{36|b|^4}\cdot\frac{1}{3}=\frac{4}{3}|b|^2$,代入$a\perp (a-kb)$ 得 $k=\frac{11}{3}$,故选 D。
9.因为 $m,n$ 的夹角为 $60^\circ$,所以 $|m-n|=\sqrt{|m|^2+|n|^2-2|mn|\cos\angle(m,n)}=\sqrt{3-2\cos60^\circ}=\sqrt{2}$,又因为 $3m-2n=13$,所以 $n=-\frac{2}{3}m+\frac{13}{3}$,代入 $|m-n|=\sqrt{2}$ 解得$m=\frac{3+\sqrt{21}}{2}$,$n=\frac{3-\sqrt{21}}{2}$,故选A。
10.因为 $A,B,C$ 三点共线,所以$\overrightarrow{OA}=\lambda\overrightarrow{OB}+(1-\lambda)\overrightarrow{OC}$,其中$\lambda\in\mathbb{R}$,代入数值解得 $\sin\theta+\cos\theta=\frac{5\sqrt{5}}{5}$,故选B。
11.连 $AD$,交 $BC$ 于点 $G$,则 $\triangle ABG$ 与$\triangle ACG$ 相似,所以$CG=\frac{2}{3}BC=\frac{4}{3}$,$GD=\frac{1}{3}BC=\frac{2}{3}$,又因为 $\triangleBGD\sim\triangle ABD$,所以 $AD=\frac{4\sqrt{3}}{3}$,故$AD\cdot BC=2\sqrt{3}$,故选 B。
12.设点 $M(x_1,y_1)$,$N(x_2,y_2)$,则$x_1^2+\frac{4}{9}y_1^2=1$,$x_2^2+\frac{4}{9}y_2^2=1$,$PM^2=x_1^2+4=(x_1+2)^2+y_1^2-4$,$PN^2=x_2^2+4=(x_2-2)^2+y_2^2-4$,$MN^2=(x_1-x_2)^2+\frac{4}{9}(y_1-y_2)^2$,又因为 $PM\perp PN$,所以 $(x_1+2)(x_2-2)+y_1y_2=0$,代入 $PM\cdot MN=PM\cdot\sqrt{PN^2+MN^2}$,并利用$y_1^2+y_2^2=\frac{9}{4}$,解得 $-5\leq PM\cdot MN\leq -1$,故选 A。
13.因为 $ab\parallel b$,所以 $n=2m$,又因为 $b=2a$,所以 $n=4m$,代入 $ab\parallel b$ 得 $m=0$ 或 $m=-\frac{1}{2}$,故 $m-n=\frac{1}{2}$ 或 $-\frac{5}{2}$,故选 C。
三、解答题29.已知以焦点为F的抛物线C:$y^2=2px(p>0)$过点P(1,-2),直线l与C交于A,B两点,M为AB中点,且$OM+OP=\lambda OF$。
1) 当$\lambda=3$时,求点M的坐标;2) 当$OA\cdot OB=12$时,求直线l的方程。
1) 当$\lambda=3$时,$F(-\frac{p}{2},0)$,$P(1,-2)$,代入$OM+OP=\lambda OF$得$OM=\frac{\lambda}{2}p-1$,$M(\frac{\lambda}{2}p-\frac{1}{2},\frac{p}{2})$。
2) 由$OA\cdot OB=12$知$AB$的中垂线过点$(\frac{a}{2},\frac{b}{2},0)$,即$AB$的对称轴为$x+y=0$,设$l$的方程为$y=kx$,代入抛物线方程得$x^2=2p(kx-1)$,解得$x=\frac{2p}{k^2-2}$,代入$y=kx$得$y=\frac{2kp}{k^2-2}$,故$l$的方程为$y=kx$,其中$k\neq \pm \sqrt{2}$。
30.已知$OA=a$,$OB=b$,对于任意点M,点M关于点A的对称点为点S,点S关于点B的对称点为点N。