(完整版)随机过程习题
- 格式:doc
- 大小:303.51 KB
- 文档页数:7
(整理)随机过程课后习题习题⼀1.设随机变量X 服从⼏何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和⽅差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是⼀随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数;(2)Z=ln F()X ,并求()k E Z (k 为⾃然数)。
4.设12,,...,n X X X 相互独⽴,具有相同的⼏何分布,试求的分布。
5.试证函数为⼀特征函数,并求它所对应的随机变量的分布。
6.试证函数为⼀特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独⽴同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协⽅差矩阵,再求的概率密度函数。
8.设X 、Y 相互独⽴,且(1)分别具有参数为(m, p)及(n, p)的⼆项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协⽅差矩阵为B σ?kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独⽴,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独⽴,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --?>?Γ??≤?=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ?+--<(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。
4、二重积分 R X s,t dsdt ba b a 存在且有限。
二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。
(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。
则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。
随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。
答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。
答案:当前状态和下一状态3. 随机过程的时间参数称为__________。
答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。
答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。
答案:时间差三、解答题1. 请简要解释随机过程的概念。
随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。
它可以是离散的,也可以是连续的。
随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。
随机过程可以用于对随机现象进行建模和分析。
2. 请简要说明马尔可夫过程的特点及应用。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。
其状态转移概率只与当前状态和下一状态相关。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。
B. 具有随机变量。
C. 具有时间集合。
D. 具有马尔可夫性质。
答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。
B. 布朗运动。
C. 维纳过程。
D. 马尔可夫链。
答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。
B. 随机过程的均值不随时间变化。
C. 随机过程的方差不随时间变化。
D. 随机过程的偏度不随时间变化。
答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。
B. 指数分布过程。
C. 广义强度过程。
D. 随机驱动过程。
答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。
2. 在某一区间内,随机过程的均值是时间的(函数)。
3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。
4. 利用(随机过程)可以模拟无记忆的随机现象。
三、解答题1. 试述随机过程的定义及其要素。
随机过程是描述随机现象随时间演化的数学模型。
它由两个基本要素组成:时间集合和取值集合。
时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。
取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。
2. 什么是时间齐次随机过程?请举例说明。
时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。
即随机过程在任意两个时间点上的特性是相同的。
例如,离散时间的随机游走就是一个时间齐次随机过程。
在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。
3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。
马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。
第一章 随机过程及其分类1、 设随机向量),(Y X 的两个分量相互独立,且均服从标准正态分布)1,0(N 。
(a ) 分别写出随机变量Y X +和Y X -的分布密度(b ) 试问:Y X +与Y X -是否独立?说明理由。
2、 设1X 、2X 、3X 为独立同分布的随机变量,且服从标准正态分布。
令:233211X X X X Y ++=(a ) 试求随机变量Y 的分布密度函数;(b ) 试问有限个独立正态分布随机变量经过非线性变换是否可以服从正态分布?3、 设),0(~2σN X ,对于0>∀b ,试证明正态分布尾概率估计不等式:⎭⎬⎫⎩⎨⎧-⋅≤≥≤⎭⎬⎫⎩⎨⎧-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-222232ex p 21}{2ex p 21σσπσσσπb b b X P b b b 4、 设随机向量()()∑=,~,21μτN X X X ,其中:()()ττμμμ2,1,21==,⎪⎪⎭⎫ ⎝⎛=∑15/45/41,令随机向量()X Y Y Y ⎪⎪⎭⎫ ⎝⎛==3223,21τ。
(a ) 试求随机向量Y 的协方差矩阵、{}12Y Y E 及{}21Y Y E +; (b ) 试问{}122X X E X -与1X 是否独立?证明你的结论。
5、 设}0),({≥t t X 是一个实的均值为零,二阶矩存在的随机过程,其相关函数为t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,试求方差函数)]()([T t X t X D +-。
6、 考察两个谐波随机信号)(t X 和)(t Y ,其中:)cos()(),cos()(t B t Y t A t X c c ωφω=+=式中A 和c ω为正的常数;φ是[]ππ,-内均匀分布的随机变量,B 是标准正态分布的随机变量。
(a ) 求)(t X 的均值、方差和相关函数;(b ) 若φ与B 独立,求)(t X 与)(t Y 的互相关函数。
随机过程试题及答案一、选择题(每题2分,共10分)1. 下列哪个是随机过程的数学定义?A. 一系列随机变量B. 一系列确定的函数C. 一系列随机函数D. 一系列确定的变量答案:C2. 随机过程的期望值函数E[X(t)]随时间t的变化特性是:A. 确定性B. 随机性C. 非线性D. 线性答案:A3. 马尔可夫链是具有以下哪个特性的随机过程?A. 无记忆性B. 有记忆性C. 独立性D. 相关性答案:A4. 泊松过程是一种:A. 连续时间随机过程B. 离散时间随机过程C. 连续空间随机过程D. 离散空间随机过程答案:A5. 布朗运动是:A. 一个确定的函数B. 一个随机过程C. 一个确定的变量D. 一个随机变量答案:B二、简答题(每题5分,共20分)1. 简述什么是平稳随机过程,并给出其数学特征。
答案:平稳随机过程是指其统计特性不随时间变化的随机过程。
数学上,如果一个随机过程的任意时刻的一维分布和任意两个时刻的二维分布都不随时间平移而改变,则称该过程为严格平稳过程。
2. 解释什么是遍历定理,并说明其在随机过程中的重要性。
答案:遍历定理是随机过程中的一个基本定理,它提供了时间平均与概率平均之间的联系。
在随机过程中,如果一个随机过程是遍历的,那么对于任意的观测时间点,其时间平均值将趋向于其期望值,这一点在统计推断和信号处理等领域具有重要应用。
3. 描述什么是随机过程的平稳增量,并给出其数学定义。
答案:随机过程的平稳增量是指在固定时间间隔内,随机过程增量的分布不随时间变化。
数学上,如果对于任意的非负整数n和任意的实数h,随机过程{X(t+h) - X(t)}与{X(h) - X(0)}具有相同的分布,则称该随机过程具有平稳增量。
4. 简述什么是马尔可夫性质,并给出一个实际应用的例子。
答案:马尔可夫性质是指一个随机过程的未来发展只依赖于当前状态,而与过去的状态无关。
具有马尔可夫性质的随机过程称为马尔可夫链。
例如,在天气预报中,明天的天气可能只与今天的天气有关,而与前几天的天气无关,这就是马尔可夫性质的一个实际应用。
随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。
答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。
答案:相关性3. 随机游走过程是一类具有________性质的随机过程。
答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。
答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。
答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。
数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。
2. 描述布朗运动的三个基本性质。
答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。
3. 什么是平稳随机过程?请给出其数学定义。
随机过程复习一、回答: 1 、 什么是宽平稳随机过程?2 、 平稳随机过程自相关函数与功率谱的关系?3 、 窄带随机过程的相位服从什么分布?包络服从什么分布?4 、什么是白噪声?性质?二、计算:1 、随机过程 X (t) Acos t + Bsin t ,其中 是常数, A 、B 是相互独 立统计的高斯变量, 并且 E[A]=E[B]=0 , A2 ]=E[ B 2 ]= 2 。
求: X (t)E[ 的数学期望和自相关函数?2 、判断随机过程 X (t )A cos( t) 是否平稳?其中 是常数,A 、 分别为均匀分布和瑞利分布的随机变量,且相互独立。
af ( )12;f A ( a)a2e 2 2a 023 、求随机相位正弦函数 X (t)A cos( 0 t) 的功率谱密度, 其中 A 、 0是常数, 为[0,2 ]内均匀分布的随机变量。
4 、求用 X (t ) 自相关函数及功率谱表示的 Y (t ) X (t) cos(0 t)的自相关函数及谱密度。
其中, 为[0,2 ]内均匀分布的随机变量, X (t ) 是与 相互独立的随机过程。
5 、设随机过程 { X (t ) Acos( 0t Y),t} ,其中 0 是常数, A 与 Y是相互独立的随机变量, Y 服从区间 (0,2 ) 上的均匀分布, A 服从瑞利分布,其概率密度为x 2x2e 2 2x 0f A (x)0 x 0试证明 X (t ) 为宽平稳过程。
解:( 1) m X (t) E{ Acos(0 t Y)} E( A)E{cos( 0t Y )}x 2x22e 2 2 dxy)dy 0 与 t 无关2 cos( 0t 0( 2) X 2 (t)E{ X 2 (t )}E{ A cos( 0t Y)}2E( A 2 ) E{cos 2 ( 0t Y )} E( A 2 )3x2tE( A 2)x1 2t2e 2 2dt , 2 e 22dx2tttte 2 2|0e 2 2 dt2 2e 2 2|0 22所以X2(t )E{ X 2 (t )}(3) R X (t 1,t 2 ) E{[ A cos( 0t 1 Y)][ A cos( 0t 2 Y )]}E[ A 2] E{cos(0t1Y ) cos( 0t 2 Y)}22 2 10t10t 2 y) cos 0 (t 2 t 1)] 1 dy[cos(222cos 0(t 2 t 1 )只与时间间隔有关,所以 X (t ) 为宽平稳过程。
随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。
解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。
随机过程习题集
1. 设随机过程{X(t), t ≥ 0} 是一个马尔可夫过程,且满足转移概率 P{X(t+s) = j | X(t) = i} = P{X(s) = j | X(0) = i}。
证明该随机过程是齐次马尔可夫过程。
2. 设随机过程{X(t), t ≥ 0} 是一个连续时间马尔可夫链,其状态空间为非负整数集合。
设转移速率为λi>0,即
P{X(t+s) = i+1 | X(t) = i} = λi·s + o(s),其中 o(s) 表示当
s 趋于 0 时,o(s)/s 无界。
证明该随机过程是无记忆的。
3. 设随机过程{X(t), t ≥ 0} 是一个马尔可夫过程,其状态空间为有限集合 S = {1, 2, ..., n},转移概率矩阵为 P = [pij],即 P{X(t+s) = j | X(t) = i} = pij。
证明当 t 趋于无穷大时,P(t) = [Pij(t)] 是一个稳态过程,即其转移概率与时间 t 无关。
4. 设随机过程{X(t), t ≥ 0} 是一个马尔可夫过程,其状态空间为非负整数集合。
记τ0 = 0 且τ1 = inf{t > 0: X(t) = 0}。
证明条件P{τ1 < ∞ | X(0) = i} = 1 当且仅当 i > 0。
5. 设随机过程{X(t), t ≥ 0} 是一个服从泊松过程的随机过程,其到达速率为λ。
证明对于任意t ≥ 0,有P{X(t) ≥ 2} = 1 - e^(-λt) - λt e^(-λt)。
这是一些关于随机过程的习题,希望能对你有帮助!如果
你还有其他问题,可以继续提问。
随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义中,通常需要满足哪些条件?A. 样本空间、概率测度、随机变量B. 样本空间、概率测度、随机函数C. 样本空间、随机变量、随机函数D. 概率测度、随机变量、随机函数答案:B2. 马尔可夫链的无记忆性指的是什么?A. 过程的未来状态仅依赖于当前状态B. 过程的未来状态仅依赖于过去的状态C. 过程的未来状态依赖于当前和过去的状态D. 过程的未来状态依赖于所有历史状态答案:A3. 在随机过程中,如果一个过程的任何有限维分布都是联合正态的,则称该过程为什么?A. 正态过程B. 高斯过程C. 联合正态过程D. 多元正态过程答案:B4. 以下哪个不是平稳随机过程的性质?A. 一阶矩不随时间变化B. 任意两个不同时间点的协方差仅依赖于时间差C. 过程的均值随时间变化D. 过程的自相关函数仅依赖于时间差答案:C5. 随机过程的谱密度函数与自相关函数之间的关系是什么?A. 互为傅里叶变换B. 互为拉普拉斯变换C. 互为Z变换D. 互为梅林变换答案:A二、填空题(每题3分,共15分)1. 如果随机过程的样本路径是连续的,则称该过程为_________。
答案:连续过程2. 随机过程的样本函数是定义在时间轴上的_________。
答案:随机变量3. 对于一个平稳过程,其自相关函数R(τ)仅依赖于时间差τ,而不依赖于绝对时间t,即R(t1, t2) = R(t1 - t2) = R(τ),其中τ = t2 - t1。
这种性质称为_________。
答案:时间平移不变性4. 随机过程的遍历性是指过程的_________等于其统计平均。
答案:时间平均5. 随机过程的遍历性分为_________遍历性和_________遍历性。
答案:强,弱三、简答题(每题10分,共20分)1. 简述什么是泊松过程,并给出其概率质量函数。
答案:泊松过程是一种描述在固定时间或空间间隔内随机事件发生次数的随机过程。
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
随机过程课后试题答案一、选择题1. 随机过程的基本定义中,样本空间通常表示为:A. 一个集合B. 一个函数集合C. 一个概率空间D. 一个参数集合答案:A2. 若随机过程的样本轨迹几乎是连续的,则该过程是:A. 离散时间随机过程B. 连续时间随机过程C. 泊松过程D. 马尔可夫过程答案:B3. 马尔可夫性质的含义是未来的状态只依赖于当前状态,而与过去的状态无关。
这一性质不适用于:A. 泊松过程B. 布朗运动C. 马尔可夫链D. 所有随机过程答案:D4. 在随机过程中,如果两个随机变量的联合分布可以表示为它们各自的边缘分布的乘积,则这两个随机变量是:A. 独立的B. 相关的C. 正相关的D. 负相关的答案:A5. 随机游走的期望步长是:A. 1B. 2C. 依赖于起始点D. 依赖于步长分布答案:D二、填空题1. 一个随机过程的样本函数是定义在参数集合上的_________函数。
答案:实值或随机2. 在随机过程中,如果给定当前状态,下一状态的条件概率分布仅依赖于当前状态而不依赖于之前的状态,那么该过程是一个_________过程。
答案:马尔可夫3. 随机过程的均值函数(或称数学期望函数)是描述过程长期行为的重要工具,它是一个关于_________的函数。
答案:时间4. 布朗运动是一种连续时间随机过程,其样本轨迹具有_________性质。
答案:无处处可微5. 泊松过程是一种描述事件在时间上随机发生的随机过程,其特点是事件在任意两个不重叠时间区间内发生是_________的。
答案:相互独立三、计算题1. 假设有一个离散时间马尔可夫链,其状态转移矩阵为:\[P = \begin{bmatrix}0.7 & 0.3 \\0.4 & 0.6\end{bmatrix}\]求该马尔可夫链在第二时刻的状态概率分布,给定初始状态概率分布为:\\[\pi_0 = \begin{bmatrix}0.5 \\0.5\end{bmatrix}\]解:首先计算\( P^2 \),即状态转移矩阵的二次幂,然后利用\( \pi_0 \)和\( P^2 \)来计算第二时刻的状态概率分布。
随机过程口算练习题及答案2023第一题:设随机过程X(t)是一维布朗运动,其初始值为0,且满足以下随机微分方程:dX(t) = a * X(t) * dt + b * X(t) * dW(t)其中,a和b为常数,dW(t)表示标准布朗运动的微分,求解该随机微分方程,并给出解的表达式。
解:我们先对方程两边积分,得到:∫dX(t) = ∫(a * X(t) * dt + b * X(t) * dW(t))对于第一项,由积分的性质可知∫dX(t) = X(t)。
对于第二项,根据伊藤引理,有∫b * X(t) * dW(t) = b * ∫X(t) * dW(t) + 1/2 * b^2 * ∫d<t 由于标准布朗运动的积分∫X(t) * dW(t) 是一个新的随机过程,且满足布朗运动的性质,因此我们可以将其表示为 Y(t) * dW(t),其中Y(t)是一个只与时间t有关的确定性函数。
代入上式,得到:X(t) = ∫(a * X(t) + b * Y(t) * X(t) + 1/2 * b^2) * dt + Y(t) * dW(t)观察上式可知,方程左边仅与t有关,而方程右边包含了随机项dW(t),因此我们可以得出结论Y(t) = 0,即Y(t)为常数0。
于是,上式简化为:X(t) = ∫(a * X(t) + 1/2 * b^2) * dt将初始条件 X(0) = 0 代入上式,求解积分,得到解的表达式为:X(t) = (1/2 * b^2 * t + X(0)) * e^(a * t)这是该随机微分方程的解。
第二题:设随机过程X(t)是一维随机游走,其初始值为0,且满足以下随机微分方程:dX(t) = X(t) * dt + dW(t)其中,dW(t)表示标准布朗运动的微分,求解该随机微分方程,并给出解的表达式。
解:观察方程,可以发现它实质上是一个随机微分方程,并不是一个普通的微分方程。
我们无法简单地对其进行积分求解,需要使用随机过程的性质以及伊藤引理。
(完整word 版)随机过程试题电子科技大学研究生试卷(考试时间: 至 ,共 小时)课程名称 应用随机过程 学时 60 学分 3 教学方式 讲授考核日期 2009 年 元 月 5 日 成绩考核方式: (学生填写)一、(12分)已知随机过程{(),[2,2]},(),X t t X t U t U ∈-=+为随机变量,服从()0,π上 的均匀分布.试求:(1)任意两个样本函数,并绘出草图; (2)随机过程()X t 的特征函数;(3)随机过程()X t 的均值函数,自协方差函数.解 (1)(2)][][);(φ)()(t U u j t X u j e E eE u t +===][U u j t u j e E e= uj e eu j tu j π1π- (3)2π)()())((+=+=+=t t U E t U E t X E ; )]([)]([)]()([),(t X E s X E t X s X E t s C -= ][][)])([(t U E s U E t U s U E ++-++=12π)()]([)(222==-=U D U E U E二、(12分)设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数1(,)2cos X t t ω=,,2cos )ω,(2t t X -=t -∞<<+∞且1()0.8P ω=,2()0.2P ω=,分别求:(1)一维分布函数);0(x F 和);4π(x F ;(2)二维分布函数(0,;,)4F x y π。
解 1) 对任意实数t ∈R ,有 8.02.0cos 2cos 2)(p tt t X -特别有8.02.022)0(pX - ,8.02.022)4π(p X -学 号 姓 名 学 院 教师……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………故 ⎪⎩⎪⎨⎧<≤<--≤=<=.2,1;222.0;2,0})0({);0(x x x x X P x F ⎪⎪⎩⎪⎪⎨⎧<≤<--≤=<=.2,1;22,2.0;2,0})4π({);4π(x x x x X P x F 2)8.02.0)2,2()2,2())4π(),0((p X X -- (0,;,)4F x y π})4π(,)0({y X x X P <<=0,20.2,22,2;1,2,x y x y y x x y ⎧≤-≤⎪⎪=-<≤>-<≤>-⎨⎪>>⎪⎩或三、(12分)设随机过程()cos()Y t X t ω=+Θ,其中ω为常数,随机变量X 服从瑞利分布:22220()(0)00x X x e x f x x σσσ-⎧⎪>=>⎨⎪≤⎩~(0,2)U πΘ,且X 与Θ相互独立,试求随机过程()Y t 的均值函数与自协方差函数.解 ])ωcos([)()]([Θ+=t E X E t Y E 0)ωcos(π21σ1π200σ22222=+⨯=⎰⎰∞+-dy y t dx e x x)]([)]([)]()([),(t X E s X E t X s X E t s C -=)]()([t X s X E =])ω)cos(ωcos([)(2ΘΘ++=t s E X E⎰⎰++⨯=∞+-π200σ232)ωcos()ωcos(π21σ122dy y t y s dx e x x ⎰⎰+++-⨯=+∞-2π002)2)((cos )(cos [4π1σ4d θθs t βs t βdu ue u ).(cos σ2)(cos 21σ422s t βs t β-=-⨯=四、(12分)设在[0, t )时段内乘客到达某售票处的数目为一强度是5.2=λ(人/分)的泊松过程,试求:(1)在5分钟内有10位乘客到达售票处的概率;(2)第10位乘客在5分钟内到达售票处的概率; (3)相邻两乘客到达售票处的平均时间间隔。
随机过程复习一、回答: 1、 什么是宽平稳随机过程?2、 平稳随机过程自相关函数与功率谱的关系?3、 窄带随机过程的相位服从什么分布?包络服从什么分布?4、什么是白噪声?性质?二、计算:1、随机过程t A t X ωcos )(=+t B ωsin ,其中ω是常数,A 、B 是相互独立统计的高斯变量,并且E[A]=E[B]=0,E[2A ]=E[2B ]=2σ。
求:)(t X 的数学期望和自相关函数?2、判断随机过程)cos()(φω+=t A t X 是否平稳?其中ω是常数,A 、φ分别为均匀分布和瑞利分布的随机变量,且相互独立。
πϕφ21)(=f πϕ20 ; 222)(σσa A eaa f -=0 a3、求随机相位正弦函数)cos()(0φω+=t A t X 的功率谱密度,其中A 、0ω是常数,φ为[0,2π]内均匀分布的随机变量。
4、求用)(t X 自相关函数及功率谱表示的)cos()()(0φω+=t t X t Y 的自相关函数及谱密度。
其中,φ为[0,2π]内均匀分布的随机变量,)(t X 是与φ相互独立的随机过程。
5、设随机过程}),cos()({0+∞<<-∞+=t Y t A t X ω,其中0ω是常数,A 与Y 是相互独立的随机变量,Y 服从区间)2,0(π上的均匀分布,A 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-000)(2222x x ex x f x A σσ试证明)(t X 为宽平稳过程。
解:(1))}{cos()()}cos({)(00Y t E A E Y t A E t m X +=+=ωω⎰⎰=+=∞+-πσωσ20002220)cos(22dy y t dx exx 与t 无关(2) )()}({cos )()}cos({)}({)(20222022A E Y t E A E Y t A E t X E t X≤+=+==ωωψ dt e tdx e xA E t x ⎰⎰∞+-∞+-==0222223222221)(σσσσσ,20222022|2|222σσσσσ=-=+-=∞+-∞+-∞+-⎰t t tedt ete所以+∞<=)}({)(22t X E t Xψ (3))]}cos()][cos({[),(201021Y t A Y t A E t t R X ++=ωω )}cos(){cos(][20102Y t Y t E A E ++=ωω dy t t y t t πωωωσπ21)](cos )[cos(2121202010202--++=⎰)(cos 1202t t -=ωσ 只与时间间隔有关,所以)(t X 为宽平稳过程。
6、 设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】(1)⎰∞-=xdt t f x F )()(,则)(t f 为密度函数;(2))(t X 为),(b a 上的均匀分布,概率密度函数⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a ab x f ,分布函数⎪⎩⎪⎨⎧>≤≤--<=b x b x a ab a x a x x F ,1,,0)(,2)(ba x E +=,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数⎩⎨⎧<≥=-0,00,)(x x e x f x λλ,分布函数⎩⎨⎧<≥-=-0,00,1)(x x e x F x λ,λ1)(=x E ,21)(λ=x D ; (4)2)(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞=--x e x f x ,21)(222)(σμπσ,分布函数∞<<-∞=⎰∞---x dt ex F xt ,21)(222)(σμπσ,若1,0==σμ时,其为标准正态分布。
【解答】(1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。
由R 的取值范围可知,)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(t C x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C t C x C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(;相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==;协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数)7.设随机过程()cos 2,(,),X t X t t =∈-∞+∞X 是标准正态分布的随机变量。
试求数学期望()t E X ,方差()t D X ,相关函数12(,)X R t t ,协方差12(,)X C t t 。
解:因为2()cos 2,(,),~(0,1),()0,()()1X t X t t X N E X D X E X =∈-∞+∞===,(1) 所以()(cos 2)cos 2()0,t E X E X t t E X ==⨯=(2)22()(cos 2)cos 2()cos 2,t D X D X t t D X t ==⨯=(2)21212(,)[()()][cos 2cos 2]cos 2,X R t t E X t X t E X t X t t ==⨯=(2)212121212(,)(,)()()(,)cos 2.X x x C t t R t t E t E t R t t t =-==(2)8、有随机过程{ξ (t ),-∞<t <∞}和{η (t ),-∞<t <∞},设ξ (t )=A sin(ωt +Θ),η (t )=B sin(ω t +Θ+φ), 其中A ,B ,ω,φ为实常数,Θ均匀分布于[0,2π],试求R ξ η(s ,t )1.解:()1,0220,f θπθπΘ⎧≤≤⎪=⎨⎪⎩其它()()()()()()()()()()()20201,sin sin d 21cos cos 2d 41cos ,,2R s t E s t A s B t AB t s t s AB t s s t πξηπξηωθωθϕθπωϕωθϕθπωϕ==+++⎡⎤⎣⎦⎡⎤=-+-+++⎣⎦=-+-∞<<+∞⎰⎰9、随机过程ξ (t )=A cos(ωt +Φ ),-∞<t <+∞,其中A, ω,Φ 是相互统计独立的随机变量,E A =2, D A =4, ω 是在[-5, 5]上均匀分布的随机变量,Φ 是在[-π,π]上均匀分布的随机变量。
试分析ξ(t)的平稳性和各态历经性。
2、解:()()[]()[]()[]()+∞<<∞-==+⋅=Φ+=Φ+==⎰⎰--t m d t d t E EA t A E t E t m def,0cos 2012cos cos 55ξππξϕϕωωπωωξ()()()[]()()()[]()()()[]()()()()[]()τττωωτϕϕωτωωτωπϕϕτωϕωωπτωωτωωτξξτξππππξR d d t d d t t d t t E A E t A t A E t t E t t R def ===+++=+++=Φ++Φ+=Φ++Φ+=+=+⎰⎰⎰⎰⎰-----5sin 54cos 20822cos cos 408cos cos 208cos cos cos cos ,5555552所以具有平稳性。
()()ξωωωξm T TAdt t A Tt T T TT ==Φ=Φ+=+∞→-+∞→⎰0cos sin limcos 21lim故均值具有各态历经性。
()()()()()()()()()t R A dtt t TAdtt A t A T t t TTT TTT ξωττωωτωωτξξ≠=Φ++Φ+=Φ++Φ+=+⎰⎰-+∞→-+∞→cos 2cos cos 2lim cos cos 21lim 22故相关函数不具有各态历经性。
三、 分析求证1、已知随机过程)cos()(φω+=t A t X ,φ为[0,2π]内均匀分布的随机变量,A 可能是常数、时间函数或随机变量。
A 满足什么条件时,)(t X 是各态历经过程?2、某商店顾客的到来服从强度为4人每小时的Poisson 过程,已知商店9:00开门,试求:(1)在开门半小时中,无顾客到来的概率;(2)若已知开门半小时中无顾客到来,那么在未来半小时中,仍无顾客到来的概率。
3、解:设顾客到来过程为{N(t), t>=0},依题意N(t)是参数为λ的Poisson 过程。
(1)在开门半小时中,无顾客到来的概率为:1422102P N e e -⨯-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(2)在开门半小时中无顾客到来可表示为102N ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,在未来半小时仍无顾客到来可表示为()1102N N ⎧⎫⎛⎫-=⎨⎬ ⎪⎝⎭⎩⎭,从而所求概率为: ()1412211(1)0|02211(1)0|00221(1)02P N N N P N N N N P N N e e ⎛⎫-⨯- ⎪-⎝⎭⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫=-=== ⎪ ⎪⎝⎭⎝⎭3、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数。
假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程。
(1) 试求到某时刻t 时到达商场的总人数的分布;(2) 在已知t 时刻以有50人到达的条件下,试求其中恰有30位妇女的概率,平均有多少个女性顾客?解:设12(),(),()N t N t N t 分别为(0,t )时段内到达商场的男顾客数、女顾客数及总人数。
(1) 由已知,1()N t 为强度12λ=的泊松过程,2()N t 为强度23λ=的泊松过程;故,()N t 为强度125λλλ=+=的泊松过程;于是,5(5)(())!k tt P N t k e k -== 0,1,2,k = (5分)(2) 22(()30,()50)(()30()50)(()50)P N t N t P N t N t P N t ======30320221505(()30)(()20)(3)/30!(2)/20!(()50)(5)/50!t t t P N t P N t t e t e P N t t e ---==⨯===30320230302050505(3)/30!(2)/20!32()()(5)/50!55t t tt e t e C t e ---⨯== (5分) 一般地,50,,2,1,0,)52()53(}50)(|)({50502 ====-k C t N k t N P k k k故平均有女性顾客 305350}50)(|)({2=⨯==t N t N E 人。