超临界直流锅炉运行中过热度调整及控制分析
- 格式:docx
- 大小:26.89 KB
- 文档页数:3
350MW超临界机组直流锅炉的燃烧优化调整措施分析发布时间:2022-05-23T06:53:32.976Z 来源:《当代电力文化》2021年36期作者:孙多文[导读] 为了增强350MW超临界机组直流锅炉燃烧的效率,最大限度地降低热偏差以及NOX排放量,避免出现堵灰、金属材料温度过高等现象。
孙多文大唐陕西发电有限公司延安热电厂陕西省延安市 716000摘要:为了增强350MW超临界机组直流锅炉燃烧的效率,最大限度地降低热偏差以及NOX排放量,避免出现堵灰、金属材料温度过高等现象。
基于此,本文对锅炉燃烧过程中存在的问题以及产生问题的原因进行了分析,并提出了相应的优化调整措施,希望可以切实提高锅炉燃烧效率以及安全性。
关键词:350MW;超临界机组;直流锅炉燃烧器;优化调整引言增强火力发电厂锅炉燃烧的效率,不但能够显著增强电厂发电率,而且还可以减少NOX 的排放量,实现节能减排的效果。
然而锅炉实际运行时,存在很多问题会影响锅炉运行的稳定性与安全性,进而影响锅炉的工作效率,通过对锅炉燃烧进行优化以及调整,能够切实优化燃烧效果。
本文对350MW超临界机组直流锅炉的燃烧优化调整措施进行了探究。
1 350MW超临界机组直流锅炉燃烧运行中存在的问题1.1 风、粉配合不均匀对于锅炉运行过程中,如果出现了锅炉炉膛内部的总风量和煤粉的配比不均匀,这种情况下会使锅炉炉膛内中存在过多的空气,而使过量空气系数增大,则会使得炉膛温度减小,影响锅炉着火以及燃烧的效果,而且会在一定程度上导致锅炉内的排烟出现较大的热损失[1]。
并且如果锅炉内的过剩空气系数在较低的状况下,则可能会导致燃烧不完全,进而影响燃烧的热效率。
不仅如此,风粉配合不均匀还会使得锅炉水冷壁存在非常大的温差,导致有的地方管壁温度过大,甚至出现四管泄露、爆管事故。
1.2 一、二次风配比不合理一、二次风配比的科学合理性体现在燃烧完全、着火稳定,炉膛负压不会出现大幅度的摆动。
超超临界直流炉的汽温调节(针对干态运行时)一、超超临界直流锅炉影响汽温变化的主要因素1、煤水比在直流锅炉中,过热汽温的调节主要是通过给水量G与燃料量B的调整来实现的。
要保持稳定汽温的关键是要保持固定的燃水比,若给水量G不变而增大燃料量B,受热面热负荷q成比例增加,热水段长度和蒸发段长度必然缩短,而过热段长度延长,过热汽温会升高,若B不变而增大G,由于q并未改变,所以热水段和蒸发段必然延伸,而过热段长度会缩短,过热汽温就会降低。
2、给水温度因高加解列等造成的给水温度降低,在同样给水量和煤水比的情况下,直流炉的加热段将延长,过热段缩短,过热汽温会随之降低,再热汽温也会因为高压缸排汽温度的降低而随之降低。
3、锅炉受热面结焦玷污煤水比不变的情况下炉膛结焦会使过热汽温降低。
因为炉膛结焦是锅炉传热量减少,排烟温度升高,锅炉效率降低,工质的总吸热量减少,而工质的加热热和蒸发热之和一定,所以过热吸热(包括过热器和再热器)减少。
主蒸汽温会降低,但再热器吸热因炉膛出口烟温升高而增加而影响相对较小。
4、锅炉过量空气系数增大过量空气系数时,炉膛出口烟温基本不变。
但炉内平均温度下降,炉膛水冷壁吸热减少,使过热器进口汽温降低,虽对对流式过热器的吸热量有一定增加,但前者影响更大,在煤水比不变的情况下,过热器出口温度将降低,反之依然。
5、炉膛火焰中心高度炉膛火焰高度的不同对辐射、对流换热特性不同的各受热面起到相反的作用,提高火焰中心,水冷壁辐射吸热减少,而使得蒸发段延长,但过热器再热器等对流特性的换热面吸热增加,但对于过热器而言,蒸发段延长影响更大,所以上提火焰中心主蒸汽温度整体呈降低趋势,而再热汽温则会升高。
6、引起汽温波动的因素分内扰及外扰两种情况,内部扰动因素包括:启停、切换制粉系统,投退油枪,炉膛或烟道吹灰,煤质变化,高加投退等,外扰包括负荷的波动等。
二、直流锅炉汽温调节的特点及原则特点:无固定的汽水分界面,且锅炉循环倍率为1,热惯性小,水冷壁的吸热变化会使热水段、蒸发段和过热段的比例发生变化。
关于超临界直流锅炉的给水控制与汽温调节分析伴随国内经济水平的快速提升,电力生产已然是重中之重的一个环节。
早期生产因为技术条件不足,普遍选用参数较低、能耗较大且污染严重的燃煤系统。
经过不断发展,当前国内逐步利用效率更高且污染较轻的系统取代传统燃煤机组。
随着电力领域的持续前行,超临界直流锅炉也出现在实际生产之中,不同种类的锅炉设备所适用的场合有所差异,同时内部给水控制架构也不尽相同,所以在实际应用过程中始终存在不足之处。
本文就针对目前超临界直流锅炉的发展进行研究,对内部控制系统存在的问题提出对应的优化方案。
[关键词]超临界;直流锅炉;给水控制系统;汽温调节Nie Xin-yang[Abstract]With the rapid improvement of domestic economic level,electric power production has become one of the most important links. Due to the lack of technical conditions in early production,coal-fired systems with low parameters,large energy consumption and serious pollution were generally selected. After continuous development,the current domestic use of higher efficiency and less pollution system to replace the traditional coal-fired units. With the continuous development of the electric power field,supercritical once through boiler also appears in the actual production. Different types of boiler equipment are suitable for different occasions,and the internal water supply controlstructure is also different,so there are always deficiencies in the actual application process. In this paper,the development of supercritical once through boiler is studied,and the corresponding optimization scheme is proposed for the problems existing in the internal control system.[Keywords]supercritical; once through boiler; feed water control system; steam temperature regulation超臨界直流锅炉相较于原有的燃煤系统来说,不管是容量、效率还是环保等方面都有着质的飞跃。
Science &Technology Vision科技视界宝二发电公司660MW 超临界直流锅炉型式为超临界参数变压运行螺旋管圈直流炉,定-滑-定方式运行、单炉膛、一次中间再热、采用切圆燃烧方式、平衡通风、全钢悬吊结构Π型锅炉、露天布置燃煤锅炉。
过热器配置二级喷水减温装置,左右能分别调节。
在任何工况下(包括高加全切和B-MCR 工况),过热器喷水的总流量约为8%过热蒸汽流量,再热器采用烟气挡板调温,喷水减温为辅,再热器喷水减温器喷水总流量的能力约为4-4.5%再热蒸汽流量(B-MCR 工况下),设计喷水量为零。
过热汽温控制在直流负荷以前,主要通过燃烧侧调整,可辅助采用喷水减温控制;在直流负荷以后,以控制煤水比为主,通过调整煤水比改变加热段、蒸发段、过热段在锅炉水冷壁中的位置(如图1),改变锅炉分离器出口蒸汽过热度,从而调整主汽温度,为调整两侧偏差和汽温细调,采用喷水减温为辅。
图1再热汽温控制由尾部烟道挡板调温和再热器微量喷水减温调温构成,以尾部烟道挡板调温为主,微量喷水减温为辅。
即当再热汽温超限时,先进行尾部烟道挡板调温,若未达到调节目的,再配合使用再热器微量喷水调温。
1在实际运行中,主再热汽温调节主要存在以下问题1)锅炉低负荷运行时间较长,炉内燃烧相对集中,炉膛火焰充满度不好,使汽温变化比较敏感,给锅炉汽温调节带来一定困难。
2)锅炉煤质变化大且相对较差,三台磨煤机运行时,磨煤机基本处于满出力运行,磨煤机出力对燃烧的的调节裕度较小。
3)锅炉输渣系统存在缺陷较多,处理过程中,炉膛及过再热器吹灰不正常,使锅炉受热面积灰结渣严重,影响了锅炉汽温的正常调整。
处理过程中炉底漏风较大,降低了炉膛火焰温度,干扰了锅炉的稳定燃烧。
4)锅炉二次风配置属上海锅炉厂的独创,在二次风挡板的调节方面无运行经验,特别是在给水侧大幅变化时,如何在燃烧侧配合调整汽温,需要继续总结经验,不断提高操作技能。
5)锅炉主、再热减温器调节特性较差,各级减温水流量未进行校核,普遍存在显示不准的情况,在燃烧调节时参考价值不大。
超临界350MW直流锅炉受热面超温问题分析摘要:超临界350MW直流锅炉是一种高效、大功率的发电厂重要主机设备,其工作条件相对苛刻,面临着诸多技术难题。
其中,受热面超温问题是一项重要且紧迫需要解决的挑战。
受热面超温不仅会损害锅炉材料的性能,导致设备寿命缩短,还会引发火灾、爆炸等重大安全事故。
同时,超温还会降低锅炉的效率,造成发电厂非计划停运等事故,导致能源浪费,增加发电成本。
本文将针对超临界350MW直流锅炉受热面超温问题展开详细分析,以供参考。
关键词:超临界;350MW;直流;锅炉受热面;超温;前言:超临界350MW直流锅炉受热面超温问题并非易于解决。
在锅炉运行过程中,燃烧产生的高温烟气会通过受热面,将热能传递给水蒸汽。
然而,由于燃料和空气的品质波动、燃烧不充分、受热面渗漏等原因,烟气温度超出了设计范围,导致受热面超温。
通过加强监测调控、材料研发和工艺改进、预测评估等措施,可以降低受热面超温的风险,保障锅炉设备的正常运行,提高发电效率,实现经济效益和安全性的双赢。
1.相关概述超临界350MW直流锅炉是目前国内火电厂的主要设备之一,拥有高效、低排放等特点。
然而,一些电厂在运行过程中会出现受热面超温现象,给电厂运行的安全带来了一定的影响和困扰。
超临界350MW直流锅炉的受热面超温现象是指锅炉受热面内部温度超过设计允许值的情况。
2.超临界350MW直流锅炉受热面超温问题2.1一次风压偏高一次风压偏高是导致受热面超温的一个主要原因。
一次风压过高会导致风量过大,超过了设计的空气供应量,进而使燃烧室内的温度升高,受热面温度超过设计范围。
解决这个问题的方法是检查风机运行状态、调节风阀以及确保一次风压力在正常范围内[1]。
2.2再热器蒸汽流量偏小再热器蒸汽流量偏小也是一个常见的问题。
再热器是将锅炉排出的高温蒸汽再次加热,提高锅炉的热效率。
如果再热器蒸汽流量偏小,会导致再热温度下降,使受热面温度超温。
解决这个问题的方法是检查再热器喷嘴、修复或更换故障阀门,以及检修或校准流量计。
关于超临界直流锅炉的给水控制与汽温调节分析摘要:随着对电力需求的不断提升,供电的要求越来越高,电力生产作为其中的重要环节,超临界直流锅炉取代了传统的燃煤机组,广泛应用于电力领域中,改善了环境污染的问题,有效提升了电力供应效率。
基于此,本文对超临界直流锅炉的给水控制和气温调节进行了深入探讨,为保证机组的稳定性运行提出几点建议。
关键词:超临界直流锅炉;给水控制;气温调节一、超临界机组的给水控制系统直流锅炉是多变量系统,直流锅炉的控制任务与汽包锅炉有很大差别,对于直流锅炉不能象汽包炉那样,将燃料、给水、汽温简单地分为3个控制系统,而是将给水量与燃料量的控制与一次汽温控制紧密地联系在一起,这是直流锅炉控制最突出的特点[1]。
二、汽水分离器水位控制我厂超临界机组采用内置式汽水分离器,锅炉启动点火前进行冷态冲洗,进入分离器的流量保持最低运行负荷50%MCR下的900t/h,冲洗排放经储水箱溢流阀排到疏水扩容器,然后排至锅炉排水管。
冷态冲洗合格后回收至凝汽器锅炉允许点火。
用炉水循环泵出口调门来控制省煤器入口保持30%BMCR流量,将锅炉上水旁路调门关回保持3-5%BMCR流量。
点火后随燃料量投入的增加,进入分离器的工质压力、温度和干度不断提高,汽水在分离器内实现分离。
蒸汽进入过热器系统,饱和水通过汽水分离器排入疏水扩容器实现工质回收。
随着压力上升,水冷壁汽水开始膨胀,分离器储水箱液位逐渐升高,这时可通过分离器储水箱小溢流阀排放控制水位,随着汽水膨胀的结束,分离器储水箱水位开始下降,分离器的正常水位由上水旁路调门、炉水循环泵出口调门和锅炉储水箱小溢流阀来控制,此时分离器为湿态运行,给水控制方式为分离器水位与最小给水流量控制。
当水冷壁出口(进入分离器)工质的干度提高到干饱和蒸汽后,汽水分离器已无疏水,转变成蒸汽联箱,锅炉切换到30%MCR下的干态运行(纯直流运行)。
锅炉在30%BMCR(本生负荷)以下为再循环运行方式。
660MW超临界直流炉主、再热蒸汽温度的运行调整分析摘要:超临界技术的应用可以提高电厂生产效率,减少环境污染,节约设备能源,因此,在世界上许多国家和地区都得到了广泛使用,由于直流锅炉没有热包,热应力问题尤为突出,因此,保证主蒸汽的稳定是一项尤为重要的工作。
由于超临界直流机组在我国商业运行的时间还较短,直流炉的特性注定了机组主汽温度自动控制与机组的协调控制存在紧密联系,要解决机组主汽温度自动控制,机组协调控制及给水控制必须稳定。
660MW 超临界机组的主、再热蒸汽温度的运行调整在正常运行中是非常重要的,是保证机组稳定运行的一个重要方面,汽温过高会影响机组的寿命,过低会降低机组的效率。
关键词:超临界直流炉;主蒸汽温度调整;措施电站锅炉过热汽温、再热汽温影响着机组的安全经济运行。
由于超临界压力锅炉没有汽包,热水受热面、蒸发受热面和过热受热面之间没有固定的界限,运行工况发生变化时,各受热面的长度会发生变化,控制锅炉过热器出口温度(主汽温) 在允许范围内对整个电厂的安全运行和生产具有非常重要的意义,主汽温度过高或过低都会影响整个机组的正常运行。
超超临界机组运行参数高,其控制要求也比常规机组更为严格,尤其超超临界直流锅炉的主汽温变化特性就比汽包锅炉更为复杂,控制和调节也更为困难。
因此,研究直流锅炉的汽温变化特性就有着很重要的现实意义和理论价值。
一、超临界直流炉汽温控制的必要性及特征超临界直流炉技术的汽温是受水煤比、机组负荷、风量和燃烧情况等因素影响。
汽温过热以及大幅度偏离等因素,会导致超临界直流炉技术汽温在经济和设备安全等方面都受到影响。
超临界直流炉技术汽温如果超高会降低金属设备的强度,超临界直流炉技术气温较低又会导致汽轮机的损耗加强,同时,系统的热效率会降低。
超临界直流炉技术突破了传统的自然循环锅炉的汽包,在水进入到锅炉后,因为各种因素的影响,导致各受热面之间分界线不固定。
一般来说,超临界直流炉技术汽温的特征有两个:一是,动态特征。
超临界直流锅炉运行中过热度调整及控
制分析
【摘要】:在机组正常运行中,由于参数的波动和给水流量、过热减温
水量的不稳定性,常常会造成水冷壁出口过热度不稳定性波动。
在之前出现过
机组升降负荷和高负荷期间过热度和主汽参数波动较大的现象,甚至出现主汽温
和壁温经常超限异常,最后通过电科院对机组控制器的优化,主参数相对稳定。
但是过热度还是出现波动较大的问题,即对应负荷下给水调整相对缓慢或过快造
成水冷壁出口过热度不稳定,特别是在满负荷时,由于给水接近上限冰冻较大,
过热度稳定不下来,造成过热器减温水偏高。
现运行人员将水冷壁给水补偿控制
和煤质修正两个控制器切手动进行人为干预调整,过热度等主参数相对稳定很多,参数稳定了但操作人员确增加了监盘负担。
现对机组正常运行中过热度调整及控
制做以下分析
【关键词】:过热度煤质修正给水补偿主汽压偏差
1引言
1.1过热度指的是分离器出口蒸汽温度与分离器出口蒸汽压力下的饱和温度
的差值。
过热度的高和低反映水冷壁水-汽相变点的前或后。
锅炉转直流后,在
负荷不变的情况下,过热度的高低反映出水冷壁吸热的多少。
2.过热度调整及控制与参数的关系分析
2.1过热度控制与减温水量的关系
2.1.1过热减温水是调节屏过出口蒸汽温度和主蒸汽温度的最直接手段,本
厂锅炉设计满负荷过热减温水总量是140.4t/h(THA工况),一、二级减温水各70.2t/h,相同负荷下减温水量的大小反映出低过、屏过、高过的吸热量的大小。
2.1.2在机组负荷不变的情况下(即给水量不变),过热度高低和过热减温水量的大小直接反应出锅炉热负荷的分配,所以,过热度的控制和减温水的调整对改善水冷壁和过热器受热情况、防止金属超温、对主蒸汽温度调整有重要意义
2.2过热度控制与总燃料量的关系
2.2.1过热度是水煤比是否合适的反馈,过热度变小,说明水煤比偏大,过热度变大,说明水煤比偏小。
在运行操作时要注意积累过热度变化对减温水开度影响大小的经验值。
2.2.2水煤比、过热度是直流锅炉监视和调整的重要参数。
水煤比因煤质变化、燃烧状况不同、炉膛及受热面脏污程度等不同略有变化,一般从5.8~7.0不等。
2.3过热度的控制
2.3.1机组正常运行期间一般通过锅炉给水温度补偿控制来实现直接对过热度的调整。
调整时应参照水燃比变化进行调整,避免大幅调整造成过热波动,出现超温等异常发生。
2.3.2煤质修正控制器HIC-3#CORR切手动调整燃料量实现对过热度的调整,应注意以下事项:
a.控制燃料热值修正控制器HIC-3#CORR修正煤量不超过3吨。
b.燃料热值修正控制器HIC-3#CORR放手动时间不可超过30分钟,以免煤质变化较大时造成异常。
c.注意主汽压偏差的变化及对锅炉输入的影响,CC模式下,主汽压负偏差存在时,会通过锅炉主控增加煤量。
2.3.3其他调整手段对过热度控制的影响
a.调整上、中、下层磨煤机出力控制火焰中心高度。
如可减少上层磨出力,增加中、下层磨出力降低火焰中心,从而提高过热度。
b.调整燃尽风开度控制火焰中心高度。
如可开大燃尽风压制火焰上窜,降低火焰中心高度。
c.调整磨煤机分离器转速。
单台磨煤机出力较低时,可通过提高分离器转速(尤其是上层磨煤机),提高煤粉细度,缩短煤粉着火时间,降低火焰高度。
d.调整吹灰方式。
如可通过适当减少水冷壁吹灰,减少水冷壁吸热量(由每天两次减为每天一次),从而降低过热度。
可通过适当减少高过、屏过吹灰(由每天两次减为每天一次),减少过热器吸热,降低减温水开度。
但应注意排烟温度的变化。
3.结论
机组正常运行期间,过热度是反映锅炉燃烧及主要汽水参数变化的重要监视参数,所以对于过热度的调整在机组正常运行中的非常重要,运行人员在监盘应重点加强关注,调整过程中应根据各个参数的变化进行正确恰当的调整,否则对汽水系统参数产生较大影响甚至会造成壁温、汽温超温等现象发生,所以日常运行期间运行人员应加强积累调整经验并总结,实现对过热度的优化调整。