58条模拟、数字电路基础知识总结
- 格式:docx
- 大小:69.55 KB
- 文档页数:7
数字电路基础知识总结数字电路是现代电子技术的基础,广泛应用于计算机、通信、控制系统等领域。
它用二进制表示信号状态,通过逻辑门实现逻辑运算,从而实现各种功能。
下面是数字电路的基础知识总结。
1. 数字信号和模拟信号:数字信号是用离散的数值表示的信号,如二进制数,可以表示逻辑状态;而模拟信号是连续的变化的信号,可以表示各种物理量。
2. 二进制表示:二进制是一种只包含0和1两个数的数字系统,适合数字电路表示。
二进制数的位权是2的次幂,最高位是最高次幂。
3. 逻辑门:逻辑门是用来实现逻辑运算的基本电路单元。
包括与门(AND gate)、或门(OR gate)、非门(NOT gate)、异或门(XOR gate)等。
逻辑门接受输入信号,产生输出信号。
4. 逻辑运算:逻辑运算包括与运算、或运算、非运算。
与运算表示所有输入信号都为1时输出为1,否则为0;或运算表示有一个输入信号为1时输出为1,否则为0;非运算表示输入信号为0时输出为1,为1时输出为0。
5. 组合逻辑电路:组合逻辑电路是由逻辑门构成的电路,在任意时刻,根据输入信号的不同组合,产生不同的输出信号。
组合逻辑电路根据布尔代数的原理设计,可以实现各种逻辑功能。
6. 布尔代数:布尔代数是一种处理逻辑运算的代数系统,它定义了逻辑运算的数学规则。
包括与运算的性质、或运算的性质、非运算的性质等。
7. 时序逻辑电路:时序逻辑电路不仅依赖于输入信号的组合,还依赖于时钟信号。
时序逻辑电路包含存储器单元,可以存储上一时刻的输出,从而实现存储和反馈。
8. 编码器和解码器:编码器将一组输入信号转换为对应的二进制码,解码器则将二进制码转换为对应的输出信号。
编码器和解码器广泛应用于通信系统、数码显示等领域。
9. 多路选择器:多路选择器是一种能够根据选择信号选择多个输入中的一个输出。
多路选择器可以用于数据选择、地址选择等。
10. 计数器:计数器是一种可以根据时钟信号和控制信号进行计数的电路。
数电模电基础知识总结在现代科技的快速发展下,电子技术已经渗透到我们生活的方方面面。
而作为电子技术的基础,数电模电知识的掌握显得尤为重要。
本文将对数电模电基础知识进行总结。
一、数电基础知识1. 二进制二进制是数电领域最为基础的概念之一。
它由0和1组成,是计算机系统中最常用的进位制。
在二进制中,每一位的权值是2的幂,例如1表示2^0,2表示2^1,4表示2^2,以此类推。
二进制在计算机内部用于表示和处理数据,是研究数电和计算机组成原理的基石。
2. 逻辑门逻辑门是计算机系统中基本的电子器件,用于实现逻辑运算。
常见的逻辑门包括与门、或门、非门等。
与门接受两个输入,当两个输入同时为1时,输出为1;否则输出为0。
或门接受两个输入,当两个输入中至少有一个为1时,输出为1;否则输出为0。
非门只有一个输入,当输入为1时,输出为0;当输入为0时,输出为1。
通过组合不同类型的逻辑门,可以实现复杂的逻辑运算。
3. 翻转器和触发器翻转器和触发器是将电路的输出状态保持在某个时间点的器件。
翻转器是一种双稳态电路,有两个互逆的输出状态,常见的翻转器有RS翻转器、JK翻转器等。
触发器是一种带有时钟输入的翻转器,常用于存储和处理数据。
二、模电基础知识1. 电阻、电容和电感电阻、电容和电感是模电领域中最基础的电路元件。
电阻用于限制电流大小,电容用于存储电荷和能量,电感用于存储磁能和抵抗电流变化。
它们在电路中起到不同的作用,对电路性质有重要影响。
2. 放大器放大器是模电领域中常见的电路元件,用于将输入信号放大到一定的幅度。
常见的放大器包括运放放大器、功放等。
运放放大器是一种具有高增益的差模放大器,广泛应用于模拟电路设计中。
功放用于放大音频信号,常见于音响设备中。
3. 滤波器滤波器用于将频率范围内的信号通过,而将其他频率范围内的信号抑制。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器在电子设备中起到重要的作用,例如音频设备中用于剔除噪音和杂音。
数字电子技术基础知识总结一、模拟电路与数字电路的定义及特点:模拟电路(电子电路)模拟信号处理模拟信号的电子电路。
“模拟”二字主要指电压(或电流)对于真实信号成比例的再现。
其主要特点是:1.函数的取值为无限多个;2.当图像信息和声音信息改变时, 信号的波形也改变, 即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3、初级模拟电路主要解决两个大的方面: 1放大、2信号源。
4.模拟信号具有连续性。
数字电路(进行算术运算和逻辑运算的电路)数字信号用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路, 或数字系统。
由于它具有逻辑运算和逻辑处理功能, 所以又称数字逻辑电路。
其主要特点是:1.同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础, 使用二进制数字信号, 既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等), 因此极其适合于运算、比较、存储、传输、控制、决策等应用。
2.实现简单, 系统可靠以二进制作为基础的数字逻辑电路, 可靠性较强。
电源电压的小的波动对其没有影响, 温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。
3.集成度高, 功能实现容易集成度高, 体积小, 功耗低是数字电路突出的优点之一。
电路的设计、维修、维护灵活方便, 随着集成电路技术的高速发展, 数字逻辑电路的集成度越来越高, 集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。
电路的设计组成只需采用一些标准的集成电路块单元连接而成。
对于非标准的特殊电路还可以使用可编程序逻辑阵列电路, 通过编程的方法实现任意的逻辑功能。
二、模拟电路与数字电路之间的区别模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。
第九章 数字电路基础知识一、 填空题1、 模拟信号是在时间上和数值上都是 变化 的信号。
2、 脉冲信号则是指极短时间内的 电信号。
3、 广义地凡是 规律变化的,带有突变特点的电信号均称脉冲。
4、 数字信号是指在时间和数值上都是 的信号,是脉冲信号的一种。
5、 常见的脉冲波形有,矩形波、 、三角波、 、阶梯波。
6、 一个脉冲的参数主要有 Vm 、tr 、 Tf 、T P 、T 等。
7、 数字电路研究的对象是电路的输出与输入之间的逻辑关系。
8、 电容器两端的电压不能突变,即外加电压突变瞬间,电容器相当于 。
9、 电容充放电结束时,流过电容的电流为0,电容相当于 。
10、 通常规定,RC 充放电,当t = 时,即认为充放电过程结束。
11、 RC 充放电过程的快慢取决于电路本身的 ,与其它因素无关。
12、 RC 充放电过程中,电压,电流均按 规律变化。
13、 理想二极管正向导通时,其端电压为0,相当于开关的 。
14、 在脉冲与数字电路中,三极管主要工作在 和 。
15、 三极管输出响应输入的变化需要一定的时间,时间越短,开关特性 。
16、 选择题2 若一个逻辑函数由三个变量组成,则最小项共有( )个。
A 、3B 、4C 、84 下列各式中哪个是三变量A 、B 、C 的最小项( )A 、ABC ++ B 、A BC + C 、ABC5、模拟电路与脉冲电路的不同在于( )。
A 、模拟电路的晶体管多工作在开关状态,脉冲电路的晶体管多工作在放大状态。
B 、模拟电路的晶体管多工作在放大状态,脉冲电路的晶体管多工作在开关状态。
C 、模拟电路的晶体管多工作在截止状态,脉冲电路的晶体管多工作在饱和状态。
D 、模拟电路的晶体管多工作在饱和状态,脉冲电路的晶体管多工作在截止状态。
6、己知一实际矩形脉冲,则其脉冲上升时间( )。
A 、.从0到Vm 所需时间B 、从0到22Vm 所需时间 C 、从0.1Vm 到0.9Vm 所需时间 D 、从0.1Vm 到22Vm 所需时间 7、硅二极管钳位电压为( )A 、0.5VB 、0.2VC 、0.7VD 、0.3V8、二极管限幅电路的限幅电压取决于( )。
数字电路基础知识在当今科技飞速发展的时代,数字电路作为电子技术的重要组成部分,广泛应用于计算机、通信、控制等众多领域。
如果你对电子技术感兴趣,或者正在学习相关专业,那么了解数字电路的基础知识是必不可少的。
接下来,让我们一起走进数字电路的世界。
一、数字电路的概念数字电路是处理数字信号的电子电路。
与模拟电路处理连续变化的信号不同,数字信号只有两种离散的状态,通常用“0”和“1”来表示。
这种简单的二进制表示使得数字电路具有可靠性高、抗干扰能力强、易于集成等优点。
在数字电路中,信息是以数字的形式进行存储、传输和处理的。
例如,计算机中的数据、数字通信中的信号等都是以数字形式存在的。
二、数字电路的基本逻辑门逻辑门是数字电路的基本单元,就像建筑中的砖块一样。
常见的基本逻辑门有与门、或门、非门三种。
1、与门与门的逻辑功能是只有当所有输入都为“1”时,输出才为“1”,否则输出为“0”。
可以把与门想象成一个需要多个条件同时满足才能打开的门。
2、或门或门则只要有一个输入为“1”,输出就为“1”,只有当所有输入都为“0”时,输出才为“0”。
类似于多个开关并联,只要有一个开关闭合,电路就导通。
3、非门非门是对输入进行取反操作,输入为“1”时,输出为“0”;输入为“0”时,输出为“1”。
通过这三种基本逻辑门的组合,可以构建出更复杂的逻辑电路,实现各种功能。
三、数字电路中的数制与编码1、数制数制是计数的方法。
在数字电路中,常用的数制有二进制、十进制、八进制和十六进制。
二进制是数字电路中最基本的数制,只有“0”和“1”两个数字。
十进制则是我们日常生活中最常用的数制,由 0 到 9 十个数字组成。
八进制和十六进制在计算机编程和数字电路设计中也经常用到。
2、编码编码是将信息转换为特定的代码形式。
例如,BCD 码(BinaryCoded Decimal)是用二进制编码表示十进制数;格雷码(Gray Code)在相邻的两个数之间只有一位发生变化,常用于减少数字电路中的误差。
数电模电基础知识总结电子技术作为现代科学技术的一支重要分支,是现代社会发展的基础和支撑。
数电模电基础知识是电子技术的核心内容,掌握好这些基础知识对于学习和应用电子技术都有着重要的意义。
本文将对数电模电基础知识进行总结,帮助读者加深对这些知识的理解和掌握。
一、数电基础知识1.数字信号与模拟信号数字信号和模拟信号是电子系统中常用的两种信号形式。
数字信号是以离散的、有限个数的数值表示的信号,是通过对连续模拟信号进行采样和量化得到的。
数字信号具有离散性、可编程性、可靠性等特点,广泛应用于计算机和通信系统中。
而模拟信号是连续的,可以取无限个数的数值,用于传输和处理连续的实时信号。
2.二进制系统二进制系统是一种数学计数系统,它只使用两个数字0和1表示数值。
在计算机中,所有的数据和指令都是用二进制数来表示和处理的。
二进制系统有简单、直观、易于计算等优点,是计算机技术的基础。
3.逻辑门电路逻辑门电路是电子系统中常用的一类组合逻辑电路,根据输入信号经过门电路的逻辑运算,最终得到输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
逻辑门电路可以实现布尔代数中的逻辑运算,是数字电路设计中的基础。
4.计数器和寄存器计数器和寄存器是数字电路中常用的存储器件。
计数器是一种能够按照一定规律自动计数的电子装置,广泛应用于时序电路设计和计数问题的解决。
寄存器是一种能够暂时存储二进制数据的电子装置,常用于数据存储、传输和处理等。
二、模电基础知识1.放大器放大器是模拟电路中常用的一种电子器件,用于放大信号的幅度。
放大器可以将弱信号放大为较强的信号,以便于处理和传输。
常见的放大器有分立元件放大器、运算放大器和集成放大器等。
2.滤波器滤波器是模拟电路中常用的一种电子器件,用于改变信号频率的分布特性。
滤波器可以根据信号频率的要求实现对特定频段的放大或衰减。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
3.振荡器振荡器是模拟电路中常用的一种电子器件,用于产生稳定的周期性信号。
模拟电路基础知识点总结一、电路基本概念1. 电路电路是由电子元件(如电源、电阻、电容、电感等)连接在一起形成的电子装置。
通过这些元件可以实现电能的输送、控制和转换,从而完成各种电子设备和系统的功能。
2. 电流、电压和电阻电流是电子在导体中流动的载体,是电荷的移动速度,通常用符号I表示,单位是安培(A)。
电压是电源推动电荷流动的力量,通常用符号U表示,单位是伏特(V)。
电阻是导体对电流的阻碍,通常用符号R表示,单位是欧姆(Ω)。
3. 串联电路、并联电路和混联电路串联电路是将电子元件连接在同一电路中,依次排列,电流只有一条通路可走。
并联电路是将电子元件连接在同一电路中,相互平行排列,电流可有多条通路走。
混联电路是将电子元件混合连接在同一电路中,既有串联又有并联的特点。
二、基本电路元件1. 电源电源为电路提供驱动力,可以是直流电源或交流电源,根据需要分别选择。
2. 电阻电阻是电路中常用的元件,可以用来控制电流大小,限制电流大小,分压和分流等。
3. 电容电容是储存电荷的元件,可以用来实现一些信号处理和滤波的功能,在交流电路中有重要作用。
4. 电感电感是导体绕制的线圈,可以将电能转换为磁能,反之亦然,对交流信号传输有重要作用。
5. 二极管二极管是一种电子元件,可以将电流限制在一个方向上流动,常用于整流、开关和光电转换等应用。
6. 晶体管晶体管是一种半导体元件,可以放大电流信号,控制电流开关等,是集成电路中最基本的元件之一。
三、基本电路分析1. 基尔霍夫定律基尔霍夫定律是用来分析串联电路和并联电路中电压和电流的分布情况的定律,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 电压分压和电流分流电压分压和电流分流是串联电路和并联电路中常见的分析方法,可以通过这些方法来实现电路中电压和电流的控制。
3. 戴维南定理和戴维南等效电路戴维南定理是用来分析电路中电阻和电压之间的关系,戴维南等效电路是用来替代一些复杂电路,简化分析过程的方法。
数字电路总结知识点一、基本原理数字电路是以二进制形式表示信息的电路,它由数字信号和逻辑元件组成。
数字信号是由禄电平、高电平表示的信号,逻辑元件是由逻辑门组成的。
数字电路的设计和分析都是以逻辑门为基础的。
逻辑门是用来执行逻辑函数的元件,比如“与”门、“或”门、“非”门等。
数字电路的基本原理主要包括二进制数制、布尔代数、卡诺图、逻辑函数和逻辑运算等内容。
二进制数制是数字电路中最常用的数制形式,它使用0和1表示数字。
布尔代数是描述逻辑运算的理论基础,它包括基本逻辑运算、逻辑运算规则、逻辑函数、逻辑表达式等内容。
卡诺图是用于简化逻辑函数的图形化方法,它可以简化逻辑函数的表达式,以便进一步分析和设计数字电路。
二、逻辑门逻辑门是数字电路的基本元件,它用来执行逻辑函数。
常见的逻辑门包括与门、或门、非门、异或门、与非门、或非门等。
这些逻辑门都有特定的逻辑功能和真值表,它们可以用于组合成复杂的逻辑电路。
逻辑门的特点有两个,一个是具有特定的逻辑功能,另一个是可以实现逻辑函数。
逻辑门的逻辑功能对应着二进制操作的逻辑运算,它可以实现逻辑的“与”、“或”、“非”、“异或”等功能。
逻辑门的实现是通过逻辑元件的布局和连接来完成的,比如用传输门和与门实现一个或门。
三、组合逻辑电路组合逻辑电路是由逻辑门组成的电路,它执行逻辑函数,但没有存储元件。
组合逻辑电路的特点是对输入信号的变化立即做出响应,并且输出信号仅依赖于当前的输入信号。
常见的组合逻辑电路包括加法器、减法器、多路选择器、译码器等。
加法器是一个重要的组合逻辑电路,它用来执行加法运算。
有半加器、全加器和多位加法器等不同类型的加法器,它们可以实现不同精度的加法运算。
减法器是用来执行减法运算的组合逻辑电路,它可以实现数的减法运算。
多路选择器是一个多输入、单输出的组合逻辑电路,它根据控制信号选择其中的一个输入信号输出到输出端。
译码器是用来将二进制码转换成其它码制的组合逻辑电路,它可以将二进制数码转换成BCD码、七段码等。
数电模电基础知识总结
数电模电基础知识是电子工程领域的重要基础,掌握好这些知识对于电子工程
师来说至关重要。
本文将对数电模电基础知识进行总结,希望能够帮助读者更好地理解和掌握这些知识。
首先,我们来谈谈数电基础知识。
数字电子学是研究数字电子系统的原理、设
计和应用的学科,它主要研究数字电路的设计、分析和应用。
数字电路是由数字信号来控制和处理信息的电路,它主要包括逻辑门电路、触发器电路、计数器电路等。
在数字电子学中,我们需要了解数字信号的特点、布尔代数、半导体存储器、寄存器、移位寄存器等知识。
其次,我们来看看模电基础知识。
模拟电子学是研究模拟电子系统的原理、设
计和应用的学科,它主要研究模拟电路的设计、分析和应用。
模拟电路是由模拟信号来控制和处理信息的电路,它主要包括放大电路、滤波电路、振荡电路等。
在模拟电子学中,我们需要了解模拟信号的特点、放大器、运算放大器、滤波器、振荡器等知识。
在实际应用中,数电和模电的知识经常会相互结合,比如在数字信号处理中需
要用到模拟信号的采集和转换,这就需要用到模数转换器和数模转换器。
因此,掌握好数电模电基础知识对于电子工程师来说非常重要。
总的来说,数电模电基础知识涉及到数字电子学和模拟电子学两个方面,它们
在电子工程领域中起着至关重要的作用。
通过本文的总结,希望读者能够对数电模电基础知识有一个更加清晰的认识,为今后的学习和工作打下良好的基础。
数电考试知识点总结一、数字电路的基本概念1.1 信号与信号的分类信号是一种描述信息的表现形式,它可以是数学函数、电流、电压或其他物理量。
信号可以分为模拟信号和数字信号两种。
模拟信号是连续的,它的值可以在一定范围内连续变化;数字信号是离散的,它的值只能取有限的几种状态。
1.2 二进制码二进制码是一种用“0”和“1”来表示信息的编码方式,是数字电路中常用的编码方式。
二进制码可以表示数字、文字、图像等各种信息,是数字系统的基础。
1.3 逻辑门逻辑门是用来进行逻辑运算的元器件,它可以实现与、或、非、异或等逻辑运算。
常见的逻辑门有与门、或门、非门、与非门、或非门、异或门等多种类型。
二、组合逻辑电路2.1 组合逻辑电路的基本结构组合逻辑电路是由逻辑门组成的电路,它的输出只依赖于输入的当前值,而不考虑输入的历史状态。
组合逻辑电路可以用来实现各种逻辑运算和信息处理功能。
2.2 真值表真值表是用来描述逻辑运算结果的一种表格形式,它列出了各种可能的输入组合所对应的输出值。
真值表可以用来验证逻辑电路的正确性,也可以用来设计逻辑电路。
2.3 编码器和解码器编码器是用来将多个输入信号编码成一个二进制输出信号的电路,解码器则是用来将一个二进制输入信号解码成多个输出信号的电路。
编码器和解码器在数字通信和信息处理中有着重要的应用。
2.4 多路选择器和数据选择器多路选择器是一种能够从多个输入中选择一个输出的电路,数据选择器则是一种对输入数据进行选择的电路。
多路选择器和数据选择器在信息处理和信号传输中有着广泛的应用。
2.5 码变换器和位移寄存器码变换器是一种能够将一个编码转换成另一个编码的电路,位移寄存器则是一种能够实现数据位移操作的电路。
码变换器和位移寄存器在数字信号处理和通信中有着重要的作用。
三、时序逻辑电路3.1 时序逻辑电路的基本概念时序逻辑电路是在组合逻辑电路的基础上加入了时钟信号控制的一种电路。
它的输出不仅依赖于输入的当前值,还可能依赖于输入的历史状态。
数字电路知识点总结一、数字电路基础1. 数字信号与模拟信号- 数字信号:离散的电压级别表示信息,通常为二进制。
- 模拟信号:连续变化的电压或电流表示信息。
2. 二进制系统- 基数:2。
- 权重:2的幂次方。
- 转换:二进制与十进制、十六进制之间的转换。
3. 逻辑电平- 高电平(1)与低电平(0)。
- 噪声容限。
4. 逻辑门- 基本逻辑门:与(AND)、或(OR)、非(NOT)、异或(XOR)。
- 复合逻辑门:与非(NAND)、或非(NOR)、异或非(XNOR)。
二、组合逻辑1. 逻辑门电路- 基本逻辑门的实现与应用。
- 标准逻辑系列:TTL、CMOS。
2. 布尔代数- 基本运算:与、或、非。
- 逻辑公式的简化。
3. 多级组合电路- 级联逻辑门。
- 编码器、解码器。
- 多路复用器、解复用器。
- 算术逻辑单元(ALU)。
4. 逻辑函数的表示- 真值表。
- 逻辑表达式。
- 卡诺图。
三、时序逻辑1. 触发器- SR触发器(置位/复位)。
- D触发器。
- JK触发器。
- T触发器。
2. 时序逻辑电路- 寄存器。
- 计数器。
- 有限状态机(FSM)。
3. 存储器- 随机存取存储器(RAM)。
- 只读存储器(ROM)。
- 闪存(Flash)。
4. 时钟与同步- 时钟信号的重要性。
- 同步电路与异步电路。
四、数字系统设计1. 设计流程- 需求分析。
- 概念设计。
- 逻辑设计。
- 物理设计。
2. 硬件描述语言(HDL)- VHDL与Verilog。
- 模块化设计。
- 测试与验证。
3. 集成电路(IC)- 集成电路分类:SSI、MSI、LSI、VLSI。
- 集成电路设计流程。
4. 系统级集成- 系统芯片(SoC)。
- 嵌入式系统。
- 多核处理器。
五、数字电路应用1. 计算机系统- 中央处理单元(CPU)。
- 输入/输出接口。
2. 通信系统- 数字信号处理(DSP)。
- 通信协议。
- 网络通信。
3. 消费电子产品- 音频/视频设备。
模拟与数字电路知识点总结1.数字电路分类数字电路主要分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路是指电路中的输出仅由输入信号的当前值决定,与输入信号的时序无关。
常见的组合逻辑电路有门电路、编码器、译码器、多路选择器、加法器、减法器等。
时序逻辑电路是指电路中的输出不仅由输入信号的当前值决定,还与输入信号的时序相关。
常见的时序逻辑电路有时序电路、触发器、寄存器、计数器、状态机等。
2.数字电路基本元件数字电路的基本元件包括门电路、触发器和计数器等。
门电路是数字逻辑电路的基础,用于进行逻辑运算。
常见的门电路有与门、或门、非门、异或门、与非门、或非门等。
触发器是一种能够存储状态的器件,用于时序逻辑电路中。
常见的触发器包括RS触发器、D触发器、JK触发器、T触发器等。
计数器是一种能够对输入的脉冲进行计数的器件,主要用于计数和时序控制。
常见的计数器包括二进制计数器、BCD计数器、分频器等。
3.数字逻辑电路设计数字逻辑电路设计是指根据实际需求,按照一定的逻辑关系和功能要求,设计出符合要求的数字电路。
数字电路设计的基本步骤包括需求分析、逻辑设计、电路绘制、电路仿真和电路测试等。
在数字逻辑电路设计中,需要了解各种逻辑门的逻辑关系、信号的传输与处理、时序控制等知识。
同时,还需要掌握仿真工具的使用,如Verilog、VHDL等,以及数字电路实验平台的使用。
4.数字信号处理数字信号处理是指对数字信号进行采样、量化、编码和处理的过程。
数字信号处理在通信、音频、视频等领域有着广泛的应用。
数字信号处理的基本原理包括采样定理、量化误差、信号编码、数字滤波等。
同时,还需要了解FFT、DFT、数字滤波器等数字信号处理技术。
5.数字电路应用数字电路在计算机、通信、家电、汽车电子等领域有着广泛的应用。
在计算机中,数字电路主要应用于CPU、存储系统、控制系统等部件。
数字电路在通信领域中,主要应用于调制解调器、编解码器、数字滤波器等部件。
数电模电基础知识总结数字电子技术是指利用数字信号进行信息处理和传输的一种电子技术。
它是电子工程的一部分,是现代电子技术的重要组成部分。
本文将对数字电子技术的基础知识进行总结,主要包括数字电路的基本概念、数字信号和数字系统的表示方法、数字电路的逻辑运算和布尔代数、数字电路的设计和实现、数字信号处理等方面。
数字电路是指由逻辑门组成的电路,逻辑门是基本的数字电路组件,它具有输入和输出端口。
数字电路中的信号是离散的,只有两个可能的值,分别为高电平(表示逻辑"1")和低电平(表示逻辑"0")。
数字信号通常用二进制数字表示,例如"1010"表示数值为10。
数字系统是由数字电路组成的,它可以实现各种数字功能。
数字系统可以分为组合逻辑和时序逻辑两种类型。
组合逻辑是指输出只取决于当前的输入值,而不受过去的输入的影响;时序逻辑是指输出取决于当前的输入和过去的输入。
数字信号可以用多种方式进行表示,常见的有逻辑电平表示、时序波形表示和逻辑函数表示。
逻辑电平表示是指使用高电平和低电平表示逻辑"1"和逻辑"0";时序波形表示是指使用波形图表示信号的变化;逻辑函数表示是指使用逻辑函数表示信号的逻辑关系。
数字电路的逻辑运算和布尔代数是数字电路设计的基础。
布尔代数是一种数学工具,用于描述逻辑运算的规则。
逻辑运算包括与、或、非、异或等运算。
这些逻辑运算可以通过逻辑门实现,例如与门、或门、非门、异或门等。
数字电路的设计和实现是将逻辑功能转化为电路实现的过程。
数字电路可以通过门电路、触发器、计数器等元件实现。
门电路包括与门、或门、非门、异或门等,它们由逻辑门组成;触发器是一种时序逻辑元件,可以存储一位二进制信息;计数器是一种用于计数的电路,可以进行二进制计数。
数字信号处理是指使用数字信号进行信号处理的一种技术。
数字信号处理可以实现滤波、变换、编码等操作,广泛应用于通信、音频、图像等领域。
数电基本知识点总结
数字信号与模拟信号:数字信号在时间和数值上都是离散的,只能按有限多个增量或阶梯取值;而模拟信号在时间和数值上都是连续的。
数字电路与数字逻辑:数字电路是由数字信号进行处理和传输的电路系统,主要由逻辑门和触发器等基本逻辑元件组成;而数字逻辑则是处理数字信号的逻辑,是数字电路运作的原理。
逻辑代数:也称为布尔代数,由英国数学家布尔在1849年提出,是对布尔函数进行代数运算的理论,包括加法和乘法运算,有三种最基本的运算:与、或、非。
真值表:一种描述逻辑门输入和输出之间关系的表格,用于表示布尔表达式的值。
逻辑门与逻辑电路:逻辑门是数字逻辑系统的基础,它接收一个或多个输入信号并产生一个输出信号;逻辑电路则是用于实现逻辑门和逻辑运算的物理设备,如晶体管、集成电路等。
数字电路的应用:数字电路在现代电子技术中有着广泛的应用,如计算机、网络、移动互联网等领域。
此外,数字电路还包括化简电路、集成电路等知识点。
化简电路是为了降低系统的成本,提高电路的可靠性,以便使用最少集成电路实现功能;而集成电路则是将若干个有源器件和无源器件及其导线,按照一定的功能要求制作在同一块半导体芯片上。
以上内容仅供参考,如需更多信息,建议查阅数字电路相关书籍或咨询专业技术人员。
数电知识点总结一、数字电路基础1. 数字信号与模拟信号- 数字信号:离散的电压或电流信号,代表信息的二进制状态(0和1)。
- 模拟信号:连续变化的电压或电流信号,可以表示无限多的状态。
2. 二进制系统- 数字电路使用二进制数制,基于0和1的组合。
- 二进制的运算规则包括加法、减法、乘法和除法。
3. 逻辑门- 基本逻辑门:与(AND)、或(OR)、非(NOT)、异或(XOR)和同或(XNOR)。
- 逻辑门的真值表描述了输入和输出之间的关系。
4. 组合逻辑与时序逻辑- 组合逻辑:输出仅依赖于当前输入,不依赖于历史状态。
- 时序逻辑:输出依赖于当前输入和历史状态。
二、组合逻辑电路1. 基本组合逻辑电路- 半加器:实现两个一位二进制数的加法。
- 全加器:实现三个一位二进制数(包括进位)的加法。
2. 多路复用器(MUX)- 选择多个输入信号中的一个,根据选择信号。
3. 解码器(Decoder)- 将二进制输入转换为多个输出信号,每个输出对应一个唯一的二进制输入组合。
4. 编码器(Encoder)- 将多个输入信号编码为一个二进制输出。
5. 比较器(Comparator)- 比较两个数字信号的大小。
三、时序逻辑电路1. 触发器(Flip-Flop)- SR触发器:基于设置(S)和重置(R)输入的状态。
- D触发器:输出取决于数据输入(D)和时钟信号。
2. 寄存器(Register)- 由一系列触发器组成,用于存储数据。
3. 计数器(Counter)- 顺序触发器的集合,用于计数时钟脉冲。
4. 有限状态机(FSM)- 由状态和状态之间的转换组成的电路,根据输入信号和当前状态决定输出和下一个状态。
四、存储器1. 随机存取存储器(RAM)- 可读写存储器,允许对任何地址进行直接访问。
2. 只读存储器(ROM)- 存储器内容在制造过程中确定,用户不能修改。
3. 存储器的组织- 存储单元的排列方式,如字节、字等。
五、数字系统设计1. 数字系统的基本组成- 输入接口、处理单元、存储器和输出接口。
模拟电路知识点总结资料一、基本概念1. 电路:由电阻、电容、电感等基本元件组成的系统。
根据信号类型,电路可分为模拟电路和数字电路。
2. 模拟电路:能够处理连续变化的信号的电路。
模拟电路中的信号是连续的模拟波形,可以以任意时间间隔改变其数值。
3. 数字电路:只能处理离散的信号的电路。
数字电路中的信号是由0和1组成的脉冲波形,只在规定的时间点改变其数值。
二、基本元件1. 电阻:用于限制电流的流动,常用于控制信号的幅度和输出阻抗。
2. 电容:用于存储电荷,通常用于滤波、隔直、积分等功能。
3. 电感:用于存储磁能,通常用于滤波、隔交、微分等功能。
4. 二极管:用于实现电流的单向导通,可以作为整流器、开关等。
5. 晶体管:用于放大和控制电流,可以作为放大器、开关等。
三、基本电路1. 放大器:用于放大输入信号的幅度,常见的有运放放大器、晶体管放大器等。
2. 滤波器:用于滤除不需要的频率成分,常见的有低通滤波器、高通滤波器、带通滤波器等。
3. 比较器:用于比较两个信号的大小,常见的有比较器、振荡器等。
四、基本分析方法1. 直流分析:分析电路在稳态直流条件下的性能,通常用节点法、网孔法等进行分析。
2. 交流分析:分析电路在交流条件下的性能,通常用复数分析、频域分析等进行分析。
3. 时域分析:分析电路在时间域内的性能,通常用微分方程、积分方程等进行分析。
4. 非线性分析:分析电路中的非线性元件对性能的影响,通常需要用仿真软件进行分析。
五、常用工具和软件1. 万用表:用于测量电路中的电压、电流、电阻等参数。
2. 示波器:用于观测电路中的信号波形,可以分析信号的频率、幅度、相位等。
3. 信号发生器:用于产生各种形式的信号,可以用于测试电路的响应特性。
4. 仿真软件:如Multisim、Protues等,用于构建电路模型,进行电路仿真分析。
六、常见电路应用1. 放大器:用于音频放大、射频放大等。
2. 滤波器:用于音频滤波、射频滤波等。
数字电路知识点总结数字电路是指由数字信号控制和处理信息的电路,是数字系统的基础组成部分之一。
数字电路可以完成逻辑运算、计数、存储、选通、编码和解码等功能,在现代电子通信、计算机、自动控制等领域中得到了广泛应用。
因此,掌握数字电路的相关知识对于电子工程师和电子专业学生来说是很重要的。
本文将对数字电路的基本知识点进行总结,希望能对读者的学习和工作有所帮助。
一、数字电路的基础知识1、数字电路的基本概念数字电路是由数字信号控制和处理信息的电路,是一种离散的电路,能够进行数字信号的存储、加工、传输和处理。
数字电路中的信号只有两种状态,即逻辑“0”和逻辑“1”,分别代表低电位和高电位。
2、数字电路的特点(1)稳定性好:数字电路的输入输出信号均为离散型的逻辑信号,易于处理和分析,具有很好的稳定性。
(2)抗干扰性强:数字信号不受干扰的影响,抗干扰能力强。
(3)精度高:数字电路的精度和稳定性比较高,适合用于精密度要求较高的应用场合。
(4)易于集成和自动化控制:数字电路与计算机和微处理器等数字设备结合,可实现数字系统的集成和自动化控制。
3、数字电路的分类数字电路主要分为组合逻辑电路和时序逻辑电路两大类。
(1)组合逻辑电路:组合逻辑电路是由逻辑门组成的电路,它只有输入没有状态,其输出仅依赖于输入信号。
(2)时序逻辑电路:时序逻辑电路是由触发器或寄存器等时序逻辑元件构成的电路,具有状态,其输出不仅依赖于输入信号,还与电路的状态有关。
4、数字电路的基本元件数字电路的基本元件主要包括逻辑门、触发器、寄存器、计数器、加法器、减法器等。
其中,逻辑门是数字系统的基本构建模块,常见的逻辑门有与门、或门、非门、异或门、与非门、或非门等。
5、数字电路的代数表达数字电路可以使用布尔代数(Boolean Algebra)进行描述和分析。
布尔代数是一种处理逻辑变量和逻辑运算的代数系统,它使用逻辑变量和逻辑运算符(与、或、非、异或)来描述和分析逻辑电路。
模拟电路与数字电路考试要点总结一、基本概念模拟电路:能够处理连续信号并输出连续信号的电路。
数字电路:能够处理离散信号并输出离散信号的电路。
模拟信号:连续可变物理量的信号。
数字信号:只能取有限个离散值的信号。
示波器:用于观察波形的仪器,可用于测量电压和时间。
逻辑门:基本的数字电路部件,是实现布尔代数运算的基础。
二、模拟电路1. 基本电路单元1.1 电阻电阻是模拟电路中最基本的电路元件,用来限制电流大小。
1.2 电容电容用来存储电能,能够使电压随时间变化,而电流保持恒定。
1.3 电感电感是存储磁能的元件,可以使电流随时间变化,而电压保持恒定。
2. 放大器放大器是一种能够将输入信号放大的电路。
2.1 运放运放是从模拟电路中最常见而又重要的放大器。
它具有很高的电压增益、输入阻抗高、输出阻抗低等一系列优点。
2.2 三极管放大器三极管具有放大和开关的双重功能,其放大性能比运放要差,但价格便宜、体积小。
3. 滤波器滤波器用于从混杂的信号中提取出所需要的信号。
3.1 低通滤波器低通滤波器能够滤掉高频信号,保留低频信号。
3.2 高通滤波器高通滤波器能够滤掉低频信号,保留高频信号。
3.3 带通滤波器带通滤波器能够通过选择性地滤除非希望的频率而保留一定范围的频率。
4. 振荡器振荡器是将电能转化为振动能的电路。
4.1 电容振荡器电容振荡器基于电容和电感的振荡原理。
4.2 晶体振荡器晶体振荡器使用了晶体的石英共振效应,生成非常稳定的振荡信号。
三、数字电路1. 基本逻辑门1.1 与门与门的输出信号为1的条件是所有输入信号都为1。
1.2 或门或门的输出信号为0的条件是所有输入信号都为0。
1.3 非门非门只有一个输入,其输出正好与输入相反。
1.4 异或门异或门的输出信号在有且仅有一个输入信号为1时为1,否则为0。
2. 组合逻辑电路组合逻辑电路由逻辑门组成,并可以完成一些简单的逻辑处理,如加减法、比较等。
3. 时序逻辑电路时序逻辑电路通过对输入信号的时序处理,根据特定的触发条件产生输出。
58条模拟、数字电路基础知识总结1、 HC为COMS电平,HCT为TTL电平2、 LS输入开路为高电平,HC输入不允许开路, HC一般都要求有上下拉电阻来确定输入端无效时的电平。
LS 却没有这个要求3、 LS输出下拉强上拉弱,HC上拉下拉相同4、工作电压:LS只能用5V,而HC一般为2V到6V5、CMOS可以驱动TTL,但反过来是不行的。
TTL电路驱动COMS电路时需要加上拉电阻,将2.4V~3.6V之间的电压上拉起来,让CMOS检测到高电平输入6、驱动能力不同,LS一般高电平的驱动能力为5mA,低电平为20mA;而CMOS的高低电平均为5mA7、 RS232电平为+12V为逻辑负,-12为逻辑正8、 74系列为商用,54为军用9、 TTL高电平>2.4V,TTL低电平<0.4V, 噪声容限0.4V10、 OC门,即集电极开路门电路(为什么会有OC门?因为要实现“线与”逻辑),OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
并且只能吸收电流,必须外界上拉电阻和电源才才能对外输出电流11、 COMS的输入电流超过1mA,就有可能烧坏COMS12、当接长信号传输线时,在COMS电路端接匹配电阻13、在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平14、如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT的芯片,因为3.3VCMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间15、逻辑门输出为高电平时的负载电流(为拉电流),逻辑门输出为低电平时的负载电流(为灌电流)16、由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。
1、HC为COMS电平,HCT为TTL电平2、LS输入开路为高电平,HC输入不允许开路,HC一般都要求有上下拉电阻来确定输入端无效时的电平。
LS 却没有这个要求3、LS输出下拉强上拉弱,HC上拉下拉相同4、工作电压:LS只能用5V,而HC一般为2V到6V5、CMOS可以驱动TTL,但反过来是不行的。
TTL电路驱动COMS电路时需要加上拉电阻,将2.4V~3.6V之间的电压上拉起来,让CMOS检测到高电平输入6、驱动能力不同,LS一般高电平的驱动能力为5mA,低电平为20mA;而CMOS的高低电平均为5mA7、RS232电平为+12V为逻辑负,-12为逻辑正8、74系列为商用,54为军用9、TTL高电平>2.4V,TTL低电平<0.4V, 噪声容限0.4V10、OC门,即集电极开路门电路(为什么会有OC门?因为要实现“线与”逻辑),OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
并且只能吸收电流,必须外界上拉电阻和电源才才能对外输出电流11、COMS的输入电流超过1mA,就有可能烧坏COMS12、当接长信号传输线时,在COMS电路端接匹配电阻13、在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平14、如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT的芯片,因为3.3VCMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
15、逻辑门输出为高电平时的负载电流(为拉电流),逻辑门输出为低电平时的负载电流(为灌电流)16、由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。
这样漏极开路形式就可以连接不同电平的器件,用于电平转换。
需要注意的一点:在上升沿的时候通过外部上拉无源电阻对负载进行充电,所以上升沿的时间可能不够迅速,尽量使用下降沿17、几种电平转换方法:(1) 晶体管+上拉电阻法就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法跟(1) 类似。
适用于器件输出刚好为OC/OD 的场合。
(3) 74xHCT系列芯片升压(3.3V→5V)凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。
这是由于3.3V CMOS 的电平刚好和5VTTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。
廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母T 就表示TTL 兼容)。
(4) 超限输入降压法(5V→3.3V,3.3V→1.8V, ...)凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。
(5) 专用电平转换芯片最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。
这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
(6) 电阻分压法最简单的降低电平的方法。
5V电平,经1.6k+3.3k电阻分压,就是3.3V。
(7) 限流电阻法18、无极性电容和有极性电容:前者的封装基本为0805,0603。
后者用的最多为铝电解电容,好一点的钽电容19、PQFP(Plastic Quad Flat Package, 塑料四边引出扁平封装), BGA(Ball Grid Array Package, 球栅阵列封装), PGA(Pin Grid Array Package, 针栅阵列封装), PLCC(Plastic Leaded Chip Carrier, 塑料有引线芯片载体), SOP(Small Outline Package, 小尺寸封装), TOSP(Thin Small Outline Package, 薄小外形封装), SOIC(Small Outline Integrated Circuit Package, 小外形集成电路封装)20、集成电路常见的封装形式QFP(quad flat package) 四面有鸥翼型脚(封装) 见图一BGA(ball grid array) 球栅阵列(封装) 见图二PLCC(plastic leaded chip carrier) 四边有内勾型脚(封装) 见图三SOJ(small outline junction) 两边有内勾型脚(封装) 见图四SOIC(small outline integrated circuit) 两面有鸥翼型脚(封装) 见图五图一图二图三图四图五21、屏蔽线对静电有很强的抑制作用,双绞线对电磁感应也有一定的抑制效果22、模拟信号采样抗干扰技术:可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术23、闲置不用的IC管脚不要悬空以避免干扰引入。
不用的运算放大器正输入端接地,负输入端接输出。
单片机不用的I/O口定义成输出。
单片机上有一个以上电源、接地端,每个都要接上,不要悬空24、电阻阻值色环表示法:普通的色环电阻器用4环表示,精密电阻器用5环表示25、电阻的作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等26、电容的作用:隔直流,旁路,耦合,滤波,补偿,充放电,储能等27、一般电容的数字表示法单位为pF,电解电容一般为uF28、电容器的主要性能指标:电容器的容量(即储存电荷的容量), 耐压值(指在额定温度范围内电容能长时间可靠工作的最大直流电压或最大交流电压的有效值) 耐温值(表示电容所能承受的最高工作温度)29、电感器的作用:滤波,陷波,振荡,储存磁能等30、电感器的分类:空芯电感和磁芯电感.磁芯电感又可称为铁芯电感和铜芯电感等31、半导体二极管的分类a) 按材质分:硅二极管和锗二极管;b) 按用途分:整流二极管,检波二极管,稳压二极管,发光二极管,光电二极管,变容二极管。
32、场效应管是电压控制元件,而晶体管是电流控制元件。
在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管33、Socket是一种插座封装形式,是一种矩型的插座;Slot是一种插槽封装形式,是一种长方形的插槽34、晶振的测量方法:用万用表RX10K档测量石英晶体振荡器的正,反向电阻值.正常时应为无穷大.若测得石英晶体振荡器有一定的阻值或为零,则说明该石英晶体振荡器已漏电或击穿损坏35、IO口输出高电平时,驱动能力最低,对外显示为推电流;IO口输出低电平时,驱动能力最大,对外显示为拉电流36、外围集成数字驱动电路如果驱动的是感性负载,必须加限流电阻或钳住二极管37、9013提供的驱动电流有300mA38、输出数据应该锁存(外围速度跟不上,所以需要锁存),输入数据应该有三态缓冲(加入了高阻状态,不至于对内部的数据总线产生影响)39、8位并行输出口(必须带有锁存功能):74LS377,74LS273.8位并行输入口(必须是三态门):74LS373,74LS24440、串行口扩展并行口,并行输入口:74LS165。
并行输出口:74LS16441、键盘工作方式有三种:l 编程扫描方式l 定时扫描方式l 中断方式。
还可以专门设计一个IO口用来进行双功能键的设计(上档键和下档键)42、对于TTL负载,主要应考虑直流负载特性,因为TTL的电流大,分布电容小。
对于MOS 型负载,主要应考虑交流负载特性,因为MOS型负载的输入电流小,主要考虑分布电容43、特别注意总线负载平衡的概念!44、上拉电阻的好处:l 提高信号电平l 提高总线的抗电磁干扰能力(电磁信号通过DB进入CPU)l 抑制静电干扰(CMOS芯片)l 反射波干扰(长远距离传输)45、稳压时,采用两级集成稳压芯片稳压效果更好46、传输线的阻抗匹配:l 终端并联阻抗匹配(高电平下降)l 始端串联匹配(低电平抬高)l 终端并联隔直流匹配(RC串联接地)l 终端接钳位二极管47、接地分两种:外壳接地(真正的接地)和工作接地(浮地)48、在单片机中地的种类:数字地,模拟地,功率地(电流大,地线粗),信号地,交流地,屏蔽地49、一点接地:低频电路(1MHZ以下)。
多点接地:高频电路(10MHZ以上)50、交流地与信号地不能公用,数字地和模拟地最好分开,然后在一点相连51、揩振回路:可以选用云母、高频陶瓷电容,隔直流:可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波:可以选用电解电容,旁路:可以选用涤纶、纸介、陶瓷、电解等电容52、二极管应用电路(1) 限幅电路---利用二极管单向导电性和导通后两端电压基本不变的特点组成,将信号限定在某一范围中变化,分为单限幅和双限幅电路。
多用于信号处理电路中。
(2) 箝位电路---将输出电压箝位在一定数值上。
(3) 开关电路---利用二极管单向导电性以接通和断开电路,广泛用于数字电路中。
(4) 整流电路---利用二极管单向导电性,将交流信号变为直流信号,广泛用于直流稳压电源中。
(5) 低电压稳压电路---利用二极管导通后两端电压基本不变的特点,采用几只二极管串联,获得3V以下输出电压53、高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大54、上拉电阻总结:l 当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
l OC门电路必须加上拉电阻,才能使用。
l 为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
l 在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
l 芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。