【VIP专享】2014-2015学年北京市密云县九上期末数学(含答案)
- 格式:pdf
- 大小:461.82 KB
- 文档页数:11
密云县—度第一学期期末考试试卷初三数学学校 姓名 班级 考号考 生 须 知1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题纸上准确填写学校名称、姓名、班级和考号.3.试题答案一律填涂或书写在答题纸的答题区域内,在试卷上答题无效. 4.除画图可以用铅笔外,其他试题用黑色或蓝色钢笔、或签字笔作答.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题目要求的. 1.如果532x =,那么x 的值是 A .152 B .215 C .103 D . 3102.如图,在Rt △ABC 中, ∠C =90︒,AB =5,AC =3,则sin B 的值是A .35 B .45 C .53 D .543.把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为A . 12B .13C .19D .494.已知点(1,)A m 与点B (3,)n 都在反比例函数xy 3=(0)x >的图象上,则m 与n 的关系是A .m n >B .m n <C .m n =D .不能确定 5.将抛物线23y x =向右平移2个单位后得到新的抛物线,则新抛物线的解析式是A .23(2)y x =+ B .23(2)y x =- C .232y x =- D .232y x =+6.如图,在△ABC 中,DE ∥BC ,AD =2DB ,△ABC 的面积为36,则△ADE 的面积为A .81B .54C .24D .167.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①因为a >0,所以函数y 有最大值; ②该函数图象关于直线1x =-对称; ③当2x =-时,函数y 的值大于0;④当31x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是A .1B .2C .3D .48.如图,点A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿线段»OC CD--线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是二、填空题(本题共16分,每小题4分) 9.已知tan 3α=,则锐角α是 ︒.10.如图,将⊙O 沿着弦AB 翻折,劣弧恰好经过圆心O ,若⊙O 的半径为4,则弦AB 的长度等于__ .11.如图,⊙O 的半径为2,1C 是函数212y x =的图象,2C 是函数212y x =-的图象,3C 是函数y =3x 的图象,则阴影部分的面积是 .12.如图,已知Rt △ABC 中,AC =6,BC = 8,过直角顶点C 作1CA ⊥AB ,垂足为1A ,再过1A 作11A C ⊥BC ,垂足为1C ,过1C 作12C A ⊥AB ,垂足为2A ,再过2A 作22A C ⊥BC ,垂足为2C ,…,这样一直做下去,得到了一组线段1CA ,11A C ,12C A ,…,则1CA = ,1n n n nC AA C +(其中n 为正整数)= .三、解答题(本题共30分,每小题5分) 13.计算:tan 452cos30sin 60+-o o o.14.已知:如图,∠1=∠2,AB •AC=AD •AE . 求证:∠C =∠E .15.用配方法将二次函数223y x x =--化为k h x a y +-=2)(的 形式(其中k h , 为常数),写出这个二次函数图象的顶点坐标 和对称轴方程,并在直角坐标系中画出他的示意图.16.如图,⊙O 是△ABC 的外接圆,45A ∠=o,BD 为⊙O 的直径, 且2BD =,连结CD .求BC 的长.17.已知:如图,在△ABC 中,DE ∥BC ,EF ∥AB .试判断AD BFDB FC=成立吗?并说明理由.18.如图,在△ABC 中,∠B =90°,5cos 7A =,D 是AB 上的一点, 连结DC ,若∠BDC =60°,BD =23.试求AC 的长.四、解答题(本题共20分,每小题5分)19.在学校秋季田径运动会4×100米接力比赛时,用抽签的方法安排跑道,初三年级(1)、(2)、(3)三个班恰好分在一组.(1)请利用树状图列举出这三个班排在第一、第二道可能出现的所有结果; (2)求(1)、(2)班恰好依次..排在第一、第二道的概率.20.如图,小磊周末到公园放风筝,风筝飞到C 处时的线长为20米, 此时小磊正好站在A 处,牵引底端B 离地面1.5米.假设测得 60CBD ∠=o,求此时风筝离地面的大约高度(结果精确到1米, 2 1.414≈3 1.732≈).21.已知:如图,⊙O 的直径AB 与弦CD 相交于E,»»BCBD =, BF ⊥AB 与弦AD 的延长线相交于点F . (1)求证:CD ∥BF ;(2)连结BC ,若6AD =,7tan C =,求⊙O 的半径 及弦CD 的长.22.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.五、解答题(本题共22分,第23小题7分,第24小题7分,第25小题8分) 23. 已知二次函数22(21)y x m x m m =--+-(m 是常数,且0m ≠).(1)证明:不论m 取何值时,该二次函数图象总与x 轴有两个交点;(2)设与x 轴两个交点的横坐标分别为1x ,2x (其中1x >2x ),若y 是关于m 的函数,且121x x y -=,结合函数的图象回答:当自变量m 的取值满足什么条件时,y ≤2.24. 已知:如图,AB 是⊙O 的直径,点E 是OA 上任意一点,过点E 作弦CD AB ⊥,点F是»BC上任一点,连结AF 交CE 于H ,连结AC 、CF 、BD 、OD . (1)求证:ACH AFC △∽△;(2)猜想:AH AF ⋅与AE AB ⋅的数量关系,并证明你的猜想;(3)试探究:当点E 位于何处时,△AEC 的面积与△BOD 的面积之比为1:2?并加以证明.25.在平面直角坐标系xoy 中,以点A (3,0)为圆心,5为半径的圆与x 轴相交于点B 、C (点B在点C 的左边),与y 轴相交于点D 、M (点D 在点M 的下方). (1)求以直线x =3为对称轴,且经过D 、C 两点的抛物线的解析式; (2)若E 为直线x =3上的任一点,则在抛物线上是否存在这样的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平 行四边形?若存在,求出点F 的坐标;若不存在,说明理由.13.密云县2011-2012学年度第一学期期末考试初三数学试卷参考答案及评分标准阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分标准参考给分.题 号1 2 3 4 5 6 7 8 答 案 C A D A B D B C9.60; 10.; 11.53π; 12.244,55. 三、解答题(本题共30分,每小题5分) 13.计算:tan 452cos30sin 60+-o o o .解:tan 452cos30sin 60+-o o o=12+ 3分=1--------------------------------------------------------------------------- 4分=1.--------------------------------------------------------------- 5分 14.证明:在△ABE 和△ADC 中,∵ AB •AC=AD •AE∴ AB AD =AEAC ----------------------------------------------------------------2分又∵ ∠1=∠2, -------------------------------------------------------------------3分 ∴ △ABE ∽△ADC (两对应边成比例,夹角相等的两三角形相似)--4分 ∴ ∠C =∠E . ---------------------------------------------------------------------- 5分(说明:不填写理由扣1分.) 15.解:223y x x =--2(1)4x =--. ------------------------------------------------------------------- 2分 顶点坐标为(1,4-). --------------------------------------------------------------- 3分 对称轴方程为 1x =. --------------------------------------------------------------- 4分 图象(略).------------------------------------------------------------------------------ 5分16.解:在⊙O 中,∵45A ∠=o, 45D ∠=o.----------------------------------------------1分 ∵BD 为⊙O 的直径, 90BCD ∠=o. ---------------------------------------------2分 ∴ △BCD 是等腰直角三角形.∴sin 45BC BD =⋅o.---------------------------4分∵2BD =, ∴22BC =⨯=.---------------------------------------------5分 17.答:AD BFDB FC=成立.----------------------------------------------------------------------- 2分 理由:在△ABC 中,∵ DE ∥BC ,∴ EC AE DB AD =.--------------------------------------------------------3分∵ EF ∥AB ,∴ECAE FC BF =.--------------------------------------------------------- 4分∴ FCBF DB AD =.------------------------------------------------------------------------- 5分18.解:在△ABC 中,∠B =90°,5cos 7A =,∴57AB AC =. 设 5,7AB x AC x ==.-------------------------------------------------------------- 1分 由勾股定理 得26BC x =.----------------------------------------------------------2分 在Rt △DBC 中,∵∠BDC =60°,42BD =∴tan 6042346BC BD =⋅==o.------------------------------------------3分 ∴ 2646x = .解得 2x =.-------------------------------------------------------4分 ∴ 714AC x ==.--------------------------------------------------------------------------5分四、解答题(本题共20分,每小题5分) 19.解:(1)树状图列举所有可能出现的结果:(2) ∵ 所有可能出现的结果有6个, 且每个结果发生的可能性相等,其中(1)、(2)班恰好依次..排在第一、第二道的结果只有1个, ∴ (12P 、班恰好依次排在第一、第二道)=61.------------------------------------------ 5分20.解:依题意得,90CDB BAE ABD AED ∠=∠=∠=∠=︒,∴四边形ABDE 是矩形 ,∴ 1.5.DE AB == --------------------------------- 1分 在Rt BDC △中,sin ,CDCBD BC∠=---------------------------------------------- 2分 又∵ 20BC = ,60CBD ∠=o,∴ 3sin 6020103CD BC =⋅︒== . ----------------------------------------- 3分 ∴103 1.517.3 1.519CE CD DE =+=≈+≈ . ------------------------------ 4分 答:此时风筝离地面的高度大约19米 . -------------------------------------------------- 5分21.(1)证明:∵直径AB 平分»CD, ∴AB ⊥CD . --------------------------------------------1分∵BF ⊥AB ,∴CD ∥BF . --------------------------------------------2分 (2)连结BD .∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,tan BDA AD=. 在⊙O 中,∵ A C ∠=∠. ∴7tan tan BD A C AD ===. 又6AD =,∴ 7767BD AD === --------------------------- 3分 在Rt △ADB 中, 由勾股定理 得8AB =.∴⊙O 的半径为 142AB =. ----------------------------------------------------- 4分 在Rt △ADB 中,∵DE AB ⊥,∴AB DE AD BD ⋅=⋅.∴673782DE ⨯==. ∵直径AB 平分»CD,∴237.CD DE ==-------------------------------------- 5分22. 解:解法一:如图所示建立平面直角坐标系. --------------------------- 1分此时,抛物线与x 轴的交点为C (100,0)-,D (100,0).设这条抛物线的解析式为(100)(100)y a x x =-+.---------------------- 2分 ∵ 抛物线经过点B (50,150), 可得 150(50100)(50100)a =-+ . 解得 501-=a . ------------------------- 3分 ∴ )100)(100(501+--=x x y .即 抛物线的解析式为 2120050y x =-+.--------------------------- 4分 顶点坐标是(0,200)∴ 拱门的最大高度为200米. -------------------------------------- 5分解法二:如图所示建立平面直角坐标系. -------------------------------- 1分设这条抛物线的解析式为2ax y =.--------------------------------- 2分 设拱门的最大高度为h 米,则抛物线经过点).,100(),150,50(h D h B -+-可得 22100,15050.h a h a ⎧-=⎪⎨-+=⎪⎩ 解得,.200501⎪⎩⎪⎨⎧=-=h a .----------------------- 4分∴ 拱门的最大高度为200米.-------------------------------------- 5分五、解答题(本题共22分,第23小题7分,第24小题7分,第25小题8分) 23.解:(1)由题意有22[(21)]4()1m m m ∆=----=>0.∴ 不论m 取何值时,该二次函数图象总与x 轴有两个交点.----------2分(2)令0y =,解关于x 的一元二次方程22(21)0x m x m m --+-=,得 x m =或1x m =-.∵ 1x >2x ,∴1x m =,21x m =-.∴mm m x x y 111112=--=-=. 画出my 1=与2y =的图象.如图, 由图象可得,当m ≥21或m <0时,y ≤2.----------------------------------7分24.(1)证明:∵ 弦CD ⊥直径AB 于点E , ∴ »»AD AC =. ∴ ∠ACD =∠AFC .又 ∵ ∠CAH =∠FAC ,∴ △ACH ∽△AFC (两角对应相等的两个三角形相似).--------------1分(2)猜想:AH ·AF =AE ·AB .证明:连结FB .∵ AB 为直径,∴ ∠AFB =90°.又∵ AB ⊥CD 于点E ,∴ ∠AEH =90°.∴AEH AFB ∠=∠. ∵ ∠EAH =∠FAB ,∴ △AHE ∽△ABF .∴ AFAB AE AH =. ∴ AH ·AF =AE ·AB .------------------------------------------------- -----3分(3)答:当点E 位于OA 的中点(或12AE OA =)时,△AEC 的面积与△BOD 的面积之比为1:2 .证明:设 △AEC 的面积为1S ,△BOD 的面积为2S .∵ 弦CD ⊥直径AB 于点E , ∴ 1S =CE AE ⋅21,2S =DE BO ⋅21. ∵E 位于OA 的中点,∴2OA AE =.又AB 是⊙O 的直径,∴ 2OB OA AE ==. ∴12121222AE CE S CE S DEAE DE ⨯⋅==⨯⋅. 又 由垂径定理知 CE =ED ,∴ 1212S S =. ∴ 当点E 位于OA 的中点时,△AEC 的面积与△BOD 的面积之比为1:2 . -------------------------------------------------7分25. 解:(1)如图,∵ 圆以点A (3,0)为圆心,5为半径,∴ 根据圆的对称性可知 B (-2,0),C (8,0).连结AD .在Rt △AOD 中,∠AOD =90°,OA =3,AD =5,∴ OD =4.∴ 点D 的坐标为(0,-4).设抛物线的解析式为24y ax bx =+-,又 ∵抛物线经过点C (8,0),且对称轴为3x =, ∴ 3264840.b a a b ⎧-=⎪⎨⎪+-=⎩, 解得 1,43.2a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴所求的抛物线的解析式为 423412--=x x y .---------------------------------2分 (2)存在符合条件的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.分两种情况.Ⅰ:当BC 为平行四边形的一边时,必有 EF ∥BC ,且EF =BC =10.∴ 由抛物线的对称性可知,存在平行四边形1BCEF 和平行四边形2CBEF .如(图1).∵E 点在抛物线的对称轴上,∴设点E 为(3,e ),且e >0.则F 1(-7,t ),F 2(13,t ).将点F 1、F 2分别代入抛物线的解析式,解得 754t =. ∴F 点的坐标为)475,7(1-F 或)475,13(2F . Ⅱ:当BC 为平行四边形的对角线时,必有AE =AF ,如(图2).∵ 点F 在抛物线上,∴ 点F 必为抛物线的顶点. 由22131254(3)4244y x x x =--=--, 知抛物线的顶点坐标是(3,254-). ∴此时F 点的坐标为)425,3(3-F . ∴ 在抛物线上存在点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.满足条件的点F 的坐标分别为:)475,7(1-F ,)475,13(2F ,)425,3(3-F . ---------------------------------------------------- 8分。
密云县2014-2015学年度第一学期期末2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+-D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒,8AC =,6BC =,则sinB 的值等于A .34 B . 34C .45D . 35ABCDCBA 6. 如图,AB 是O 的直径,CD 、是圆上两点,70CBA ∠=︒,则D ∠的度数为 A .10︒ B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是 A .相离 B .相交 C .相切 D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为DCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标;(2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.ABBAPEOD CBA 16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。
2017-2018学年北京市密云县九年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的.1.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A.B.1C.D.62.将抛物线y=x2先向左平移2个单位再向下平移1个单位,得到格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为 2.3 cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是 0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B 重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于 P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
EDCBA密云县2014年初中毕业考试 数学试卷答案及评分标准一、选择题(本题共32分,每小题4分) 1.D 2.C 3.A 4.D 5.C 6.B 7.B 8.C 二、填空题(本题共16分,每小题4分)9.2(1)a x - 10.2 11. 6cm 12.各2分(1)1802α︒+ ,(2)(21)1802n n α-⨯︒+三、解答题(本题共30分,每小题5分)13.14.证明:AB ∥EC ,∴.A DCE ∠=∠ ………………………1分 在△ABC 和△CDE 中,,,,B EDC A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE .………………………4分 ∴.BC DE = ………………………5分15.∵由①得,x <2,…………1分 由②得,x ≥﹣1,…………2分∴不等式组的解集是:﹣1≤x <2,…………4分 不等式组的正整解集是1. …………5分. 16. 原式=[1+]•………1分=[+]•………2分=•………3分=x ﹣1,………4分把x=6代入得:原式=6﹣1=5.………5分=-2.............................5原式分分17.(1) ①(1,4),(4,1).............2A B ----分②平移后直线''5............3AB y x =-+的解析式为分(2)C 点坐标为12C -2-2(2,2)...............5(,)或C 分18. 设三人间和双人间客房各x 间、y 间, 根据题意得32501500.51400.51510x y x y +=⎧⎨⨯+⨯=⎩ …………3分解得813x y =⎧⎨=⎩ …………4分答:三人普间和双人间客房各8间、13间………….5分 四、解答题(本题共20分,每小题5分)19.∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB=CD ,……………………………….1分 ∵AE ∥BD , ∴四边形ABDE 是平行四边形,…………….. 2分∴AB=DE=CD ,…………………………………….. 3分 即D 为CE 中点, ∵EF ⊥BC , ∴∠EFC=90°, ∵AB ∥CD , ∴∠DCF=∠ABC=60°,…………………………4分 ∴∠CEF=30°, ∵EF=, ∴CE=2,∴AB=1,………………………………………………5分 20. (1)25÷50%=50…(1分)(2)1﹣50%﹣20%=30%…(2分)50×30%=15…(3分) (3)…………………..4分(4)850×10%=85…(5分)21. (1)证明:连接OE , ∵AC 与圆O 相切, ∴OE ⊥AC ,…………….1分 ∵BC ⊥AC , ∴OE ∥BC ,4%6%又∵O 为DB 的中点, ∴E 为DF 的中点,即OE 为△DBF 的中位线, ∴OE=BF , 又∵OE=BD ,则BF=BD ;……………………………………….2分 (2)设BC=3x ,根据题意得:AB=5x , 又∵CF=1, ∴BF=3x+1,由(1)得:BD=BF , ∴BD=3x+1, ∴OE=OB=,AO=AB ﹣OB=5x ﹣=,∵OE ∥BF , ∴∠AOE=∠B ,……………….4分 ∴cos ∠AOE=cosB ,即=,即=,解得:x=, 则圆O 的半径为=.…………………………………………….5分22. (1)…..3分 (2) …5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (1)当1==b a ,1-=c 时,抛物线为1232-+=x x y , ∵方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. -------------------------2分(2)22221,2,2230,22448(21)7............................................4a c b y x bx b y x bx b =0b b b ==-=++-=++-=-+=-+当时抛物线的解析式为设得分所以抛物线与x 轴有两个交点(3)1,23a cb =-=,则抛物线可化为222y x bx b =+++,其对称轴为x b =-, 当2x b =--<时,即2b >,则有抛物线在2x =-时取最小值为-3,此时-23(2)2(2)2b b =-+⨯-++,解得3b =,合题意--------------5分 当2x b =->时,即2b <-,则有抛物线在2x =时取最小值为-3,此时-232222b b =+⨯++,解得95b =-,不合题意,舍去.--------6分当2b --≤≤2时,即2b -≤≤2,则有抛物线在x b =-时取最小值为-3,此时23()2()2b b b b -=-+⨯-++,化简得:250b b --=,解得:b =(不 合题意,舍去),12b =. --------------7分 综上:3b =或12b = 24.(1)(2)(3) 能,=135=315αα︒︒或 …………………7分25. (1)由题意,得|x|+|y|=1……………………………..2分所有符合条件的点P 组成的图形如图所示:…………4分 (2)∵d (M ,Q )=|x ﹣2|+|y ﹣1|=|x ﹣2|+|x+2﹣1|=|x ﹣2|+|x+1|,又∵x 可取一切实数,|x ﹣2|+|x+1|表示数轴上实数x 所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3…….8分''1sin '230....................................2DC EFDCD CD E CE CE CD CD ααα∴∠=∠=∴===∴=︒分G B C G C =C G '=C E =1D 'C G =D C G +D C D '=90+D CE '=D 'C E '+D C D '=90+D 'C G =D C E 'C D '=C D G C D E 'C D G D '=E 'D........................................5αα∴∠∠∠︒∠∠∠︒∴∠∠∴≅∴为中点,又分#5。
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
2017-2018学年北京市密云县九年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的.1.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A.B.1C.D.62.将抛物线y=x2先向左平移2个单位再向下平移1个单位,得到新抛物线的表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣13.已知点A(1,m),B(2,n)在反比例函数y=的图象上,则()A.m<n<0B.n<m<0C.m>n>0D.n>m>04.在正方形网格中,∠AOB如图放置.则tan∠AOB的值为()A.2B.C.D.5.如图,Rt△ABC中,∠C=90°,AC=4,BC=3.以点A为圆心,AC长为半径作圆.则下列结论正确的是()A.点B在圆内B.点B在圆上C.点B在圆外D.点B和圆的位置关系不确定6.如图,△ABC内接于⊙O,∠AOB=80°,则∠ACB的大小为()A.20°B.40°C.80°D.90°7.如图,△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A.B.C.D.8.已知抛物线y=ax2+bx+c(x为任意实数)经过下图中两点M(1,﹣2)、N(m,0),其中M 为抛物线的顶点,N为定点.下列结论:①若方程ax2+bx+c=0的两根为x1,x2(x1<x2),则﹣1<x1<0,2<x2<3;②当x<m时,函数值y随自变量x的减小而减小.③a>0,b<0,c>0.④垂直于y轴的直线与抛物线交于C、D两点,其C、D两点的横坐标分别为s、,则s+t=2.其中正确的是()A.①②B.①④C.②③D.②④二、填空题(本题共16分,每小题2分)9.已知x:y=1:2,则(x+y):y=.10.已知∠A为锐角,且tanA=,则∠A的大小为.11.抛物线y=x2﹣2x+3的对称轴是直线.12.扇形半径为3cm,弧长为πcm,则扇形圆心角的度数为.13.写出一个图象位于第一、三象限的反比例函数的表达式:.14.在物理课中,同学们曾学过小孔成像:在较暗的屋子里,把一只点燃的蜡烛放在一块半透明的塑料薄膜前面,在它们之间放一块钻有小孔的纸板,由于光沿直线传播,塑料薄膜上就出现了蜡烛火焰倒立的像,这种现象就是小孔成像(如图1).如图2,如果火焰AB的高度是2cm,倒立的像A′B′的高度为5cm,蜡烛火焰根B到小孔O的距离为4cm,则火焰根的像B′到O的距离是cm.15.学校组织“美丽校园我设计”活动.某同学打算利用学校文化墙的墙角建一个矩形植物园.其中矩形植物园的两邻边之和为4m,设矩形的一边长为xm,矩形的面积为ym2.则函数y 的表达式为,该矩形植物园的最大面积是m2.16.下面是“经过圆外一点作圆的切线”的尺规作图的过程.已知:P为外一点.求作:经过P点的切线.作法:如图,(1)连结OP;(2)以OP为直径作圆,与交于C、D两点.(3)作直线PC、PD.则直线PC、PD就是所求作经过P点的切线.以上作图的依据是:.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O 的半径长.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点,=.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A 点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:≈.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为cm.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B 重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.2017-2018学年北京市密云县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的.1.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A.B.1C.D.6【分析】利用平行线分线段成比例定理即可解决问题;【解答】解:∵DE∥BC,AD=2,DB=1,AE=3,∴=,∴=,∴EC=,故选:C.【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理,属于中考常考题型.2.将抛物线y=x2先向左平移2个单位再向下平移1个单位,得到新抛物线的表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.3.已知点A(1,m),B(2,n)在反比例函数y=的图象上,则()A.m<n<0B.n<m<0C.m>n>0D.n>m>0【分析】根据反比例函数图象上点的坐标特征得到m=2n<0,于是可得到m、n的大小关系.【解答】解:∵A(1,m),B(2,n)在反比例函数y=的图象上,∴k=m=2n<0,∴m<n<0.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;双曲线是关于原点对称的,两个分支上的点也是关于原点对称.4.在正方形网格中,∠AOB如图放置.则tan∠AOB的值为()A.2B.C.D.【分析】根据图形找出角的两边经过的格点以及点O组成的直角三角形,然后根据锐角的正切等于对边比邻边解答.【解答】解:如图,tan∠AOB==2.故选A.【点评】本题考查了锐角三角函数的定义,熟练掌握网格结构找出直角三角形是解题的关键.5.如图,Rt△ABC中,∠C=90°,AC=4,BC=3.以点A为圆心,AC长为半径作圆.则下列结论正确的是()A.点B在圆内B.点B在圆上C.点B在圆外D.点B和圆的位置关系不确定【分析】首先利用勾股定理求得直角三角形斜边的长,从而求得点B与圆A的位置关系.【解答】解:∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵AC=4,∴点B在圆外,故选:C.【点评】本题根据点到圆心的距离和圆的半径之间的数量关系,来判断点和圆的位置关系.6.如图,△ABC内接于⊙O,∠AOB=80°,则∠ACB的大小为()A.20°B.40°C.80°D.90°【分析】由△ABC内接于⊙O,已知∠AOB=80°,根据圆周角定理,即可求得∠ACB的度数.【解答】解:∵△ABC内接于⊙O,∠AOB=80°,∴∠ACB=∠AOB=40°.故选:B.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.7.如图,△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.8.已知抛物线y=ax2+bx+c(x为任意实数)经过下图中两点M(1,﹣2)、N(m,0),其中M 为抛物线的顶点,N为定点.下列结论:①若方程ax2+bx+c=0的两根为x1,x2(x1<x2),则﹣1<x1<0,2<x2<3;②当x<m时,函数值y随自变量x的减小而减小.③a>0,b<0,c>0.④垂直于y轴的直线与抛物线交于C、D两点,其C、D两点的横坐标分别为s、,则s+t=2.其中正确的是()A.①②B.①④C.②③D.②④【分析】利用函数图象条件二次函数的性质一一判断即可.【解答】解:①若方程ax2+bx+c=0的两根为x1,x2(x1<x2),则﹣1<x1<0,2<x2<3,故①正确;②当x<1时,函数值y随自变量x的减小而减小,故②错误;③a>0,b<0,c<0,故③错误;④垂直于y轴的直线与抛物线交于C、D两点,其C、D两点的横坐标分别为s、t,根据二次函数的对称性可知s+t=2,故④正确;故选:B.【点评】本题考查二次函数的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本题共16分,每小题2分)9.已知x:y=1:2,则(x+y):y=3:2.【分析】首先根据已知条件x:y=1:2,得出y=2x,然后代入所求式子即可.【解答】解:∵x:y=1:2,∴y=2x,∴(x+y):y=3x:2x=3:2.故答案为3:2.【点评】解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.10.已知∠A为锐角,且tanA=,则∠A的大小为60°.【分析】根据特殊角三角函数值,可得答案.【解答】解:∠A为锐角,且tanA=,则∠A=60°,故答案为:60°.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.11.抛物线y=x2﹣2x+3的对称轴是直线直线x=1.【分析】根据二次函数的对称轴公式列式计算即可得解.【解答】解:对称轴为直线x=﹣=﹣=1,即直线x=1.故答案为:直线x=1.【点评】本题考查了二次函数的性质,熟记对称轴公式是解题的关键.12.扇形半径为3cm,弧长为πcm,则扇形圆心角的度数为60°.【分析】设扇形的圆心角为n°,根据弧长公式和已知得出方程=π,求出方程的解即可.【解答】解:设扇形的圆心角为n°,∵扇形半径是3cm,弧长为πcm,∴=π,解得:n=60,故答案为:60°.【点评】本题考查了弧长的计算的应用,解此题的关键是能根据弧长公式得出关于n的方程,题目比较好,难度适中.13.写出一个图象位于第一、三象限的反比例函数的表达式:.【分析】首先设反比例函数解析式为y=,再根据图象位于第一、三象限,可得k>0,再写一个k大于0的反比例函数解析式即可.【解答】解;设反比例函数解析式为y=,∵图象位于第一、三象限,∴k>0,∴可写解析式为y=,故答案为:y=.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.14.在物理课中,同学们曾学过小孔成像:在较暗的屋子里,把一只点燃的蜡烛放在一块半透明的塑料薄膜前面,在它们之间放一块钻有小孔的纸板,由于光沿直线传播,塑料薄膜上就出现了蜡烛火焰倒立的像,这种现象就是小孔成像(如图1).如图2,如果火焰AB的高度是2cm,倒立的像A′B′的高度为5cm,蜡烛火焰根B到小孔O的距离为4cm,则火焰根的像B′到O的距离是10cm.【分析】由AB∥A′B′知△ABO∽△A′B′O,据此可得=,解之即可得出答案.【解答】解:如图,∵AB∥A′B′,∴△ABO∽△A′B′O,则=,即=,解得:OB′=10,故答案为:10.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的性质.15.学校组织“美丽校园我设计”活动.某同学打算利用学校文化墙的墙角建一个矩形植物园.其中矩形植物园的两邻边之和为4m,设矩形的一边长为xm,矩形的面积为ym2.则函数y 的表达式为y=﹣x2+4x,该矩形植物园的最大面积是4m2.【分析】表示出矩形的另一边长为(4﹣x)m,根据矩形的面积公式可得函数解析式,将其配方成顶点式可得面积的最大值.【解答】解:设矩形的一边长为xm,则另一边长为(4﹣x)m,所以矩形的面积y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,则当x=2时,矩形面积取得最大值4,故答案为:y=﹣x2+4x,4.【点评】本题主要考查二次函数的应用,解题的关键是根据矩形的面积公式,并熟练掌握二次函数的性质.16.下面是“经过圆外一点作圆的切线”的尺规作图的过程.已知:P为外一点.求作:经过P点的切线.作法:如图,(1)连结OP;(2)以OP为直径作圆,与交于C、D两点.(3)作直线PC、PD.则直线PC、PD就是所求作经过P点的切线.以上作图的依据是:直径所对的圆周角为直角,经过半径外端且并且垂直于这条半径的直线是圆的切线.【分析】根据“直径所对的圆周角为直角”知∠OCP=∠ODP=90°,再由OC、OD为⊙O的半径,根据“经过半径外端且并且垂直于这条半径的直线是圆的切线”即可判定.【解答】解:∵以OP为直径作圆,与交于C、D两点,∴∠OCP=∠ODP=90°(直径所对的圆周角为直角),∵OC、OD为⊙O的半径,∴直线PC、PD就是所求作经过P点的切线(经过半径外端且并且垂直于这条半径的直线是圆的切线),故答案为:直径所对的圆周角为直角,经过半径外端且并且垂直于这条半径的直线是圆的切线.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握圆周角定理和切线的判定.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.【分析】根据特殊角的三角函数值先进行化简,然后根据实数运算法则进行计算即可得出结果.【解答】解:tan30°﹣2cos60°+cos45°+π0=×﹣2×+×+1=1﹣1+1+1=2.【点评】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.【分析】先在Rt△ABD中利用三角函数定义求出AD=,BD=1.再得到CD=2.然后在Rt△ADC 中根据勾股定理求出AC即可.【解答】解:∵AD⊥BC,垂足为D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=2,∴sinB=,cosB=,即=,=,解得:AD=,BD=1.∵BC=3,∴CD=2.在Rt△ADC中,AC==.【点评】本题考查了解直角三角形和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.【分析】(1)由BO是△ABC的角平分线、BC=CD知∠ABO=∠CBO=∠D,根据∠AOB=∠COD即可得证;(2)由△AOB∽△COD知=,据此即可得出答案.【解答】解:(1)∵BO是△ABC的角平分线,∴∠ABO=∠CBO,∵BC=CD,∴∠CBO=∠D,∴∠ABO=∠D,又∵∠AOB=∠COD,∴△AOB∽△COD;(2)∵BC=4,∴BC=CD=4,∵△AOB∽△COD,∴=,即=,解得:OC=2.【点评】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握相似三角形的判定与性质、角平分线的性质、等边对等角等知识点.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.【分析】(1)根据表格数据,利用待定系数法即可求出二次函数表达式;(2)画出二次函数的示意图,找出函数图象在x轴下方的部分,此题得解.【解答】解:(1)由已知可知,二次函数经过(0,3),(1,0)则有,解得:,所以二次函数的表达式为y=x2﹣4x+3;(2)函数图象如图所示:由函数图象可知当1<x<3时,y<0.【点评】本题考查了抛物线与x轴的交点、二次函数的图象以及待定系数法求二次函数解析式,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据给定点的坐标画出函数图象.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O 的半径长.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【解答】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×2=,设⊙O的半径为r,则OC=r﹣CD=r﹣1,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r﹣1)2+()2,解得r=2.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【解答】(1)解:∵点P(1,4),Q(2,m )是双曲线y=图象上一点.∴4=,m=,∴k=4,m=2.(2)观察函数图象可知,R的横坐标n的取值范围:0<n<2或n<﹣2.【点评】本题考查反比例函数图象上点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)【分析】(1)过C作CE∥AB交BD于E.根据题意可得答案;(2)在Rt△CEB中,利用三角函数可得tan∠ECB=,代入数据可得BE的长,然后在Rt△CED中可得tan∠DCE==≈0.25,进而可得ED长,再求和即可.【解答】解:(1)过C作CE∥AB交BD于E.由已知,∠DCE=14°,∠ECB=22°,∴∠DCB=36°;(2)在Rt△CEB中,∠CEB=90°,AB=20,∠ECB=22°,∴tan∠ECB==≈0.4,∴BE≈8,在Rt△CED中,∠CED=90°,CE=AB=20,∠DCE=14°,∴tan∠DCE==≈0.25,∴DE≈5,∴BD≈13,∴国旗杆BD的高度约为13米.【点评】此题主要考查了解直角三角形的应用,关键是读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点,=.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A 点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:≈ 2.9.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为 2.3cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B 重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2014-2015学年度上学期期末名校联考试题九年级数学(新人教版)(全卷共23题,满分100分,时间120分钟)2015、1、22一、选择题(本题8个小题,每小题3分,共24分)1、下列图形既是轴对称图形又是中心对称图形的是( )2、对于二次函数2)1(22-+=x y 的描述正确的是( )A 、对称轴是直线1=xB 、顶点坐标)2,1(--C 、顶点坐标)2,1(-D 、开口向下,有最大值-23、方程02092=+-x x 的两根分别是⊙1O 和⊙2O 的半径,且两圆相切,则圆心距21O O 为( )A 、 1B 、9C 、4或5D 、1或9 4、下列叙述正确的是( )A 、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球B 、“如果b a ,是实数,那么a b b a +=+”是不确定事件C 、为了了解一批炮弹的杀伤力,采用普查的方式比较合适D 、两个相似图形一定是位似图形5、⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( )A 、 1 cmB 、 7cmC 、 3 cm 或4 cmD 、 1cm 或7cm 6、如图,在ABC ∆中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( ) A 、3:8 B 、3:5 C 、5:8 D 、2:5 7、如图,直线b x y +-=与双曲线xky =交于点A 、B ,则不等式组0≥+->b x x k 的解集为( )A 、x <﹣1或x >2B 、﹣1<x ≤1C 、﹣1<x <0D 、﹣1<x <18、某种手机经过四、五月份连续两次降价,每部手机由3200元降到2500元。
设平均每月降价的百分率为x ,则根据题意列出的方程是( ) A 、 2500)1(32002=-x B 、2500)1(32002=+xC 、2500)21(3200=-xD 、250032002=-x二、填空题(本题6个小题,每小题3分,共18分)9、如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π)。
ABOCD(第6AB O M新人教版2014-2015年九年级上学期期末名校 联考数学试题时间120分钟 满分120分2015、2、5 一、选择题(每小题2分共24分)1.下列图形中既是中心对称图形,又是轴对称图形的是2.下列计算正确的是A 、3)3(2-=-B 、3)3(2=C 、39±=D 、523=+3.一元二次方程0)2(=-x x 根的情况是 A 、有两个不相等的实数根 B 、有两个相等的实数根 C 、只有一个实数根D 、没有实数根4.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为A 、30°B 、45°C 、90D 、135°(4题) (5题) (6题) (8题) (9题) 5.如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD ,若∠CAB =35°,则∠ADC 的度数为A 、35°B 、45°C 、55°D 、65°6.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于A 、8B 、4C 、10D 、57.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角;③平行四边形;④等腰梯形;⑤圆。
将卡片背面朝上洗匀,从中抽取一张,正面图形满足既是轴对称图形,又是中心对称图形的概率是ADCBE DAB COADBE12A 、51B 、52C 、53D 、548.如图,锐角三角形ABC 的高CD 和高BE 相交于O ,则与△DOB 相似的三角形个数是 A 、1B 、2C 、3D 、49.如图,∠1=∠2,则下列各式中,不能..说明△ABC ∽△ADE 的是 A 、∠D =∠B B 、∠E =∠CCD10.抛物线3)2(2-+-=x y 的顶点坐标是A 、(2,3-)B 、(2-,3)C 、(2,3)D 、(2-,3-)11.一次函数)0(≠+=a b ax y 与二次函数)0(2≠++=a c bx ax y 在同一平面直角坐标系中的图象可能是A B C D12.二次函数c bx ax y ++=2的图象如图所示,那么关于x 的方程032=-++c bx ax 的根的情况是A 、有两个不相等的实数根B 、有两个异号实数根C 、有两个相等的实数根D 、无实数根二、填空题(每小题3分,共18分)13.计算5120⋅的结果是 。
岔河二中16年九年级数学(上)模拟考试班级:姓名:得分:一.选择题(共15小题,每小题3分,共45分)1、实数8的相反数是()A.4 .B.2.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或33.方程x2=4x的解是()A.x=4 B.x=2 C.x=4或x=0D.x=04、如图,直线a∥b,则∠A的度数是()A.45° B.40° C.35° D.30°5、“国际节能环保及新能源展览会”在重庆国际博览会中心隆重举行.小明开车从家出发去看展览会,预览一个小时能到达,行驶了半个小时,刚好行驶了一半路程,遇到堵车道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小明将车停在轻轨站的车库,然后坐轻轨去观看展览,结果按预计时间到达.下面能反映小明距离会展中心的距离y(千米)与时间x(小时)的函数关系的大致图像是()6、用棋子按下列方式摆图形,第一个图形有1个棋子,第二个图形有5个棋子,第三个图形有12个棋子,依次规律,第六个有()枚棋子A.49 B.50 C.51 D.527.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A.B.C. D.8.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+9.有一等腰梯形纸片ABCD(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE 剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形D.正方形10.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.11.下列函数是反比例函数的是()A.y=x B.y=kx﹣1 C.y=D.y=12.矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数13.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.极差是5 B.中位数是9 C.众数是5 D.平均数是9 14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.615.两个相似三角形面积比为1:9,他们对应高的比为()A.1:3B.1:9:1(D)3:1二.填空题(共6小题,每小题5分,共30分)16.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为_____.17.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.18.有两张相同的矩形纸片,边长分别为2和8,若将两张纸片交叉重叠,则得到重叠部分面积最小是_________,最大的是_________.19.直线l1:y=k1x+b与双曲线l2:y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为_________.20.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_________个黄球.21.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP 垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为_________.三.解答题(共75分)22.解方程:(15分)(1)x2﹣4x+1=0.(配方法)(2)解方程:x2+3x+1=0.(公式法)(3)解方程:(x﹣3)2+4x(x﹣3)=0.(分解因式法)23.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.24.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.25.(10分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?26.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.27.一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.28.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.29.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.。
2014/2015学年度第一学期九年级期末考试数学试卷(人教版)一、选择题1.下列方程没有实数根的是( )A .x 2+4x = 1B . x 2+ x −3= 0C .x 2−2x +2=0D .0)3)(2(=--x x 2.抛物线5)3(22+--=x y 的顶点坐标是( ) A. )5,3(B. )5,3(-C. )5,3(-D. )5,2(-3.把抛物线y = −x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A .y = −(x − 1)2 − 3B .y = −(x + 1)2 + 3C .y = −(x − 1)2 + 3D .y = −(x + 1)2 − 34.已知二次函数y =ax 2+bx +c ,若a<0,c>0,那么它的图象大致是( )5.已知二次函数y = −x 2− 2x + k 的图象经过点A (2,y 1),B (-2,y 2),C (−5,y 3),则下列结论正确的是( )A .321y y yB .312y y yC .213y y yD .231y y y 6.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)C .点(6,1)D .点(5,1) 72则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程ax 2+bx +c =0的正根在3与4之间8.如图,抛物线y=x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3…A n ,….将抛物线y=x 2沿直线L :y=x 向上平移,得一系列抛物线,且满足下列条件: ①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线L :y=x 上; ②抛物线依次经过点A 1,A 2,A 3…A n ,…. 则顶点M 2014的坐标为( )A.(2013,2013)B.(2014,2014)C.(4027,4027)D.(4028,4028)二、细心填一填(10×3)9.写出一个根为-2的一元二次方程10.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm ):168,166,168,167, 169,168,则她们身高的极差是 cm .11.在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率 飞镖落在白色区域的概率.(填“>”“=”“<”) 12.某台钟的时针长为9分米,从上午7时到上午11时该钟时针针尖走过的路程是 分14.如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为 .15.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为3)4(1012+--=x y ,由此可知铅球推出的距离是 m .16.把球放在长方体纸盒内,球的一部分露出盒外,如图所示为正视图.已知EF =CD =16厘米,这个球的半径是 厘米.17.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,PM=l ,则l 的最大值是 .(第11题图) (第14题图)18.若抛物线y =c bx x ++-22与x 轴只有一个交点,且过点),2(),,4(n m B n m A +-,则n =______. 三、用心做一做 19.(本题满分8分)2015年“我要上春晚”进入决赛阶段,最终将有甲、乙、丙、丁4 名选手进行决赛的终极较量,决赛分3期进行,每期比赛淘汰1名选手,最终留下的歌手 即为冠军.假设每位选手被淘汰的可能性都相等. (1) 甲在第1期比赛中被淘汰的概率为 ;(2) 利用树状图或表格求甲在第2期被淘汰的概率;(3) 依据上述经验,甲在第3期被淘汰的概率为 . 20.(本题满分8分)九(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是 队. 21.(本题满分8分)某种盆栽花卉每盆的盈利与每盆种植花卉的株数有关:已知每盆种植3株时,平均每株可盈利4元;若每盆多种植1株,则平均每株盈利要减少0.5元.为使每盆的盈利达到15元,则每盆应种植花卉多少株?22.(本题满分8分)如图,已知二次函数121212--=x x y 的图象交x 轴于A 、D 两点. (1)求线段AD 的长;(2)在同一坐标系中画出直线y =x +1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.23.(本题满分10分)如图,抛物线与x 轴交于A 、B 两点,与y 轴交C 点,点A 的坐标为(2,0),点C 的坐标为(0,3)它的对称轴是直线x=(1)求抛物线的解析式;(2)M 是线段AB 上的任意一点,当△MBC 为等腰三角形时,求M 点的坐标.24.(本题满分10分)有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m.⑴ 在如图所示的直角坐标系中,求出该抛物线的解析式;⑵ 设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.4mC B AO正常水位20my x25.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x/℃……-4 -2 0 2 4 4.5 ……植物每天高度增长量y/mm ……41 49 49 41 25 19.75 ……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.26.(本题满分10分)沿海开发公司准备投资开发A、B两种新产品,通过市场调研发现:(1)若单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)之间满足正比例函数关系:y A=kx;(2)若单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间满足二次函数关系:y B=ax2+bx.(3)根据公司信息部的报告,y A,y B(万元)与投资金额x(万元)的部分对应值如下表A;B=;(2)若公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),试写出W与某种产品的投资金额x(万元)之间的函数关系式;(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?27.(本题满分12分)问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?初步思考:设不在同一条直线上的三点A、B、C确定的圆为⊙O.⑴当C、D在线段AB的同侧时,如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是;如图②,若点D在⊙O内,此时有∠ACB ∠ADB;如图③,若点D在⊙O外,此时有∠ACB ∠ADB.(填“=”、“>”或“<”);由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:.类比学习:(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.如图④,此时有,如图⑤,此时有,如图⑥,此时有.由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:.拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线? 已知:如图,AB 是⊙O 的直径,点C 在⊙O 上. 求作:CN ⊥AB .作法:①连接CA ,CB ; ②在上任取异于B 、C 的一点D ,连接DA ,DB ; ③DA 与CB 相交于E 点,延长AC 、BD ,交于F 点; ④连接F 、E 并延长,交直径AB 于M ;⑤连接D 、M 并延长,交⊙O 于N .连接CN . 则CN ⊥AB . 请按上述作法在图④中作图,并说明CN ⊥AB 的理由.(提示:可以利用(2)中的结论)28.(本题满分12分)如图,已知抛物线32++=bx ax y 经过点B (-1,0)、C (3,0),交y 轴于点A ,(1)求此抛物线的解析式;(2)抛物线第一象限上有一动点M ,过点M 作MN ⊥x 轴,垂足为N ,请求出ON MN 2+的最大值,及此时点M 坐标;(3)抛物线顶点为K ,KI ⊥x 轴于I 点,一块三角板直角顶点P 在线段KI 上滑动,且一直角边过A 点,另一直角边与x 轴交于Q (m ,0),请求出实数m 的变化范围,并说明理由.BCM N初三数学参考答案第17题命题老师解析:第18题命题老师解析:方法一:将y =c bx x ++-22沿x 轴左右平移得22x y -=,由),2(),,4(n m B n m A +-知,平移后,点B 坐标为),3(n ,易得18-=n方法二:由抛物线过点),2(),,4(n m B n m A +-得,抛物线对称轴为直线1-=m x ,抛物线与x 轴只有一个交点,可另设抛物线解析式为2)1(2+--=m x y 把点B 坐标代入可得18-=n20. (1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分), 则中位数是9.5分;10出现了4次,出现的次数最多, 则乙队成绩的众数是10分;故答案为:9.5,10;…………………… 2分(2)乙队的平均成绩是:(10×4+8×2+7+9×3)=9,…………………… 3分则方差是:[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;…………… 6分(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1, ∴成绩较为整齐的是乙队 故答案为:乙.;…………………… 8分21. 设每盆应种植花卉x 株[]15)3(5.04=--x x ……………………………5分解得51=x ,62=x ………………… 7分 答:每盆应种植花卉5株或6株………………8分(2)图象如图,……………7分当一次函数的值大于二次函数的值时,x 的取值范围是﹣1<x <4.……………………8分23.解:(1)设抛物线的解析式把A (2,0)C (0,3)代入得:解得:即………………………………………………………4分(2)由y=0得∴x 1=1,x 2=﹣3 ∴B (﹣3,0) ①CM=BM 时 ∵BO=CO=3 即△BOC 是等腰直角三角形 ∴当M 点在原点O 时,△MBC 是等腰三角形 ∴M 点坐标(0,0)…………………………………7分 ②BC=BM 时 在Rt △BOC 中,BO=CO=3, 由勾股定理得∴BC=∴BM=∴M 点坐标(……………………………10分25.(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. ……………………4分(2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50.即当温度为-1℃时,这种植物每天高度增长量最大.……………………8分(3)46<<-x .…………………………10分27.(1)同弧所对的圆周角相等.∠ACB<∠ADB,∠ACB>∠ADB.答案不惟一,如:∠ACB=∠ADB.……………………(各1分)(2)如图:此时∠ACB+∠ADB=180°, 此时∠ACB+∠ADB>180°, 此时∠ACB+∠ADB<180 若四点组成的四边形对角互补,则这四点在同一个圆上.…………(各1分)(3)作图正确.………………(1分)∵AB是⊙O的直径,C、D在⊙O上,∴∠ACB=90°,∠ADB=90°.∴点E是△ABF三条高的交点.∴FM⊥AB.……………………(1分)∴∠EMB=90°.∠EMB+∠EDB=180°,∴点E,M,B,D在同一个圆上.……………………(1分)∴∠EMD=∠DBE.又∵点N,C,B,D在⊙O上,∴∠DBE=∠CND,∠EMD=∠CND.∴FM∥C N.∴∠CPB=∠EMB=90°.∴CN⊥AB.……………………(1分)(注:其他正确的说理方法参照给分.)28. (1)∵抛物线y=ax²+bx+3经过点B (-1,0)、C (3,0),∴a b+3=09a b+3=0⎧⎨⎩-+3,解得,a=1b=2⎧⎨⎩-。
密云县——学年度第一学期期末考试初三数学试卷一、 选择题(本题共分,每小题分)下面各题均有四个选项,其中只有一个是符合题意的. .已知:23x y =(0y ≠),那么下列比例式中成立的是( )..23x y = .32x y= .23x y = .32x y =【答案】【解析】23x y =(0y ≠),等式左右两边同时除以6得:32x y =. .已知1sin 2A =,则锐角A 的度数是( ). .30︒ .45︒ .60︒ .75︒.如图,ABC △中,DE BC ∥,13AD AB =,2cm AE =,则AC 的长是( )..2cm.4cm .6cm .8cm.如图,A ,(0,0)O ,C 是⊙O 上的三个点,如果30BAC ∠=︒,那么BOC ∠的度数是( )..60 .45 .30︒ .15︒.下列图形中,既是轴对称图形又是中心对称图形的是( )..已知正六边形的边心距为2,则它的外接圆的半径是(需计算)( )...4 【答案】【解析】如图,连接OA 、OB , ∵六边形ABCDEF 为正六边形, ∴13606AOB ∠=⨯︒.∵OA OB =,∴OAB △是等边三角形. ∴60OAH ∠=︒. ∵OH AB ⊥,2OH =.∴sin 60OH OA =︒..在直角坐标系中,如果⊙O 是以原点(0,0)O 为圆心,以5为半径的圆,那么点(3,4)A -的位置( )..在⊙O 内 .在⊙O 外 .在⊙O 上 .不能确定 【答案】【解析】∵(3,4)A -,∴5AO ==, ∴点A 在⊙O 上..如图,已知PA,PB分别切⊙O于点A、B,60PA=,那么弦AB的长是().∠=︒,8P.4.8..【答案】【解析】∵PA,PB分别切⊙O于点A、B,∴PA PB=.又60∠=︒,P∴APB△是等边三角形.∴8==.AB PA.小正方形的边长均为1,则下列图形中阴影部分的三角形与ABC△相似的是().....【答案】【解析】根据题意得:AB==AC2BC=,∴::2AC BC AB==.三边之比为ABC△不相似;.三边之比为ABC△相似;3,与ABC△不相似;.三边之比为2ABC△不相似..某同学在测量学校旗杆AC的高度时,先在测量点F处用高为1.2m的测角仪DF测得旗杆顶部A的仰角为α,再量出点F到旗杆的水平距离16.5mFC=.请你帮助他计算出旗杆AC的高为()..(16.5tan α)米 .(1.216.5sin α+)米 .(1.216.5cos α+)米 .(1.216.5tan α+)米 【答案】【解析】如图,AC AB BC =+, 1.2m BC DF ==,16.5m BD FC ==,在Rt ABD △中, tan AB BDα=, ∴tan 16.5tan AB BD αα=⋅=⋅(m ). ∴ 1.216.5tan AC AB BC α=+=+(米).二、填空题(本题共分,每小题分).已知两个三角形的相似比为1:2,则他们的面积比为. 【答案】1:4【解析】两个三角形的相似比为1:2, ∴他们的面积比为2(1:2)1:4=..将抛物线265y x x -=+化为2()y a x h k =-+的形式为. 【答案】2(3)4y x =--【解析】222656995(3)4y x x x x x =-+=-+-+=--..若扇形的半径为3cm ,圆心角为120︒,则这个扇形的面积为2cm . 【答案】3π【解析】扇形的面积22120π33πcm 360⨯==..请写出一个以y 轴为对称轴的二次函数表达式. 【答案】2y x =【解析】以y 轴为对称轴的二次函数,则一次项系数为0,故可以为2y x =..如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40cmDE=,20cmEF=,测得边DF离地面的高度 1.5mAC=,8mCD=则树高.以上作图的依据是.【答案】垂径定理,等弧所对的弦相等、圆心角相等,四条边相等四个角相等的四边形是正方形.【解析】三、解答题(本题共分,第—题,每小题分,第题分,第题分,第题分).计算:sin60cos3045tan45︒︒+︒-︒.【答案】34 =.【解析】原式1=3114=+-34=..已知:如图,在⊙O中,弦AB、CD交于点E,AD CB=.求证:AE CE=..如图,ABC △中,点D 在AB 上,ACD ABC ∠=∠,若2AD =,6AB =,求AC 的长..我国隋代建造的赵州桥的桥拱是圆弧形,它的跨度(即弧所对的弦长)为37.4m ,拱高(即弧的中点到弦的距离,也叫弓形高)为7.2m ,求桥拱所在圆的半径(结果精确到0.1m ).【答案】27.9m .【解析】设桥拱AB 所在圆的圆心为O ,半径为m R ,连接OA , OB ,过点O 作OC AB ⊥,D 为垂足,与AB 相交于点C . ∴AD BD =.∵37.4AB =,7.2DC =,∴1137.418.722AD AB ==⨯=,7.2OD OC DC R =-=-.在Rt OAD △中,由勾股定理,得 222OA AD OD =+.即2218.72(7.2)R R =+-. 解这个方程,得27.9(m)R =.答:赵州桥的桥拱所在圆的半径约为27.9m ..已知二次函数2y x bx c =++,自变量x 的部分取值及对应的函数值如下表所示:(1(2)写出这个二次函数图象的顶点坐标. 【答案】(1)223y x x =--.(2)顶点坐标为(1,4)-.【解析】(1)把(1,0)-,(0,3)-)代入2y x bx c =++得: 103b c c -+=⎧⎨=-⎩, ∴23b c =-⎧⎨=-⎩.∴223y x x =--.(2)2223(1)4y x x x =--=--. ∴顶点坐标为(1,4)-..如图,天空中有一个静止的热气球A ,从地面点B 测得A 的仰角为30︒,从地面点C 测得A 的仰角为60︒.已知50m BC =,点A 和直线BC 在同一垂直平面上,求热气球离地面的高度..如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.【答案】(1)最大高度是194米.(2)这次表演成功.【解析】(1)223351931()5524y x x x =-++=--+.∴函数的最大值是194. ∴演员弹跳的最大高度是194米. (2)当4x =时,173.45y ==. 所以这次表演成功..如图,在平面直角坐标系xOy 中,一次函数2y x =-的图象与反比例函数ky x=的图象的一个交点为(1,)A n -.(1)求反比例函数ky x=的解析式; (2)若P 是坐标轴上一点,且满足PA OA =,直接写出点P 的坐标..如图,在ABC △中,90ABC ∠=︒,以AB 为直径的⊙O 与边AC 交于点D ,过点D 的直线交BC 边于点E ,BDE A ∠=∠. (1)证明:DE 是⊙O 的切线; (2)若⊙O 的半径5R =,3sin 5A =,求线段CD 的长.26. 我们可以借鉴以前研究函数的经验,探索函数1y x x=+的图象和性质. (1)函数1y x x=+的自变量x 的取值范围; (2)下表是y 与x 的几组对应值:其中m =;(3)画出函数10y x x x=+>()的图象;(4)结合函数图象,写出该函数的一条性质:. 【答案】【解析】(1)0x ≠.(2)174m =.(3)如图所示:(4)当1x =时,y 有最小值为2(当1x <时,y 随x 增大而减小).在平面直角坐标系xOy 中,抛物线212y x mx n =++与y 轴交于点(0,2)A ,过点3(1,)2B . (1)求抛物线的表达式;(2)若点C 与点A 关于抛物线的对称轴对称,求点C 的坐标; (3)①求直线BC 的解析式;②点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,则t 的取值范围.【答案】【解析】(1)把(0,2)A ,3(1,)2B 代入212n y x x m =++得21322n m n =⎧⎪⎨++=⎪⎩. ∴1m =-,2n =.∴2212y x x =-+.(2)C 的坐标为(2,2).(3)①∵点C 与点A 关于抛物线的对称轴对称, ∴点(2,2)C 在抛物线上.设直线BC 的解析式为y kx b =+.∵直线BC 经过点3(1,)2B 和点(2,2)C ,∴3222k b k b ⎧+=⎪⎨⎪+=⎩, 解得121k b ⎧=⎪⎨⎪=⎩.∴直线BC 的解析式为112y x =+. ②t 的取值范围13t <≤..如图1,在Rt ABC △中,90ACB ∠=︒,60B ∠=︒,D 为AB 的中点,90EDF ∠=︒,DE 交AC 于点G ,DF 经过点C .(1)tan ACD ∠=;(2)将图1中的EDF ∠绕点D 顺时针方向旋转一定的角度,旋转过程中的DE 交直线AC 于点P ,DF 交直线BC 于点Q :①如图2,当DE AC ⊥时,求PDQD的值; ②当旋转到如图3位置时,求PDQD的值. 【答案】 【解析】(1. (2)①解∵D 是AB 的中点,DE BC ⊥, ∴PD BC ∥.∴12PD BC =.同理可证12DQ AC =.∴PD BC QD AC =. ∵60B ∠=︒,∴BC AC =.②作DG AC ⊥于G ,DH BC ⊥于H .∴90DGC DHC ∠=∠=︒.∵90C ∠=︒,∴四边形CPDQ 是矩形.∴90GDH ∠=︒.∴90PDG EDH ∠+∠=︒.∵90EDQ ∠=︒,∴90EDH QDH ∠+∠=︒.∴PDG QDH ∠=∠.∴PDG QDH ∽△△. ∴PD DG QD DH=. 由①DG BC DH AC=,∴PD QD =.如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A ,B 重合),我们称APB ∠是⊙O 上关于A 、B 的滑动角.(1)已知APB ∠是⊙O 上关于A 、B 的滑动角.① 若AB 是⊙O 的直径,则APB ∠=;②若⊙O 的半径是1,AB =APB ∠的度数.(2)已知2O 是⊙1O 外一点,以2O 为圆心做一个圆与⊙1O 相交于A 、B 两点,APB ∠是⊙1O 上关于A 、B 的滑动角,直线PA 、PB 分别交⊙2O 于点M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索APB ∠与MAN ∠、ANB ∠之间的数量关系.BA 0P年密云区九年级上期末试卷数学参考答案和评分参考一、选择题(本题共分,每小题分,)..........二、填空题(本题共分,每小题分).:.2(3)4y x =--.3π.21(0,)y x h =+=写对即可...垂径定理,等弧所对的弦相等、圆心角相等,四条边相等四个角相等的四边形是正方形.三、解答题(本题共分,每小题分).解:原式1=3114=+- 34=..解:由可得:D B ∠=∠,在ADE △和CBE △中,D B AED CEB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE △≌CBE △(AAS ),∴AE CE =..解:∵A A ∠=∠,ACD ABC ∠=∠,∴ADC ACB ∽△△. ∴AD AC AC AB=. ∴2AC AB AD =⋅.∵2AD =,6AB =,∴212AC =.∴AC =.解:设桥拱AB 所在圆的圆心为O ,半径为m R ,连接OA , OB ,过点O 作OC AB ⊥,D 为垂足,与AB 相交于点C . ∴AD BD =.∵37.4AB =,7.2DC =, ∴1137.418.722AD AB ==⨯=,7.2OD OC DC R =-=-.在Rt OAD △中,由勾股定理,得222OA AD OD =+.即2218.72(7.2)R R =+-.解这个方程,得27.9(m)R =.答:赵州桥的桥拱所在圆的半径约为27.9m . .解:(1)把(1,0)-,(0,3)-)代入2y x bx c =++得: 103b c c -+=⎧⎨=-⎩, ∴23b c =-⎧⎨=-⎩. ∴223y x x =--.(2)2223(1)4y x x x =--=--.∴顶点坐标为(1,4)-..解:过A 作AD BC ⊥于D ,则AD 的长为热气球离地面的高度. ∵30B ∠=︒,60ACD ∠=︒.∴603030CAB ∠=︒-︒=︒.∴B CAB ∠=∠.∴50m AC BC ==.∵90ADC ∠=︒.∴30CAD ∠=︒.∴AD ==.答:热气球离地面的高度是.四、解答题(本题共分,每小题分).解:(1)223351931()5524y x x x =-++=--+. ∴函数的最大值是194. ∴演员弹跳的最大高度是194米. (2)当4x =时,17 3.45y ==. 所以这次表演成功..(1)把(1,)A n -代入2y x =-中得:2n =.把(1,2)A -代入k y x=中得:2k =-. ∴2y x=-. (2)1(2,0)P -,2(0,4)P,3(0,0)P ..解:(1)证明:连接OD ,∵AB 是⊙O 的直径,∴90ADB ∠=︒.∴90A B ∠+∠=︒.∵OB OD =,∴B ODB ∠=∠.∵BDE A ∠=∠,∴90ODB BDE ∠+∠=︒.∴OD OE ⊥.∴DE 是⊙O 的切线.(2)在⊙O 中,5R =,∴10AB =. ∵3sin 5BD A AB==, ∴6BD =.∴8AD =.∵90ADB CDB ∠=∠=︒,DBC A ∠=∠, ∴ABD BCD ∽△△. ∴AD BD BD CD=, 866CD=. ∴92CD =..(1)0x ≠.(2)174m =. (3)(4)当1x =时,y 有最小值为2(当1x <时,y 随x 增大而减小)五、解答题(本题分,第题分,第题分,第题分).解:(1)把(0,2)A ,3(1,)2B 代入212n y x x m =++得 21322n m n =⎧⎪⎨++=⎪⎩. ∴1m =-,2n =. ∴2212y x x =-+. (2)C 的坐标为(2,2).(3)①∵点C 与点A 关于抛物线的对称轴对称,∴点(2,2)C 在抛物线上.设直线BC 的解析式为y kx b =+.∵直线BC 经过点3(1,)2B 和点(2,2)C , ∴3222k b k b ⎧+=⎪⎨⎪+=⎩, 解得121k b ⎧=⎪⎨⎪=⎩.∴直线BC 的解析式为112y x =+. ②t 的取值范围13t <≤..解:(1. (2)①解∵D 是AB 的中点,DE BC ⊥, ∴PD BC ∥. ∴12PD BC =. 同理可证12DQ AC =. ∴PD BC QD AC=. ∵60B ∠=︒,∴BC AC =. ②作DG AC ⊥于G ,DH BC ⊥于H . ∴90DGC DHC ∠=∠=︒.∵90C ∠=︒,∴四边形CPDQ 是矩形.∴90GDH ∠=︒.∴90PDG EDH ∠+∠=︒.∵90EDQ ∠=︒,∴90EDH QDH ∠+∠=︒.∴PDG QDH ∠=∠.∴PDG QDH ∽△△. ∴PD DG QD DH=. 由①DG BC=, ∴PD QD =.(1)①90︒.②∵半径是1,AB=∴AOB△是等腰直角三角形.∴90∠=︒.AOB∴45∠=︒.APB(2)根据点P在⊙O上的位置分为以下四种情况.一种情况一分.1第一种情况:点P在⊙O外,且点A在点P与点M之间,点B在点P与点之间,如图①.2∵MAN APB ANB∠=∠+∠,∴APB MAN ANB∠=∠-∠.第二种情况:点P在⊙O外,且点A在点P与点M之间,点N在点P与点B之间,如图②.2∵(180)∠=∠+∠=∠+︒-∠,MAN APB ANP APB ANB∴180∠=∠+∠-︒.APB MAN ANB第三种情况:点P在⊙O外,且点M在点P与点A之间,点B在点P与点N之间,如图③.2∵180∠+∠+∠=︒,APB ANB MAN∴180∠=︒-∠-∠,APB MAN ANB第四种情况:点P在⊙O内,如图④,2APB MAN ANB∠=∠+∠.个人整理资料,仅供交流学习。
2015年密云区九年级上期末试卷数学参考答案和评分参考一、选择题(本题共30分,每小题3分,)1.B2.A3.C4.A5.A6.B7. C8. B9.B 10. D二、填空题(本题共18分,每小题3分)11. 1:4 12. 2(3)4y x =-- 13. 3π 14.21(0,)y x h =+=写对即可 15. 5.5cm 16. 垂径定理,等弧所对的弦相等、圆心角相等,四条边相等四个角相等的四边形是正方形。
三、解答题(本题共30分,每小题5分)17.解:原式==+-1…………………………………………………………4分=+-=311434 ……………………………………………………………5分 18.解:由圆周角定理可得:∠D =∠B ,………………………………………………1分 在△ADE 和△CBE 中,∠D=∠B∠AED=∠CEB AD=CB∴△ADE ≌△CBE (AAS ),…………………………………………………4分∴AE=CE .……………………………………………………………………5分19.解:∵∠A=∠A,∠ACD=∠ABC∴△ADC ∽△ACB .……………………………………………………………………1分 ∴=∴===∴=∴22232,61245分分分分AD AC AC AB AD AD AB AC AC 20. 解:设桥拱 AB 所在圆的圆心为O ,半径为R m ,连接OA ,OB ,过点O 作OC ⊥AB ,D 为垂足,与 AB 相交于点C.∴ AD = BD.∵ AB = 37.4,DC = 7.2,∴ AD =1/2AB =1/2×37.4 = 18.7,OD = OC - DC = R - 7.2 .在 Rt △OAD 中,由勾股定理,得OA 2 = AD 2 + OD 2 .即 R 2 = 18.7 2 + (R-7.2)2 .解这个方程,得R 27.9 (m ) .答:赵州桥的桥拱所在圆的半径约为27.9m21. 解:(1)把(-1,0),(0,-3)代入2y x bx c =++得: 1-b+c=0 c= -3 , ………………………………………………………………………………1分∴ b = -2c= -3 ………………………………………………………………………………2分∴223y x x =--……………………………………………………………………3分(2)2223(1)4y x x x =--=--…………………………………………………4分 ∴顶点坐标为(1,-4)。
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .12 6.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。
2017-2018学年北京市密云县九年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的.1.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A.B.1C.D.62.将抛物线y=x2先向左平移2个单位再向下平移1个单位,得到新抛物线的表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣13.已知点A(1,m),B(2,n)在反比例函数y=的图象上,则()A.m<n<0B.n<m<0C.m>n>0D.n>m>04.在正方形网格中,∠AOB如图放置.则tan∠AOB的值为()A.2B.C.D.5.如图,Rt△ABC中,∠C=90°,AC=4,BC=3.以点A为圆心,AC长为半径作圆.则下列结论正确的是()A.点B在圆内B.点B在圆上C.点B在圆外D.点B和圆的位置关系不确定6.如图,△ABC内接于⊙O,∠AOB=80°,则∠ACB的大小为()A.20°B.40°C.80°D.90°7.如图,△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A.B.C.D.8.已知抛物线y=ax2+bx+c(x为任意实数)经过下图中两点M(1,﹣2)、N(m,0),其中M 为抛物线的顶点,N为定点.下列结论:①若方程ax2+bx+c=0的两根为x1,x2(x1<x2),则﹣1<x1<0,2<x2<3;②当x<m时,函数值y随自变量x的减小而减小.③a>0,b<0,c>0.④垂直于y轴的直线与抛物线交于C、D两点,其C、D两点的横坐标分别为s、,则s+t=2.其中正确的是()A.①②B.①④C.②③D.②④二、填空题(本题共16分,每小题2分)9.已知x:y=1:2,则(x+y):y=.10.已知∠A为锐角,且tanA=,则∠A的大小为.11.抛物线y=x2﹣2x+3的对称轴是直线.12.扇形半径为3cm,弧长为πcm,则扇形圆心角的度数为.13.写出一个图象位于第一、三象限的反比例函数的表达式:.14.在物理课中,同学们曾学过小孔成像:在较暗的屋子里,把一只点燃的蜡烛放在一块半透明的塑料薄膜前面,在它们之间放一块钻有小孔的纸板,由于光沿直线传播,塑料薄膜上就出现了蜡烛火焰倒立的像,这种现象就是小孔成像(如图1).如图2,如果火焰AB的高度是2cm,倒立的像A′B′的高度为5cm,蜡烛火焰根B到小孔O的距离为4cm,则火焰根的像B′到O的距离是cm.15.学校组织“美丽校园我设计”活动.某同学打算利用学校文化墙的墙角建一个矩形植物园.其中矩形植物园的两邻边之和为4m,设矩形的一边长为xm,矩形的面积为ym2.则函数y 的表达式为,该矩形植物园的最大面积是m2.16.下面是“经过圆外一点作圆的切线”的尺规作图的过程.已知:P为外一点.求作:经过P点的切线.作法:如图,(1)连结OP;(2)以OP为直径作圆,与交于C、D两点.(3)作直线PC、PD.则直线PC、PD就是所求作经过P点的切线.以上作图的依据是:.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O 的半径长.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点,=.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A 点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:≈.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为cm.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B 重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.2017-2018学年北京市密云县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的.1.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A.B.1C.D.6【分析】利用平行线分线段成比例定理即可解决问题;【解答】解:∵DE∥BC,AD=2,DB=1,AE=3,∴=,∴=,∴EC=,故选:C.【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理,属于中考常考题型.2.将抛物线y=x2先向左平移2个单位再向下平移1个单位,得到新抛物线的表达式是()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.3.已知点A(1,m),B(2,n)在反比例函数y=的图象上,则()A.m<n<0B.n<m<0C.m>n>0D.n>m>0【分析】根据反比例函数图象上点的坐标特征得到m=2n<0,于是可得到m、n的大小关系.【解答】解:∵A(1,m),B(2,n)在反比例函数y=的图象上,∴k=m=2n<0,∴m<n<0.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;双曲线是关于原点对称的,两个分支上的点也是关于原点对称.4.在正方形网格中,∠AOB如图放置.则tan∠AOB的值为()A.2B.C.D.【分析】根据图形找出角的两边经过的格点以及点O组成的直角三角形,然后根据锐角的正切等于对边比邻边解答.【解答】解:如图,tan∠AOB==2.故选A.【点评】本题考查了锐角三角函数的定义,熟练掌握网格结构找出直角三角形是解题的关键.5.如图,Rt△ABC中,∠C=90°,AC=4,BC=3.以点A为圆心,AC长为半径作圆.则下列结论正确的是()A.点B在圆内B.点B在圆上C.点B在圆外D.点B和圆的位置关系不确定【分析】首先利用勾股定理求得直角三角形斜边的长,从而求得点B与圆A的位置关系.【解答】解:∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵AC=4,∴点B在圆外,故选:C.【点评】本题根据点到圆心的距离和圆的半径之间的数量关系,来判断点和圆的位置关系.6.如图,△ABC内接于⊙O,∠AOB=80°,则∠ACB的大小为()A.20°B.40°C.80°D.90°【分析】由△ABC内接于⊙O,已知∠AOB=80°,根据圆周角定理,即可求得∠ACB的度数.【解答】解:∵△ABC内接于⊙O,∠AOB=80°,∴∠ACB=∠AOB=40°.故选:B.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.7.如图,△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.8.已知抛物线y=ax2+bx+c(x为任意实数)经过下图中两点M(1,﹣2)、N(m,0),其中M 为抛物线的顶点,N为定点.下列结论:①若方程ax2+bx+c=0的两根为x1,x2(x1<x2),则﹣1<x1<0,2<x2<3;②当x<m时,函数值y随自变量x的减小而减小.③a>0,b<0,c>0.④垂直于y轴的直线与抛物线交于C、D两点,其C、D两点的横坐标分别为s、,则s+t=2.其中正确的是()A.①②B.①④C.②③D.②④【分析】利用函数图象条件二次函数的性质一一判断即可.【解答】解:①若方程ax2+bx+c=0的两根为x1,x2(x1<x2),则﹣1<x1<0,2<x2<3,故①正确;②当x<1时,函数值y随自变量x的减小而减小,故②错误;③a>0,b<0,c<0,故③错误;④垂直于y轴的直线与抛物线交于C、D两点,其C、D两点的横坐标分别为s、t,根据二次函数的对称性可知s+t=2,故④正确;故选:B.【点评】本题考查二次函数的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本题共16分,每小题2分)9.已知x:y=1:2,则(x+y):y=3:2.【分析】首先根据已知条件x:y=1:2,得出y=2x,然后代入所求式子即可.【解答】解:∵x:y=1:2,∴y=2x,∴(x+y):y=3x:2x=3:2.故答案为3:2.【点评】解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.10.已知∠A为锐角,且tanA=,则∠A的大小为60°.【分析】根据特殊角三角函数值,可得答案.【解答】解:∠A为锐角,且tanA=,则∠A=60°,故答案为:60°.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.11.抛物线y=x2﹣2x+3的对称轴是直线直线x=1.【分析】根据二次函数的对称轴公式列式计算即可得解.【解答】解:对称轴为直线x=﹣=﹣=1,即直线x=1.故答案为:直线x=1.【点评】本题考查了二次函数的性质,熟记对称轴公式是解题的关键.12.扇形半径为3cm,弧长为πcm,则扇形圆心角的度数为60°.【分析】设扇形的圆心角为n°,根据弧长公式和已知得出方程=π,求出方程的解即可.【解答】解:设扇形的圆心角为n°,∵扇形半径是3cm,弧长为πcm,∴=π,解得:n=60,故答案为:60°.【点评】本题考查了弧长的计算的应用,解此题的关键是能根据弧长公式得出关于n的方程,题目比较好,难度适中.13.写出一个图象位于第一、三象限的反比例函数的表达式:.【分析】首先设反比例函数解析式为y=,再根据图象位于第一、三象限,可得k>0,再写一个k大于0的反比例函数解析式即可.【解答】解;设反比例函数解析式为y=,∵图象位于第一、三象限,∴k>0,∴可写解析式为y=,故答案为:y=.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.14.在物理课中,同学们曾学过小孔成像:在较暗的屋子里,把一只点燃的蜡烛放在一块半透明的塑料薄膜前面,在它们之间放一块钻有小孔的纸板,由于光沿直线传播,塑料薄膜上就出现了蜡烛火焰倒立的像,这种现象就是小孔成像(如图1).如图2,如果火焰AB的高度是2cm,倒立的像A′B′的高度为5cm,蜡烛火焰根B到小孔O的距离为4cm,则火焰根的像B′到O的距离是10cm.【分析】由AB∥A′B′知△ABO∽△A′B′O,据此可得=,解之即可得出答案.【解答】解:如图,∵AB∥A′B′,∴△ABO∽△A′B′O,则=,即=,解得:OB′=10,故答案为:10.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的性质.15.学校组织“美丽校园我设计”活动.某同学打算利用学校文化墙的墙角建一个矩形植物园.其中矩形植物园的两邻边之和为4m,设矩形的一边长为xm,矩形的面积为ym2.则函数y 的表达式为y=﹣x2+4x,该矩形植物园的最大面积是4m2.【分析】表示出矩形的另一边长为(4﹣x)m,根据矩形的面积公式可得函数解析式,将其配方成顶点式可得面积的最大值.【解答】解:设矩形的一边长为xm,则另一边长为(4﹣x)m,所以矩形的面积y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,则当x=2时,矩形面积取得最大值4,故答案为:y=﹣x2+4x,4.【点评】本题主要考查二次函数的应用,解题的关键是根据矩形的面积公式,并熟练掌握二次函数的性质.16.下面是“经过圆外一点作圆的切线”的尺规作图的过程.已知:P为外一点.求作:经过P点的切线.作法:如图,(1)连结OP;(2)以OP为直径作圆,与交于C、D两点.(3)作直线PC、PD.则直线PC、PD就是所求作经过P点的切线.以上作图的依据是:直径所对的圆周角为直角,经过半径外端且并且垂直于这条半径的直线是圆的切线.【分析】根据“直径所对的圆周角为直角”知∠OCP=∠ODP=90°,再由OC、OD为⊙O的半径,根据“经过半径外端且并且垂直于这条半径的直线是圆的切线”即可判定.【解答】解:∵以OP为直径作圆,与交于C、D两点,∴∠OCP=∠ODP=90°(直径所对的圆周角为直角),∵OC、OD为⊙O的半径,∴直线PC、PD就是所求作经过P点的切线(经过半径外端且并且垂直于这条半径的直线是圆的切线),故答案为:直径所对的圆周角为直角,经过半径外端且并且垂直于这条半径的直线是圆的切线.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握圆周角定理和切线的判定.三、解答题(共68分)17.(5分)计算:tan30°﹣2cos60°+cos45°+π0.【分析】根据特殊角的三角函数值先进行化简,然后根据实数运算法则进行计算即可得出结果.【解答】解:tan30°﹣2cos60°+cos45°+π0=×﹣2×+×+1=1﹣1+1+1=2.【点评】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.18.(5分)如图,△ABC中,∠ABC=60°,AB=2,BC=3,AD⊥BC垂足为D.求AC长.【分析】先在Rt△ABD中利用三角函数定义求出AD=,BD=1.再得到CD=2.然后在Rt△ADC 中根据勾股定理求出AC即可.【解答】解:∵AD⊥BC,垂足为D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=2,∴sinB=,cosB=,即=,=,解得:AD=,BD=1.∵BC=3,∴CD=2.在Rt△ADC中,AC==.【点评】本题考查了解直角三角形和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.19.(5分)如图,BO是△ABC的角平分线,延长BO至D使得BC=CD.(1)求证:△AOB∽△COD.(2)若AB=2,BC=4,OA=1,求OC长.【分析】(1)由BO是△ABC的角平分线、BC=CD知∠ABO=∠CBO=∠D,根据∠AOB=∠COD即可得证;(2)由△AOB∽△COD知=,据此即可得出答案.【解答】解:(1)∵BO是△ABC的角平分线,∴∠ABO=∠CBO,∵BC=CD,∴∠CBO=∠D,∴∠ABO=∠D,又∵∠AOB=∠COD,∴△AOB∽△COD;(2)∵BC=4,∴BC=CD=4,∵△AOB∽△COD,∴=,即=,解得:OC=2.【点评】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握相似三角形的判定与性质、角平分线的性质、等边对等角等知识点.20.(5分)已知二次函数y=x2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:(2)画出二次函数的示意图,结合函数图象,直接写出y<0 时自变量x 的取值范围.【分析】(1)根据表格数据,利用待定系数法即可求出二次函数表达式;(2)画出二次函数的示意图,找出函数图象在x轴下方的部分,此题得解.【解答】解:(1)由已知可知,二次函数经过(0,3),(1,0)则有,解得:,所以二次函数的表达式为y=x2﹣4x+3;(2)函数图象如图所示:由函数图象可知当1<x<3时,y<0.【点评】本题考查了抛物线与x轴的交点、二次函数的图象以及待定系数法求二次函数解析式,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据给定点的坐标画出函数图象.21.(5分)如图,AB是⊙O的弦,⊙O的半径OD⊥AB 垂足为C.若AB=2,CD=1,求⊙O 的半径长.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【解答】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×2=,设⊙O的半径为r,则OC=r﹣CD=r﹣1,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r﹣1)2+()2,解得r=2.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.22.(5分)点P(1,4),Q(2,m)是双曲线y=图象上一点.(1)求k值和m值.(2)O为坐标原点.过x轴上的动点R作x轴的垂线,交双曲线于点S,交直线OQ于点T,且点S在点T的上方.结合函数图象,直接写出R的横坐标n的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【解答】(1)解:∵点P(1,4),Q(2,m )是双曲线y=图象上一点.∴4=,m=,∴k=4,m=2.(2)观察函数图象可知,R的横坐标n的取值范围:0<n<2或n<﹣2.【点评】本题考查反比例函数图象上点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(5分)小明同学要测量学校的国旗杆BD的高度.如图,学校的国旗杆与教学楼之间的距AB=20m.小明在教学楼三层的窗口C测得国旗杆顶点D的仰角为14°,旗杆底部B的俯角为22°.(1)求∠BCD的大小.(2)求国旗杆BD的高度(结果精确到1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)【分析】(1)过C作CE∥AB交BD于E.根据题意可得答案;(2)在Rt△CEB中,利用三角函数可得tan∠ECB=,代入数据可得BE的长,然后在Rt△CED中可得tan∠DCE==≈0.25,进而可得ED长,再求和即可.【解答】解:(1)过C作CE∥AB交BD于E.由已知,∠DCE=14°,∠ECB=22°,∴∠DCB=36°;(2)在Rt△CEB中,∠CEB=90°,AB=20,∠ECB=22°,∴tan∠ECB==≈0.4,∴BE≈8,在Rt△CED中,∠CED=90°,CE=AB=20,∠DCE=14°,∴tan∠DCE==≈0.25,∴DE≈5,∴BD≈13,∴国旗杆BD的高度约为13米.【点评】此题主要考查了解直角三角形的应用,关键是读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点,=.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A 点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:≈ 2.9.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为 2.3cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.26.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.27.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B 重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.28.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。