数学中考冲刺训练(一)
- 格式:doc
- 大小:1.05 MB
- 文档页数:7
广东省2022年中考第一次冲刺模拟考试(一)数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各数中,比3-小的数是( ) A .π-B 5C .2D .83-2.京张高铁,京礼高速两条北京冬奥会重要交通保障设施投入使用后,将张家口、崇礼、延庆与北京城区串成一线.京张高铁开通运营一年累计发送旅客6 800 000人,大幅提升了京张两地通行能力,将6 800 000用科学记数法表示为( ) A .56.810⨯B .66.810⨯C .56810⨯D .70.6810⨯3.看了《田忌赛马》故事后,数学兴趣小组用数学模型来分析:齐王与田忌的上中下三个等级的三匹马综合指标数如表,每匹马只赛一场,综合指标的两数相比,大数为胜,三场两胜则赢,已知齐王的三匹马出场顺序为6、4、2,若田忌的三匹马随机出场,则田忌能赢得比赛的概率为( )马匹等级 下等马 中等马 上等马 齐王 2 4 6 田忌135A .13B .16C .19D .1124.下列计算正确的是( ) A .x 7÷x =x 7B .(﹣3x 2)2=﹣9x 4C .x 3•x 3=2x 6D .(x 3)2=x 65.已知a 是方程22210x x -+=的一个根.则221a a+的值为( )A .4B .6C .42D .626.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再拼接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,在如图所示的A ,B ,C ,D 四个位置中,能够选择的位置有( )A .1个B .2个C .3个D .4个7.如图,AB 为⊙O 的一条弦,C 为⊙O 上一点,OC ∥AB .将劣弧AB 沿弦AB 翻折,交翻折后的弧AB 交AC 于点D .若D 为翻折后弧AB 的中点,则∠ABC =( )A .110°B .112.5°C .115°D .117.5°8.阅读理解:如图1,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M 的位置可由MOx ∠的度数θ与OM 的长度m 确定,有序数对(,)m θ称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为4,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为( )A .()60,8︒B .()45,8︒C .()60,42︒D .()45,22︒9.如图,在平面直角坐标系中,二次函数234y x x =+-的图象与x 轴交于A 、C 两点,与y 轴交于点B ,若P 是x 轴上一动点,点Q (0,2)在y 轴上,连接PQ ,则22PQ PC +的最小值是( )A .6B .3222+C .232+D .3210.如图,矩形ABCD 的边CD 上有一点E ,67.5DEA ∠=︒,EF AB ⊥,垂足为F ,将AFE △绕点F 顺时针旋转,点E 恰好落在点B 处,点A 落在EF 上的点G 处.下列结论:①BG AE ⊥;②2EG AF =;③2217ADE BCEGS S -=四边形△;④若M 为BG 中点,则OFM △为等腰直角三角形;⑤B 、G 、O 三点共线.正确的个数是( )A .5B .4C .3D .2第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分)11.设抛物线2(1)y x a x a =+++,其中a 为实数.将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是__________12.我国古代很早就对二元一次方程组进行了研究,古著《九章算术》记载用算筹表示二元一次方程组,发展到现代就是用矩阵式111222c a b x a b y c ⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭来表示二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩,而该方程组的解就是对应两直线(不平行)a 1x +b 1y =c 1与a 2x +b 2y =c 2的交点坐标P (x ,y )据此,则矩阵式315123x y --⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所对应两直线交点坐标是_________.13.如图,在扇形OAB 中,∠AOB =105°,OA =4,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在弧AB 的点D 处,折痕BC 交OA 于点C ,则阴影部分的面积为__________.14.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数22y x x c =++有两个相异的不动点1x ,2x ,则222112x x x --=______ 15.已知二次函数2(2)23y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下列说法在确的有:_____.(填序号)①该二次函数的图象一定过定点(1,3)--;②若该函数图象开口向下,则m 的取值范围为:625m <<;③当2m >且02x 时,y 的最小值为3m -;④当2m >,且该函数图象与x 轴两交点的横坐标12x x 、满足124310x x -<<--<<,时,m 的取值范围为:352194m <<. 16.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 边上的中点,连接BE 交AD 于F ,将△AFE 沿若AC 翻折到△AGE ,若四边形AFEG 恰好为菱形,连接BG ,则tan ∠ABG =________.17.如图,在ABC 中,AB AC =,6BC =,tan 23ACB ∠=,点P 在边AC 上运动(可与点A ,C 重合),将线段BP 绕点P 逆时针旋转120°,得到线段DP ,连接BD ,CD ,则CD 长的最小值为______. 三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤)18.(本题满分6分)(1)计算:()10120214sin 60122π-⎛⎫---︒+ ⎪⎝⎭;(2)解不等式组:()523532x xx ⎧--≤⎪⎨-<⎪⎩19.(本题满分6分)距离2022年中招体育考试的时间已经越来越近,某校初三年级为了了解本校学生在平时体育训练的效果,随机抽取了男、女各60名考生的体考成绩,并将数据进行整理分析,给出了下面部分信息:数据分为A ,B ,C ,D 四个等级分别是:A :4850x ≤≤,B :4548x ≤<,C :4045x ≤<,D :040x ≤<60名男生成绩的条形统计图以及60名女生成绩的扇形统计图如图: 男生成绩在B 组的前10名考生的分数为:47.5,47.5,47.5,47,47,47,46,45.5,45,45. 60名男生和60名女生成绩的平均数,中位数,众数如下:性别 平均数 中位数 众数 男生 47.5 a 47 女生47.54747.5根据以上信息,解答下列问题:(1)填空:=a ______,b =______,并补全条形统计图.(2)根据以上数据,你认为在此次考试中,男生成绩好还是女生成绩好?请说明理由(说明一条理由即可). (3)若该年级有800名学生,请估计该年级所有参加体考的考生中,成绩为A 等级的考生人数.20.(本题满分6分)如图,四边形ABCD 为平行四边形,连接AC 、BD 交于点O .(1)请用尺规完成基本作图:过点A 作直线BD 的垂线,垂足为E ;在直线AE 上作点G 使得=BG BA ,连接BG (保留作图痕迹,不写作法)(2)在(1)的条件下,若3DE BE =,求证:BG CO =.21.(本题满分8分)如图,在平面直角坐标系中,点O 为坐标系原点,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,其中4cos 5OBC ∠=,3OC =.已知反比例函数(0)ky x x =>的图象经过BC 边上的中点D ,交AB于点E . (1)求k 的值;(2)猜想OCD ∆的面积与OBE ∆的面积之间的关系,请说明理由.(3)若点(,)P x y 在该反比例函数的图象上运动(不与点D 重合),过点P 作PR y ⊥轴于点R ,作PQ BC ⊥所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.22.(本题满分8分)某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如表(用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同). 运动鞋款式 甲 乙 进价(元/双) m m ﹣20 售价(元/双)240160(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,问该专卖店共有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行每双优惠a (50<a <70)元的优惠促销活动,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?23.(本题满分8分)如图1,CD 是O 的弦,半径OA CD ⊥,垂足为B ,过点C 作O 的切线l .(1)若点E 在O 上,且CE CA =,连接OE .①连接AE ,求证:AE l ∥;②如图2,若B 是OA 的中点,连接OD ,求证:DE 是O 的直径;(2)如图3,过点B 作BF l ⊥,垂足为F ,若O 的半径是4,求BC BF -的最大值.24.(本题满分10分)如图,在正方形ABCD中,点E在直线AD右侧,且AE=1,以DE为边作正方形DEFG,射线DF与边BC交于点M,连接ME,MG.(1)如图1,求证:ME=MG;(2)若正方形ABCD的边长为4,①如图2,当G,C,M三点共线时,设EF与BC交于点N,求MNEM的值;②如图3,取AD中点P,连接PF,求PF长度的最大值.25.(本题满分10分)抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;①如图(1),若点C的坐标是(0,3),点E的横坐标是32,直接写出点A,D的坐标.②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.数学参考答案1 2 3 4 5 6 7 8 9 10A B B D B D B A D A一个选项是符合题目要求的)1.【答案】A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案. 【详解】解:A. π-<-3,故A正确;B. 5,故B错误;C. 2->-3,故C错误;D.83->-3,故D错误. 故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.2.【答案】B【分析】把数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数的形式.【详解】解:6800000=6.8×106,故选:B.【点睛】此题主要考查了科学记数法表示较大的数,关键是掌握把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n=原来的整数位数−1.3.【答案】B【分析】列表得出所有等可能的情况,田忌能赢得比赛的情况有1种,再由概率公式求解即可.【详解】解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为6,4,2时,田忌的马按1,5,3的顺序出场,田忌才能赢得比赛,当田忌的三匹马随机出场时,双方马的对阵如下:齐王的马上中下上中下上中下上中下上中下上中下田忌的马上中下上下中中上下中下上下上中下中上双方马的对阵中,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为6.故选:B.【点睛】此题考查的是用列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】D【分析】利用幂的运算法则逐个选项进行排除即可.【详解】x7÷x=x6,选项A错误;(﹣3x2)2=9x4,选项B错误;x3•x3=x6,选项C错误;(x3)2=x6,选项D正确.故选:D.【点睛】本题考查了幂的运算法则,熟练掌握各运算法则是解题的关键.5.【答案】B【分析】把x a =代入方程22210x x -+=,得22210a a -+=,用完全平方公式将221a a +变形,即可解答.【详解】解:把x a =代入方程22210x x -+=,得22210a a -+=,∴等式两边同时除以a 得:122a a+= 222211()2(22)2826a a a a+=+-=-=-=.故选:B 【点睛】本题考查了一元二次方程的解的概念,分式的化简求值,完全平方公式,解题关键是明确题意,求出1a a+的值. 6.【答案】D【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可. 【详解】解:如图所示:根据立方体的展开图可知,不能选择图中A 的位置接正方形.故选:C .【点睛】此题主要考查应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背. 7.【答案】B【分析】如图,取 AB 中点M ,连接OM ,连接DB OB OA AM 、、、,由题意知OM AB ⊥,且O D M 、、在一条直线上,AD AM BD ==,OA OB OC ==,知90MOC ∠=︒,根据圆周角定理,等边对等角,三角形内角和定理等可求MAC ∠,BAC ∠,BOC ∠,OAC ∠,OBA ∠,OBC ∠的值,进而求解ABC ∠的值.【详解】解:如图,取 AB 中点M ,连接OM ,连接DB OB OA AM 、、、由题意知OM AB ⊥,且O D M 、、在一条直线上,AD AM BD ==,OA OB OC ==∴90MOC ∠=︒∴1452MAC MOC ∠=∠=︒∵AD AM BD ==,OM AB ⊥∴122.52MAB DAB MAD ∠=∠=∠=︒∴245BOC BAC ∠=∠=︒∵OC AB ∥∴OAC OCA DAB ∠=∠=∠∴45OAB OBA OAC DAB ∠=∠=∠+∠=︒ ∴18067.52BOCOBC OCB ︒-∠∠=∠==︒∴112.5ABC OBA OBC ∠=∠+∠=︒故选B .【点睛】本题考查了垂径定理,圆周角,等边对等角,三角形内角和定理,折叠性质等知识.解题的关键在于对知识的灵活运用. 8.【答案】A【分析】设正六边形的中心为D ,连接AD ,判断出△AOD 是等边三角形,根据等边三角形的性质可得OD =OA ,∠AOD =60°,再求出OC ,然后根据“极坐标”的定义写出即可. 【详解】解:如图,设正六边形的中心为D ,连接AD ,∵∠ADO =360°÷6=60°,OD =AD ,∴△AOD 是等边三角形, ∴OD =OA =4,∠AOD =60°,∴OC =2OD =2×4=8, ∴正六边形的顶点C 的极坐标应记为()60,8︒.故选A .【点睛】本题考查了正多边形和圆,坐标确定位置,主要利用了正六边形的性质,读懂题目信息,理解“极坐标”的定义是解题的关键. 9.【答案】D【分析】连接BC ,过点P 作PD ⊥BC 于D ,过点Q 作QH ⊥BC 于H .根据22PQ PC PQ PD +=+,可得DQ PD +的最小值为QH 的长,即可解决问题. 【详解】如图,连接BC ,过点P 作PD ⊥BC 于D ,过点Q 作QH ⊥BC 于H .由234y x x =+-,令0y =,则2340x x +-=,解得1241x x =-=,,()()4,0,1,0C A ∴-, 令0x =,解得0y =,()0,4B ∴-,4OB OC ∴==,90BOC ∠=︒,45OCB OBC ∴∠=∠=︒,2PC PD ∴,∴2PQ PQ PD QH =+≥,当P 为QH 与x 轴交点时2PQ 最小,最小值为QH 的长, Q (0,2),()0,4B -,4BQ ∴=,设QH x =,则BH x =, ∵222DH BH Q B +=,∴2226x x +=,∴32x =32QH = 则22PQ PC +的最小值是32.故选D . 【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题. 10.【答案】A【分析】若△ABE 是个等腰三角形则容易判断①⑤两个选项,考虑先从等腰三角形入手;若EG 2,则EG 与AF 所在的正方形对角线相等,过G 作GK ⊥AD 于K ,连接正方形AFGK 的对角线KF ,KF 和KD 在△KFD 中可从等腰三角形证明相等;由EG 2AF 可得出两正方形的边长关系从而求出面积比;由FM =BM ,∠FBM =22.5,可证④; 【详解】解:作GK ⊥AD 于K ,连接KF ,连接MF由旋转可知AF =FG ,EF =BF ,∵EF ⊥AB ,ABCD 是矩形,∴四边形AFGK 和FBCE 都是正方形;∠DEA =67.5°,∴∠AEF =22.5°,∠EAF =67.5°,∠AEB =22.5°+45°=67.5°,∴∠AEB =∠EAB ,BE =AB ;∵∠ABG =∠AEF =22.5°,∠FBE =45°,∴BG 是∠ABE 的角平分线,O 为矩形AFED 的对角线交点,∴OE =OA ,△BAE 为等腰三角形,三线合一,∴BO 也是是∠ABE 的角平分线, ∴B 、G 、O 三点共线,故①⑤说法正确;三角形KFD 中,∠KFD =∠KDF =22.5°,∴KF =KD =EG 2,故②说法正确; 设AF =x ,则S △ADE =)2121212x x x +⨯⨯=, 四边形BCEG 的面积=正方形BCEF 的面积-三角形BGF 的面积, ∴S 四边形BCEG =)2222121x +2532x +,21221532ADE BCEGS S +-=+四边形△确;△BGF 中M 为BG 中点,∠BFG =90°,直角三角形斜边中线为斜边一半,∴MF =MB ,∠MFB =22.5°∴∠OMF =∠MBF +∠MFB =45°,∠MFO =180°-∠AFD -∠MFB =90°,∴OFM △为等腰直角三角形;故④正确;综上所述①②③④⑤正确;故答案选:A 【点睛】本题综合考查等腰三角形的性质和判定,旋转的性质,矩形的性质,角平分线的性质,作出辅助线证明三点共线是个关键步骤.第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.【答案】2【分析】先将抛物线配方为顶点式,然后根据(左加右减,上加下减)将抛物线平移,得出解析式()2211224a a y x a ++⎛⎫=+-++ ⎪⎝⎭,求出顶点的纵坐标()2124a a +-++配方得出()()221121244a a a +-++=--+即可. 【详解】解:抛物线()22211(1)24a a y x a x a x a ++⎛⎫=+++=+-+ ⎪⎝⎭, 将抛物线2(1)y x a x a =+++向上平移2个单位,解析式为()2211224a a y x a ++⎛⎫=+-++ ⎪⎝⎭, ∴顶点纵坐标为:()()221121244a a a +-++=--+, ∵104-<,∴a =1时,最大值为2.故答案为2.【点睛】本题考查抛物线配方顶点式,抛物线平移,顶点的纵坐标,掌握抛物线配方顶点式,抛物线平移,顶点的纵坐标是解题关键. 12.【答案】(﹣1,2)【分析】根据题意即可列出关于x 、y 的二元一次方程组,解出x 、y ,即为所求.【详解】依题意,得3523x y x y -=-⎧⎨+=⎩,解得12x y =-⎧⎨=⎩,∴矩阵式315123x y --⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所对应两直线交点坐标是(-1,2).故答案为:(-1,2).【点睛】本题考查二元一次方程组的实际应用,两直线的交点与二元一次方程组的解的关系.读懂题意,掌握解二元一次方程组的方法是解答本题的关键. 13.【答案】2π-4【分析】连接OD ,交BC 于E ,根据对折得出BC ⊥OD ,DE =OE =2,∠DBE =∠OBE ,OB =BD =4,求出△DOB 是等边三角形,根据等边三角形的性质得出∠DOB =∠DBO =60°,求出∠COD =∠AOB -∠DOB =45°,求出CE =OE =2,再分别求出扇形AOD 和△COD 的面积即可. 【详解】解:连接OD ,交BC 于E ,∵延BC 对折O 和D 重合,OD =4,∴BC ⊥OD ,DE =OE =2,∠DBE =∠OBE ,OB =BD =4, ∴∠BEO =90°,△DOB 是等边三角形,∴∠DOB =∠DBO =60°,∵∠AOB =105°,∴∠COD =∠AOB -∠DOB =45°,∵∠OEC =90°,∴CE =OE =2,∴阴影部分的面积=S 扇形AOD -S △COD 24541423602π⨯=-⨯⨯=2π-4,故答案为:2π-4.【点睛】本题考查了等边三角形的性质和判定,直角三角形的性质,扇形的面积计算等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:圆心角为n °,半径为r 的扇形的面积为2360n r S π=.14.【答案】1【分析】由函数的不动点概念得出x 1、x 2是方程22x x c x ++=的两个实数根,根据根与系数的关系可以求出.【详解】解:由题意知二次函数y =x 2+2x +c 有两个相异的不动点, 当,x a y a ==时,a 称为不动点,即x y =时,方程有两个相等的实数根 ∵22x x x c =++∴20x x c ++=222112x x x +-22211211x x x =---+ ()222111x x =-++()()2121111x x x x =++--+由根与系数的关系可知:121x x +=- 将其代入上式中可得2221121x x x +-=故答案为:1.【点睛】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念. 15. 【答案】②③④【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①y =(m -2)x 2+2mx +m -3=m (x +1)2-2x 2-3,当x =-1时,y =-5,故该函数图象一定过定点(-1,-5),故①错误; ②若该函数图象开口向下,则m -2<0,且△>0,△=b 2-4ac =20m -24>0,解得:m >65,且m <2,故m 的取值范围为:65<m <2,故②正确;③当m >2,函数的对称轴在y 轴左侧,当0≤x ≤2时,y 的最小值在x =0处取得, 故y 的最小值为:(m -2)×0+2m ×0+m -3=m -3,故③正确; ④当m >2,x =-4时,y =9m -35,x =-3时,y =4m -21,x =0时,y =m -3,当x =-1时,y =-5, 当-4<x 1<-3时,则(9m -35)(4m -21)<0,解得:352194m <<; 同理-1<x 2<0时,m >3,故m 的取值范围为:352194m <<,故④正确;故答案为:②③④. 【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 16.2【分析】过点G 作GH ⊥AB ,交BA 延长线于H ,设AE =x ,则AC =2x ,由菱形的性质得出AF =EF ,再证AF =BF =EF 与△BAE ∽△CAB ,求出AB =2x ,BE =3x ,AF =EF =32x ,然后由菱形性质得AG =12BE ,证△BAE ∽△AHG ,求出AH =22x ,HG =2x ,最后由锐角三角函数定义即可得出结果.【详解】解:过点G 作GH ⊥AB ,交BA 延长线于H ,如图所示:设AE =x ,则AC =2x ,∵四边形AFEG 为菱形,∴AF =EF ,∴∠F AE =∠FEA , ∵∠BAE =90°,∴∠F AE +∠F AB =∠FEA +∠FBA =90°, ∴∠F AB =∠FBA ,∴AF =BF ,∴AF =BF =EF ,∵∠FBA +∠AEB =90°,∠F AB +∠ABD =90°,∴∠ABD =∠AEB , 又∵∠BAE =∠BAC =90°,∴△BAE ∽△CAB ,∴AB ACAE AB=, ∴AB 2=AE •AC =2x 2,∴AB 2,∴BE 222223AB AE x x x ++,∴AF =EF 3, ∵四边形AFEG 是菱形,∴AG ∥BE ,AG =AF =BF =EF ,∴∠HAG =∠ABE ,AG =12BE ,又∵∠H =∠BAE =90°,∴△BAE ∽△AHG ,∴12AG HG AH BE AE AB ===, ∴AH =12AB 2,HG =12AE =2x ,∴BH =AH +AB 22x 32, ∴22tan 632xHG ABG BH x∠===2 【点睛】本题考查了折叠的性质、菱形的性质、平行线的性质、相似三角形的判定与性质、锐角三角函数等知识,作辅助线并证明△BAE ∽△AHG 是解题的关键. 17.1513【分析】如图,作120,,BCN BC CN 连接,,BN CD 再证明,,BPD BCN PBCDBN ∽ 可得,BP BDBC BN证明,PBC DBN ∽ 可得,BND BCP则D 在直线ND 上运动,如图,当CD DN 时,CD 最短,过A 作AT BC ⊥于,T 求解313,ABAC作120,313,BAQ ABAQ 则Q 在直线DN 上,过A 作AGBQ 于,G 求解339,BQ 证明,ABC QBN ∽ ,339,QBNQNB QB QN可得QC 是BN 的垂直平分线,延长QC 交BN 于,H 求解18,QH 再利用11,22QC NHQN CD 从而可得答案.【详解】解:如图,作120,,BCN BC CN 连接,,BN CD30,CBN CNB,120,PB PD BPD 30,120,PBD CBN BCN BPD,,BPD BCN PBCDBN ∽,BP BDBC BN,PBC DBN ∽,BNDBCPD ∴在直线ND 上运动,如图,当CD DN 时,CD 最短,过A 作AT BC ⊥于,T 6,,BC AB AC 3,BT CT而tan 3ACB ∠=23,3AT 即63,AT 22363313,AB AC作120,313,BAQ AB AQ 则Q 在直线DN 上,30,ABQ AQB过A 作AGBQ 于,G339,339,2BG QGBQ 同理可得:,ABC QBN ∽ ,,ABCQBN ACBQNB 而,AB AC = 则,ABC ACB ∠=∠,339,QBNQNB QB QNQC ∴是BN 的垂直平分线,延长QC 交BN 于,H90,BHCNHC 而6BC =,同理可得:3,33,CHBHNH223393318,QH11,22QC NH QN CD 18333339,CD 1513.13CD所以CD 1513.13 1513.13【点睛】本题考查的是等腰三角形的判定与性质,旋转的性质,相似三角形的判定与性质,锐角的正切的应用,勾股定理的应用,证明“,BND BCP 得到D 在直线ND 上运动”是解本题的关键.三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤) 18.(本题满分6分) 【答案】(1)1(2)x ≥3【分析】对于(1),先根据11()22-=,0(2021)1π-=,3sin 60︒=123=即可;对于(2),分别求出①和②式的解集,再确定公共部分得出答案. 【详解】(1)原式=321423--⨯+=12323-=1;(2)52(3)532x x x --≤⎧⎪⎨-⎪⎩①<②,解不等式①,得x ≥3; 解不等式②,得x >1. 所以不等式组的解集式x ≥3.【点睛】本题主要考查了实数的计算和解一元一次不等式组,掌握解题步骤是解题的关键. 19.(本题满分6分)【答案】(1)作图见解析,46.5a =,30b = (2)女生体考成绩好,理由见解析 (3)该年级所有参加体考的考生中,成绩为A 等级的考生人数为320人【分析】(1)由602415516---=,可知男生的体考成绩在B 等级的人数,可补全统计图,查找男生B 等级前10的分数可知第6与第7位数分别为47,46,计算二者的平均数可得中位数a ,由10040201030---=%%%%%,可知b 的值;(2)在体考成绩平均数相同的情况下,女生成绩的中位数47大于男生体考成绩的中位数46.5,可判断女生成绩更好;(3)由题意知,计算2424800120+⨯即可. 【解析】(1)解:∵602415516---= ∴男生的体考成绩在B 等级的人数为16 补全条形统计图,如图:男生的体考成绩中位数落在B 等级,是第6与第7位数的平均数 查找男生B 等级前10的分数可知第6与第7位数分别为47,46 ∴平均数为474646.52+= ∴46.5a = ∵10040201030---=%%%%%∴30b =故答案为:46.5,30. (2)解:女生体考成绩好因为在体考成绩平均数相同的情况下,女生成绩的中位数47大于男生体考成绩的中位数46.5∴女生体考成绩好.(3)解:∵604024⨯=%(人) ∴2424800320120+⨯=(人) ∴该年级所有参加体考的考生中,成绩为A 等级的考生人数为320人.【点睛】本题考查了条形统计图,扇形统计图,中位数,样本估计总体等知识.解题的关键在于对知识的灵活运用. 20.(本题满分6分)【答案】(1)见详解; (2)见详解.【分析】(1)以点A 为圆心,AO 为半径画弧,交OB 于H ,作OH 的垂直平分线IJ 交BD 于E ,以点B 为圆心,AB 长为半径画弧交直线AE 于G ,连结BG ;(2)根据平行四边形性质得出OB =OD ,AO =CO ,根据3DE BE =,得出OE =BE ,根据AG 为OB 的垂直平分线,得出AB =AO 即可.(1)解:以点A 为圆心,AO 为半径画弧,交OB 于H ,分别以O 、H 为圆心,大于OH 12为半径画弧,两弧交于两点I 、J ,过I 、J 作直线IJ 交BD 于E ,以点B 为圆心,AB 长为半径画弧交直线AE 于G ,连结BG ;(2)证明:∵四边形ABCD 为平行四边形,∴OB =OD ,AO =CO ,∵3DE BE =,∴OE +OD =3BE ,∴OE +BE +OE =3BE ,∴OE =BE ,∵AG 为OB 的垂直平分线,∴AB =AO ,∵AB =BG ,∴BG =AO =OC .【点睛】本题考查尺规作图,过点A 作线段BD 的垂线,作线段BG =AB ,平行四边形性质,垂直平分线性质,线段中点,掌握查尺规作图,平行四边形性质,垂直平分线性质,线段中点是解题关键.21.(本题满分8分)【答案】(1)6k =;(2)OCD OBE S S ∆∆=,见解析;(3)63S x =-,(02)x <<;36S x =-,(2)x >【分析】(1)根据矩形的性质及三角函数可得cos ∠OBC 的值,设BC =4x ,OB =5x ,由勾股定理及中点的定义可得D (2,3),再利用待定系数法可得答案;(2)利用三角形的面积公式及中点定义可得答案;(3)分当0<x <2时,当x >2时,进行分类讨论可得答案.【解析】(1)解:四边形OABC 是矩形,90OCB ∴∠=︒,4cos 5BC OBC OB ∴∠==, 设4BC x =,5OB x =,由勾股定理得,222OC BC OB +=, 3OC =,2291625x x ∴+=,1x ∴=,4BC ∴=,5OB =,D 是BC 的中点,122CD BC ∴==,(2,3)D ∴,设k y x =,把(2,3)D 代入得,6k =.(2)解:OCD OBE S S ∆∆=,由题意可知,32OCD k S ∆==,D 是BC 的中点,12OCD OBD BDC S S S ∆∆∆∴==, OBC OBA ∆≅∆,6OBA OBC S S ∆∆∴==,E 在反比例函数图象上,32OAE k S ∆∴==,3OBE OBA OAE S S S ∆∆∆∴=-=,OCD OBE S S ∆∆∴=.(3)解:当02x <<时,如图所示:QCRP S CQ PQ =⋅矩形,6(3)63S x x x∴=-=-,当2x >时,如图所示:QCRP S CQ PQ =⋅矩形,∴6(3)36S x x x=-=-, 综上所述,63S x =-,(02)x <<;36S x =-(2)x >【点睛】此题考查的反比例函数,利用面积公式进行解答是解决此题关键.22.(本题满分8分)【答案】(1)m =100;(2)6种方案;(3)50<a <60时,应购进甲种运动鞋100双,购进乙种运动鞋100双;a =60时,所有方案获利都一样;60<a <70时,应购进甲种运动鞋95双,购进乙种运动鞋105双【分析】(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,列出方程求解即可;(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,然后根据要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,列出不等式求解即可;(3)设总利润为W ,则W =(240﹣100﹣a )x +80(200﹣x )=(60﹣a )x +16000(95≤x ≤100),然后利用一次函数的性质求解即可.【详解】解:(1)依题意得,3000240020m m =-, 整理得,3000(m ﹣20)=2400m ,解得m =100,经检验,m =100是原分式方程的解,∴m =100;(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,根据题意得,()()()2401001601002020021700100x x x ⎧-+-+-≥⎨≤⎩, 整理得140160008021700100x x x +-≥⎧⎨≤⎩解得95≤x ≤100,∵x 是正整数,∴x 的值可以为95,96,97,98,99,100,∴一共有6种方案;(3)设总利润为W ,则W =(240﹣100﹣a )x +80(200﹣x )=(60﹣a )x +16000(95≤x ≤100),①当50<a <60时,60﹣a >0,W 随x 的增大而增大,所以,当x =100时,W 有最大值,W 最大=22000﹣100a ,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a =60时,60﹣a =0,W =16000,(2)中所有方案获利都一样;W 最大=16000; ③当60<a <70时,60﹣a <0,W 随x 的增大而减小,所以,当x =95时,W 有最大值,W 最大=21700﹣95a ;即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题主要考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,解题的关键在于准确理解题意,列出式子求解.23.(本题满分8分)【答案】(1)见解析;②见解析 (2)1【分析】(1)①如图4,连接OC , 由 l 是O 的切线,OC 是半径,得到 OC l ⊥,由CE CA =,得 COE COA ∠=∠证得 OE OA =,进一步得到OC AE ⊥,即可得到结论;② 如 图 5,连接OC ,AD ,由 B 是OA 的中点, OA CD ⊥得到OD AD =,AD AC =,又由 OD OA =得OAD △是等边三角形,证得60DOA ∠=︒,所以 AD AC EC ==,所以60DOA AOC EOC ∠=∠=∠=︒,得到180DOE ∠=︒,即得到结论;(2)如图6,连接OC ,由 l 是O 的切线,得 到 OC l ⊥, 又由 BF l ⊥可以证明OC BF ∥,证得OCB CBF ∠=∠,又由 90OBC CFB ∠=∠=︒得OCB CBF △△∽,得到OC CB CB BF=,设BC x =,求得BF ,得()22112144BC BF x x x -=-=--+,从而求得—BC BF 的最大值. 【解析】(1)① 证明:如图4,连接OC∵ l 是O 的切线,OC 是半径,∴ OC l ⊥∵ CE CA =∴ COE COA ∠=∠ ∵ OE OA =∴ OC AE ⊥ ∴ AE l ∥;② 证明:如图5,连接OC ,AD ∵ B 是OA 的中点, OA CD ⊥∴ OD AD =,AD AC = 又∵ OD OA =∴ OD AD OA ==∴ OAD △是等边三角形∴ 60DOA ∠=︒∵ AD AC EC ==∴60DOA AOC EOC ∠=∠=∠=︒∴ 180DOE ∠=︒∴ DE 是O 的直径;(2)解:如图6,连接OC∵ l 是O 的切线,OC 是半径,∴OC l ⊥ ∵BF l ⊥∴OC BF ∥∴OCB CBF ∠=∠∵ 90OBC CFB ∠=∠=︒∴ OCB CBF △△∽∴ OC CB CB BF= 设BC x =,则2214CB BF x OC ==∴ ()22112144BC BF x x x -=-=--+ 当2BC x ==时,—BC BF 有最大值1∴BC BF -的最大值为1.【点睛】本题以圆的知识为载体,考查了平行线的性质和判定、等边三角形、相似三角形、二次函数的最值等知识,综合性较强,灵活应用所学知识是解决此题的关键.24.(本题满分10分)【答案】(1)见解析 (2)①4;②252【分析】(1)根据正方形的性质可得,45DE DG EDM GDM =∠=∠=︒,公共边DM ,即可证明DEM DGM ≌,即可得ME MG =;(2)①先证明点E 在AB 上,进而求得DAE EBN ∽求得BN ,根据NF DG ∥可得NMF GMD ∽,又ME MG =,进而即可求得EM MN的值;②连接,BD BF ,证明ADE BDF ∽,求出相似比,进而可得点F 在以B 为圆心2【解析】(1)四边形DEFG 是正方形45,EDF GDF GD GE ∴∠=∠=︒=∴45EDM GDM ∠=∠=︒DM DM =∴DEM DGM ≌∴ME MG =(2)①如图2,当G ,C ,M 三点共线时,四边形,ABCD EDFG 是正方形90ADC EDG ∴∠=∠=︒,,AD CD ED GD ==,90DEF ∠=︒ ADE CGD ∴∠=∠ADE CDG ∴△≌△DAE DCG ∴∠=∠G ,C ,M 三点共线时,90DCG DCB ∴∠=∠=︒90DAE ∴∠=︒E ∴在线段AB 上90DEF ∠=︒ 又90EDA DAE DAE NEB ∠+∠=∠+∠=︒∴EDA NEB ∠=∠又A B ∠=∠ADE BEN ∴∽=AE AD DE NB EB EN ∴= 正方形ABCD 的边长为4,1AE = 413BE AB AE ∴=-=-=,22224117DE AD AE ++134NB ⨯=34= 317341714DE NB EN AE ⋅∴===3174144GN BC CG BN =+-=+-=3117171744NF EF EN ∴=-==四边形DEFG 是正方形EF DG ∴∥,17DG DE ==DMG FMN ∴∽NF NM DG MG ∴=即NF MN DG GN MN =-∴117417174MN MN =-解得1720MN = 1717174205MG GN MN ∴=-=-= 由(1)可知EM GM = 1745417120EM GM MN MN ∴==== ②连接,BD BF ,如图,四边形,ABCD EDFG 是正方形∴45ADB EDF ∠=∠=︒,2DB =,2DF DEADE BDF ∴∠=∠,2DF DB DE AD==ADE BDF ∽2AE AD EB DB ∴== 1AE = 2BF ∴=即点F 在以B 2。
冲刺中考《函数》压轴真题训练第Ⅰ卷(选择题)一.选择题1.(2019•兴安盟)如图,反比例函数y =的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.82.(2019•恩施州)函数y =﹣中,自变量x的取值范围是()A.x ≤B.x ≥C.x <且x≠﹣1 D.x ≤且x≠﹣1 3.(2019•济南)函数y=﹣ax+a与y =(a≠0)在同一坐标系中的图象可能是()A .B .1C .D .4.(2019•阜新)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)5.(2019•铁岭)如图,在Rt△ABC中,AB=AC,BC=4,AG⊥BC于点G,点D为BC边上一动点,DE⊥BC交射线CA于点E,作△DEC关于DE的轴对称图形得到△DEF,设CD的长为x,△DEF与△ABG重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是()A .B .C .D .6.(2019•盘锦)如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()2A .B .C .D .7.(2019•恩施州)抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有()A.5个B.4个C.3个D.2个38.(2019•朝阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.49.(2019•营口)如图,A,B是反比例函数y =(k>0,x>0)图象上的两点,过点A,B分别作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为5,CD=3AC,cos∠BED =,则k的值为()A.5 B.4 C.3 D .10.(2019•莱芜区)如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y =(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()4A.1 B.2 C.3 D.411.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)12.(2019•丹东)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取5值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个6第Ⅱ卷(非选择题)二.填空题13.(2019•无锡)如图,已知A(0,3)、B(4,0),一次函数y =﹣x+b的图象为直线l,点O关于直线l的对称点O′恰好落在∠ABO的平分线上,则b的值为.14.(2019•无锡)如图,A为反比例函数y=(k<0)的图象上一点,AP⊥y轴,垂足为P.点B在直线AP上,且PB=3PA,过点B作直线BC∥y轴,交反比例函数的图象于点C,若△PAC的面积为4,则k的值为.15.(2019•兴安盟)若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是.16.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.717.(2019•朝阳)如图,直线y =x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.18.(2019•营口)如图,在平面直角坐标系中,直线l1:y=x+与x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y=x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C2019B2019B2020的面积是.8三.解答题19.(2019•无锡)已知二次函数y=ax2﹣4ax+c(a<0)的图象与它的对称轴相交于点A,与y轴相交于点C(0,﹣2),其对称轴与x轴相交于点B(1)若直线BC与二次函数的图象的另一个交点D在第一象限内,且BD =,求这个二次函数的表达式;(2)已知P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,试直接写出a的值.20.(2019•恩施州)如图,已知∠AOB=90°,∠OAB=30°,反比例函数y =﹣(x<0)的图象过点B(﹣3,a),反比例函数y =(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y =交于点C.求△OAC的面积.21.(2019•济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y =(x>0)9的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E ,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.22.(2019•济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx ﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP =∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.1023.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E 的坐标和的值.(3)点F(0,y)是y轴上一动点,当y 为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H ,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.24.(2019•兴安盟)如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.11(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.25.(2019•抚顺)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON =,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.1226.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y =(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.27.(2019•丹东)如图,在平面直角坐标系中,抛物线y =﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y =﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC =时,求点F的坐标.13(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t ≤),请直接写出S与t的函数关系式.14参考答案一.选择1.解:∵反比例函数y =,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:C.2.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x ≤且x≠﹣1.故选:D.3.解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y =在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y =(a≠0)在二、四象限,只有D符合;故选:D.4.解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB ==5,15∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.5.解:∵AB=AC,AG⊥BC,∴BG=GC =,∵△DEC与△DEF关于DE对称,∴FD=CD=x.当点F与G重合时,FD=CD,即2x=2,∴x=1,当点F与点B重合时,FC=BC,即2x =4,∴x=2,如图1,当0≤x≤1时,y=0,∴B选项错误;如图2,当1<x≤2时,,∴选项D错误;如图3,当2<x≤4时,,∴选项C错误.16故选:A.6.解:tan∠DBC ===,tan∠DAH ====﹣x,y=EF﹣EM﹣NF=2﹣BF tan∠DBC﹣AE tan∠DAH=2﹣x ×﹣x ()=x2﹣x+2,故选:B.7.解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a<0,∴b<0,c>0,∴ab>0且c>0,故①错误,∵抛物线对称轴x=﹣1,经过(1,0),∴(﹣2,0)和(0,0)关于对称轴对称,∴x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴x=﹣4时,y<0,17∵b=2a,∴16a﹣8a+c<0,即8a+c<0,故③错误,∵c=﹣3a=3a﹣6a,b=2a,∴c=3a﹣3b,故④正确,∵直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,∴方程ax2+(b﹣2)x+c﹣2=0的两个根分别为x1,x2,∴x1+x2=﹣,x1•x2=,∴x1+x2+x1x2=﹣+=﹣+=﹣5,故⑤错误,故选:D.8.解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,18即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.9.解:∵BD∥x轴,∴∠EDB=90°,∵cos∠BED ==,∴设DE=3a,BE=5a,∴BD ===4a,∵点B的横坐标为5,∴4a=5,则a =,∴DE =,设AC=b,则CD=3b,∵AC∥BD,∴===,19∴EC =b,∴ED=3b +b =,∴=,则b=1,∴AC=1,CD=3,设B点的纵坐标为n,∴OD=n,则OC=3+n,∵A(1,3+n),B(5,n),∴A,B是反比例函数y =(k>0,x>0)图象上的两点,∴k=1×(3+n)=5n,解得k =,故选:D.10.解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA =,∵CD∥OB,AB=BC,∴OD=OA =,CD=2OB=2a,20∴C (,2a),∵反比例函数y =(x>0)的图象经过点C,∴k =×2a=4.故选:D.11.解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.12.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,21∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即≤﹣3,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:a,故④错误;⑤易知抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,22即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:A.二.填空题(共6小题)13.解:延长OO'交AB于点C,交l于点E,过点O'作DG⊥x轴交于G,过点E作EF⊥x轴于点F;∵A(0,3)、B(4,0),∴直线AB的解析式为y =﹣x+3,∵直线l的解析式为y =﹣x+b,∴AB∥l,∵OO'⊥l,∴OC⊥AB,∵OA=3,OB=4,由等积法可求,OC =,∵∠COB+∠AOC=∠BAO+∠AOC=90°,∴∠BOC=∠BAO,∵BO'是∠ABO的角平分线,∴CO'=GO',23∴sin∠BAO ====,∴OO'=,∴O'G =﹣=,在Rt△OO'G中,GO =,∵E、F是△OO'G的中位线,∴E (,),∵E点在直线l上,∴=﹣×+b,∴b =,故答案为.14.解:当B点在P点右侧,如图,设A(t ,),∵PB=3PA,24∴B(﹣3t ,),∵BC∥y轴,∴C(﹣3t ,﹣),∵△PAC的面积为4,∴×(﹣t )×(+)=4,解得k=﹣6;当B点在P点左侧,设A(t ,),∵PB=3PA,∴B(3t ,),∵BC∥y轴,∴C(3t ,),∵△PAC的面积为4,∴×(﹣t )×(﹣)=4,解得k=﹣12;综上所述,k的值为﹣6或﹣12.故答案为﹣6或﹣12.2515.解:∵抛物线y=﹣x2﹣6x+m与x轴没有交点,∴当y=0时,0=﹣x2﹣6x+m,∴△=(﹣6)2﹣4×(﹣1)×m<0,解得,m<﹣9故答案为:m<﹣9.16.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.17.解:在直线y =x+1中,当x=0时,y=1;当y=0时,x=﹣3;26∴OA=1,OM=3,∴tan∠AMO =,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB =,∴OB =.∵,∴,易得tan,∴,∴,∴,同理可得,,…,=.故答案为:.18.解:∵y =x +与x轴交于点A1,与y轴交于点A2,∴,27在y =中,当x=﹣1时,y =﹣,∴,设直线A2B1的解析式为:y=kx+b,可得:,解得:,∴直线A2B1的解析式为:,令y=0,可得:x =﹣,∴C1(﹣,0),∴=,∵△A1B1B2∽△A2B2B3,∴△C1B1B2∽△C2B2B3,∴,∴,同理可得:…,∴△C2019B2019B2020的面积=,28故答案为:.三.解答题(共9小题)19.解:(1)过点D作DH⊥x轴于点H,如图1,∵二次函数y=ax2﹣4ax+c,∴对称轴为x =,∴B(2,0),∵C(0,﹣2),∴OB=OC=2,∴∠OBC=∠DBH=45°,∵BH =,∴BH=DH=1,∴OH=OB+BH=2+1=3,∴D(3,1),把C(0,﹣2),D(3,1)代入y=ax2﹣4ax+c中得,,29∴,∴二次函数的解析式为y=﹣x2+4x﹣2;(2)∵y=ax2﹣4ax+c过C(0,﹣2),∴c=﹣2,∴y=ax2﹣4ax+c=a(x﹣2)2﹣4a﹣2,∴A(2,﹣4a﹣2),∵P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,∴①当抛物线的顶点A在x轴上时,∠POA=90°,则OP=OA,这样的P点只有2个,正、负半轴各一个,如图2,此时A(﹣2,0),∴﹣4a﹣2=0,解得a =;②当抛物线的顶点A不在x轴上时,∠AOB=30°时,则△OPA为等边三角形或∠AOP=120°的等腰三角形,这样的P点也只有两个,如图3,30∴AB=OB•tan30°=2×=,∴|﹣4a﹣2|=,∴或.综上,a =﹣或或.20.解:(1)∵比例函数y =﹣(x<0)的图象过点B(﹣3,a),∴a =﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD31∴===,∴AD =•OE ==3,OD =•BE ==∴A (,3),∵反比例函数y =(x>0)的图象过点A,∴k =×=9;(2)由(1)可知AD=3,OD =,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y =上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.3221.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y =(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y =,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),33∵DF⊥x轴于点F,交反比例函数y =的图象于点E,∴E(5,),∴DE=4﹣=,EF =,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D(m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC =,∴=m,34∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.22.解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx 中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx ﹣中,得0=﹣4k ﹣,解得k =,∴直线l解析式为y =x ﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,35∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m =•(﹣2m )﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB ===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB =,在x轴下方过点O作OH⊥OE,在OH上截取OH =OE =,36过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y =﹣x,解方程组,得,,∴点P 的横坐标为:或.3723.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y =x2﹣x﹣2;(2)如图1,∠AOC=90°,AC =,AB=4,设直线AC的解析式为:y=kx+b ,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时38=()2=()2=,∵S△AOC=1,∴S△AEB =,∴AB×|y E|=,AB=4,则y E =﹣,则点E (﹣,﹣);由△AOC∽△AEB 得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,39则FG=CF sin∠FCG =CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y =﹣时,即点F(0,﹣),CF+BF 有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),40∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m +),解得:m =,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).24.解:(1)设抛物线W的函数解析式为y=ax2+bx,图象经过A(4,0),C(﹣2,3)41∴抛物线W 的函数解析式为,顶点D的坐标为(2,﹣1);(2)根据题意,由O(0,0),C(﹣2,3),得O1(4,﹣m),C1(2,3﹣m)设直线O1C1的函数解析式为y=kx+b把O1(4,﹣m),C1(2,3﹣m)代入y=kx+b 得:,直线O1C1与x轴交于点H∴过C1作C1E⊥HA于点E,∵0<m<3∴,∴,∵,抛物线开口向下,S 有最大值,最大值为∴当时,;42(3)当时,由D(2,﹣1)得F(6,)∴抛物线W1的函数解析式为,依题意设M(t,0),以D,F,M,N为顶点的四边形是平行四边形,分情况讨论:①以DF为边时∵D(2,﹣1),F点D,F横坐标之差是4,纵坐标之差是,若点M、N的横纵坐标与之有相同规律,则以D,F,M,N为顶点的四边形是平行四边形,∵M(t,0),∴把分别代入得t1=0,t2=4,t3=6,t4=14∴M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0).25.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3.43(2)如图1,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM∥ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM=ON =.在Rt△OHM中,∠OHM=90°,OH=1.∴,∴M1(1,1);M2(1,﹣1).①当M1(1,1)时,直线OM解析式为:y=x,依题意得:x=x2﹣2x﹣3.解得:,,∵点Q在对称轴右侧的抛物线上运动,∴Q点纵坐标y =.∴,②当M2(1,﹣1)时,直线OM解析式为:y=﹣x,同理可求:,综上所述:点Q 的坐标为:,,44(3)由题意可知:A(﹣1,0),C(0,﹣3),D(1,﹣4),∴AC =,AD =,CD =,∵直线BC经过B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵抛物线对称轴为x=1,而直线BC交对称轴于点E,∴E坐标为(1,﹣2);∴CE =,设P点坐标为(x,y),则CP2=(x﹣0)2+(y+3)2,则EP2=(x﹣1)2+(y+2)2,∵CE=CD,若△PCE与△ACD全等,有两种情况,Ⅰ.PC=AC,PE=AD,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P1(﹣3,﹣4),P2(﹣1,﹣6).45Ⅱ.PC=AD,PE=AC,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P3(2,1),P4(4,﹣1).故若△PCE与△ACD全等,P点有四个,坐标为P1(﹣3,﹣4),P2(﹣1,﹣6),P3(2,1),P4(4,﹣1).26.解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y =(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y =,∵点A的纵坐标是4,∴4=,得x=1,46∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.27.解:(1)直线y =﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y =﹣x2+bx+2,将点C坐标代入上式并解得:b =,故抛物线的表达式为:y =﹣x2+x+2…①;(2)抛物线的对称轴为:x =,47点N 的横坐标为:+=5,故点N的坐标为(5,﹣3);(3)∵tan∠ACO ==tan∠FAC =,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r =,即点R 的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n 得:,解得:,故直线AR的表达式为:y =﹣x+2…②,48联立①②并解得:x =,故点F (,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tan α==,则sin α=,cos α=;①当0≤t ≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT ====t,DS =,S=S△DST =DT×DS =t2;②当<t ≤时(右侧图),49同理可得:S=S梯形DGS′T′=×DG×(GS′+DT ′)=3+(+﹣)=t ﹣;③当<t ≤时,同理可得:S =t +;综上,S =.50。
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):三角形与四边形一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( ) A .16 B .12C .14D .12或16【答案】A 【解析】解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形; 若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16, 故选:A .2.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B 【解析】∵BE 是∠ABC 的平分线, ∴∠EBM=12∠ABC , ∵CE 是外角∠ACM 的平分线, ∴∠ECM=12∠ACM , 则∠BEC=∠ECM-∠EBM=12×(∠ACM-∠ABC )=12∠A=30°, 故选:B .3.如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是( )A .10B .8C .3D .6【答案】D 【解析】∵∠C =90°,cos ∠BDC =57, 设CD =5x ,BD =7x , ∴BC =6x ,∵AB 的垂直平分线EF 交AC 于点D , ∴AD =BD =7x , ∴AC =12x , ∵AC =12, ∴x =1, ∴BC =6; 故选D.4.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8 B .12C .16D .32【答案】C 【解析】 如图所示:四边形ABCD 是菱形,12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=,8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16, 故选C .5.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC【答案】C 【解析】解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误; 选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误; 选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误. 故选C .6.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .14【答案】D 【解析】∵四边形ABCD 是平行四边形, ∴OB OD =,AB CD =,AD BC =, ∵平行四边形的周长为28, ∴14AB AD += ∵OE BD ⊥,∴OE 是线段BD 的中垂线, ∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=, 故选:D .7.如图,在ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .21【答案】C 【解析】由折叠可得,90ACD ACE ︒∠=∠=,90BAC ︒∴∠=,又60B ︒∠=,30ACB ︒∴∠=,26BC AB ∴==,6AD ∴=,由折叠可得,60E D B ︒∠=∠=∠=,60DAE ︒∴∠=,ADE ∴∆是等边三角形, ADE ∴∆的周长为6318⨯=,故选:C .8.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2﹣2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .4【答案】B 【解析】 ①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM=,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90 AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt △CEF 中,OC =12EF =22x , △EAF 中,∠EAO =∠FAO =22.5°=∠BAE =22.5°, ∴OE =BE , ∵AE =AE ,∴Rt △ABE ≌Rt △AOE (HL ), ∴AO =AB =1, ∴AC =2=AO+OC ,∴1+22x =2, x =2﹣2,∴BE EC =1(22)22---=(21)(22)2-+=22; 故②不正确; ③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF =AH ,∠DAF =∠BAH , ∵∠EAF =45°=∠DAF+∠BAE =∠HAE , ∵∠ABE =∠ABH =90°, ∴H 、B 、E 三点共线, 在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH (SAS ), ∴EF =EH =BE+BH =BE+DF , 故③正确;④△ADN 中,∠FND =∠ADN+∠NAD >45°, ∠FDN =45°, ∴DF >FN ,故存在点E 、F ,使得NF >DF , 故④不正确; 故选B .二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 与点D ,连结AD ,若∠B =40°,∠C =36°,则∠DAC 的度数是____________.【答案】34° 【解析】由作图过程可知BD=BA , ∵∠B=40°, ∴∠BDA=∠BAD=12(180°-∠B)=70°, ∴∠DAC=∠BDA-∠C=70°-36°=34°. 故答案为34°. 10.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.【答案】53或53【解析】 分两种情况:①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形,90BAD B ︒∴∠=∠=,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '︒∴∠=∠=∠=,AB BE ∴=,315a ∴=, 53a ∴=;②当点B '落在CD 边上时,如图2. ∵四边形ABCD 是矩形,90BAD B C D ︒∴∠=∠=∠=∠=,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '︒∴∠=∠=,1AB AB '==,35EB EB a '==,2221DB B A AD a ''∴=-=-,3255EC BC BE a a =-=-=. 在ADB '∆与B CE '∆中,90A 90B AD EBC B DD C ︒︒⎧∠=∠=-∠'''⎨∠=∠=⎩, ADB B CE ''∴∆⋃∆,DB AB CE B E'''∴=,即2112355a a a -=,解得153a =,20a =(舍去). 综上,所求a 的值为53或53. 故答案为53或53. 11.如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90°得ABG ∆,则CF 的长为_____.【答案】6-25 【解析】作FM AD M FN AG N ⊥⊥于,于 ,如图,易得四边形CFMD 为矩形,则4FM =∵正方形ABCD的边长为4,点是的中点,2DE ∴=,∴224225AE =+=∵△ADE 绕点A 顺时针旋转90°得△ABG ,∴252349090AG AE BG DE GAE ABG D ∠∠∠︒∠∠︒==,==,=,=,== 而90ABC ∠︒= , ∴点G 在CB 的延长线上,∵AF 平分∠BAE 交BC 于点F ,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即F A 平分∠GAD , ∴FN =FM =4, ∵11••22AB GF FN AG =, ∴425254GF ⨯==, ∴4225625CF CG GF +=-=﹣=﹣ . 故答案为6-25.12.如图,在平面直角坐标系中,OA =1,以OA 为一边,在第一象限作菱形OAA 1B ,并使∠AOB =60°,再以对角线OA 1为一边,在如图所示的一侧作相同形状的菱形OA 1A 2B 1,再依次作菱形OA 2A 3B 2,OA 3A 4B 3,……,则过点B 2018,B 2019,A 2019的圆的圆心坐标为_____.【答案】(-32018,3)2019) 【解析】过A 1作A 1C ⊥x 轴于C ,∵四边形OAA1B是菱形,∴OA=AA1=1,∠A1AC=∠AOB=60°,∴A1C=32,AC=12,∴OC=OA+AC=32,在Rt△OA1C中,OA1=2213OC AC+=,∵∠OA2C=∠B1A2O=30°,∠A3A2O=120°,∴∠A3A2B1=90°,∴∠A2B1A3=60°,∴B1A3=23,A2A3=3,∴OA3=OB1+B1A3=33=(3)3∴菱形OA2A3B2的边长=3=(3)2,设B1A3的中点为O1,连接O1A2,O1B2,于是求得,O1A2=O1B2=O1B133)1,∴过点B1,B2,A2的圆的圆心坐标为O1(0,23,∵菱形OA3A4B3的边长为333,∴OA4=934,设B2A4的中点为O2,连接O2A3,O2B3,同理可得,O2A3=O2B3=O2B2=3=(3)2,∴过点B2,B3,A3的圆的圆心坐标为O2(﹣3,33),…以此类推,菱形OA2019A2020B2019的边长为(3)2019,OA2020=(3)2020,设B2018A2020的中点为O2018,连接O2018A2019,O2018B2019,求得,O2018A2019=O2018B2019=O2018B2018=(3)2018,∴点O2018是过点B2018,B2019,A2019的圆的圆心,∵2018÷12=168…2,∴点O2018在射线OB2上,则点O2018的坐标为(﹣(3)2018,(3)2019),即过点B2018,B2019,A2019的圆的圆心坐标为:(﹣(3)2018,(3)2019),故答案为:(﹣(3)2018,(3)2019).三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DEFH=,求菱形ABCD的周长。
2023年初中数学中考冲刺模拟卷(含解析)一、单选题1.下列四个数中,最大的数是().A .0B .2C .3-D .42.技术融合打破时空限制,2020服贸会全面上“云”,据悉本届服贸会共有境内外5372家企业搭建了线上电子展台,共举办32场纯线上会议和173场线上直播会议,线上发布项目1870个,发起在线洽谈550000次,将550000用科学记数法表示为()A .45510⨯B .55.510⨯C .65.510⨯D .60.5510⨯3.如图,在O 中,弦,AB CD 相交于点P ,若48,80A APD ∠=︒∠=︒,则B ∠的大小为()A .32︒B .42︒C .52︒D .62︒4.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同.从中任意摸出一个球,是红球的概率为()A .B .C .D .5.在平面直角坐标系中,若抛物线2211y x =-+()先向右平移3个单位长度,再向上平移2个单位长度,则所得到的抛物线的解析式为()A .2243y x =+(-)B .2242y x =++()C .2242y x =+(-)D .2241y x =+()-6.如图,正方形ABCDAC 和BD 交于点E ,点F 是BC 边上一动点(不与点B ,C 重合),过点E 作EF 的垂线交CD 于点G ,连接FG 交EC 于点H .设BF =x ,CH =y ,则y 与x 的函数关系的图象大致是()A.B.C.D.7.如图,在直角坐标系中,点A,B分别在x轴和y轴上,点A的坐标为(﹣2,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果3P点运动一周时,点Q运动的总路程是()A.3B.6C.3D.88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如右图所示,则该封闭图形可能是()A.B.C.D.二、填空题9.因式分解:22ab ac -=_______________10.小华家客厅有一张直径为1.2,m 高为0.8m 的圆桌,AB 有一盏灯E 到地面垂直距离EF 为2,m 圆桌的影子为,2CD FC =,则点D 到点F 的距离为_______.11.不等式组240431x x -<⎧⎨-≤⎩的解集是______.12.把多项式2x 3﹣8x 分解因式的结果是_____.13.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是DE 延长线上的一点,若∠AFC =90°,AC =6,BC =10,则DF 的长为________.14.在平面直角坐标系中,ABC 和111A B C △的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为()2,4,则其对应点1A 的坐标是________.15.如图,在△ABC 中,∠A =45°,∠B =60°,AB =4,P 是BC 边上的动点(不与B ,C 重合),点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是_____.16.如图,Rt ABC 中,90ACB ∠=︒,2AB AC =,3BC =,点E 是AB 上的点,将ACE △沿CE 翻折,得到'A CE ,过点B 作BF AC ∥交BAC ∠的平分线于点F ,连接'A F ,则'A F 长度的最小值为______.三、解答题17.化简或化简求值:212(1)211a a a a +÷+-+-,其中3a =18.如图,△ABC 是等腰三角形,AB =BC ,点D 为BC 的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B 作AC 的平行线BP ;②过点D 作BP 的垂线,分别交AC ,BP ,BQ 于点E ,F ,G .(2)在(1)所作的图中,连接BE ,CF .求证:四边形BFCE 是平行四边形.19.为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业.张大爷计划明年承租村民部分土地种植某种经济作物,考虑各种因素,预计明年种植该作物的总成本y (元)与种植面积x (亩)之间满足一次函数关系,且部分数据如下:种植面积x (亩)4060种植该作物的总成本y (元)880012800(1)求y 与x 之间的函数关系式;(2)如果张大爷计划种植该作物120亩,请你帮张大爷计算一下种植该作物的总成本是多少?20.计算:()()3425284+-⨯--÷.21.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P的坐标.22.(1)化简求值:222442111x x x x x x++++÷+--,其中x 是一元二次方程x (x ﹣1)=2x ﹣2的解.(2)解不等式组:23(3)9212135x x x x --≥⎧⎪⎨+-->-⎪⎩①②,并求其整数解的和.23.先化简,再求值:23193m m m ⎛⎫÷+ ⎪--⎝⎭,其中4m =-.24.如图,拋物线2y x bx c =-++交y 轴于点(02)A ,,交x 轴于点(40)B ,、C 两点,点D为线段OB 上的一个动点(不与O B 、重合),过点D 作DM x ⊥轴,交AB 于点M ,交抛物线于点N.(1)求抛物线的解析式;(2)连接AN 和BN ,当ABN 的面积最大时,求出点D 的坐标及ABN 的最大面积;(3)在平面内是否存在一点P ,使得以点A ,M ,N ,P 为顶点,以AM 为边的四边形是菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系xOy 中,二次函数2223y x bx =+-的图像与x 轴交于点()3,0A ,B (点B 在点A 左侧),与y 轴交于点C ,点D 与点C 关于x 轴对称,作直线AD .(1)填空:b =______;(2)将AOC 平移到EFG (点E ,F ,G 依次与A ,O ,C 对应),若点E 落在抛物线上且点G 落在直线AD 上,求点E 的坐标;(3)设点P 是第四象限抛物线上一点,过点P 作x 轴的垂线,垂足为H ,交AC 于点T .若180CPT DAC ∠+∠=︒,求AHT △与CPT △的面积之比.参考答案与解析1.D【详解】试题分析:根据正数大于0,0大于负数,正数大于一切负数,给出的数中,最大的数是4,故选D.考点:有理数比较大小.2.B【分析】将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,写成10n a ⨯即可【详解】∵550000=55.510⨯,故选:B .【点睛】本题考查了绝对值大于10的大数的科学记数法,将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,是解题的关键.3.A【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得32C ∠=︒,再根据同弧所对的圆周角相等,即可得到答案.【详解】C A APD ∠+∠=∠ ,48,80A APD ∠=︒∠=︒,32C ∴∠=︒32B C ∴∠=∠=︒故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.4.C【详解】试题分析:根据概率公式可得,摸到红球的概率为,故答案选C.考点:概率公式.5.A【分析】先根据二次函数的性质得到抛物线2211y x =-+()的顶点坐标为(1,1),再利用点平移的规律得到点(1,1)平移后所得对应点的坐标为43(,),然后利用顶点式写出平移后抛物线的解析式.【详解】解:∵抛物线2211y x =-+()的顶点坐标为(1,1),∴把点(1,1)先向右平移3个单位长度,再向上平移2个单位长度所得对应点的坐标为43(,),∴所得到的抛物线的解析式为2243y x =+(-);故选:A .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.A【分析】证明△BEF ∽△CFH ,可得BF BECH CF=,由此构建函数关系式即可解决问题.【详解】∵四边形ABCD 是正方形,∴∠EBF =∠ECG =45°,AC ⊥BD ,EB =EC ,∵EF ⊥EG ,∴∠BEC =∠FEG =90°,∴∠BEF =∠CEG ,∴△BEF ≌△CEG (ASA ),∴EF =EG ,∴∠EFG =45°,∵∠EFC =45°+∠CFH =45°+∠BEF ,∴∠CFH =∠BEF ,∴△BEF ∽△CFH ,∴BF BECH CF =,∴x y=∴y =2(0x x -+<<,故选A .【点睛】本题考查动点问题的函数图象,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.7.D【详解】在Rt △AOB 中,∵∠ABO=30°,AO=2,∴AB=4,BO=①当点P 从O→B 时,点Q 刚好从原位置移动到点O 处,如图2所示,此时点Q 运动的路程为PQ=②如图3所示,作QC ⊥AB ,则∠ACQ=90°,即PQ 运动到与AB 垂直时,垂足为P ,当点P 从B→C 运动到P 与C 重合时,∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°,∴cos30°=CQAQ,∴AQ=4cos 30CQ,∴OQ=4﹣2=2,∴此时点Q 运动的路程为QO=2,③当点P 从C→A 运动到点P 与点A 重合时,如图3所示,点Q 运动的路程为QQ′=4﹣④当点P 从A→O 运动到P 与点O 重合时,点Q 运动的路程为AO=2,∴点Q 运动的总路程为:﹣.故选D .8.A【详解】解:分析题中所给函数图像,O E -段,AP 随x 的增大而增大,长度与点P 的运动时间成正比.E F -段,AP 逐渐减小,到达最小值时又逐渐增大,排除C 、D 选项,F G -段,AP 逐渐减小直至为0,排除B 选项.故选A .【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.9.()()a b c b c +-##()()a b c b c -+【分析】先提取公因式,再用平方差公式进行因式分解.【详解】解:22ab ac -=22()a b c -=()()a b c b c +-,故答案为:()()a b c b c +-.【点睛】本题主要考查因式分解——提公因式法与公式法的综合运用,找准公因式是解题的关键.10.4【分析】根据相似三角形的判定和性质即可得到结论.【详解】解:∵AB ∥CD ,∴△ABE ∽△CDE ,∴AB CD =20.82-.∵AB=1.2,∴CD=2.又∵FC=2,∴DF=CD+FC=2+2=4.故答案为:4.【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.11.12x ≤<【分析】分别求出各个不等式的解,再取各个解的公共部分,即可求解.【详解】解:240431x x -<⎧⎨-≤⎩①②,由①得:x <2,由②得:x≥1,∴不等式组的解:12x ≤<.故答案是:12x ≤<.【点睛】本题主要考查解一元一次不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.12.2x (x +2)(x ﹣2)【分析】先提取公因式2x ,再运用平方差公式分解因式即可.【详解】解:原式=2x (x 2﹣4)=2x (x +2)(x ﹣2),故答案为:2x (x +2)(x ﹣2).【点睛】本题考查分解因式,能够熟练应用乘法公式进行分解因式是解决本题的关键.13.8【分析】根据直角三角形斜边上的中线等于斜边的一半求出EF ,根据三角形中位线定理求得DE ,则DF =DE +EF .【详解】解:在直角△AEC 中,EF 是斜边AC 上的中线,AC =6,则EF =12AC =3.在△ABC 中,DE 是中位线,BC =10,则DE =12BC =5.则DF =DE +EF =3+5=8.故答案是:8.【点睛】本题考查的是三角形中位线定理、三角形的三边关系,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(4,8)或(﹣4,﹣8)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k ,即可求得答案.【详解】解:在同一象限内,∵ ABC 与111A B C △是以原点O 为位似中心的位似图形,其中相似比等于12,A 坐标为(2,4),∴则点1A 的坐标为:(4,8),不在同一象限内,∵ ABC 与111A B C △是以原点O 为位似中心的位似图形,其中相似比等于12,A 坐标为(2,4),∴则点1A 的坐标为:(﹣4,﹣8),故答案为:(4,8)或(﹣4,﹣8).【点睛】此题考查了位似图形的性质,此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .15.≤MN <【详解】连接AM 、AN 、AP ,过点A 作AD ⊥MN 于点D ,如图所示.∵点P 关于直线AB ,AC 的对称点分别为M ,N ,∴AM=AP=AN ,∠MAB=∠PAB ,∠NAC=∠PAC ,∴△MAN 等腰直角三角形,∴∠AMD=45°,∴AD=MD=2AM ,AM .∵AB=4,∠B=60°,∴,∵AM=AP ,∴故答案为≤MN <.【点睛】连接AM 、AN 、AP ,过点A 作AD ⊥MN 于点D ,由对称性可知AM=AP=AN 、△MAN 等腰直角三角形,进而即可得出AP ,再根据AP 的取值范围即可得出线段MN 长的取值范围.16【分析】先求出ACAB =AB =BF =由勾股定理可求CF 的长,由点A '在以点C 为圆心,AC 为半径的圆上,则当点A '在FC 上时,A 'F 有最小值,即可求解.【详解】解:如图,90ACB ∠=︒ ,2AB AC =,1cos 2AC CAB AB ∴∠==,60CAB ∴∠=︒,tan BC CAB AC∴∠==AC ∴=AB ∴=,AF 平分BAC ∠,30BAF CAF ∴∠=∠=︒,//BF AC ,30BFA FAC ∴∠=∠=︒,90FBC BCA ∠=∠=︒,AB BF ∴==FC ∴===将ACE △沿CE 翻折,得到'A CE ,'AC A C ∴==∴点'A 在以点C 为圆心,AC 为半径的圆上,则当点'A 在FC 上时,'A F 有最小值,'A F ∴,.【点睛】本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,求出CF 的长是本题的关键.17.11a -,12.【分析】根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式=()21111a a a a ++÷--=()21111a a a a +-⋅+-=11a -,当a=3时,原式=131-=12.【点睛】本题考查分式的化简求值,熟知分式混合运算的法则是解题的关键.18.(1)作图见解析;(2)证明见解析.【详解】试题分析:(1)①作∠CBQ 的平分线BP ;②过点D 作BP 的垂线;由BP//CE ,可得∠ECD=∠FBD ,∠CED=∠BFD ,又CD=BD ,从而△CDE ≌△BDF ,可得CE=BF ,从而可得BF//CE ,BF=CE ,判定出四边形BFCE 是平行四边形.试题解析:(1)①作∠CBQ 的平分线BP ;②过点D 作BP 的垂线;(2)∵BP//CE ,∴∠ECD=∠FBD ,∠CED=∠BFD ,∵点D 是BC 的中点,∴CD=BD ,∴△CDE ≌△BDF ,∴CE=BF ,∵BF//CE ,BF=CE ,∴四边形BFCE 是平行四边形.考点:1.尺规作图;2.平行四边形的判定.19.(1)200800y x =+(2)张大爷种植该作物的总成本是24800元【分析】(1)根据题意设y 与x 之间的函数关系式()0y kx b k =+≠,利用待定系数法即可求得函数关系式.(2)将120x =代入函数关系式即可解出.(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:880040,1280060,k b k b =+⎧⎨=+⎩解得200,800.k b =⎧⎨=⎩∴y 与x 之间的函数关系式为200800y x =+.(2)当120x =时,20080020012080024800y x =+=⨯+=,∴张大爷种植该作物的总成本是24800元.【点睛】本题考查了一次函数的应用,掌握待定系数法求函数关系式是解答本题的关键.20.29-【分析】根据有理数的运算法则计算即可,注意运算顺序.【详解】()()3425284+-⨯--÷485(7)=-⨯--1140=-29=-【点睛】本题考查了含乘方的有理数的混合运算,掌握运算法则是解题的关键.21.(1)a=﹣1,b=2;(2)P 的坐标为(1,0)或(﹣1,0).【分析】(1)直接利用待定系数法把A (a ,3)代入反比例函数3y x=-中即可求出a 的值,然后把A 的坐标代入y=-x+b 即可求得b 的值;(2)根据直线解析式求得B 的坐标,然后根据题意即可求得P 的坐标.【详解】(1)∵直线y=-x+b 与反比例函数3y x =-的图象相交于点A (a ,3),∴3=-3a ,∴a=-1.∴A (-1,3).把A 的坐标代入y=-x+b 得,3=1+b ,∴b=2;(2)直线y=-x+2与x 轴相交于点B .∴B (2,0),∵点P 在x 轴上,△AOP 的面积是△AOB 的面积的12,∴OB=2PO ,∴P 的坐标为(1,0)或(-1,0).22.(1)﹣23;(2)﹣6.【分析】(1)原式利用除法法则变形,计算得到最简结果,求出方程的解得到x 的值,代入计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出解集,即可求出整数和.【详解】(1)原式=()()()2221•1112x x x x x x +--++-+=2211x x x +-++=1x x -+,已知方程整理得:(x-2)(x-1)=0,解得:x=2或x=1(舍去),当x=2时,原式=-23;(2)由①得:x≤0,由②得:x >-267,∴不等式组的解集为-267<x≤0,即整数解为-3,-2,-1,0,之和为-6.【点睛】此题考查了分式的化简求值,一元二次方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.23.13m +,1-【分析】先算括号内的加法,把除法变成乘法,算乘法,最后代入4m =-求出答案即可.【详解】解:23193m m m ⎛⎫÷+ ⎪--⎝⎭233933m m m m m -⎛⎫=÷+ ⎪---⎝⎭293m m m m =÷--()()333m m m m m -=⋅+-13m =+当4m =-时代入得,原式1143==--+.【点睛】本题考查分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.24.(1)2722y x x =-++;(2)当2t =时,ABN 有最大值,最大值为8,此时D (2)0,;(3)P 3(0)4+,或(6)2,.【分析】(1)将A ,B 的坐标代入抛物线的解析式组成二元一次方程组,求解即可;(2)设D (0)(04)t t <<,,根据坐标的特点,可得出点M ,N 的坐标,再根据三角形的面积公式可表达ABN 的面积,根据二次函数的性质可得出结论;(3)根据题意,易证AEM AOB ∽,由此得出AE 和AM 的长,再根据题意需要分两种情况讨论:①当AM MN =时,②当AM AN =时,分别求解即可.【详解】(1)解:将点(02)A ,,点(40)B ,代入抛物线2y x bx c =-++,∴21640c b c =⎧⎨-++=⎩,∴722b c ⎧=⎪⎨⎪=⎩.∴抛物线的解析式为:2722y x x =-++;(2)解:∵点(02)A ,,点(40)B ,,∴直线AB 的解析式为:122y x =-+;设D (0)(04)t t <<,,∵DM x ⊥轴,点M 在直线AB 上,点N 在抛物线上,∴217(t,t 2),N(t,t 2)22M t -+-++,∴2271t 2(t 2)t 422MN t t =-++--+=-+,∴ABN 的面积2211()(4)42(2)822B A MN x x t t t =⋅⋅-=⋅-+⋅=--+,∵2004t -<<<,,∴当2t =时,ABN 有最大值,最大值为8,此时D (2)0,;(3)解:存在,如图,过点M 作ME y ⊥轴于点E ,∴ME OB ∥,∴90AEM AOB AME ABO ∠=∠=︒∠=∠,,∴AEM AOB ∽,∴:::AE AO AM AB ME OB ==,Rt AOB ∆中,24OA OB ==,,∴AB =∴24AE t ==,∴12AE t AM ==,.根据题意,需要分两种情况讨论:①AM MN =时,如图,24(04)t t t =-+<<,解得82t =或t =0(舍),∴54AM =,∴54AP AM ==,∵AP MN ∥,∴点P 在y 轴上,∴53244OP =+=,∴P (0;②当AM AN =时,如图,此时AP 与MN 互相垂直平分,设AP 与MN 交于点F ,∴211(4)22MF MN t t ==-+,∵12MF AE t ==,∴211(4)22t t t -+=,解得3t =或0=t (舍),∴26AP t ==,∴P (6)2,.综上,存在点P ,使得以点A ,M ,N ,P 为顶点,以AM 为边的四边形是菱形,此时P 3(0)4,或(6)2,.【点睛】此题主要考查了二次函数解析式的确定、菱形的判定和性质、分类讨论的思想等知识,能力要求较高,难度较大,关键是掌握菱形的对称性和进行正确的分类讨论.25.(1)43b =-(2)()3,8E -,104,3E ⎛⎫ ⎪⎝⎭(3)8147【分析】(1)由题意,将点(3,0)A 代入2223y x bx =+-中,即可解得b 的值;(2)令0x =,可求得点C 的坐标,再由点D 与点C 关于x 轴对称可求得D 的坐标,求出直线AD 的表达式,由于EFG 是由AOC 平移得到,若设224(,2)33E m m m --,则224(3,4)33G m m m ---,将点G 代入直线AD 的表达式中,即可求得m ,从而得E 的坐标;(3)过C 作CK AD ⊥于K ,作CQ PH ⊥于Q ,先由勾股定理求出AD 的长,再利用等面积法求出CK 的长,再用勾股定理求AK 的长,由180CPT DAC ∠+∠=︒可得CPQ DAC ∠=∠,故tan CK CQ DAC AK PQ ∠==,设出点224(,2)33P n n n --,则可利用上式求出n 的值,由此可进一步计算出PT 与HT 的值,求出两个三角形的面积之比.(1)解: 二次函数2223y x bx =+-的图像经过点(3,0)A ,∴2203323b =⨯+-,解得43b =-.故答案是:43-;(2)解:如图1,对于二次函数224233y x x =--,当0x =时,=2y -.∴()0,2C -.点D 与点C 关于x 轴对称,∴()0,2D .设直线AD 的函数表达式是2y kx =+.()3,0A ,∴320k +=.解得23k =-.∴直线AD 的函数表达式为223y x =-+.设点224(,2)33E m m m --,则点224(3,4)33G m m m ---.点G 在直线223y x =-+上,∴22424(3)2333m m m --=--+,整理得2120m m --=,解得13m =-,24m =.∴()3,8E -,10(4,3E .(3)解:如图2,过点C 作CK AD ⊥,垂足为K .2OD =,3OA =,∴AD =AO CD AD CK ⋅=⋅,∴13CK =.∴13DK =.∴13AK AD DK =-=.∴12tan 5CK CAK AK ∠==.过点C 作CQ PH ⊥,垂足为Q .180CPT DAC ∠+∠=︒,∴CPQ CAK ∠=∠.∴125CQ PQ =.设点224(,2)33P n n n --,则22433PQ n n =-,CQ n =.∴25241233n n n =-.解得218n =,∴2129(,)832P -.∴218CQ =,213388AH =-=. 2tan 3TH OC OAC AH OA ∠===,∴22313384TH AH ==⨯=,∴2912132432TP PH TH =-=-=.∴13118284211212114722328AHT CPT AH TH S S TP CQ ⨯⨯⨯⨯===⨯⨯⨯⨯△△.【点睛】本题考查了二次函数的综合应用、一次函数表达式的求法、三角函数的性质与应用、相似三角形的性质与判定(本题答案中应用三角函数的步骤也可以改用相似三角形的知识解答)、勾股定理的应用,解决本题的关键在于将各模块知识点融会贯通,并作出正确的辅助线.。
2022一诊(指标到校)考试数学冲刺密卷一一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.比﹣2小的数是()A.2B.0C.﹣22D.﹣(﹣1)【解答】解:﹣22=﹣4,﹣(﹣1)=1,∵﹣4<﹣2<0<1<2,∴比﹣2小的数是﹣22.故选:C.2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.计算(﹣2ab2)3,结果正确的是()A.﹣2a3b6B.﹣6a3b6C.﹣8a3b5D.﹣8a3b6【解答】解:(﹣2ab2)3=﹣8a3b6.故选:D.4.如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A是OA'的中点,△ABC的面积是6,则△A'B'C'的面积为()A.9B.12C.18D.24【解答】解:∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点A 是OA'的中点,∴△ABC∽△A′B′C′,且相似比为1:2,∵△ABC的面积为6,∴△A′B′C′的面积为24,故选:D.5.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:×=,∵4<<5,即×的值在4和5之间.故选:B.6.下列命题是真命题的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直且相等的四边形是菱形D.有一组对边平行且相等的四边形是菱形【解答】解:A、对角线相等的平行四边形是矩形,故错误,不符合题意;B、有一组邻边相等的平行四边形是菱形,正确,符合题意;C、对角线互相垂直平分的四边是四菱形,故错误,不符合题意;D、有一组对边平行且相等的四边形是平行四边形,故错误,不符合题意;故选:B.7.如图,AB是圆O的直径,C、D在圆上,连接AD、CD、AC、BC.若∠CAB=35°,则∠ADC的度数为()A.35°B.45°C.55°D.65°【解答】解:∵AB是圆O的直径,∴∠ACB=90°,∵∠CAB=35°,∴∠B=90°﹣∠CAB=55°,∴∠ADC=∠B=55°,故选:C.8.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行八十步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”把这道题翻译成现代文,意思就是:走路快的人走了80步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?设走路快的人走x步就能追上走路慢的人,则下面所列方程正确的是()A.B.C.D.【解答】解:设走路快的人走x步就能追上走路慢的人,根据题意,得=,故选:B.9.春节前,某加工厂接到面粉加工任务,要求5天内加工完220吨面粉.加工厂安排甲、乙两组共同完成加工任务.乙组加工中途停工一段时间维修设备,然后提高加工效率继续加工,直到与甲队同时完成加工任务为止.设甲、乙两组各自加工面粉数量y(吨)与甲组加工时间x(天)之间的关系如图所示,结合图象,下列结论错误的是()A.乙组中途休息了1天B.甲组每天加工面粉20吨C.加工3天后完成总任务的一半D.3.5天后甲乙两组加工面粉数量相等【解答】解:由图象可得:2﹣1=1,即乙组加工中途停工1天,故选项A是正确的,甲组每天加工面粉数量为:=20(吨),故选项B是正确的,甲组加工3天的面粉数量为20×3=60(吨),乙组第一天加工15吨,第三天加工面粉数量为:=35(吨),∴加工3天后面粉数量为:60+15+35=110(吨),完成总任务的一半,故C选项正确,3.5天后甲组加工面粉数量为20×3.5=70(吨),乙组加工面粉数量为15+35×1.5=67.5(吨),D选项错误,故选:D.10.如图所示,正方形ABCD中,AB=4,点E为BC中点,BF⊥AE于点G,交CD边于点F,连接DG,则DG长为()A.B.4C.D.【解答】解:如图,作DL⊥AE于点H,交AB于点L,∵BF⊥AE,∴DL∥BF,∵四边形ABCD是正方形,∴AB∥CD,AB=BC=CD,∠ABE=∠C=90°,∴BL∥DF,∴四边形BFDL是平行四边形,∵∠AGB=90°,∠BAE=90°﹣∠ABG=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∵E为BC中点,∴BE=CF=BC=CD,∴DF=CF=CD,∴BL=DF=CD=AB,∴AL=BL=AB,∴==1,∴AH=GH,∵DA=AB=4,∴DG=DA=4,故选:B.11.若关于x的不等式组无解,且关于y的分式方程有正整数解,则所有符合条件的整数a之和为()A.﹣5B.﹣8C.﹣6D.﹣4【解答】解:解不等式组得∵不等式组无解,∴a≤﹣1,解分式方程得y=(a≠1),∵分式方程有正整数解,a是整数,∴a=0,﹣1,﹣5,∴所有符合条件的整数a的值之和是﹣5+(﹣2)+(﹣1)+0=﹣8.故选:C.12.若定义一种新的取整符号[ㅤ],即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.6]=﹣2,则下列结论正确的是①[﹣3.1]+[2]=﹣2;②[x]+[﹣x]=0;③方程x﹣[x]=的解有无数多个;④若[x﹣1]=3,则x的取值范围是4≤x<5;⑤当﹣1≤x<1时,则[x+1]+[﹣x+1]的值为0、1或2.A.①②③B.①②④C.①③⑤D.①③④【解答】解:对于①,[﹣3.1]+[2]=﹣4+2=2,正确;对于②,由[﹣0.5]+[0.5]=﹣1+0=﹣1,不正确;对于③,当x=0.5,1.5,2.5,...时,方程均成立,正确;对于④,由[x﹣1]=3,得3≤x﹣1<4,即4≤x<5,正确;对于⑤,当x=﹣1或0时,[x+1]+[﹣x+1]=2;当﹣1<x<0时,[x+1]+[﹣x+1]=0+1=1;当0<x<1时,[x+1]+[﹣x+1]=1+0=1.故[x+1]+[﹣x+1]的值为1或2,⑤不正确.故选:D.二.填空题:(本大题4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上。
九年级数学中考提升冲刺训练(一)姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题1.|﹣|的值是()A.2020 B.﹣2020 C.﹣D.2.2019年末到2020年3月16日截止,世界各国感染新冠状肺炎病毒患者达到15万人,将数据15万用科学记数表示为()A.1.5×104B.1.5×103C.1.5×105D.1.5×1023.如图,这是一个机械模具,则它的左视图是()A.B.C.D.4.下列运算中,错误的是()A.x2•x3=x6B.x2+x2=2x2C.(x2)3=x6D.(﹣3x)2=9x2 5.下列图形中,是轴对称图形,也是中心对称图形的是()A.B.C.D.6.一组数据:3、6、7、5、4,则这组数据的中位数是()A.4 B.4.5 C.5 D.67.实数a,b,c在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|c|>|a| B.ac>0 C.c﹣b>0 D.b+c<08.已知3+m=n,则m可能是()A.3B.C.D.9.若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且+=﹣,则m等于()A.﹣2 B.﹣3 C.2 D.310.如图,E、F分别是正方形ABCD的边BC、CD的中点,连接AF、DE交于点P,过B作BG ∥DE交AD于G,BG与AF交于点M.对于下列结论:①AF⊥DE;②G是AD的中点;③∠GBP=∠BPE;④S△AGM :S△DEC=1:4.正确的个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题11.计算:(﹣3)﹣1+(﹣4)0=.12.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=.13.一个n边形的内角和等于720°,则n=.14.若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为.15.某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)16.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题17.解不等式组:18.先化简,再求值:(+)÷,其中x=6.19.如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.20.今年3月,某集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B b70≤n<80 C15n<70 D 6根据以上信息解答下列问题:(1)求m,b的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(3)从评估成绩不少于80分的连锁店中,任选2家介绍营销经验,用树状图或列表法求其中至少有一家是A等级的概率.21.某商场购进一批LED灯泡与普通白炽灯泡,其进价与标价如下表.该商场购进LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡按标价打九折销售,销售完这批灯泡后可以获利3200元.(1)求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,并在不打折的情况下销售完.若销售完这两批灯泡的获利不超过总进货价的28%,则最多再次购进LED灯泡多少个?LED灯泡普通白炽灯泡进价(元)45 25标价(元)60 3022.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.23.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=(m≠0)相交于A,B 两点,点A坐标为(﹣3,2),点B坐标为(n,﹣3).(1)求一次函数和反比例函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是5,求点P的坐标.(3)利用函数图象直接写出关于x的不等式kx+b<的解集.24.定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.25.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.参考答案一.选择题1.解:,故选:D.2.解:15万=15×104=1.5×105.故选:C.3.解:从左边看,得到的图形只有一列两层,第一层是正方形,第二层的正方形里面有实心的圆圈,故选:B.4.解:A.x2•x3=x5,故本选项符合题意;B.x2+x2=2x2,故本选项不合题意;C.(x2)3=x6,故本选项不合题意;D.(﹣3x)2=9x2,故本选项不合题意.故选:A.5.解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;B、是中心对称图形,也是轴对称图形,故本选项符合题意;C、是中心对称图形,不是轴对称图形,故本选项不合题意;D、不是中心对称图形,是轴对称图形,故本选项不合题意.故选:B.6.解:把数据按从小到大的顺序排列为:3,4,5,6,7,则中位数是5.故选:C.7.解:由数轴可知,﹣4<a<﹣3,﹣1<b<0,2<c<3,∴|c|<|a|,A错误;ac<0,B错误;c﹣b>0,C正确;b+c>0,D错误;故选:C.8.解:根据3+m=n,得到3与m为同类二次根式,则m可能是3,故选:A.9.解:α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,∴α+β=2,αβ=m,∵+===﹣,∴m=﹣3;故选:B.10.解:∵正方形ABCD,E,F均为中点∴AD=BC=DC,EC=DF=BC,∵在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∵∠DEC+∠CDE=90°,∴∠AFD+∠CDE=90°=∠DGF,∴AF⊥DE,故①正确,∵BG∥DE,GD∥BE,∴四边形GBED为平行四边形,∴GD=BE,∵BE=BC,∴GD=AD,即G是AD的中点,故②正确,∵BG∥DE,∴∠GBP=∠BPE,故③正确.∵BG∥DG,AF⊥DE,∴AF⊥BG,∴∠ANG=∠ADF=90°,∵∠GAM=∠FAD,∴△AGM∽△AFD,设AG=a,则AD=2a,AF=a,∴=.∵△ADF≌△DCE,∴S△AGM :S△DEC=1:5.故④错误.故选:C.二.填空题11.解:原式=+1=,故答案为:12.解:∵△ABC的两条中线AD,BE交于点G,∴BD=CD,AE=CE,∵EF∥CD,∴==1,即AF=FD,∴EF为△ADC的中位线,∴EF=CD,∴EF=BD,∵EF∥BD,∴==,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FG=6.故答案为6.13.解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.14.解:原式=(a3﹣2a2b﹣a3+2a2b﹣ab2)]÷b2=﹣a,当a=2019时,原式=﹣2019.故答案为:﹣201915.解:根据题意可知:∠ABC=90°,CD=10,在Rt△ABC中,∠ACB=45°,∴AB=CB,在Rt△ABD中,∠ADB=30°,BD=CD+BC=10+AB,∴tan30°=,即=,解得AB≈13.7(米).答:树高约为13.7米.故答案为:13.716.解:方法1、如图,由图可得,拼出来的图形的总长度=5a+4[a﹣2(a﹣b)]=a+8b 故答案为:a+8b.方法2、∵小明用9个这样的图形(图1)拼出来的图形∴口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a,口朝下的有四个,长度为4[b﹣(a﹣b)]=8b﹣4a,即:总长度为5a+8b﹣4a=a+8b,故答案为a+8b.三.解答题17.解:解不等式①,得x<2,解不等式②,得x≥﹣,∴原不等式组的解集为﹣5≤x<2.18.解:(+)÷==﹣=,当x=6时,原式===.19.(1)解:如图,∠BAD为所作;(2)证明:∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD•BC.20.解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;∴b=25﹣15﹣2﹣6=2;(2)∵B等级频数为2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵由图可知,共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴P(至少有一家是A等级)==.21.解:(1)设该商场购进LED灯泡x个,普通白炽灯泡y个.根据题意,得:,解得,答:该商场购进LED灯泡200个,普通白炽灯泡100个.(2)设再次购进LED灯泡m个.(60﹣45)m+(30﹣25)(120﹣m)+3200≤28%[45×200+25×100+45m+25(120﹣m)] 解得:m≤59,∵m取正整数,∴m的最大值为59则最多再次购进LED灯泡59个.22.解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.23.解:(1)∵双曲线y=(m≠0)过点A(﹣3,2),∴m=﹣3×2=﹣6,∴反比例函数表达式为y=﹣,∵点B(n,﹣3)在反比例函数y=﹣的图象上,∴n=2,∴B(2,﹣3).∵点A(﹣3,2)与点B(2,﹣3)在直线y=kx+b上,∴解得∴一次函数表达式为y=﹣x﹣1;(2)如图,在x轴上任取一点P,连接AP,BP,由(1)知点B的坐标是(2,﹣3).在y=﹣x﹣1中令y=0,解得x=﹣1,则直线与x轴的交点是(﹣1,0).设点P的坐标是(a,0).∵△ABP的面积是5,∴•|a+1|•(2+3)=5,则|a+1|=2,解得a=﹣3或1.则点P的坐标是(﹣3,0)或(1,0);(3)关于x的不等式kx+b<的解集是﹣3<x<0或x>2.24.(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”.在Rt△ABC中,∵AB=5,BC=3,∴AC===4,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°∴∠A=∠CBE,∴△ABC∽△BEC,∴=,∴CE==,(2)∵AB是直径,∴∠ADB=90°,∵AD=5,AB=13,∴BD===12,①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F共线,∵∠C+∠ABC+∠ABF=90°∴∠C=∠ABF,∴△FAB∽△FBC,∴=,即=,∴AC=.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴=,即=,∴CD=(AC+5),在Rt△ADC中,CD2+AD2=AC2,∴AC=(舍去负值),综上所述,当△ABC是“类直角三角形”时,AC的长为或.25.解:(1)将A(﹣3,0)、B(2,0)、C(0,3)代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为:y=﹣x+3;(2)①将E(m,2)代入y=﹣x+3中,得﹣m+3=0,解得m=﹣2或1(舍去),∴E(﹣2,2),∵A(﹣3,0)、B(2,0),∴AB=5,AE=,BE=2,∴AB2=AE2+BE2,∴∠AEB=∠DOB=90°,∴∠EAB+∠EBA=∠ODB+∠EBA=90°,∴∠EAB=∠ODB,(Ⅰ)当△FEA∽△BOD时,∴∠AEF=∠DOB=90°,∴F与B点重合,∴EF=BE=2,(Ⅱ)当△EFA∽△BOD时,∴∠AFE=∠DOB=90°,∵E(﹣2,2),∴EF=2,故:EF的长为2或2;②点H的坐标为(﹣,)或(﹣,),(Ⅰ)过点H作HN⊥CO于点N,过点G作GM⊥HN于点M,∴∠GMN=∠CNH=90°,又∠GHC=90°,∴∠CHN+∠GHM=∠MGH+∠GHM=90°,∴∠CHN=∠MGH,∵HN⊥CO,∠COP=90°,∴HN∥AB,∴∠CHN=∠APE=∠MGH,∵E(﹣2,2),C(0,3),∴直线CE的解析式为y=x+3,∴P(﹣6,0),∴EP=EB=2,∴∠APE=∠EBA,∵∠GCH=∠EBA,∴∠GCH=∠APE=∠EBA=∠CHN=∠MGH,∴GC∥PB,又C(0,3),∴G点的纵坐标为3,代入y=﹣x+3中,得:x=﹣1或0(舍去),∴MN=1,∵∠AEB=90°,AE=,BE=2,∴tan∠EBA=tan∠CHN=tan∠MGH=,设CN=MG=m,则HN=2m,MH=m,∴MH+HN=2m+m=1,解得,m=,∴H点的橫坐标为﹣,代入y=x+3,得:y=,∴点H的坐标为(﹣,).(Ⅱ)过点H作MN⊥PB,过点C作CN⊥MH于点N,过点G作GM⊥HM于点M,∴CN∥PB,∴∠NCH=∠APE,由(Ⅰ)知:∠APE=∠EBA,则∠NCH=∠EBA,∵∠GMN=∠CNH=90°,又∠GHC=90°,∴∠HCN+∠NHC=∠MHG+∠NHC=90°,∴∠HCN=∠MHG,∵∠GCH=∠EBA,∴∠GCH=∠EBA=∠HCN=∠MHG,由(Ⅰ)知:tan∠EBA=,则tan∠MHG==tan∠GCH=,设MG=a,则MH=2a,∵∠NCH=∠MHG,∠N=∠M,∴△HMG∽△CNH,∴,∴NH=2a,CN=4a,又C(0,3),∴G(﹣3a,3﹣4a),代入y=﹣x+3中,得,a=或0(舍去),∴CN=,∴H点的橫坐标为﹣,代入y=x+3,得,y=.∴点H的坐标为(﹣).综合以上可得点H的坐标为(﹣,)或(﹣).。
上海市2023年中考数学考前冲刺试卷一、单选题(共6题;共24分)1.(4分)若单项式―4x m―2y3与23y7―2n的和仍是单项式,则n2―m2的值为3x( )A.21B.-21C.29D.-29 2.(4分)实数a、b在数轴上的位置如图所示,那么化简|a﹣b|﹣a2的结果是( )A.2a﹣b B.b C.﹣b D.﹣2a+b 3.(4分)下列调查中,适合用全面调查的是()A.了解20万只节能灯的使用寿命B.了解某班35名学生的视力情况C.了解某条河流的水质情况D.了解全国居民对“垃圾分类”有关内容的认识程度4.(4分)若点A(m―1,y1),B(m+1,y2)在反比例函数y=k(k<0)的图象上,且xy1>y2,则m的取值范围是( )A.m<―1B.―1<m<1C.m>1D.m<―1或m>15.(4分)若两圆的圆心距为3,两圆的半径分别是方程x2-4x+3=0的两个根,则两圆的位置关系是( )A.相交B.外离C.内含D.外切6.(4分)下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1×|﹣1|×1是最简二次根式B.12C.只有一个角等于60°的三角形是等边三角形D.三角形内角和等于180度二、填空题(共12题;共48分)的相反数是 .7.(4分)―458.(4分)分解因式:ab﹣ab2= .9.(4分)方程x―1⋅x―3=0的根是 .10.(4分)一枚质地均匀的正方体骰子,六个面分别刻有1到6的点数,小涛同学掷一次骰子,骰子的正面朝上的点数是2的倍数的概率是 .11.(4分)已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是 .(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.12.(4分)在实数范围内分解因式a2―3= .13.(4分)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,→AB=→m,→AC =→n,那么向量→DE用向量→m,→n表示为 . 14.(4分)为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的6名同学捐书册数分别是:5,7,x,8,4,6.已知他们平均每人捐6本,则这组数据的中位数是 .15.(4分)为鼓励大学生创业,某市为在开发区创业的每位大学生提供贷款1500000 元,这个数据用科学记数法表示为 元.16.(4分)如图,以CD为直径的半圆与AB,AC相切于E,C两点,C,D,B三点共线,若弧DE的长为1π,CD=2,则阴影部分的面积为 .317.(4分)如图,直线y=﹣x+4与两坐标轴交A 、B 两点,点P 为线段OA 上的动点,连接BP ,过点A 作AM 垂直于直线BP ,垂足为M ,当点P 从点O 运动到点A 时,则点M 运动路径的长为 .18.(4分)如图,在⊙O 中,AB 为直径,弦CD ⊥AB 于点H ,若AH =CD =8,则⊙O 的半径长为 .三、解答题(共7题;共78分)19.(10分)先化简,再求值: x x 2―1 ÷(1+ 1x ―1),其中x= 2 ﹣1. 20.(10分)解不等式组:{5x <3(x +1)x ―32≤2+53x ,并把解集在数轴上表示出来.21.(10分)如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AD 、BC 的延长线交于点F ,点E 在CF 上,且∠DEC =∠BAC .(1)(5分)求证:DE 是⊙O 的切线;(2)(5分)当AB =AC 时,若CE =4,EF =6,求⊙O 的半径.22.(10分)如图,小聪和小明在校园内测量钟楼MN 的高度.小聪在A 处测得钟楼顶端N 的仰角为45°,小明在B 处测得钟楼顶端N 的仰角为60°,并测得A ,B 两点之间的距离为27.3米,已知点A,M,B依次在同一直线上.(1)(5分)求钟楼MN的高度,(结果精确到0.1米)(2)(5分)因为要举办艺术节,学校在钟楼顶端N处拉了一条宣传竖幅,并固定在地面上的C处(点C在线段AM上).小聪测得点C处的仰角∠NCM等于75°,小明测得点C,M之间的距离约为5米,若小聪的仰角数据正确,问小明测得的数据“5米”是否正确?为什么?(参考数据:2≈ 1.41,3≈ 1.73)23.(12分)如图,在Rt△ABC中,∠ACB=90,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE(1)(4分)求证:CE=AD(2)(4分)当点D在AB中点时,四边形BECD是什么特殊四边形?说明理由(3)(4分)若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD 是正方形?说明理由.24.(12分)c:y=a x2+bx―10经过点A(1,0)和点B(5,0),与y轴交于点C.1(1)(4分)求抛物线c1的解析式;(2)(4分)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l:y=n.试结合图形回答:当n为何值时l与c1和c2共有:①2个交点;②3个交点;③4个交点;(3)(4分)在直线BC上方的抛物线c1上任取一点P,连接PB,PC,请问:ΔPBC的面积是否存在最大值?若存在,求出取这个最大值时点P的坐标;若不存在,请说明理由.25.(14分)如图1,在⊙O中,AB为弦,CD为直径,且AB⊥CD于点E,过点B作BF⊥AD,交AD的延长线于点F.连接AC,BO.(1)(4分)求证:∠CAE=∠ADC.(2)(4分)若DE=2OE,求DFDE的值.(3)(6分)如图2,若BO的延长线与AC的交点G恰好为AC的中点,若⊙O的半径为r.求图中阴影部分的面积(结果用含r的代数式表示).答案解析部分1.【答案】B【解析】【解答】解:∵单项式―4x m―2y3与23y7―2n的和仍是单项式,3x所以这两个单项式是同类项,∴{m―2=37―2n=3解得{m=5n=2∴n2―m2=―21.故答案为:B.【分析】所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序及系数没有关系,据此可得m-2=3,7-2n=3,求出m、n的值,进而可得n2-m2的值.2.【答案】C【解析】【解答】解:∵a>0,b<0,|a|<|b|,∴原式=a﹣b﹣|a|=a﹣b﹣a=﹣b.故选C.【分析】由数轴可得到a>0,b<0,|a|<|b|,根据a2=|a|和绝对值的性质即可得到答案.3.【答案】B【解析】【解答】解:A.了解20万只节能灯的使用寿命,具有破坏性,适合抽样调查,故本选项不合题意;B.了解某班35名学生的视力情况,人员不多,适合用全面调查,故本选项符合题意;C.了解某条河流的水质情况,范围广,适合抽样调查,故本选项不合题意;D.了解全国居民对“垃圾分类”有关内容的认识程度,范围广,适合抽样调查,故本选项不合题意;故答案为:B.【分析】根据全面调查的定义对每个选项一一判断即可。
2023年黑龙江省哈尔滨市中考冲刺数学模拟试卷(一)一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1. 12的倒数是( )A. 2B. 12C. −12D. −22. 计算:(−12ab2) 3的结果正确的是( )A. 14a2b4 B. 18a3b6 C. −18a3 b6 D. −18a3b53.如图,是由9个同样大小的小正方体组成的几何体,将小正方体①移到②的正上方后,关于新几何体的三视图描述正确的是( )A. 主视图和俯视图改变B. 俯视图和左视图改变C. 左视图和俯视图不变D. 俯视图和主视图不变4. 如果将抛物线y=ax2+bx+c向右平移2个单位,再向上平移3个单位,得到新的抛物线y=x2−2x+1,那么( )A. b=6,c=12B. b=−6,c=6C. b=2,c=−2D. b=2,c=45. 已知△ABC中,∠C=90°,CD是AB上的高,则CDBD=( )A. sinAB. cosAC. tanAD. cotA6.如图,AB//CD,∠C=80°,∠ACD=60°,则∠BAD的度数等于( )A. 60°B. 50°C. 45°D. 40°7. 如图,是一台自动测温记录仪的图象,它反映了我县某天气温随时间(时)变化而变化的关系,观察图象得到下列信息,其中错误的是( )A. 从0时至14时,气温随时间的推移而上升B. 从14时至24时,气温随时间的推移而下降C. 凌晨3时气温最低为16℃D. 下午14时气温最高为28℃8. 下列图形不是中心对称图形的是.( )A. 矩形B. 菱形C. 正方形D. 正三角形9. 如图所示,△ABC中,点P,Q,R分别在AB,BC,CA边上,且AP=13AB,BQ=14BC,CR=15CA,已知阴影△PQR的面积是19cm2,则△ABC的面积是( )A. 38B. 42.8C. 45.6D. 47.510.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则( )A. x−y2=3B. 2x−y2=9C. 3x−y2=15D. 4x−y2=21二、填空题(本大题共10小题,共30分)11. 在⊙O中直径为4,弦AB=23,点C是圆上不同于A、B的点,那么∠ACB度数为______.12. 1989年以来,省委省政府、西宁市委市政府相继启动实施南北山绿化工程,经过26年的绿化建设,绿化面积、森林覆盖率得到明显提高,城市生态环境得到明显改善,截止2015年两山形成森林209300亩,将209300用科学记数法表示为______ .13. 计算 12− 24=______ . 14. 若关于x 的一元一次不等式组 x −2<012x +m ≥2有4个整数解,则m 的取值范围______. 15. 我们把直角坐标平面内横、纵坐标互相交换的两个点称为“关联点对”,如点A (2,3)和点B (3,2)为一对“关联点对”.如果反比例函数y =10x在第一象限内的图象上有一对“关联点对”,且这两个点之间的距离为3 2,那么这对“关联点对”中,距离x 轴较近的点的坐标为______ .16. 刘老师将“立春、雨水、惊蛰、春分”四张卡片单独拿出,邀请小李和小冯抽取.小李抽取后放回搅匀小冯再抽取,两人抽到的卡片上写有相同的节气的概率为______ .17. 在函数y = x−3中,自变量x 的取值范围是______.18.如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30cm ,则扇面ABDC 的周长为______cm .19.如图,在正方形ABCD 中,E 为AD 边中点,连接CE ,将△CDE 沿CE 翻折,得到△CEF ,延长EF 分别交AB 、CB 延长线于N 、G 两点,连接AF ,延长AF 交CB 边于点H ,则下列结论正确的有______ .(填序号即可)①四边形AHCE 为平行四边形;②sin ∠FCG =35;③S △AEF S △CFH =34;④BN AF = 53. 20. 分解因式4a 2−16b 2=三、解答题(本大题共7小题,共60分。
初三数学冲刺典型练习题在初三数学冲刺阶段,做一些典型练习题对于检测自己的学习成果和提高解题能力是非常有效的。
下面我们将介绍一些初三数学冲刺阶段常见的典型练习题,并附上详细的解题方法,希望对同学们的数学学习有所帮助。
一、整式的加减例题1:化简下列各式并写出最高次项的系数。
(2x^2 - 3x + 1) - (-x^2 + 5x - 2)解题方法:首先,将括号中的符号分别与括号内的各项相乘,然后将结果进行合并同类项,最后得出化简后的整式。
(2x^2 - 3x + 1) - (-x^2 + 5x - 2)= 2x^2 - 3x + 1 + x^2 - 5x + 2= 3x^2 - 8x + 3所以,化简后的整式为3x^2 - 8x + 3。
二、平方与平方根例题2:求下列算式的值:(A) √(9 + √(8 + 12))(B) (0.25)^2 + (0.2)^2 + (0.125)^2解题方法:(A) 首先,从内至外进行计算。
先计算括号内的算式,然后再算外面的算式。
√(9 + √(8 + 12)) = √(9 + √20)= √(9 + 2√5)= √(4 + 2 + 2√5)= √(2 + 2√5)^2= 2 + 2√5所以,(A)的值为2 + 2√5。
(B) 直接将指数为2的各项平方后相加。
(0.25)^2 + (0.2)^2 + (0.125)^2= 0.0625 + 0.04 + 0.015625= 0.117125所以,(B)的值为0.117125。
三、几何问题例题3:如图所示,在正方形ABCD中,点E、F、G分别是边AB、BC、CD上的点,连结线段DF和BG,求证:线段AC平分线段FG。
[图示省略]证明方法:由于正方形的性质是四边形各个顶点均为直角,所以我们可以利用直角三角形的性质来证明这个问题。
首先,观察图中所示的几何形状,我们可以发现∠ADB = ∠DAB = 45°,∠DFB = ∠GBF = 45°。
中考模拟题1(总分120分120分钟)一.选择题(共8小题,每题3分)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.963.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<25.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C58°D.30°6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=二.填空题(共6小题,每题3分)9.计算:=.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC的长为.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.三.解答题(共10小题)15.(6分)先化简,再求值:(1﹣)÷,其中x=3.16.(6分)有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)17.(6分)甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?18.(7分)如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.19.(7分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.20.(7分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?21.(8分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.22.(9分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.23.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.24.(12分)1.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.中考模拟题1答案一.选择题(共8小题)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个考点:有理数.分析:根据有理数是有限小数或无限循环小数,可得答案.解答:解:,0,,﹣1.414,是有理数,故选:D.点评:本题考查了有理数,有理数是有限小数或无限循环小数.2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.96考点:简单几何体的三视图;几何体的表面积.专题:压轴题.分析:根据AE的长,求底面正六边形的边长,用正六边形的周长×AD,得正六棱柱的侧面积.解答:解:如图,正六边形的边长为AC、BC,CE垂直平分AB,由正六边形的性质可知,∠ACB=120°,∠A=∠B=30°,AE=AB=3,所以,AC===2,正六棱柱的侧面积=6AC×AD=6×2×8=96.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<2考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:求出不等式①②的解集,再根据找不等式组解集得规律求出即可.解答:解:,由①得:x<2由②得:x≥﹣1∴不等式组的解集是﹣1≤x<2,故选A.点评:本题主要考查对解一元一次不等式组,不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.5.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C.58°D.30°考点:平行线的性质;平行公理及推论.专题:计算题.分析:过C作CE∥直线m,根据平行公理的推论得到直线m∥n∥CE,根据平行线的性质得出∠ACE=∠DAC=42°,∠ECB=∠a,由∠ACB=90°即可求出答案.解答:解:过C作CE∥直线m,∵直线m∥n,∴直线m∥n∥CE,∴∠ACE=∠DAC=42°,∠ECB=∠a,∵∠ACB=90°,∴∠a=90°﹣∠ACE=90°﹣42°=48°.故选B.点评:本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能灵活运用性质进行计算是解此题的关键.6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°考点:圆周角定理.分析:首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.点评:本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个考点:坐标与图形性质.分析:分别过A、B点作x轴的垂线,垂足即为所求;以AB的中点为圆心,AB 为直径作圆,交x轴于两点,该两点即为所求.解答:解:如图所示,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,c的值有4个.故选D.点评:考查了坐标与图形性质,注意C(c,0)的点在x轴上,有一定的难度.8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=考点:反比例函数综合题.专题:综合题;压轴题.分析:首先由AC=2BC,可得出A点的横坐标的绝对值是B点横坐标绝对值的两倍.再由|x1﹣x2|=2,可求出A点与B点的横坐标,然后根据点A、点B既在一次函数的图象上,又在反比例函数(k>0)的图象上,可求出k、b的值.解答:解:∵AC=2BC,∴A点的横坐标的绝对值是B点横坐标绝对值的两倍.∵点A、点B都在一次函数的图象上,∴可设B(m,m+b),则A(﹣2m,﹣m+b).∵|x1﹣x2|=2,∴m﹣(﹣2m)=2,∴m=.又∵点A、点B都在反比例函数(k>0)的图象上,∴(+b)=(﹣)(﹣+b),∴b=;∴k=(+)=.故选D.点评:此题综合考查了反比例函数、一次函数的性质,注意通过解方程组求出k、b的值.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.二.填空题(共6小题)9.计算:=.考点:二次根式的混合运算.分析:按照运算规则先算乘法,再算减法,即合并同类二次根式.解答:解:原式=﹣=2﹣=.点评:本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).考点:列代数式.分析:设原价为x,则x×0.9×0.9=y,从而可得出原价的表达式.解答:解:设原价为x,则x×0.9×0.9=y,故x=y,即原价为:y.故答案为:y.点评:本题考查了列代数式的知识,可以设出原价,用方程的思想解决,也可以直接表示出来.11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=35°.考点:角平分线的性质.分析:根据角平分线上的点到角的两边距离相等可得CE=EF,然后求出EF=BE,再根据到角的两边距离相等的点在角的平分线上判断出AE平分∠BAD,根据直角三角形两锐角互余求出∠CDE,再求出∠ADC,然后求出∠BAD,再求解即可.解答:解:∵DE平分∠ADC,∠C=90°,EF⊥AD于点F,∴CE=EF,∵E是BC的中点,∴BE=CE,∴EF=BE,∴AE平分∠BAD,∵∠CED=35°,∴∠CDE=90°﹣35°=55°,∴∠ADC=2∠CDE=2×55°=110°,∵∠B=∠C=90°,∴AB∥CD,∴∠BAD=180°﹣110°=70°,∴∠EAB=∠BAD=×70°=35°.故答案为:35°.点评:本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,直角三角形两锐角互余的性质和平行线的判定与性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC 的长为6.考点:垂径定理;勾股定理;三角形中位线定理;圆周角定理.分析:根据垂径定理求出BC,根据圆周角定理求出∠C=90°,根据勾股定理求出即可.解答:解:∵OD⊥BC,OD过O,BD=4,∴BC=2BD=8,∵AB是直径,∴∠C=90°,在Rt△ACB中,AB=10,BC=8,由勾股定理得:AC==6,故答案为:6.点评:本题考查了垂径定理,勾股定理的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.专题:常规题型.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD 的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(0,1),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.考点:二次函数综合题.分析:根据二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,得出ON=,根据M在反比例函数y=上,得出点M的纵坐标是﹣3a,从而得出NO+MN=+3a,再根据+3a≥2,得出+3a的最小值是2,求出a的值即可.解答:解:∵二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,∴ON=,∵M在反比例函数y=上,∴点M的纵坐标是﹣3a,∴MN=3a,∴NO+MN=+3a,∵+3a≥2,∴+3a≥2,∴+3a的最小值是2,即+3a=2,解得;a=,经检验a=是原方程的解.故答案为:.点评:此题考查了二次函数的综合,用到的知识点是二次函数和反比例函数的图象与性质,关键是求出+3a的最小值是2,列出方程.三.解答题(共10小题)15.先化简,再求值:(1﹣)÷,其中x=3.考点:分式的化简求值.分析:先计算括号内的分式减法,然后把除法转化为乘法进行化简,最后代入求值.解答:解:原式=(﹣)×=×=.把x=3代入,得==,即原式=.故答案为:.点评:本题考查了分式的化简求值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.16.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)考点:列表法与树状图法.专题:数形结合.分析:列举出所有情况,看抽出的两张纸片上的数字之积小于6的情况数占总情况数的多少即可.解答:解:共有16种情况,积小于6的情况有8种,所以P(小于6)==.点评:考查列树状图解决概率问题;找到抽出的两张纸片上的数字之积小于6的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.17.甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?考点:分式方程的应用.专题:应用题.分析:(1)用一个字母表示出甲乙两人的工作量,等量关系为:甲乙和喝10天的工作量=1,把相关数值代入计算即可;(2)易得甲乙喝咖啡的工作效率,喝咖啡用的天数少,算出甲喝咖啡用的天数,进而加上甲乙和喝茶叶用的天数即为两人一起喝完1包茶叶和1罐咖啡需要天数.解答:解:(1)设甲单独x天喝完1包茶叶,则每天喝的茶叶为,乙单独(x+48)天喝完1包茶叶,则每天喝的茶叶为.;解得x=12或x=﹣40(舍去),经检验,x=12是原方程的解,∴x+48=60.答:甲单独12天喝完1包茶叶,乙单独60天喝完1包茶叶;(2)甲单独喝一罐咖啡的时间为:1÷()=30天;∴30天后甲喝完咖啡而乙只喝完茶叶的一半,故剩下的茶叶变成两人合喝,由题意可知,他们两人还能喝5天.∴两人35天才全部喝完.点评:考查分式方程的应用;得到甲乙和喝完茶叶的工作量的等量关系是解决本题的关键.18.如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.考点:解直角三角形的应用.分析:先根据∠ABD=140°,∠D=50°,求出∠E=90°,判断出△BED为直角三角形,再根据锐角三角函数的定义进行求解即可.解答:解:根据题意得:BD=704m,∠ABD=140°,∠D=50°.∵∠EBD=180°﹣∠ABD,∴∠EBD=180°﹣140°=40°.在△BDE中,∠E=180°﹣∠EBD﹣∠D,∴∠E=180°﹣40°﹣50°=90°,∴△BED为直角三角形,在Rt△BED中,∵cos∠D=,∴DE=BD×cos50°=704×0.6=422.4≈422(m).答:开挖点E到点D的距离为422m.点评:本题考查的是解直角三角形在实际生活中的运用,涉及到三角形内角和定理及锐角三角函数的定义,熟知以上知识是解答此题的关键.19.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.考点:切线的判定与性质.专题:压轴题.分析:(1)AF为为圆O的切线,理由为:连接OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF 的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.解答:解:(1)AF为圆O的切线,理由为:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,则AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=5,∵S△AOF=•OA•AF=•OF•AE,∴AE=,则AC=2AE=.点评:此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,平行线的性质,等腰三角形的性质,三角形的面积求法,熟练掌握切线的判定与性质是解本题的关键.20.君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合②函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.考点:一次函数的应用;一元二次方程的应用.分析:(1)根据图象是一条直线,可得函数的类型;(2)根据待定系数法,可得函数解析式;(3)根据自变量的值,可得相应的函数值,根据等量关系,可得方程,根据解方程,可得答案.解答:解:(1)②;(2)设函数解析式为y=kx+b (a≠0),将(1,80)、(4,95)代入得:,∴∴一次函数的解析式是y=5x+75;(3)把x=6代入y=5x+75得y=105,6月份的收入是105万元,设这个增长率是a,根据题意得105(1+a)2=151.2,解得∴,(不合题意,舍去)答:这个增长率是20%.点评:本题考查了一次函数的应用,利用待定系数法求解析式,(3)找出等量关系列方程是解题关键,不符合题意的要舍去.22.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.考点:四边形综合题.分析:(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)首先证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF 的长,则OC即可求得.解答:证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;(2)CF﹣CD=BC;(3)①CD﹣CF=BC②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为2且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴OC=DF=2.点评:本题考查了正方形与全等三角形的判定与性质的综合应用,证明三角形全等是关键.23.如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:几何综合题;压轴题.分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为c.解答:解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C两点的坐标代入y=﹣x2+bx+c得,,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠OBC,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(﹣c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣(﹣c)2+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.24.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC 垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考点:相似形综合题.专题:压轴题.分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC 延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x 轴,y轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DB,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,。
第1关 以几何图形中的动点最值问题为背景的选择填空题【考查知识点】 “两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
原型----“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
【解题思路】找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.求线段和的最小值需要用到三个基本知识:两点之间,线段最短;轴对称的性质;线段垂直平分线上的点到线段两端点的距离相等.常见情况有三种:“两点一线”型、“一点两线”型和“两点连线” 型. 平面上最短路径问题:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”。
凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题。
【典型例题】【例1】如图,ABC ∆是等边三角形,13AD AB =,点E 、F 分别为边AC 、BC 上的动点,当DEF ∆的周长最小时,FDE ∠的度数是______________.【名师点睛】关于最短路线问题:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点(注:本题C,D位于OB的同侧).如下图,解决本题的关键:一是找出最短路线,二是根据一次函数与方程组的关系,将两直线的解析式联立方程组,求出交点坐标.【例2】如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊙OC交⊙O于点D,则CD的最大值为___.【名师点睛】本题考查了垂径定理:垂直于弦的直径平分弦,且平分弦所对的弧.也考查了勾股定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.【方法归纳】在平面几何的动态问题中,求几何量的最大值或最小值问题常会运用以下知识:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点之间线段最短;③连接直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长;⑤利用对称的性质求两条线段之和最小的问题,解决此类问题的方法为:如图,要求线段l上的一动点P 到点A、B距离和的最小值,先作点A关于直线L的对称点A′,连接A′B,则A′B与直线L的交点即为P 点,根据对称性可知A′B的长即为PA+PB的最小值,求出A′B的值即可.【针对练习】1.如图,∠AOB=60°,点P是∠AOB内的定点且M、N分别是射线OA、OB上异于点O 的动点,则△PMN周长的最小值是()A B C.6D.32.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°3.如图,四边形ABCD中,∠C=,∠B=∠D=,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为().A .B .C .D .4.如图,已知直线142y x =+与x 轴、y 轴分别交于A , B 两点,将△AOB 沿直线AB 翻折,使点O 落在点C 处, 点P ,Q 分别在AB , AC 上,当PC +PQ 取最小值时,直线OP 的解析式为( )A .y=-34x B .y=-12x C .y=-43x D .23y x =5.如图:等腰△ABC 的底边BC 长为6,面积是18,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .6B .8C .9D .106.如图,在△ABC 中,5,6AB AC BC ===,动点P ,Q 在边BC 上(P 在Q 的左边),且2PQ =,则AP AQ +的最小值为( )A .8B .C .9D .7.如图,在Rt ABO 中,90OBA ∠=︒,()4,4A ,点C 在边AB 上,且13AC CB =,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .()2,2B .55,22⎛⎫⎪⎝⎭C .88,33⎛⎫⎪⎝⎭D .()3,38.如图,等腰三角形ABC 底边BC 的长为4 cm ,面积为12 cm 2,腰AB 的垂直平分线EF 交AB 于点E ,交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一点,则△BDM 的周长最小值为( )A .5 cmB .6 cmC .8 cmD .10 cm9.如图,周长为16的菱形ABCD 中,点E ,F 分别在边AB ,AD 上,AE =1,AF =3,P 为BD 上一动点,则线段EP +FP 的长最短为( )A .3B .4C .5D .610.在平面直角坐标系中,Rt △AOB 的两条直角边OA 、OB 分别在x 轴和y 轴上,OA=3,OB=4.把△AOB 绕点A 顺时针旋转120°,得到△ADC .边OB 上的一点M 旋转后的对应点为M′,当AM′+DM 取得最小值时,点M 的坐标为( )A .(0)B .(0,34) C .(0 D .(0,3)11.如图,已知点A 是以MN 为直径的半圆上一个三等分点,点B 是弧AN 的中点,点P 是半径ON 上的点.若⊙O 的半径为l ,则AP+BP 的最小值为( )A .2B CD .112.直线y =x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( ).A .(-3,0)B .(-6,0)C .(-,0)D .(-,0)13.如图,MN 是等边三角形ABC 的一条对称轴,D 为AC 的中点,点P 是直线MN 上的一个动点,当PC+PD 最小时,∠PCD 的度数是( )A .30°B .15°C .20°D .35°14.如图,AC 是O 的弦,5AC =,点B 是O 上的一个动点,且45ABC ∠︒=,若点,M N 分别是,AC BC 的中点,则MN 的最大值是_____.15.如图,∠AOB =60°,点M ,N 分别是射线OA ,OB 上的动点,OP 平分∠AOB ,OP =8,当△PMN 周长取最小值时,△OMN 的面积为_____.16.如图,四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数是________17.如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,4BC =,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是__________.18.如图,∠AOB=30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP=6,当△PMN 的周长取最小值时,四边形PMON 的面积为 .19.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为______.20.如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为__cm;连接BD,则△ABD的面积最大值为___cm2.21.如图,Rt△ABC中,∠BAC=90°,AB=3,,点D,E分别是边BC,AC上的动点,则DA+DE 的最小值为_____.第1关 以几何图形中的动点最值问题为背景的选择填空题【考查知识点】 “两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):应用题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元 B .180元 C .200元 D .220元【答案】C 【解析】设这种衬衫的原价是x 元, 依题意,得:0.6x+40=0.9x-20, 解得:x=200. 故选:C .2.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4 B .5 C .6 D .7【答案】C 【解析】设这种植物每个支干长出x 个小分支, 依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =. 故选:C .3.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A .3种B .4种C .5种D .6种【答案】B 【解析】设购买A 品牌足球x 个,购买B 品牌足球y 个, 依题意,得:60751500x y +=,∴4205y x =-.x ,y 均为正整数,∴11516x y =⎧⎨=⎩,221012x y =⎧⎨=⎩,33158x y =⎧⎨=⎩,44204x y =⎧⎨=⎩,∴该学校共有4种购买方案.故选:B .4.为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A 型“共享单车”,因为单车需求量增加,计划继续投放B 型单车,B 型单车的投放数量与A 型单车的投放数量相同,投资总费用减少20%,购买B 型单车的单价比购买A 型单车的单价少50元,则A 型单车每辆车的价格是多少元?设A 型单车每辆车的价格为x 元,根据题意,列方程正确的是( )A .200000200000(120%)50x x -=- B .200000200000(120)50x x x +=- C .200000200000(120%)50x x -=+ D .200000200000(120)50x x x +=+ 【答案】A 【解析】设A 型单车每辆车的价格为x 元,则B 型单车每辆车的价格为(50)x -元, 根据题意,得200000200000(120)50x x x -=- 故选A .5.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩【答案】A【解析】设甲的钱数为x ,乙的钱数为y ; 由甲得乙半而钱五十,可得:1x y 502+= 由甲把其23的钱给乙,则乙的钱数也为50;可得:2503x y += 故答案为:A6.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( ) A .3种 B .4种C .5种D .6种【答案】C 【解析】设该店购进甲种商品x 件,则购进乙种商品()50x -件,根据题意,得:()()60100504200102050750x x x x ⎧+-≤⎪⎨+->⎪⎩,解得:2025x ≤<, ∵x 为整数,∴20x、21、22、23、24,∴该店进货方案有5种, 故选:C .7.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x=+ C .1201508x x=- D .1201508x x =+ 【答案】D 【解析】∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件, ∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.8.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只. A .55 B .72C .83D .89【答案】C 【解析】设该村共有x 户,则母羊共有()517x +只,由题意知,()()517710517713x x x x ⎧+-->⎪⎨+--<⎪⎩解得:21122x <<, ∵x 为整数, ∴11x =,则这批种羊共有115111783+⨯+=(只), 故选C .二、填空题(本大题共4个小题,每小题6分,共24分)9.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____.【答案】 4.5112x yx y +=⎧⎪⎨-=⎪⎩【解析】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x yx y +=⎧⎪⎨-=⎪⎩10.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________. 【答案】20%.【解析】设这两年中投入资金的平均年增长率是x ,由题意得: 5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去). 答:这两年中投入资金的平均年增长率约是20%. 故答案是:20%.11.一艘轮船在静水中的最大航速为30/km h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______/km h . 【答案】10 【解析】设江水的流速为/x km h ,根据题意可得:120603030x x=+-,解得:10x =,经检验:10x =是原方程的根, 答:江水的流速为10/km h . 故答案为:10.12.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD=α. 若AO=85cm ,BO=DO=65cm. 问: 当74α=︒,较长支撑杆的端点A 离地面的高度h 约为_____cm .(参考数据:sin 370.6,≈cos30.8≈,sin530.8,cos530.6≈≈.)【答案】120. 【解析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,∵BO=DO , ∴OE 平分∠BOD , ∴∠BOE=12∠BOD=12×74°=37°,∴∠FAB=∠BOE=37°,在Rt △ABF 中,AB=85+65=150cm , ∴h=AF=AB•cos ∠FAB=150×0.8=120cm , 故答案为:120三、解答题(本大题共3个小题,每小题12分,共36分. 解答应写出文字说明、证明过程或演算步骤)13.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P 处测得古塔顶端M 的仰角为60︒,沿山坡向上走25m 到达D 处,测得古塔顶端M 的仰角为30︒.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助小明计算古塔的高度ME .(结果精确到0.1m ,参考数据:3 1.732≈)【答案】古塔的高度ME 约为39.8m . 【解析】解:作DC EP ⊥交EP 的延长线于点C ,作DF ME ⊥于点F ,作PH DF ⊥于点H ,则DC PH FE ==,DH CP =,HF PE =,设3DC x =,∵3tan 4θ=,∴4CP x =, 由勾股定理得,222PD DC CP =+,即22225(3)(4)x x =+,解得,5x =, 则315DC x ==,420CP x ==, ∴20DH CP ==,15FE DC ==, 设MF y =,则15ME y =+, 在Rt MDF 中,tan MF MDF DF∠=,则3tan 30MFDF y ==, 在Rt MPE 中,tan ME MPE PE ∠=,则3(15)tan 603ME PE y ==+, ∵DH DF HF =-, ∴33(15)203y y -+=,解得,7.5103y =+, ∴7.51031539.8ME MF FE =+=++≈. 答:古塔的高度ME 约为39.8m .14.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?【答案】(1)改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元;(2)共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚;方案3投入资金最少,最少资金是114万元.【解析】(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:26248 x yx y-=⎧⎨+=⎩,解得:1218 xy=⎧⎨=⎩.答:改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元.(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,依题意,得:53(8)35 1218(8)128 m mm m+-⎧⎨+-⎩,解得:83≤m≤112.∵m为整数,∴m=3,4,5,∴共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚.方案1所需费用12×3+18×5=126(万元);方案2所需费用12×4+18×4=120(万元);方案3所需费用12×5+18×3=114(万元).∵114<120<126,∴方案3改造5个甲种型号大棚,3个乙种型号大棚基地投入资金最少,最少资金是114万元.15.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【答案】(1)1502y x=-+(2)当x为10时,超市每天销售这种玩具可获利润2250元(3)当x为20时w 最大,最大值是2400元 【解析】(1)根据题意得,1502y x =-+; (2)根据题意得,()1405022502x x ⎛⎫+-+= ⎪⎝⎭, 解得:150x =,210x =, ∵每件利润不能超过60元, ∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元; (3)根据题意得,()211405030200022w x x x x ⎛⎫=+-+=-++ ⎪⎝⎭()213024502x =--+,∵102a =-<, ∴当30x <时,w 随x 的增大而增大,∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元.。
中考数学考点解答题限时训练1【有理数】1.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.2.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.4.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2﹣0.5+1.5﹣1.8+0.8根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?5.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526给出一个变换公式:将明文转换成密文,如:4⇒,即R变为L.11⇒,即A变为S.将密文转换成明文,如:21⇒3×(21﹣17)﹣2=10,即X变为P13⇒3×(13﹣8)﹣1=14,即D变为F.(1)按上述方法将明文NET译为密文;(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.【无理数与实数】6.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣17.计算:2﹣1+tan45°﹣|2﹣|+÷.8.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m+6)0的值.9.设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2=﹣5,(x2+1)⊕(x﹣1)=(因为x2+1>0)参照上面材料,解答下列问题:(1)2⊕4=,(﹣2)⊕4=;(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.10.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【代数式】11.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.12.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.13.先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.14.观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.15.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【整式】16.先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.17.某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.18.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5356891227 d(x)3a﹣b+c2a﹣b a+c1+a﹣b﹣c3﹣3a﹣3c4a﹣2b3﹣b﹣2c6a﹣3b20.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【因式分解】21.因式分解:mx2﹣my2.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.24.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.25.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分式】26.先化简,再求值:(1﹣)÷,其中m=2+.27.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.28.化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.29.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.30.在解题目:“当x=1949时,求代数式的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.【二次根式】31.先化简,再求值:,其中.32.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.33.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a =,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?34.先化简,后求值:,其中,.35.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【一元一次方程】36.解方程:﹣=1.37.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?38.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.39.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?40.如图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?中考数学考点解答题限时训练2【二元一次方程组】1.解方程组.2.根据图中的信息,求梅花鹿和长颈鹿现在的高度.3.若关于x、y的二元一次方程组的解满足x+y>﹣,求出满足条件的m的所有正整数值.4.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.5.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?【一元二次方程】6.已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.7.若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.8.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?9.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.10.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.【分式方程】11.解方程:=.12.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?13.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?14.某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?15.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【不等式(组)】16.解不等式+1>x﹣3.17.如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在.A.点A的左边B.线段AB上C.点B的右边18.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.19.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.20.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【平面直角坐标系】21.某市有A,B,C,D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.22.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.23.已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,求D点坐标.24.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.25.如图,在直角坐标系中,点A的坐标为(﹣4,0),点C为y轴上一动点,连接AC,过点C作CB⊥AC,交x轴于B.(1)当点B坐标为(1,0)时,求点C的坐标;(2)如果sin A和cos A是关于x的一元二次方程x2+ax+b=0的两个实数根,过原点O作OD⊥AC,垂足为D,且点D的纵坐标为a2,求b的值.【函数基本知识】26.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?27.某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.28.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.29.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是千米;(2)小明在图书馆看书的时间为小时;(3)小明去图书馆时的速度是千米/小时.30.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E 以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y 与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【一次函数】31.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?32.如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.33.如图,直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.34.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?35.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C 港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a=;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.【反比例函数】36.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.37.已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B 的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.38.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.39.如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.40.(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.中考数学考点解答题限时训练3【二次函数】1.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.2.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?3.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.4.抛物线y=x2﹣x+2与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,+的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.。
2022人教新版中考数学复习冲刺卷一.选择题(共10小题,满分30分,每小题3分)1.若0<m<1,m、m2、的大小关系是()A.m<m2<B.m2<m<C.<m<m2D.<m2<m2.下列计算,正确的是()A.(2a2b3)2=2ab5B.(a﹣b)2=a2﹣b2C.=x+y D.(+)(﹣)=x﹣y 3.下列图形是中心对称图形的有几个?()A.1个B.2个C.3个D.4个4.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的三视图中,是轴对称图形的是()A.主视图和左视图B.主视图和俯视图C.俯视图和左视图D.三者均是5.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣126.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣27.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A'B'C',则点A与点A'的距离是()A.B.C.27D.258.新型冠状病毒肺炎具有人传人性,调查发现1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,则x为()A.14B.15C.16D.179.如图,直线AB与⊙O相切于点C,AO交⊙O于点D,连接CD,OC.若∠AOC=50°,则∠ACD的度数为()A.20°B.25°C.30°D.35°10.如图,AC∥EF∥DB,若AC=8,BD=12,则EF=()A.3B.C.4D.二.填空题(共10小题,满分30分,每小题3分)11.2019新型冠状病毒(2019﹣nCoV),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为.12.函数y=的自变量x的取值范围是.13.分解因式:3x2﹣6x2y+3xy2=.14.已知同一象限内的两点A(3,n),B(n﹣4,n+3)均在反比例函数y=的图象上,则该反比例函数关系式为.15.计算﹣的结果是.16.若不等式组无解,则m的取值范围是.17.一个扇形的弧长是20πcm,面积是240πc m2,则这个扇形的圆心角是度.18.为了防止输入性“新冠肺炎”,某医院成立隔离治疗发热病人防控小组,决定从内科3位骨干医师中(含有甲)抽调2人组成.则甲一定会被抽调到防控小组的概率是.19.如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD 沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为.20.如图,在边长为2的正方形ABCD中,点E、F分别是边AB,BC的中点,连接EC,FD,点G、H分别是EC,FD的中点,连接GH,则GH的长度为.三.解答题(共6小题,满分50分)21.先化简,再求值:÷﹣(+1),其中x=|﹣2|+2cos45°.22.某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米.(1)请在图中画出光源O点的位置,并画出O到MN的垂线段OH(不写画法);(2)若小明身高1.5m,求OH的长.23.随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.25.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?26.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=,试求的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:当m=时,m2=,=2,所以m2<m<.故选:B.2.解:A、原式=4a4b6,所以A选项错误;B、原式=a2﹣2ab+b2,所以B选项错误;C、为最简分式,所以C选项错误;D、原式=()2﹣()2=x﹣y,所以D选项正确.故选:D.3.解:从左到右第一、第二、第三个图形是中心对称图形,第四个图形不是中心对称图形.故选:C.4.解:如图所示:是轴对称图形的是俯视图和左视图.故选:C.5.解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.6.解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x ﹣1)2﹣2.故选:B.7.解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4),∴点A与点A'的距离==,故选:B.8.解:设1人平均感染x人,依题意可列方程:(1+x)2=225.解得:x1=14,x2=﹣16(不合题意舍去),答:x为14,故选:A.9.解:∵直线AB与⊙O相切于点C,∴OC⊥AB,∴∠OCA=90°,∵OC=OD,∴∠OCD=∠ODC=(180°﹣∠COD)=×(180°﹣50°)=65°,∴∠ACD=∠OCA﹣∠OCD=90°﹣65°=25°.10.解:∵AC∥EF,∴△BEF∽△BCA,∴=,同理,=,∴+=+=1,∴+=1,解得,EF=,故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:数据0.000000125用科学记数法表示为1.25×10﹣7.故答案为:1.25×10﹣7.12.解:由题意得,2﹣x>0,解得,x<2,故答案为:x<2.13.解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)14.解:∵同一象限内的两点A(3,n),B(n﹣4,n+3)均在反比例函数y=的图象上,∴k=3n=(n﹣4)(n+3),解得n=6或n=﹣2,∵n=﹣2时,A(3,﹣2),B(﹣6,1),∴A、B不在同一象限,故n=﹣2舍去,∵k=3n=18,∴y=,故答案为y=.15.解:﹣=2﹣=.故答案为:.16.解:解不等式x﹣2<3x﹣6,得:x>2,∵不等式组无解,∴m≤2,故答案为:m≤2.17.解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.18.解:内科3位骨干医师分别即为甲、乙、丙,画树状图如图:共有6个等可能的结果,甲一定会被抽调到防控小组的结果有4个,∴甲一定会被抽调到防控小组的概率==;故答案为:.19.解:如图1中,当点B′在直线BC的下方∠CAB′=90°时,作AF⊥BC于F.∵AB=AC=,∴∠B=∠ACB=30°,∴∠BAC=120°,∵∠CAB′=90°,∴∠BAB′=30°,∴∠DAB=∠DAB′=15°,∴∠ADC=∠B+∠DAB=45°,∵AF⊥DF,∴AF=DF=AB•sin30°=,BF=AF=,∴BD=BF﹣DF=.如图2中,当点B′在直线BC的上方∠CAB′=90°时,可得∠ADB=45°,AF=DF =,BD=BF+FD=,综上所述,满足条件的BD的值时.故答案为或.20.解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=1,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),∴PD=CF=1,∴AP=AD﹣PD=1,∴PE==,∵点G,H分别是EC,FD的中点,∴GH=EP=.三.解答题(共6小题,满分50分)21.解:÷﹣(+1)=﹣==,当x=|﹣2|+2cos45°=2﹣+2×=2﹣+=2时,原式==1.22.解:(1)如图所示:(2)由题意得:BM=BD=2×1.5=3,∵CD∥OH,∴△CDG∽△OHG,∴,∵AB=CD=1.5,∴①,∵AB∥OH,∴△ABM∽△OHM,∴,∴②,由①②得:OH=4,则OH的长为4m.23.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.24.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);(2)证明:由(1)得:△AEF≌△DEB,∴AF=DB,又∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =BC =CD ,∴四边形ADCF 是菱形;(3)解:∵D 是BC 的中点,∴S 菱形ADCF =2S △ADC =S △ABC =AB •AC =×8×6=24.25.解:(1)设购买一件B 种纪念品需x 元,则购买一件A 种纪念品需(x +4)元, 依题意,得:=×,解得:x =12,经检验,x =12是原方程的解,且符合题意,∴x +4=16.答:购买一件A 种纪念品需16元,购买一件B 种纪念品需12元.(2)设购买m 件B 种纪念品,则购买(200﹣m )件A 种纪念品,依题意,得:16(200﹣m )+12m ≤3000,解得:m ≥50.答:最少要购买50件B 种纪念品.26.解:(1)证明:如图1,连接OE ,∵AB 是⊙O 的直径,∴∠AEB =90°,∴∠EAB +∠B =90°,∵OA =OE ,∴∠OAE =∠AEO ,∴∠B +∠AEO =90°,∵∠PEA =∠B ,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴=,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=,设OF=5x,则DF=12x,∴OD==13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE==4x,BE==6x,∵∠PEA=∠B,∠EPA=∠BPE,∴△PEA∽△PBE,∴,∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠PEF=∠AGF,∴∠P=∠FAG,又∵∠FAG=∠PAH,∴∠P=∠PAH,∴PH=AH,过点H作HK⊥PA于点K,∴PK=AK,∴,∵tan∠P=,设HK=5a,PK=12a,∴PH=13a,∴AH=13a,PE=36a,∴HE=HG=36a﹣13a=23a,∴AG=GH﹣AH=23a﹣13a=10a,∴.。
2023年山东省临沂市沂南县中考冲刺数学模拟试卷(一)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.2.如图,是由4个相同的正方体组合成的几何体,从它的上面看到的图形是( )A. B. C. D.3. 下列等式成立的是( )A. −x3⋅(−x)2=x5B. (a+b)2=a2+b2C. −123=−16D. (a−b)3=−(b−a)34. 如图,有A,B,C三地,B地在A地北偏西36°方向上,AB⊥BC,则B地在C地的( )A. 北偏东44°方向B. 北偏东54°方向C. 南偏西54°方向D. 南偏西90°方向5. 估算12的值在( )A. 1与2之间B. 2与3之间C. 3与4之间D. 5与6之间6.如图是一个可以自由转动的转盘,转盘分成4个大小相同的扇形,颜色分为灰、白二种颜色,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向白色区域的概率是( )A. 14B. 12C. 34D. 17. 两个工程队共同参与一段地铁工程,甲单独施工1个月完成总工程的三分之一,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工x 个月能完成总工程,根据题意可列出正确的方程是( )A. 13+16+12x =1B. 13+16=1+12xC. 13(1+12)+1x =1D. 13(1+12)+2x =18. 下列四组数中①1和1;②−1和1;③0和0;④−23和−112互为倒数的是( )A. ①②B. ①③C. ①③④D. ①④9. 下图所表示的不等式组的解集为( )A. x >3B. −2<x <3C. x >−2D. −2>x >310.如图,AB 为⊙O 的直径,C ,D 是⊙O 上的两点,若∠BDC =52°,则∠ABC 的大小为( )A. 26°B. 38°C. 52°D. 57°11. 在平面直角坐标系中,已知点(1,m ),(3,n )在抛物线y =ax 2+bx 上,且mn <0.设t =−b 2a,则t 的值可以是( ) A. 13 B. 12 C. 1 D. 32 12. 某厂的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排2人装箱,若3小时装产品150件,未装箱的产品数量(y )是时间(t )的函数,这个函数的大致图象是( )A. B.C. D.二、填空题(本大题共4小题,共12分)13. 因式分解:2x2−x3−x=______.14. 已知二元一次方程组2m−n=3m−2n=4,则m+n的值是______.15. 将平面直角坐标系中的点A(−1,2)向右平移3个单位,得到点A1,则点A1的坐标为______ .16. 在正方形ABCD中,点O、点G分别是BD,BF形的中点,DE=2AE,有下列结论:①△EOD≌△FOB;②S△EFC=S△BOF;③BE2=BO⋅BD;④4S△BDE=4S△BOG;其中正确的结论是______.(填写序号)三、解答题(本大题共7小题,共72分。
北京市第四中学2024学年中考冲刺卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(3,-1)B.(2,﹣1)C.(1,-3)D.(﹣1,3).若不考虑接缝,它是一个半径为12cm,圆心角为60的扇形,2.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开则()A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为235cmD.圆锥形冰淇淋纸套的高为63cm3.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB 的最小值为()A.B.C.10 D.=,4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB2∠=时,AC等于()B60A.2B.2C.6D.225.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2)B.8x+8 C.8(x+1)D.4(x+1)6.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.317.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A.3-B.3C.2D.88.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.833π-C.8233π-D.843π-9.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.110.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<0二、填空题(共7小题,每小题3分,满分21分)11.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.12.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.13.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=23+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.14.点(a-1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是________.15.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.16.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.17.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.19.(5分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)20.(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.21.(10分)化简:(x-1-2x2x1-+)÷2x xx1-+.22.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题 1.-15的倒数是( ) A. 15 B. -15 C. -5 D. 52.下列”QQ 表情”中属于轴对称图形的是( )A. B. C. D.3. 下列计算正确的是A. 4312a a a ⋅=B. 93=C. ()02x 10+=D. 若x 2=x ,则x=1 4.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A. 32︒B. 58︒C. 138︒D. 148︒5.如图,△ABC 内接于⊙O ,AD 是⊙O 直径,∠ABC =25°,则∠CAD 的度数是( )A. 25°B. 60°C. 65°D. 75°6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数2 4 4 5 1则这12名队员年龄的众数、中位数分别是()A. 5,20岁B. 5,21岁C. 20岁,20岁D. 21岁,20岁7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A. 8.6分钟B. 9分钟C. 12分钟D. 16分钟8.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC =∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个二.填空题9.因式分解:xy3﹣x=_____.10.在函数y=3x+中,自变量x的取值范围是_____.11.新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.12.不等式组2340x xx+<⎧⎨-≤⎩解集为_____.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是_____.14.甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数x甲=x乙=8.5,则测试成绩比较稳定的是.(填”甲”或”乙”)15.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m到达A处,在A处观测C地的俯角为30°,则B、C两地之间的距离为__________m.16.如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=14OA=2,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为_____.三.解答题17.计算:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2.18.计算22a b11. ab a b-⎛⎫÷-⎪⎝⎭19.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.20.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?21.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)22.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?23. 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x值.24.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.答案与解析一.选择题 1.-15的倒数是( ) A. 15 B. -15 C. -5 D. 5【答案】C【解析】 试题分析:根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案. 试题解析:-15的倒数是-5; 故选C .考点:倒数.2.下列”QQ 表情”中属于轴对称图形的是( )A. B. C. D. 【答案】C【解析】【分析】根据轴对称图形的概念,一一判断四个选项即可得到答案.【详解】解:A 、B 、D 都不关于某一条直线对称,故不是轴对称图形,C 关于直线对称,故是轴对称图形.故选:C .【点睛】本题考查了轴对称图形的概念(如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形),掌握轴对称图形的概念是解题的关键.3. 下列计算正确的是A. 4312a a a ⋅=93= C. ()02x 10+= D. 若x 2=x ,则x=1 【答案】B【解析】试题分析:根据同底数幂的乘法,算术平方根,零指数幂运算法则和解一元二次方程逐一计算作出判断: A 、43437a a a a +⋅==,故本选项错误;B 29333===,故本选项正确;C 、∵x 2+1≠0,∴()02x 11+=,故本选项错误;D 、由题意知,x 2﹣x=x(x ﹣1)=0,则x=0或x=1.故本选项错误.故选B .4.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A. 32︒B. 58︒C. 138︒D. 148︒【答案】D【解析】【分析】 根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【详解】如图,由三角形的外角性质得:∠3=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠3=148°.故选D .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是( )A. 25°B. 60°C. 65°D. 75°【答案】C【解析】【分析】首先根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理的推论可得∠D=∠ABC=25°,继而求得答案.【详解】解:∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=25°,∴∠CAD=90°﹣∠D=65°.故选:C.【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.6.某社区青年志愿者小分队年龄情况如下表所示:则这12名队员年龄的众数、中位数分别是()A. 5,20岁B. 5,21岁C. 20岁,20岁D. 21岁,20岁【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】这组数据中出现次数最多的是21,所以众数为21岁,第8、9个数据分别是20岁、20岁,所以这组数据的中位数为20220=20(岁),故选:D.【点睛】本题考查中位数和众数,熟练掌握中位数的求法是解答本题关键.7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A. 8.6分钟B. 9分钟C. 12分钟D. 16分钟【答案】C【解析】【分析】根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.【详解】解:把上下坡的速度求出来是解题的关键,根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而下坡速度是0.5千米/分钟,回家时下坡是1千米,上坡路程是2千米,所以他从学校回到家需要的时间是120.50.2=12分钟.故选C.【点睛】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】试题解析:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°, ∴∠CAD=∠AFG ,在△FGA 和△ACD 中,{G CAFG CAD AF AD∠∠∠∠===,∴△FGA ≌△ACD(AAS),∴AC=FG ,①正确;∵BC=AC ,∴FG=BC ,∵∠ACB=90°,FG ⊥CA , ∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF=90°,S △FAB =12FB•FG=12S 四边形CBFG ,②正确; ∵CA=CB ,∠C=∠CBF=90°, ∴∠ABC=∠ABF=45°,③正确; ∵∠FQE=∠DQB=∠ADC ,∠E=∠C=90°, ∴△ACD ∽△FEQ ,∴AC :AD=FE :FQ ,∴AD•FE=AD 2=FQ•AC ,④正确;故选D .【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.二.填空题9.因式分解:xy 3﹣x =_____.【答案】x (y +1)(y ﹣1)【解析】【分析】原式提取x ,再利用平方差公式分解即可.【详解】解:原式=x (y 2﹣1)=x (y +1)(y ﹣1),故答案为:x (y +1)(y ﹣1) .【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10.在函数y x的取值范围是_____.【答案】x≥﹣3【解析】【分析】因为二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可.【详解】解:根据题意得:x+3≥0,解得:x≥﹣3.【点睛】本题考查了求自变量的取值范围,解题的关键是掌握当函数表达式是二次根式时,被开方数为非负数.11.新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.【答案】1.169×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:1169亿=116900000000用科学记数法表示为:1.169×1011.故答案为:1.169×1011.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.不等式组2340x xx+<⎧⎨-≤⎩的解集为_____.【答案】1<x≤4【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+2<3x,得:x>1,解不等式x﹣4≤0,得:x≤4,则不等式组的解集为:1<x≤4,故答案为:1<x≤4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是_____.【答案】AC⊥BD【解析】【分析】根据三角形的中位线定理,可以证明所得四边形的两组对边分别和两条对角线平行,所得四边形的两组对边分别是两条对角线的一半,再根据平行四边形的判定就可证明该四边形是一个平行四边形;所得四边形要成为矩形,则需有一个角是直角,故对角线应满足互相垂直.【详解】解:如图,∵E,F分别是边AB,BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形;要使四边形EFGH是矩形,则需EF⊥FG,即AC⊥BD;故答案为:AC⊥BD.【点睛】此题主要考查了三角形的中位线定理的运用.同时熟记此题中的结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.14.甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数x甲=x=8.5,则测试成绩比较稳定的是.(填”甲”或”乙乙”)【答案】甲【解析】【分析】分别计算出两人的方差,方差较小的成绩比较稳定.=(7×2+9×3+10×2+3×8)÷10=8.5,【详解】解:x甲S2甲=[(7-8.5)2+(7-8.5)2+(8-8.5)2+(8-8.5)2+(8-8.5)2+(9-8.5)2+(9-8.5)2+(9-8.5)2+(10-8.5)2+(10-8.5)2]÷10=1.05,x=8.5,乙S2乙=[(7-8.5)2+(7-8.5)2+(7-8.5)2+(8-8.5)2+(8-8.5)2+(9-8.5)2+(9-8.5)2+(10-8.5)2+(10-8.5)2+(10-8.5)2]÷10=1.45,∵S2甲<S2乙,∴甲组数据稳定.故答案为:甲.【点睛】此题主要考查了方差公式的应用,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.15.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m到达A处,在A处观测C地的俯角为30°,则B、C两地之间的距离为__________m.【答案】3【解析】【分析】利用题意得到∠C=30°,AB=100,然后根据30°正切可计算出BC .【详解】根据题意得∠C=30°,AB=100,∵tanC=AB BC , ∴BC=0100tan 30=0100tan 30=100=100333=1003(m ). 故答案为1003.【点睛】本题考查了解直角三角形的应用-仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.16.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ∥BC ,D 是BC 上一点,BD =14OA =2,AB =3,∠OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持∠DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.【答案】21233y x x =+ 【解析】【分析】 首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA 2,在Rt △ABM 中,已知∠OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证△ODE ∽△AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ⊥x 轴于M .在Rt △ABM 中,∵AB =3,∠BAM =45°,∴AM =BM 32,∵BD =14OA ,OA ∴=,∴BC =OA ﹣AM =CD =BC ﹣BD =2,∴D ),32OD ∴== . 连接OD ,则点D 在∠COA 的平分线上,所以∠DOE =∠COD =45°.又∵在梯形DOAB 中,∠BAO =45°,∴由三角形外角定理得:∠ODE =∠DEA ﹣45°,又∠AEF =∠DEA ﹣45°,∴∠ODE=∠AEF ,∴△ODE ∽△AEF ,OE OD AF AE∴= 即x y =∴y 与x 解析式为:2133y x x =-+.故答案为:2133y x x =-+.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.三.解答题17.计算:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2.【答案】1023 3-【解析】【分析】分别计算绝对值、零指数幂,特殊角的三角形函数值,及负整数指数幂,然后得出各部分的最简值,继而合并可得出答案.【详解】解:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2=13114 3⎛-+⨯⎝⎭=11423 3-+-=1023 3-【点睛】本题主要考查了绝对值的计算、零指数幂,特殊角的三角形函数值、及负整数指数幂的计算,熟练掌握各知识点是解题的关键.18.计算22a b11. ab a b-⎛⎫÷-⎪⎝⎭【答案】a b--.【解析】【分析】先计算括号内分式的减法,再将除法转化为乘法,约分即可得.【详解】解:原式()()a b a b b a ab ab+--=÷, ()()()a b a b ab ab a b +-=⋅--, ()a b =-+,a b =--.【点睛】考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.19.如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东75°方向上,距离点P 320千米处.(1)说明本次台风会影响B 市;(2)求这次台风影响B 市的时间.【答案】(1)会;(2)8小时【解析】分析】(1)作BH ⊥PQ 于点H ,在Rt △BHP 中,利用特殊角的三角函数值求出BH 的长与200千米相比较即可.(2)以B 为圆心,以200为半径作圆交PQ 于P 1、P 2两点,根据垂径定理即可求出P 1P 2的长,进而求出台风影响B 市的时间.【详解】(1)如图所示:∵台风中心位于点P ,并沿东北方向PQ 移动,B 市位于点P 的北偏东75°方向上,∴∠QPG=45°,∠NPB=75°,∠BPG=15°,∴∠BPQ=30°作BH ⊥PQ 于点H ,在Rt △BHP 中,由条件知,PB=320,得 BH=320sin30°=160<200,∴本次台风会影响B市.(2)如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=160,由条件得BP1=BP2=200,∴所以P1P2 = 222200160=240∴台风影响的时间t =24030= 8(小时).20.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【答案】(1)4%;(2)72°;(3)落在B等级内;(4)380人【解析】【分析】(1)先求出总人数,再求D成绩的人数占的比例;(2)C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°,(3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A级和B级的学生数=(13+25)÷10%=380人,【详解】(1)总人数为25÷50%=50人,D成绩的人数占的比例:2÷50=4%;(2)表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;(4)这次考试中A级和B级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人).【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键.21.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)【答案】(1)35(2)32(3)43【解析】【分析】(1)根据圆周角定理可得到∠ACB是直角,再根据三角函数求解即可;(2)首先根据垂径定理得出E是AC中点.再根据中位线定理求解即可;(3)根据同弧或等弧所对的圆周角相等可得∠ADC=∠ABC,在RtACB中求出tan∠ABC即可.【详解】解:(1)∵AB⊙O直径∴∠ACB=90°∵AB=5,BC=3∴sin∠BAC==35;(2)∵OE⊥AC,O是⊙O的圆心∴E是AC中点.又∵O是AB的中点.∴OE=12BC=32;(3)在RtACB中,∠ACB=90°∵AB=5,BC=3∴=4 ∵∠ADC=∠ABC∴tan∠ADC=tan∠ABC=43 ACBC=.【点睛】此题主要考查锐角三角函数的定义,综合运用了圆周角定理、中位线定理、勾股定理等知识点.求出OE是△ACB的中位线和得出tan∠ADC=tan∠ABC是解题的关键.22.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x,根据”2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据”前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.23.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.BM=时,四边形ABCN面积最大为10;(3)当点M运动到BC的中点时,【答案】(1)证明见解析;(2)当2∽,此时2ABM AMNx=.【解析】试题分析:(1)、根据AM⊥MN得出∠CMN+∠AMB= 90°,根据Rt△ABM得出∠CMN=∠MAB,从而得出三角形相似;(2)、根据三角形相似得出CN与x的关系,然后根据梯形的面积计算法则得出函数解析式;(3)、根据要使三角形相似则需要满足,结合(1)中的条件得出BM=CM,即M为BC的中点. 试题解析:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C =90°,∵AM⊥MN ∴∠AMN= 90°. ∴∠CMN+∠AMB= 90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB.∴Rt△AMN∽Rt△MCN;(2)∵Rt△ABM∽Rt△MCN,∴∴∴CN=∴y===当x=2时,y取最大值,最大值为10;故当点肘运动到BC的中点时,四边形ABCN的面积最大,最大面积为10;(3)∵∠B=∠AMN= 90°,∴要使Rt△ABM∽Rt△AMN,必须有由(1)知∴BM=MC∴当点M运动到BC的中点时,Rt△ABM∽Rt△AMN,此时x=2考点:(1)、相似三角形的应用;(2)、二次函数的应用24.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C 、A 、A′,求此抛物线的解析式;(2)求平行四边形ABOC 和平行四边形A′B′OC′重叠部分△OC′D 的周长;(3)点M 是第一象限内抛物线上的一动点,问:点M 在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M 的坐标.【答案】(1)y=-x 2+2x+3;(2)2101+;(3)当点M 的坐标为(32,154)时,△AMA′的面积有最大值,且最大值为278. 【解析】【分析】(1)根据旋转的性质,可得A′点,根据待定系数法,可得答案;(2)根据相似三角形的判定与性质,可得答案;(3)根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】解:(1)∵▱A′B′O′C′由▱ABOC 旋转得到,且A 的坐标为(0,3),得点A′的坐标为(3,0).设抛物线的解析式为y=ax 2+bx+c ,将A ,A′C 的坐标代入,得03930a b c c a b c -+⎧⎪⎨⎪++⎩===,解得123a b c -⎧⎪⎨⎪⎩===, 抛物线的解析式y=-x 2+2x+3;(2)∵AB ∥OC ,∴∠OAB=∠AOC=90°, ∴22=10OA AB +又∠OC′D=∠OCA=∠B ,∠C′OD=∠BOA ,∴△C′OD ∽△BOA ,又OC′=OC=1,∴1010C OD OCBOA OB''==的周长的周长,又△ABO的周长为4+10,∴△C′OD的周长为4+1010210=1+105().(3)作MN⊥x轴交AA′于N点,设M(m,-m2+2m+3),AA′的解析式为y=-x+3,N点坐标为(m,-m+3),MN的长为-m2+3m,S△AMA′=12MN•x A′=12(-m2+3m)×3=-32(m2-3m)=-32(m-32)2+278,∵0<m<3,∴当m=32时,-m2+2m+3=154,M(32,154),△AMA′的面积有最大值278.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的判定与性质;解(3)的关键是利用面积的很差得出二次函数.。
二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子. 2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.=x , y , n 都是正整数)例题与求解【例1】 当x =时,代数式32003(420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、20032-(绍兴市竞赛试题)【例2】 化简(1(ba b ab b -÷-- (黄冈市中考试题)(2(五城市联赛试题)(3(北京市竞赛试题)(4(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比6大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y==想一想:设x=求432326218237515x x x xx x x--++-++的值. (“祖冲之杯”邀请赛试题)的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】 设实数x ,y 满足(1x y =,求x +y 的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】 (1的最小值.(2的最小值.(“希望杯”邀请赛试题)解题思路:对于(1)为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】 设2)m a =≤≤,求1098747m m m m m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:7()3“希望杯”邀请赛试题)2.若x y x y+=-=,则xy=_____(北京市竞赛试题)3.+(“希望杯”邀请赛试题)4. 若满足0<x<y=x,y)是_______(上海市竞赛试题)5.2x-3,则x的取值范围是()A. x≤1B. x≥2C. 1≤x≤2D. x>06)A.1B C. D. 5(全国初中数学联赛试题)7.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是()A.1999 B. 2000 C. 2001D. 不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A. 0个B. 1个C. 2个D. 3个(全国初中数学联赛试题)9、化简:(1(2(3(4(天津市竞赛试题)(5(“希望杯”邀请赛试题)10、设52x=,求代数式(1)(2)(3)(4)x x x x++++的值.(“希望杯”邀请赛试题)117x=,求x的值.12、设x x ==(n 为自然数),当n 为何值,代数式221912319x xy y ++的 值为1985?B 级1. 已知3312________________x y x xy y ==++=则. (四川省竞赛试题)2. 已知实数x ,y 满足(2008x y =,则2232332007x y x y -+--=____(全国初中数学联赛试题)3. 已知42______1x x x ==++2x 那么. (重庆市竞赛试题)4. a =那么23331a a a ++=_____. (全国初中数学联赛试题)5. a ,b 为有理数,且满足等式14a +=++则a +b =( )A . 2B . 4C . 6D . 8(全国初中数学联赛试题)6. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b(全国初中数学联赛试题)7.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 8. 若[a ]表示实数a 的整数部分,则等于( )A . 1B . 2C . 3D . 4(陕西省竞赛试题)9. 把(1)a - )A .B C. D . (武汉市调考题)10、化简:(1 (“希望杯”邀请赛试题)(210099++(新加坡中学生竞赛试题)(3(山东省竞赛试题)(4 (太原市竞赛试题)11、设01,x << 1≤<.(“五羊杯”竞赛试题)12的最大值.13、已知a , b , c为有理数,证明:222a b c a b c ++++为整数.二次根式的化简与求值例1 A 提示:由条件得4x 2-4x -2 001=0. 例2 (1)原式=()aba b a b++()1ba b b a b⎡⎤⎢⎥-⎢⎥+-⎣⎦·a b b -=2ab (2)原式=()()()()257357257357+-++++=26-5.(3)原式=()()()()633326332+-+++=316332+++=62-;(4)原式=()()()5332233323325231-+-+-++=332-.例3 x +y =26,xy =1,于是x 2+y 2=(x +y )2-2xy =22,x 3+y 3=(x +y )(x 2-xy +y 2)=426,x 6+y 6=(x 3+y 3)2-2x 3y 3=10582.∵0<65-<1,从而0<()665-<1,故10 581<()665+<10582. 例4 x +21x +=211y y ++=21y +-y …①;同理,y +21y +=211x x ++=21x +-x …②.由①+②得2x =-2y ,x +y =0. 例5 (1)构造如图所示图形,PA =24x +,PB =()2129x -+.作A 关于l 的对称点A ',连A 'B 交l 于P ,则A 'B =22125+=13为所求代数式的最小值. (2)设y =()2245x -++()2223x -+,设A (x ,0),B (4,5),C (2,3).作C 关于x 轴对称点C 1,连结BC 1交x 轴于A 点.A 即为所求,过B 作BD ⊥CC 1于D 点,∴AC +AB =C 1B =2228+=217. 例 6 m =()2212111a a -+-•++()2212111a a ---•+=()211a -++()211a --.∵1≤a ≤2,∴0≤1a -≤1,∴-1≤1a --1≤0,∴m =2.设S =m 10+m 9+m 8+…+m -47=210+29+28+…+2-47 ①,2S =211+210+29+…+22-94 ②,由②-①,得S =211-2-94+47=1 999.A 级 1.1 2.52- 3.0 提示:令1997=a ,1999=b ,2001=c . 4. (17,833),(68,612),( 153,420) 5.B 6.C 7.B 8.A 9.(1)()2x y + (2)原式=32625++-=()()22325+-=325++.(3)116- (4)532--(5)32+ 10.48提示:由已知得x 2 +5x =2,原式=(x 2+ 5x +4)(x 2+5x +6). 11.由题设知x >0,(27913x x +++27513x x -+)(27913x x ++-27513x x -+)=14x .∴27913x x ++-27513x x -+=2,∴227913x x ++=7x +2,∴21x 2-8x-48=0.其正根为x =127. 12.n =2 提示:xy =1,x +y =4n +2. B 级 1. 64 2.1 提示:仿例4,由条件得x =y ,∴(x -22008x -)2=2 008,∴x 2-2008-x 22008x -=0,∴22008x -(22008x --x )=0,解得x 2=2 008.∴原式=x 2-2 007=1. 3.9554.1 提示:∵(32-1)a =2-1,即1a=32-1. 5.B 提示:由条件得a +b 3=3+3,∴a =3,b =1,∴a +b =4. 6.B 提示:a -b =6-1-2>322+-1-2=0.同理c -a >0 7.B 8.B 9.D 提示:注意隐含条件a -1<0. 10.(1)1 998 999. 5 提示:设k =2 000,原式=212k k --. (2)910 提示:考虑一般情形()111n n n n +++=1n -11n + (3)原式=()()8215253532+-++-=()()253253532+-++-=53+.(4)2-53- 11.构造如图所示边长为1的正方形ANMD ,BCMN .设MP =x ,则CP =21x +,AP =()211x +-,AC =5,AM =2,∴AC ≤PC +PA <AM +MC ,,则5≤21x ++()211x +-<1+2 12.设y =2841x x -+-2413x x -+=()2245x -+-()2223x -+,设A (4,5),B (2,3),C (x ,0),易求AB 的解析式为y =x +1,易证当C 在直线AB 上时,y 有最大值,即当y =0,x =-1,∴C (-1,0),∴y =22. 13.33a bb c ++=()()()()3333a bb cb c b c +-+-=()222333ab bc bac b c -+--为有理数,则b 2 -ac =0.又a 2+b 2+c 2=(a +b +c )2-2(ab +bc +ac )=(a +b +c )2-2(ab +bc +b 2)=()2c b a ++-2b (a +b +c )=(a +b+c )(a -b +c ),∴原式=a -b +c 为整数.。
…数学中考冲刺训练(一)说明:本卷试题针对中考数学卷选择题及填空题较难题进行组题、汇编。
本卷精选、汇编近几年全国中考填空题、选择题中的稍难题、难题。
要求:认真、独立完成。
要具备探索、持之以恒的精神。
1.(2018泉州)已知一组数据54321,,,,a a a a a 的平均数为8,则另一组数据10,10,10321+-+a a a ,10,1054+-a a 的平均数为( )A 、6B 、8C 、10D 、122.(2017福州质检)如图,在平面直角坐标系中,△PQR 可以看作是△ABC 经过下列变换得到:①以点A 为中心,逆时针方向旋转90; ②向右平移2个单位; ③向上平移4个单位.下列选项中,图形正确的是( ).3. (2017鲤城区)已知直线3y x =-与函数2y x=的图象相交于点(a ,b ),则22a b +的值是( ).A .13B .11C .7D .54.(2017年定西)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BD =( ) A .2B .4C.D.5. 如图,在Rt △ABC 中,90∠=A ,AB =AC=,点E 为AC 的 中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C .D .6. 骰子是一种特的数字立方体(见图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A B7.(2017宁夏)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( )C BCA .2+10B .2+210 C .12 D .188.(2017河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形 数”,而把1、4、9、16 … 这样的数称为“正方形数”.CFAE ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 4从图中可以发现,任何一个大于1的“正方形数”都 可以看作两个相邻“三角形数”之和.下列等式中, 符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+318.(重庆江津)在△ABC 中,BC =10,B 1 、C 1分别 ① ② ③ 是图①中AB 、AC 的中点,在图②中1B ,2B ,1C ,2C 分别是AB ,AC 的三等分点,在图③中1B ,2B ,……,9B ;1C ,2C ……,9C 分别是AB 、AC 的10等分点,则112299B C B C B C ++⋅⋅⋅+的值是 A . 30 B . 45 C .55 D .609.(2017四川眉山)如图,以点O 为圆心的两个同心圆,半径分别为5和3, 若大圆的弦AB 与小圆相交,则弦长AB 的取值范围是( ) A .8≤AB ≤10 B .AB ≥8 C .8<AB ≤10 D .8<AB <1012.(2017四川眉山)如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( )A .B .5C .D13.如图所示,一般书本的纸张是在原纸张多次对开得到的.矩形 ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依此类推. 若各种开本的矩形都相似,那么AB AD 等于( ).BA .0.618 B.C. D. 214.(2017黄冈)已知四条直线y =k x -3,y =-1,y =3和x =1所围成的四积是12,则k 的值为( )BA .2或-1B .1或-2C .3D .4 15.(2017河南)如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC ,设点A 的坐标为),(b a 则点A 的坐标为( )D(A )),(b a -- (B ))1.(---b a (C ))1,(+--b a (D ))2,(---b a 16.如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形, 点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向 平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形 EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( )第17题图x xx xx 3413 15171917.(四川资阳)如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是( )A. 563B. 25C. 1123D. 5618.(湖北鄂州)如图,△ABC 中,∠C =90°,AC =8cm ,AB =10cm ,点P 由点C 出发以每秒2 cm 的速度沿线CA 向点A 运动(不运动至A 点), ⊙O 的圆心在BP 上,且⊙O 分别与AB 、AC 相切,当点P 运动2秒钟时, ⊙O 的半径是( ) A.712cm B.512cm C.35cm D.2cm 19.如图所示,在完全重合放置的两张矩形纸片ABCD 中,AB=4,BC=8,将上面的矩形 纸片折叠,使点C 与点A 重合,折痕为EF ,点D 的对应点为G ,连接DG,,则图中阴 影部分的面积为( ).C A.334 B. 6 C .518 D.53620. 抛物线c bx ax y ++=2图像如图所示,则一次函数 24b ac bx y +--=与反比例函数 a b cy x ++=在同一坐标系内的图像大致为() 21. 观察下列三角形数阵:则第50行的最后一个数是( )D A.1225 B.1260 C.1270 D.127522.如图,一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,则该质点到原点O 的距离为 ( ) D A.n 211-B.121-n C . 1)21(+n D.n 2123. 32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) AA 、41B 、39C 、31D 、29 24. 如图,在一块形状为直角梯形的草坪中, 修建了一条由A →M →N →C 的小路(M 、N 分别是AB 、CD 中点).极少数同学为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们仅少走了( )B A. 7米 B. 6米 C. 5米 D. 425. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线x a y -=(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧)横坐标最小值为3-,则点D 的横坐标最大值为( )DA .-3B .1C .5D .832 3 5 33 79 111 2 3 4 5 6 7 8 9 10 11 12 13 14 15构 建 和 谐 社 会 图1 第26题图 构 建 和 1 23 图2 第27题图第28题图(第11题图)EAB单位:mml 1l 2O 20o20o) 26. 如图(1)是一个小正方体的侧面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是( )B A .社 B .会 C .和 D .谐27. 如图,已知EF 是⊙O 的直径,把∠A 为600的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P ,点B 与点O 重合;将三角形ABC 沿OE 方向平移,使得点B 与点E 重合为止.设∠POF=x 0,则x 的取值范围是( ) A B C A .30≤x ≤60 B .30≤x ≤90 C .30≤x ≤120 D .60≤x ≤12028.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠+∠12 之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A.∠=∠+∠A 12 B.212∠=∠+∠A C.3212∠=∠+∠A D.)21(23∠+∠=∠A 29.如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图像大致是( )30.(绍兴)如图为某机械装置的截面图,相切的两圆⊙O 1,⊙O 2均与⊙O 的弧AB 相切, 且O 1O 2∥l 1( l 1为水平线),⊙O 1,⊙O 2的半径均为30 mm , 弧AB 的最低点到l 1的距离为30 mm ,公切线l 2与l 1间的 距离为100 mm .则⊙O 的半径为( ) BA.70 mmB.80 mmC.85 mmD.100 mm31.如图,小陈从O 点出发,前进5米后向右转20O,再前进5米后又向右转20O ,……,这样一直走下去,他第一次回到出发点O 时一共走了( )C A .60米 B .100米 C .90米 D .120米 32.(2017厦门)药品研究所开发一种抗菌素新药, 经过多年的动物实验之后,首次用于临床人体试验, 测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则 当1≤x ≤6时,y 的取值范围是( )CA . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤1633.(2017长春)如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路 返回.点P 在运动过程中速度大小不变.则以点A为圆心,线段AP 长为半径的圆的面 积S 与点P 的运动时间t 之间的函数图象大致为( )ADCBA E H34. 如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC中点, MN ⊥AC 于点N ,则MN 等于( )CA.65 B. 95C. 125D. 16535.(2017贵州)如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低, 且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中, 水位上升后,乌鸦喝到了水。