一次函数的图像和性质
- 格式:doc
- 大小:44.50 KB
- 文档页数:6
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
一次函数图像和性质小结一般地,形如y=kx+b(k、b是常数,且k≠0•)的函数,•叫做一次函数(•linear function).一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k≠0•).所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定.一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b.一次函数的图像:k>0 b>0 函数经过一、三、二象限k>0 b<0 函数经过一、二、三象限k<0 b>0 函数经过一、二、四象限k<0 b<0 函数经过二、三、四象限上面性质反之也成立1.b的作用在坐标平面上画直线y=kx+b (k≠0),截距b相同的直线经过同一点(0,b). 2.k的作用k值不同,则直线相对于x轴正方向的倾斜程度不同.(1)k>0时,K值越大,倾斜角越大(2)k<0时,K值越大,倾斜角越大说明(1)倾斜角是指直线与x轴正方向的夹角;(2)常数k称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论.3.直线平移一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx的图像平移得到.当b>0时,向上平移b个单位;当b<0时,向下平移|b|个单位.4.直线平行如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行.如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 .1.一次函数与一元一次方程的关系一次函数y=kx+b的图像与x轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数y=kx+b的图像与x轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想.2.一次函数与一元一次不等式的关系由一次函数y=kx+b的函数值y大于0(或小于0),就得到关于x的一元一次不等式kx+b>0(或kx+b<0).在一次函数y=kx+b的图像上且位于x轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解.。
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
一次函数的图像与性质一次函数,也被称为线性函数,是指一个变量与另一个变量之间的关系可以表示为 y = ax + b 的函数形式,其中 a 和 b 是常数。
本文将探讨一次函数的图像及其相关性质。
I. 一次函数的图像一次函数的图像是一条直线,在直角坐标系中表示为一条斜率为a、截距为 b 的直线。
斜率 a 决定了直线的倾斜方向和角度。
若 a > 0,则直线向右上方倾斜;若 a < 0,则直线向右下方倾斜;若 a = 0,则直线为水平直线。
截距 b 则表示了直线与 y 轴的交点。
II. 一次函数的性质1. 斜率一次函数的斜率 a 表示了直线的倾斜程度。
斜率的绝对值越大,则直线越陡峭;斜率为正值时表示直线上升,为负值时表示直线下降;斜率为零时表示直线水平。
通过斜率,我们可以判断一次函数的增减性。
2. 截距截距 b 表示了一次函数与 y 轴的交点,即当 x = 0 时,函数的取值。
截距的正负决定了直线在 y 轴上的位置,正值表示与 y 轴正向交点在上方,负值则在下方。
截距的大小也影响了直线与坐标轴的交点。
3. 零点一次函数的零点是指函数取值为零的点,也就是使得y = 0 的x 值。
通过求解一次函数的零点,我们可以求得函数与 x 轴的交点。
4. 增减性一次函数的增减性由斜率来决定。
当斜率a > 0 时,函数单调递增;当斜率 a < 0 时,函数单调递减;当斜率 a = 0 时,函数为常数函数,不具有增减性。
5. 定义域与值域一次函数的定义域为所有实数,因为 x 可以取任意实数值;值域则由斜率和截距来决定。
当斜率 a > 0 时,值域为 (-∞, +∞);当斜率 a < 0 时,值域为(+∞, -∞);当斜率 a = 0 时,值域只有截距 b。
6. 图像平移一次函数的图像可以通过改变斜率或截距来进行平移变换。
增加或减小截距 b 可以使得图像上下平移,增加或减小斜率 a 则使得图像左右平移。
一次函数的图像和性质教案一次函数是一种形式为y=ax+b的函数,其中a和b是常数,a 称为斜率,b称为截距。
教案:一、概念:一次函数是指形式为y=ax+b的函数,其中a和b是常数,并且a≠0。
二、图像:1. 当a>0时,一次函数的图像是一条斜率为正的直线,向右上方倾斜。
2. 当a<0时,一次函数的图像是一条斜率为负的直线,向右下方倾斜。
3. 当a=0时,一次函数的图像是一条水平直线。
三、性质:1. 斜率:斜率a表示函数图像上每向右移动一个单位,y的变化量。
当a>0时,y随x的增加而增加,当a<0时,y随x的增加而减少。
2. 截距:截距b表示函数图像与y轴的交点,也就是当x=0时的函数值。
3. 变化率:一次函数的变化率恒定,即斜率a固定,表示函数图像上每向右移动一个单位,y的变化量始终相同。
4. 直线性:一次函数的图像是一条直线,没有曲线部分。
四、例题练习:1. 已知一次函数的斜率为2,截距为3,求该一次函数方程。
解:根据斜率-截距的形式,可得到方程为y=2x+3。
2. 已知一次函数的图像过点(3,5),斜率为-1,求该一次函数方程。
解:由于斜率为-1,方程形式为y=-x+b。
将点(3,5)代入可得5=-3+b,解方程得b=8,所以方程为y=-x+8。
五、课堂练习:1. 根据一次函数图像判断斜率的正负。
给出以下函数图像的斜率的正负并说明理由:(a) (b) (c) (d)2. 根据一次函数的斜率和截距,求出函数的方程:(a) 斜率为3,截距为4的一次函数;(b) 斜率为-2,经过点(3,5)的一次函数。
六、拓展思考:一次函数的图像与其斜率和截距有哪些关系?如何根据一次函数的方程确定其图像的性质?。
《一次函数的图像和性质》说课稿说课者:夏官营初级中学范立东一、教材分析:1、教材的地位与作用:本节课的教学内容是一次函数的图像和性质。
学本节课之前,学生已学习了变量与函数、平面直角坐标系、以及一次函数的概念等有关的知识。
本节是继续学习反比例函数、二次函数的图像和性质的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础。
数形结合的思想、化归思想及解析法思想是本节内容所包含的主要数学思想。
根据《数学课程标准》的要求,结合以上分析从而确定教学目标。
2、教学目标①认知目标:掌握一次函数图像的画法;结合图像,使学生初步理解一次函数的性质;②技能目标:渗透数形结合的思想和函数的思想,培养学生抽象思维能力,形成良好的思维品质;并利用一次函数的性质解决有关的实际问题。
③情感目标:通过多媒体演示画面,培养学生初步的辩证唯物主义“运动变化”的观点和浓厚的学习兴趣。
3、重点与难点重点:一次函数的图像和性质难点:一次函数的图像关系,推导过程较为复杂二、教法分析与学法指导在导学过程中,坚持启发式教学,以谈话法为主。
充分调动学生学习积极性和主动性,突出学生的主体地位,通过自学、讨论、归纳、辨析等方法对学生进行学法指导,培养他们动手、动口、动脑的能力,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,适当地辅以电脑多媒体技术,演示运动变化规律,揭示事物本质特征,激发学生兴趣,帮助学生理解一次函数的性质。
三、教学过程(一) 复习引入:复习引入阶段我设计了两个问题:(1) 复习一次函数y=kx+b的概念。
请学生回答这个问题并强调:我们不仅要掌握好一次函数的概念,也要掌握好一次函数的图像和性质(由此引出本课课题,达到了新旧联系、自然过渡的目的)。
(二)新课讲解:1.试着做做:已知一次函数y=2x-1(1)填写下表x -3 -2 -1 0 1 2y=2x-1(2)(2)以(1)中得到的每对对应值分别为横坐标和纵坐标,在直角坐标系中描出相应的点(3)把由(2)得到的点依次连结起来,就得到y=2x-1的图像2.一起探究问题1:一次函数y=2x-1图像是什么形状呢?问题2:凡是满足关系式y =2x-1的x,y的值所对应的点(x,y),如(1,1),(4,7)….都在一次函数y=2x-1的图像上吗?问题3:请你从一次函数y=2x-1图像上任取一点,检验该点的横坐标x与纵坐标y是否满足关系式y=2x-1.问题4:一次函数y=kx+b(k≠0)的图像都是一条直线吗?举例验证。
问题5:几个点可以确定一条直线?问题6;画一次函数图像时,只要取几个点?3.例题讲解:画一次函数y= - 1/2x+1的图像。
你取的是哪几个点?和同学比较一下,怎样取比较简单?注:取坐标轴上的点或是坐标是整数的点比较简单4.练习:在同一直角坐标系中画出下列一次函数图像:(1)y=3x+1(2)y=3x+2(3)y=1/2x+2观察“练习”画出的三个函数图像,比较下列各对一次函数的图像有什么共同点,有什么不同点?1)y=3x+1 与 y=3x+22)y=3x+2 与 y=1/2x+2问题:对于直线y=kx+b(k,b是常数,k≠0),常数k和b的取值对于直线的位置各有什么影响?当k一样,b不一样时:图像平行;当k不一样,b一样时:都经过同一个点,即点(0,b)5.观察与思考:总结:正比例函数的图像是一条经过原点O(0,0)的一条直线6.大家谈谈:你认为怎样画正比例函数的图像,方法比较简单?注:找到满足函数关系式的一点,连接原点与该点并向两方延长。
7.做一做:(结合“观察与思考”的图像,利用“做一做”所得的图像,让学生观察比较两种函数的图像直观上从左向右的延伸趋势,并提问得出从左向右x的值越来越大,而y的值变化情况不同,一种情况y的值越来越大,一种情况y 的值越来越小,为总结一次函数的性质做准备)出两点作图法的思路)。
8.一起探究:总结一次函数一次y=kx+b的性质:当k>0时,y的值随x值的增大而增大;当k<0时,y的值随x值的增大而减小。
9.练习:巩固一次函数的性质。
(三)课堂小结:(1)一次函数的图像的画法:两点作图法;(2)一次函数的性质(高度概括,突出重点,使教学的内容纳入学生自己的认知结构)。
(四)布置作业四、教学评价与反馈本节课采用的评价方法主要有:观察、抽问和练习抽查等。
教学中注意随时观察学生对学习的态度表现,如注意力集中的程度、情感的参与和行为参与的情况;通过提问和练习,评价学生对学习内容的认知程度,如对学习内容的思维反应是否积极、跟进;课堂练习、答问的正确程度;练习的正确率等。
为了使评价更有效,不能只按少数学生的反应做出判断,应注意抽样的方法,并且收集的信息应及时准确。
通过收集的信息,对学生的问题应当做出及时的矫正和评说,并对教学内容和教学过程作适当的调控,最终达到教学目标。
五、教学设计说明(一)设计思想:本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。
基于这一原则,我对本节课教学设计的指导思想如下:1.实现教学目标为前提:根据《数学课程标准》的要求,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。
2.现代教育理论为依据:注重学生的心理活动过程、人类掌握知识和形成能力的发展过程,强调教学过程的有序性。
3.以基本的教学原则作指导:坚持启发式教学,充分发挥学生学习的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知,为他们的终身学习奠定基础。
4.以现代信息技术为手段:适当地辅以电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学媒体有机结合,以实现教学最优化,从而提高教与学的质量。
(二)板书设计(略)《一次函数的图像和性质》教学反思新课程实施已经一学期多了,新教材到底如何来教?一直还困扰着我。
没有一个可以遵循的模式,只有在实践中不断地进行探讨、研究、完善。
通过《一次函数的图像和性质》这一节研究课,得到了区教研员的大力支持和帮助,使我在教学认识上有了很大的收获。
•知识来源于教材,又要高于教材。
从这节课的准备来看,在教研员老师的指导下,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。
究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。
这样,教师才能灵活的把握课堂教学。
而现在,教师缺乏的正是这一点,还是为了教而教。
按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。
而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。
从这一角度讲,教师应在把握知识的基础上。
结合学生的表现,灵活多样的处理知识。
•恰当的安排学生活动。
学生是学习的主体,学生活动是新教材的一大特点。
新教材在知识安排上,往往从实例引入,抽象出数学模型。
通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。
侧重于学生能力的培养,让学生知道学什么,如何学。
因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。
一是通过画函数图像理解一次函数图像的形状。
二是用两点法画一次函数的图像。
三是探究一次函数的图像与 k 、 b 符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。
值得老师们探讨。
为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。
如在活动一中,要求学生观察图像的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的交点)画直线。
在活动三中,探究 k 、 b 符号与直线经过的象限与增减性的关系。
学生目标明确,操作性强,受到了较好的效果。
•抓住重点,反复训练,加深学生对知识的理解。
本节课的重点是由一次函数的解析式确定函数图像,研究函数性质。
由函数图像的位置判断解析式中 k 、 b 符号。
体现了数学中非常重要地数形结合的思想。
这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图像的位置和性质,在按照 k 、 b 的符号分类讨论,使学生建立起数形的联系。
还要找到数形的结合点,明确 k 的符号决定直线的什么位置, b 的符号又决定了什么。
为了加深学生对知识的理解,课上设计了由解析式画函数图像的草图,由草图的位置判断解析式中 k 、 b 的符号的练习,收到了一定的效果。
•发挥多媒体辅助教学的作用。
本节课的内容,由具体的实例引入,探讨一次函数的图像和性质。
体现了由具体到一般的原则,但是,不完全归纳法学生不好理解,容易产生疑惑。
几何画板教学软件正好可以解决这一难题。
虽然不能完全归纳,但它能举出很多种情况来验证性质的正确性。
在教学中我挖掘的不够,有待进一步加强,多发挥多媒体辅助教学的作用。
•加强练习的设计,注重知识的落实。
本节课我在练习的处理上,显得比较薄弱。
一是时间安排上有些前松后紧,二是题量、题型不是很全面。
感觉练习不到位,学生知识落实情况不是很了解。
这一环节,今后还应加强。