七年级上期末数学试卷含答案解析2
- 格式:doc
- 大小:402.00 KB
- 文档页数:17
2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。
11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。
2023-2024学年天津市部分区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,是负整数的是()A.0B.C.D.2.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为亿亩.将250000000用科学记数法表示应为()A. B. C. D.3.如图所示的几何体,从上往下看的视图是()A. B. C. D.4.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上记作,则表示气温为()A.零上B.零下C.零上D.零下5.下面的计算正确的是()A. B.C. D.6.如果是关于x的方程的解,那么a的值为()A. B.4 C.6 D.107.若多项式为常数化简后的结果不含字母y,则a的值为()A. B.0 C.2或 D.68.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它的北偏东的方向上,观测到小岛B在它的南偏西的方向上,则的度数是()A.B.C.D.9.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A. B. C. D.10.A,B,C三点在同一直线上,线段,,那么A,C两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上答案都不对11.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.设人数为x,则可列方程为()A. B. C. D.12.观察如图“蜂窝图”,按照这样的规律,第2024个图案中的“”的个数是()A.6074B.6072C.6073D.6068二、填空题:本题共6小题,每小题3分,共18分。
13.已知一个角是,则它的余角是______.14.按括号内的要求,用四舍五入法求近似数:精确到______.15.如图所示,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是______,依据是______.16.若,则______,______.17.如图,,OC平分,OD平分,则的大小为______度18.已知数轴上A,B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为,B两点之间的距离为______;式子的最小值为______.三、计算题:本大题共1小题,共8分。
2021-2022学年黑龙江省牡丹江市七年级(上)期末数学试卷1.在数−2018,0,−|−0.2|,22,−2.010010001……中,非正数有( )9A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是( )A. 4a+5b=9abB. 8a2b−8ba2=0C. 6a3+4a3=10a6D. 6xy−xy=6xy3.小明家距学校2千米,小亮家距学校3千米,则小明家与小亮家距离是( )A. 3千米B. 5千米C. 3千米或5千米D. 无法确定4.将一副三角板如图所示的位置摆放,则∠AOB的度数是( )A. 90°B. 105°C. 120°D. 135°5.一艘轮船行驶在B处,同时测得小岛A,C的方向分别为北偏西30°和西南方向,则∠ABC的度数是( )A. 135°B. 115°C. 105°D. 95°6.下列图形中可以作为一个正方体的展开图的是( )A. B.C. D.7.下列说法正确的是( )A. 若a=b,则ac =bcB. 若|a|=|b|,则a=bC. 若a=b,则2a+3=2b−3D. 若a=1a,则a=±18.当x=2时,整式px3+qx+1的值等于2022,那么当x=−2时,整式px3+qx+1的值为( )A. −2021B. 2021C. 2020D. −20209.某文化商店同时卖出两台电脑,每台均卖了4800元,以成本计算,其中一台盈利20%,另一台亏损20%,则本次出售中商店( )A. 不赔不赚B. 赔400元C. 赚400元D. 赔800元10.甲、乙两列火车从相距80千米的两站同时出发,同向而行,甲车在后,每小时行驶70千米,乙车在前,每小时行驶50千米,则经过小时后两车相距20千米?( )A. 3B. 12C. 56或12D. 3或511.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示为______.12.−|−3|的相反数的倒数是______.13.若关于x,y的单项式−4x3y|n−3|与2x m y2是同类项,则m+n=______.14.若关于x的方程(m−2)x|m−1|+4=0是一元一次方程,则m=______.15.一个角的补角比这个角的12多60°,则这个角的余角是______.16.一个几何体是由一些大小相同的小正方体摆放而成的,从正面、上面和左面观察这个几何体,得到的平面图形如图所示,则组成这个几何体的小正方体的个数是______.17.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.18.一列数1,5,11,19,……,按此规律排列,第7个数是______.19.已知线段AB的长为10cm,点C是线段AB的中点,点D在直线AB上,且BD=3cm,则线段CD的长为______.20.下列说法中:①平面内的三条直线两两相交,有三个交点;②两个五次单项式的和是五次单项式;③若AB=AC,则点A是线段BC的中点;④若两个互余的角的比是4:6,则这两个角分别是36°和54°;⑤若一个非零数的绝对值等于它的相反数,则这个数一定是负数;⑥两点之间线段最短.其中正确的结论是______(填序号).21.计算:(1)−42×[(1−7)÷6]+(−2022);(2)722×(−5)+(−722)×9−722×8.22.解方程:(1)−2(5−2x)=1−x;(2)2y−16−4y+18=1.23.先化简,再求值:−2x2−12[3y2−2(x2−y2)+6]的值,其中x=−1,y=−2.24.已知∠AOB=100°,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图1,当射线OC在∠AOB内部,且∠BOC=80°时,求∠DOE的度数;(2)如图2,当射线OC在∠AOB内部绕O点旋转时,∠DOE的大小是否发生变化?若变化,请直接写出∠DOE的度数;若不变,说明理由;(3)当射线OC在∠AOB外部绕O点旋转时,则∠DOE=______.25.已知数轴上两点A,B表示的数分别为−8,16,点P从A出发,以每秒4个单位的速度沿数轴向右匀速运动.(1)当点P到点A的距离是点P到点B的距离的2倍时,点P在数轴上表示的数是______;(2)另一动点Q从B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P,Q同时出发,几秒后P,Q两点相遇?(3)若M为AP中点,N为BP中点,则在点P的运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请直接写出线段MN的长度.26.某体育用品商店销售足球和篮球,其中篮球的单价比足球多30元,已知购买4个足球和3个篮球的费用相等.(1)求购买每个足球、篮球的单价分别是多少元?(2)由于“双十二”的来临,商店决定对所售商品进行促销.现有两种促销方案可供选择:方案一:买5个篮球赠一个足球.方案二:所购买的商品均打9折.当购买6个篮球和多少个足球时,两种促销方案所花费用一致?(3)在(2)条件下,购买10个篮球和5个足球最少费用为______元.答案和解析1.【答案】D,−2.010010001……中,非正数有−2018,0,−|−0.2|,【解析】解:在数−2018,0,−|−0.2|,229−2.010010001……,共4个.故选:D.根据有理数的分类方法,可得:非正数包括负数和0,据此判断−2018,0,−|−0.2|,22,9−2.010010001……这五个数中,非正数有多少个即可.此题主要考查了有理数的含义和分类,要熟练掌握,解答此题的关键是要明确:非正数包括负数和0.2.【答案】B【解析】解:A.4a与5b不是同类项,所以不能合并,故本选项不合题意;B.8a2b−8ba2=0,故本选项符合题意;C.6a3+4a3=10a3,故本选项不合题意;D.6xy−xy=5xy,故本选项不合题意;故选:B.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.3.【答案】D【解析】解:小明家距学校2千米,小亮家距学校3千米,因为小明家,小亮家,学校的位置不确定,所以小明家与小亮家距离是无法确定的,故选:D.根据题目的已知条件,小明家,小亮家,学校的位置不确定,即可解答.本题考查了两点间距离,分析小明家,小亮家,学校的位置是解题的关键.4.【答案】B【解析】解:如图,由题意可得∠D=30°,∠A=45°,∠ACD=90°,∴∠DEC=90°−∠D=60°,∴∠AEO=∠DEC=60°,∵∠AOB是△AOE的外角,∴∠AOB=∠A+∠AEO=105°.故选:B.由题意可得∠D=30°,∠A=45°,∠ACD=90°,从而可求∠DEC=60°,则由对顶角相等得∠AEO= 60°,利用三角形的外角性质即可求∠AOB的度数.本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与它不相邻的两个内角之和.5.【答案】C【解析】【分析】本题主要考查了方向角的定义,是一个基础的内容.根据方向角的定义即可作出判断.【解答】解:根据条件可得:∠ABD=60°,∠DBC=45°,∴∠ABC=∠ABD+∠DBC=60°+45°=105°.故选C.6.【答案】A【解析】解:A.可以作为一个正方体的展开图,符合题意;B.不可以作为一个正方体的展开图,不合题意;C.不可以作为一个正方体的展开图,不合题意;D.不可以作为一个正方体的展开图,不合题意.故选:A.利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.7.【答案】D【解析】解:∵a=b,当c=0时,不能推出a=b,ac =bc,故A不符合题意;若|a|=|b|,则a=±b故B不符合题意;若a=b,则2a+3=2b+3,故C不符合题意;若a=1a,则a2=1,a=±1故D符合题意;故选:D.根据等式的性质逐个判断即可.本题考查了等式的性质,能熟记等式的性质是解此题的关键,注意:等式的性质1:等式的两边都加或减同一个数或式子,等式仍成立,等式的性质2:等式两边都乘同一个数或式子,等式仍成立,等式的两边都除以同一个不等于0的数或式子,等式仍成立.8.【答案】D【解析】解:依题意得:当x=2时,px3+qx=2022−1=2021,由于代数式px3+qx中均为奇数幂,则当x=−2时,代数式px3+qx与当x=2时的代数式px3+qx互为相反数,故当x=−2时,px3+qx=−2021,故当x=−2时,px3+qx+1=−2021+1=−2020,故选:D.直接利用已知得出当x=2时px3+qx的值,再整体代入可求得解.本题考查了代数式的求值,正确变形并整体代入,是解题的关键.9.【答案】B【解析】解:设盈利20%的进价为x元,亏损20%的进价为y元,由题意得:(1+20%)x=4800,(1−20%)y=4800,解得:x=4000,y=6000,∴这次买卖中的成本是4000+6000=10000(元).∵销售收入为:4800+4800=9600(元),10000−9600=400(元),∴本次出售中商店赔400元.故选:B.设盈利20%的进价为x元,亏损20%的进价为y元,根据销售问题的数量关系建立方程求出其解即可.本题考查了销售问题的数量关系:进价×(1+利润率)=售价的运用,列一元一次方程解实际问题的运用,解答时根据进价×(1+利润率)=售价建立方程是关键.10.【答案】D【解析】解:①设经过x小时后两车相距20千米,根据题意得:70x−50x=80−20,解得:x=3,②设经过x小时后两车相距20千米,根据题意得:70x−50x=80+20,解得:x=5.答:经过3或5小时后两车相距20千米.故选:D.设经过x小时后两车相距20千米,分两种情况讨论,根据速度×时间=路程列出方程,再进行求解即可.此题考查了一元一次方程的应用,掌握行程问题中的速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是本题的关键.11.【答案】2.5×106【解析】解:2500000=2.5×106,故答案为:2.5×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.【答案】13【解析】解:−|−3|=−3的相反数为3,则−|−3|的相反数的倒数是1.3.故答案为:13直接利用相反数的定义以及倒数的定义得出答案.此题主要考查了倒数与相反数,正确掌握相关定义是解题关键.13.【答案】4或8【解析】解:根据题意得:m=3,|n−3|=2,解得:m=3,n=5或1,则m+n=3+8=8或3+1=4.故答案是:4或8.根据同类项的定义:所含字母相同,相同字母的指数相同即可求得m、n的值,从而求解.本题考查同类项的定义,正确理解定义是关键.14.【答案】0【解析】解:∵关于x的方程(m−2)x|m−1|+4=0是一元一次方程,∴|m−1|=1且m−2≠0,解得:m=0,故答案为:0.根据一元一次方程的定义得出|m−1|=1且m−2≠0,再求出即可.本题考查了一元一次方程的定义和绝对值,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1的整式方程,叫一元一次方程.15.【答案】10°【解析】解:设这个角为x度,根据题意得:x+60°,180°−x=12x=80°,所以这个角的余角为90°−80°=10°.故答案为:10°.利用题中“一个角的补角=这个角的1倍+10度”作为相等关系列方程求解即可.2主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的找出角之间的数量关系,从而计算出结果.16.【答案】5【解析】解:由该几何体的三视图知,小正方体的个数分布情况如下:所以组成这个几何体的小正方体的个数是5,故答案为:5.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.本题考查由三视图判断几何体;可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小正方体的最少与最多的个数.17.【答案】8【解析】【分析】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设商店打x折,根据利润=售价−进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设商店打x折,依题意,得:180×x10−120=120×20%,解得:x=8.故答案为:8.18.【答案】55【解析】解:∵1,5,11,19,……,∴第n个数是n2+n−1,当n=7时,n2+n−1=55,∴第7个数是55,故答案为:55.观察所给数发现第n个数是n2+n−1,当n=7时即可求解.本题考查数字的变化规律,能够通过所给数字,探索出数字的一般规律是解题的关键.19.【答案】2cm或8cm【解析】解:分两种情况:当点D在点B的右侧时,如图:∵点C是线段AB的中点,AB=10cm,∴CB=12AB=5cm,∵BD=3cm,∴CD=CB+BD=8cm,当点D在点B的左侧时,如图:∵点C是线段AB的中点,AB=10cm,∴CB=12AB=5cm,∵BD=3cm,∴CD=CB−BD=2cm,∴线段CD的长为8cm或2cm,故答案为:8cm或2cm.分两种情况,点D在点B的右侧,点D在点B的左侧.本题考查了两点间距离,根据题目的已知条件并结合图形分析是解题的关键,同时渗透了分类讨论的数学思想.20.【答案】④⑤⑥【解析】解:①平面内的三条直线两两相交,交点可能有一个也可能有三个,因此①不正确;②两个五次单项式的和可能是五次单项式,也可能为0,因此②不正确;③若AB=AC,则点A在线段BC的中垂线上,不一定是BC的中点,因此③不正确;④若两个互余的角的比是4:6,设其中的一个角为4x,则另一个角为6x,4x+6x=90°,解得x=9°,则这两个角分别是4×9=36°和6×9=54°,因此④正确;⑤若一个非零数的绝对值等于它的相反数,则这个数一定是负数,是正确的;⑥两点之间线段最短.是正确的;综上所述,正确的结论有:④⑤⑥,故答案为:④⑤⑥.根据直线的性质,整式的加减,线段的垂直平分线的性质以及互为余角,绝对值、相反数的定义,逐项进行判断即可.本题考查直线的性质,整式的加减,线段的垂直平分线的性质以及互为余角,绝对值、相反数的定义,掌握线段、直线的性质,整式的加减,线段的垂直平分线的性质以及互为余角,绝对值、相反数的定义是正确解答的前提.21.【答案】解:(1)−42×[(1−7)÷6]+(−2022)=−16×(−6÷6)+(−2022)=−16×(−1)+(−2022)=16+(−2022)=−2006;(2)722×(−5)+(−722)×9−722×8=722×[(−5)+(−9)−8]=722×(−22)=−7.【解析】(1)先算乘方和括号内的式子,然后计算括号外的乘法、最后算加法即可;(2)根据乘法分配律计算即可.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.22.【答案】解:(1)去括号得:−10+4x=1−x,移项得:4x+x=1+10,合并得:5x=11,解得:x=2.2;(2)去分母得:4(2y−1)−3(4y+1)=24,去括号得:8y−4−12y−3=24,移项得:8y−12y=24+4+3,合并得:−4y=31,解得:y=−314.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.23.【答案】解:原式=−2x2−12(3y2−2x2+2y2+6)=−2x2−12(5y2−2x2+6)=−2x2−52y2+x2−3=−x2−52y2−3,当x=−1,y=−2时,原式=−(−1)2−52×(−2)2−3=−1−10−3=−14.【解析】根据整式的加减顺序进行化简,然后代入值即可.本题考查了整式的加减−化简求值,解决本题的关键是掌握整式的加减.24.【答案】130°或50°【解析】解:(1)∵∠AOB=100°,∠BOC=80°,∴∠AOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=12∠COB=40°,∠COD=12∠AOC=10°,∴∠DOE=40°+10°=50°;(2)不变,理由:∵∠BOC=∠AOB−∠AOC=100°−∠AOC,OD、OE分别平分∠AOC和∠BOC,∴∠COE=12∠BOC=12×100°−12∠AOC,∠COD=12∠AOC,∴∠DOE=∠COE+∠COD=12×100°=50°;(3)当OC旋转到左上方时,∠DOE=50°;当OC旋转到左下方时,∠DOE=130°;当OC旋转到右下方时,∠DOE=50°;综上所述,∠DOE=130°或50°.故答案为:130°或50°.(1)根据∠AOB=100°,OD,OE分别平分∠AOC和∠BOC,以及∠BOC=80°,即可得出∠DOC与∠COE 的度数;(2)结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算;(3)根据周角的定义,结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算.考查了角的计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.25.【答案】8或40【解析】解:(1)∵两点A,B表示的数分别为−8,16,∴AB=16−(−8)=24,∵点P到点A的距离是点P到点B的距离的2倍,∴点P表示的数是−8+24×22+1=−8+16=8或16+24=40.故答案为:8或40;(2)设点P,Q同时出发,x秒后P,Q两点相遇,则PA=4x,QB=2x,∵PA+QB=AB,∴4x+2x=24,解得:x=4,∴点P,Q同时出发,4秒后P,Q两点相遇;(3)线段MN的长度不发生变化,都等于12;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×24=12,②当点P运动到点B的右侧时:MN=MP−NP=12AP−12BP=12(AP−BP)=12AB=12×24=12,∴线段MN的长度不发生变化,其值为12.(1)分P在线段AB上或为P在线段AB的延长线上两种情况讨论计算即可求解;(2)设点P,Q同时出发,x秒后P,Q两点相遇,根据等量关系列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的右侧时,利用中点的定义和线段的和差求出MN的长即可.本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,以及分类思想的应用.26.【答案】1443【解析】解:(1)设每个足球的单价是x元,则每个篮球的单价是(x+30)元,根据题意得:4x=3(x+30),解得x=90,∴每个篮球的单价是x+30=90+30=120(元/个),答:每个足球的单价是90元,每个篮球的单价是120元;(2)设购买6个篮球和m个足球时,两种促销方案所花费用一致,根据题意得:6×120+90(m−1)=(6×120+90m)×90%,解得m=2,答:购买6个篮球和2个足球时,两种促销方案所花费用一致;(3)按方案一购买10个篮球,可以得到10个篮球和2个足球,所需费用是120×10=1200(元),再按方案二购买3个足球,所需费用是3×90×90%=243(元),∴购买10个篮球和5个足球最少费用为1200+243=1443(元),故答案为:1443.(1)设每个足球的单价是x元,则每个篮球的单价是(x+30)元,根据购买4个足球和3个篮球的费用相等列方程即可得答案;(2)设购买6个篮球和m个足球时,两种促销方案所花费用一致,根据题意列方程即可得答案;(3)按方案一购买10个篮球,可以得到10个篮球和2个足球,再按方案二购买3个足球,可得最少费用为1200+243=1443(元).本题考查一次方程的应用,解题的关键是找出等量关系列方程.。
2023-2024学年湖南省长沙重点学校七年级(上)期末数学试卷一、单选题(每题3分,共30分)1.(3分)﹣6的相反数是( )A.﹣6B.C.6D.2.(3分)2022年,长沙市全年地区生产总值约为1400000000000元,比上年增长4.5%.其中数据1400000000000用科学记数法表示为( )A.1.4×1012B.0.14×1013C.1.4×1013D.14×10113.(3分)下列各对数中,数值相等的是( )A.﹣3×23与﹣32×2B.﹣32与(﹣3)2C.﹣25与(﹣2)5D.﹣(﹣3)2与﹣(﹣2)34.(3分)下列各组整式中是同类项的是( )A.2x与2y B.3x2与2x3C.x2y与xy2D.2xy2与﹣xy25.(3分)下列等式变形,错误的是( )A.若a=b,则a+2=b+2B.若a=b,则2a=2bC.若x+1=y+1,则x=y D.若a2=a,则a=16.(3分)如图,直线AO⊥BO,CO⊥DO,若∠BOC=118°,则∠AOD等于( )A.118°B.92°C.62°D.58°7.(3分)如图,学校相对于小明家的位置下列描述最准确的是( )A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处8.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人.多少辆车?如果我们设有x辆车,则可列方程( )A.4(x﹣1)=2x+8B.4(x+1)=2x﹣8C.+1=D.+1=9.(3分)下列说法中,正确的有( )①直线AB与直线BA不是同一条直线;②若AB=BC,则点B为线段AC的中点;③两点确定一条直线;④两条射线组成的图形叫做角.A.0个B.1个C.2个D.3个10.(3分)现有一列数:a1,a2,a3,a4,…,a n﹣1,a n(n为正整数),规定a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),若,则n的值为( )A.2021B.2023C.2024D.2025二、填空题(每题3分,共18分)11.(3分)受强冷空气影响,山东多地气温大幅下降,章丘区最低气温为﹣2℃,最高气温为9℃,这天的日温差是 ℃.12.(3分)用两个钉子就可以把木条固定在墙上,其中蕴含的数学知识是: .13.(3分)若x2+3x﹣1=0,则2022+2x2+6x的值为 .14.(3分)8点55分时,钟表上时针与分针的所成的角是 .15.(3分)要用一张长方形纸折成一个纸袋,两条折痕的夹角为70°(即∠POQ=70°),将折过来的重叠部分抹上胶水,即可做成一个纸袋,则粘胶水部分所构成的角,∠A′OB′= °.16.(3分)按下面的程序计算,当输入x=100时,输出结果为501;当输入x=20时,输出结果为506;如果开始输入的值x为正整数,最后输出的结果为656,那么满足条件的x的值是 .三.解答题(共9小题,满分72分,其中17、18题每题8分,19、20、21题每题6分,22、23题每题9分,24、25题每题10分)17.(8分)计算:(1)12﹣(﹣18)+(﹣7)+(﹣15);(2).18.(8分)解下列方程:(1)3x﹣6=4﹣2x;(2)﹣=1.19.(6分)先化简,再求值:5a2+2(a2﹣b2)﹣3(2a2﹣b2),其中a=﹣1,.20.(6分)有理数a,b,c在数轴上的位置如图所示,化简:|a+b|﹣|a+c|+|b﹣c|.21.(6分)如图,平面上有A,B,C,D四个点,根据下列语句画图:①画射线DB;②画直线AC交BD于点M;③连接DC,并在线段CD的延长线上取一点N,使DN=DM.22.(9分)某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天运完垃圾?(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?23.(9分)如图,点C、D是线段AB上两点,AC:BC=3:2,点D为AB的中点.(1)如图1所示,若AB=30,求线段CD的长.(2)如图2所示,若E为AC的中点,ED=5,求线段AB的长.24.(10分)定义:如果两个一元一次方程的解之和为2,我们就称这两个方程为“成双方程”.例如:方程2x ﹣1=2和2x﹣1=0为“成双方程”.(1)请判断方程4x﹣(x+5)=1与方程﹣2y﹣y=3是否互为“成双方程”;(2)若关于x的方程m=0与方程3x﹣2=x+4互为“成双方程”,求m的值;(3)若关于x的方程x﹣1=0与x+1=3x+k互为“成双方程”,求关于y的方程(y+2)+1=3y+k+6的解.25.(10分)【阅读理解】已知射线OC是∠AOB内部的一条射线,若射线OC与射线OA的夹角∠COA=∠AOB,则我们称射线OC是射线OA的“双语线”.例如,如图1,∠AOB=60°、∠AOC=∠COD=∠BOD=20°,则∠AOC=∠AOB,称射线OC是射线OA的双语线;同时,由于∠BOD=∠AOB,称射线OD是射线OB的双语线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的双语线,则∠AOM= °;(2)如图3,∠AOB=180°.射线OC从与射线OA重合的位置开始,绕点O以每秒2°的速度逆时针旋转.射线OD从与射线OB重合的位置开始,绕点O以每秒3°的速度顺时针旋转.当射线OD与射线OA 重合时,运动停止;①是否存在某个时刻t(秒),使得∠COD的度数是40°,若存在,求出t的值,若不存在,请说明理由;②当t为多少秒时,射线OC、OD、OA中有一条射线是另一条射线的双语线?(直接写出答案)参考答案与解析一、单选题(每题3分,共30分)1.(3分)﹣6的相反数是( )A.﹣6B.C.6D.【解答】解:﹣6的相反数是6,故选:C.2.(3分)2022年,长沙市全年地区生产总值约为1400000000000元,比上年增长4.5%.其中数据1400000000000用科学记数法表示为( )A.1.4×1012B.0.14×1013C.1.4×1013D.14×1011【解答】解:1400000000000=1.4×1012.故选:A.3.(3分)下列各对数中,数值相等的是( )A.﹣3×23与﹣32×2B.﹣32与(﹣3)2C.﹣25与(﹣2)5D.﹣(﹣3)2与﹣(﹣2)3【解答】解:﹣3×23=﹣24,﹣32×2=﹣18,∴A不正确;﹣32=﹣9,(﹣3)2=9,∴B不正确;﹣25=﹣32,(﹣2)5=﹣32,∴C正确;﹣(﹣3)2=﹣9,(﹣2)3=﹣8,∴D不正确;故选:C.4.(3分)下列各组整式中是同类项的是( )A.2x与2y B.3x2与2x3C.x2y与xy2D.2xy2与﹣xy2【解答】解:A.2x与2y所含字母不相同,不是同类项,选项A不符合题意;B.3x2与2x3所含字母相同,但是相同字母的指数不相同,不是同类项,选项B不符合题意;C.x2y与xy2所含字母相同,但是相同字母的指数不相同,不是同类项,选项C不符合题意;D.2xy2与﹣xy2所含字母相同,并且相同字母的指数也相同,是同类项,选项D符合题意;故选:D.5.(3分)下列等式变形,错误的是( )A.若a=b,则a+2=b+2B.若a=b,则2a=2bC.若x+1=y+1,则x=y D.若a2=a,则a=1【解答】解:A.a=b,等式两边都加2,得a+2=b+2,故本选项不符合题意;B.a=b,等式两边都乘以2,得2a=2b,故本选项不符合题意;C.x+1=y+1,等式两边都减1,得x=y,故本选项不符合题意;D.当a=0时,由a2=a不能推出a=1,错误,故本选项符合题意.故选:D.6.(3分)如图,直线AO⊥BO,CO⊥DO,若∠BOC=118°,则∠AOD等于( )A.118°B.92°C.62°D.58°【解答】解:∵AO⊥BO,CO⊥DO,∴∠COD=∠AOB=90°,∵∠BOC=118°,∴∠BOD=∠BOC﹣∠COD=28°,∴∠AOD=∠AOB﹣∠BOD=62°,故选:C.7.(3分)如图,学校相对于小明家的位置下列描述最准确的是( )A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处【解答】解:180°﹣115°=65°,由图形知,学校在小明家的北偏东65°方向上的1200米处,故选:B.8.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人.多少辆车?如果我们设有x辆车,则可列方程( )A.4(x﹣1)=2x+8B.4(x+1)=2x﹣8C.+1=D.+1=【解答】解:根据题意可列出方程:4(x﹣1)=2x+8.故选:A.9.(3分)下列说法中,正确的有( )①直线AB与直线BA不是同一条直线;②若AB=BC,则点B为线段AC的中点;③两点确定一条直线;④两条射线组成的图形叫做角.A.0个B.1个C.2个D.3个【解答】解:①在同一图形中,直线AB与直线BA是同一条直线,原来的说法是错误的;②若A、B、C三点在一条直线上,AB=BC,则点B是线段AC的中点,原来的说法是错误的;③两点确定一条直线是正确的;④有公共端点是两条射线组成的图形叫做角,原来的说法是错误的.故选:B.10.(3分)现有一列数:a1,a2,a3,a4,…,a n﹣1,a n(n为正整数),规定a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),若,则n的值为( )A.2021B.2023C.2024D.2025【解答】解:∵a1=2=1×2,∴a2=a1+4=6=2×3,a3=a2+6=12=3×4,a4=a3+8=20=4×5,……,a n=a n﹣1+2n=n(n+1),∴=+……+=+……+=﹣=,∴n=2025,故选:D.二、填空题(每题3分,共18分)11.(3分)受强冷空气影响,山东多地气温大幅下降,章丘区最低气温为﹣2℃,最高气温为9℃,这天的日温差是 11 ℃.【解答】解:9﹣(﹣2)=11(℃),故答案为:11.12.(3分)用两个钉子就可以把木条固定在墙上,其中蕴含的数学知识是: 两点之间确定一条直线 .【解答】解:用两个钉子就可以把木条固定在墙上,其中蕴含的数学知识是:两点之间确定一条直线.故答案为:两点之间确定一条直线.13.(3分)若x2+3x﹣1=0,则2022+2x2+6x的值为 2024 .【解答】解:∵x2+3x﹣1=0,∴x2+3x=1,∴2022+2x2+6x=2022+2(x2+3x)=2022+2×1=2024,故答案为:2024.14.(3分)8点55分时,钟表上时针与分针的所成的角是 62.5° .【解答】解:55×6°﹣(8×30+55×)°=330°﹣267.5°=62.5°,故答案为:62.5°15.(3分)要用一张长方形纸折成一个纸袋,两条折痕的夹角为70°(即∠POQ=70°),将折过来的重叠部分抹上胶水,即可做成一个纸袋,则粘胶水部分所构成的角,∠A′OB′= 40 °.【解答】解:由折叠的性质可得∠A′OP=∠AOP=45°,∠B′OQ=∠BOQ,∵∠POQ=∠POA′+∠A′OQ,∠POQ=70°,∴∠A′OQ=∠POQ﹣∠POA′=70°﹣45°=25°,∵∠PQO=90°﹣∠A′OQ,∴∠PQO=90°﹣25°=65°,∵DC∥AB,∴∠QOB=∠PQO=65°,∴∠B′OQ=∠BOQ=65°,∴∠A′OB′=∠B′OQ﹣∠A′OQ=65°﹣25°=40°.故答案为:40.16.(3分)按下面的程序计算,当输入x=100时,输出结果为501;当输入x=20时,输出结果为506;如果开始输入的值x为正整数,最后输出的结果为656,那么满足条件的x的值是 131,26,5 .【解答】解:∵最后输出的结果为656,∴第一个数就是直接输出其结果时:5x+1=656,则x=131>0,第二个数就是直接输出其结果时:5x+1=131,则x=26>0,第三个数就是直接输出其结果时:5x+1=26,则x=5>0,第四个数就是直接输出其结果时:5x+1=5,则x=0.8>0,第五个数就是直接输出其结果时:5x+1=0.8,则x=﹣0.4<0,故x的值可取131、26、5这3个.故答案为:131,26,5.三.解答题(共9小题,满分72分,其中17、18题每题8分,19、20、21题每题6分,22、23题每题9分,24、25题每题10分)17.(8分)计算:(1)12﹣(﹣18)+(﹣7)+(﹣15);(2).【解答】解:(1)12﹣(﹣18)+(﹣7)+(﹣15)=12+18+(﹣7)+(﹣15)=8;(2)=﹣8+25×﹣3=﹣8+10﹣3=﹣1.18.(8分)解下列方程:(1)3x﹣6=4﹣2x;(2)﹣=1.【解答】解:(1)移项合并得:5x=10,解得:x=2;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,解得:x=﹣3.19.(6分)先化简,再求值:5a2+2(a2﹣b2)﹣3(2a2﹣b2),其中a=﹣1,.【解答】解:原式=5a2+2a2﹣2b2﹣6a2+3b2=a2+b2;当a=﹣1,时,原式=.20.(6分)有理数a,b,c在数轴上的位置如图所示,化简:|a+b|﹣|a+c|+|b﹣c|.【解答】解:由数轴上点的位置可知a<0<b<c,|c|>|a|>|b|,∴a+b<0,a+c>0,b﹣c<0,∴|a+b|﹣|a+c|+|b﹣c|=﹣(a+b)﹣(a+c)﹣(b﹣c)=﹣a﹣b﹣a﹣c﹣b+c=﹣2a﹣2b.21.(6分)如图,平面上有A,B,C,D四个点,根据下列语句画图:①画射线DB;②画直线AC交BD于点M;③连接DC,并在线段CD的延长线上取一点N,使DN=DM.【解答】解:①如图,射线DB即为所求;②如图,直线AC,点M即为所求;③如图,线段DN即为所求.22.(9分)某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天运完垃圾?(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?【解答】解:(1)设甲、乙两车合作还需要x天运完垃圾,依题意,得:+=1,解得:x=8.答:甲、乙两车合作还需要8天运完垃圾.(2)设乙车每天的租金为y元,则甲车每天的租金为(y+100)元,依题意,得:(8+3)(y+100)+8y=3950,解得:y=150,∴y+100=250.答:甲车每天的租金为250元,乙车每天的租金为150元.23.(9分)如图,点C、D是线段AB上两点,AC:BC=3:2,点D为AB的中点.(1)如图1所示,若AB=30,求线段CD的长.(2)如图2所示,若E为AC的中点,ED=5,求线段AB的长.【解答】解:(1)∵D是线段AB的中点,∴BD=AB=×30=15,∵AC:BC=3:2∴BC=AB==12,∴CD=BD﹣BC=15﹣12=3;(2)∵AC:BC=3:2,AC+BC=AB,∴,∵E为AC的中点,∴AE=CE==,∵点D为AB的中点,∴AD=AB,∵ED=5,∴ED=AD﹣AE==,∴AB=25.24.(10分)定义:如果两个一元一次方程的解之和为2,我们就称这两个方程为“成双方程”.例如:方程2x ﹣1=2和2x﹣1=0为“成双方程”.(1)请判断方程4x﹣(x+5)=1与方程﹣2y﹣y=3是否互为“成双方程”;(2)若关于x的方程m=0与方程3x﹣2=x+4互为“成双方程”,求m的值;(3)若关于x的方程x﹣1=0与x+1=3x+k互为“成双方程”,求关于y的方程(y+2)+1=3y+k+6的解.【解答】解:(1)方程4x﹣(x+5)=1与方程﹣2y﹣y=3不是互为“成双方程”,理由如下:4x﹣(x+5)=1,4x﹣x﹣5=1,3x=6,x=2,﹣2y﹣y=3,﹣3y=3,y=﹣1,∵x+y=2+(﹣1)=1,∴方程4x﹣(x+5)=1与方程﹣2y﹣y=3不是互为“成双方程”;(2)m=0,x+2m=0,x=﹣2m,3x﹣2=x+4,3x﹣x=4+2,2x=6,x=3,∵关于x的方程m=0与方程3x﹣2=x+4互为“成双方程”,∴﹣2m+3=2,解得:;(3)x﹣1=0,,x=2024,∵x﹣1=0与x+1=3x+k互为“成双方程”,∴x+1=3x+k的解为:x=﹣2022,∴关于y的方程(y+2)+1=3y+k+6就是:,∴y+2=﹣2022,y=﹣2024,∴关于y的方程(y+2)+1=3y+k+6的解为:y=﹣2024.25.(10分)【阅读理解】已知射线OC是∠AOB内部的一条射线,若射线OC与射线OA的夹角∠COA=∠AOB,则我们称射线OC是射线OA的“双语线”.例如,如图1,∠AOB=60°、∠AOC=∠COD=∠BOD=20°,则∠AOC=∠AOB,称射线OC是射线OA的双语线;同时,由于∠BOD=∠AOB,称射线OD是射线OB的双语线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的双语线,则∠AOM= 40 °;(2)如图3,∠AOB=180°.射线OC从与射线OA重合的位置开始,绕点O以每秒2°的速度逆时针旋转.射线OD从与射线OB重合的位置开始,绕点O以每秒3°的速度顺时针旋转.当射线OD与射线OA 重合时,运动停止;①是否存在某个时刻t(秒),使得∠COD的度数是40°,若存在,求出t的值,若不存在,请说明理由;②当t为多少秒时,射线OC、OD、OA中有一条射线是另一条射线的双语线?(直接写出答案)【解答】(1)解:∵射线OM是射线OA的双语线,∴∠AOM=∠AOB=40°,故答案为:40;(2)由射线OD从与射线OB重合的位置开始,绕点O以每秒3°的速度顺时针旋转,且当射线OD与射线OA重合时,运动停止,得运动时间为=60(秒),①在OC、OD相遇前,依题意得180﹣3t﹣2t=40,解得t=28;在OC、OD相遇后,依题意得3t+2t﹣180=40,解得t=44,综上所述,当t为28秒或44秒时,∠COD的度数为40°;②在OC与OD相遇前,OC是OA的双语线,则有∠AOC=∠AOD或∠AOC=∠AOB,得或,解得t=20或t=30;OC是OD的双语线,则有∠COD=∠AOD,得,解得t=30;OD是OC的双语线,则有∠DOC=∠BOC,得,解得t=;在OC与OD相遇后,OD是OC的双语线,则有∠COD=∠AOC,得,解得t=;OC是OD的双语线,则有∠COD=∠BOD,得,解得t=45;OD是OA的双语线,则有∠AOD=∠AOC或∠AOD=∠AOB,得或,解得t=或t=40;综上所述,当t=20或30或或或45或或40时,射线OC、OD、OA中有一条射线是另一条射线的双语线.。
人教版七年级上数学期末试卷(时间:90分钟,满分100分)一、认真填一填(每题3分,共30分)1.实施西部大开发是党中央面向21世纪的重大战略决策,我国西部地区的面积为6400000平方千米,可用科学记数法将这个数字表示为 平方千米.2.下表是我国几个城市某年一月份的平均气温:把它们的平均气温按从高到低的顺序排列为: .3.绝对值大于1而小于4的整数有 . 4.9时45分时,时钟的时针与分针的夹角是 .5.如下图已知线段AD=16cm,线段AC=BD=10cm,E,F 分别是AB,CD 的中点,则EF 长为 .6.如果x=2是方程mx-1=2的解,那么m= . 7.如下图,从点A 到B 有a ,b ,c 三条通道,最近的一条 通道是 ,这是因为 .8. 某校女生占全体学生会数的52%,比男生多80人。
若设这个学校的学生数为x ,那么可出列方程 .9. 202135,3o αα'''∠=∠=则 . 10. 若=+=++-b a b a 那么,02)1(2 .二、仔细选一选(每题3分,共15分)请将正确答案的代号字母填入题后的括号内.11.F E BC DA B12.有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是( )A .①② B. ①③ C. ①②③ D. ①②③④ 13. 如果n 是正整数,那么])1(1[n n --的值( )A .一定是零 B.一定是偶数 C.一定是奇数 D.是零或偶数 14.如果a,b 互为相反数,x,y 互为倒数,则()1742a b xy ++的值是( )A .2 B. 3 C. 3.5 D. 415.右下图反映的是地球上七大洲的面积占陆地总面积的百分比,某同学根据右下图得出下列四个结论:①七大洲中面积最大的是亚洲;②南美洲、北美洲、非洲三大州面积的和 约占陆地总面积的50%;③非洲约占陆地总面积的20%; ④南美洲面积是大洋洲面积的2倍. 你认为上述四个结论中正确的为( )A .①② B. ①④ C. ①②④ D. ①②③④ 三、用心做一做16.(6分)22138(3)2()42()423-÷⨯-++÷-17.(6分)解方程2151136x x +--=29.3%20.2%北美洲16.1%南美洲南极洲18.(8分)请你来做主:小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)19.(10分)画图说明题 (1) 作∠AOB=90;(2) 在∠AOB 内部任意画一条射线OP ; (3) 画∠AOP 的平分线OM ,∠BOP 的平分线ON ; (4) 用量角器量得∠MON= . 试用几何方法说明你所得结果的正确性.20.( 8分)将连续的奇数1,3,5,7,9…,排成如下的数表: (1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.353121119121.(9分)牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.22.(8分)观察下图,回答下列问题:(1)在∠AOB 内部画1条射线OC ,则图中有 个不同的角; (2)在∠AOB 内部画2条射线OC ,OD ,则图中有 个不同的角; (3)在∠AOB 内部画3条射线OC ,OD ,OE 则图中有 个不同的角; (4)在∠AOB 内部画10条射线OC ,OD ,OE …则图中有 个不同的角; (5)在∠AOB 内部画n 条射线OC ,OD ,OE …则图中有个不同的角;(1) (2) (3)B B七年级上数学参考答案及评分意见一、认真填一填(每题3分,共30分)1.6.4×1062.13.1>3.8>2.4>-4.6>-19.4 3.±2,±3 4.22.5° 5.10cm 6.327.b ,两点之间线段最短 7.2 8. 80)52.01(52.0=--x x 9. 616'45'' 10.-1 二、仔细选一选(每题3分,共15分)11. A 12. B 13. D 14. C 15. D 三、用心做一做16.解: 22138(3)2()42()423-÷⨯-++÷-4339()44()928=⨯⨯-++⨯- ………………………………………………(3分)3642322=-+-=--72=- …………………………………………………………………………(6分)17.解:2151136x x +--= 去分母,得 2(21)(51)6x x +--=, ………………………………………(2分) 去括号,得 42516x x +-+=, ……………………………………………(4分) 移项及合并,得 3x -=,系数化为1,得 3x =-. ……………………………………………………(6分) 18.解:设甲冰箱至少打x 折时购买甲冰箱比较合算,依题意,得2100×10x+10×300×1×0.5=2220+10×300×0.5×0.5, 解这个方程,得 x=7.答:设甲冰箱至少打7折时购买甲冰箱比较合算.……………………………(8分) 19.画图说明题(1)略.………………………………………………………………………………(1分) (2)略.………………………………………………………………………………(3分)(3)略.………………………………………………………………………………(5分)(4)45°. …………………………………………………………………………(7分)下面用几何方法说明所得结果的正确性:因为∠POB+∠POA=∠AOB=90°,∠POM=12∠POB,∠PON=12∠POA,……………………………………(8分)所以∠POM+∠PON=12(∠POB+∠POA)=12∠AOB=12×90°=45°. ………(10分)20.(1)十字框中的五个数的平均数为15;………………………………………(2分)(2)十字框框住的五个数的和能等于315.……………………………………(3分)观察可知,同一行左右相邻两个数相差为2,同一列上下相邻两个数相差为10,因此,若设十字框中间的数为x,则十字框框住的五个数的和为:(x-2)+x+(x+2)+(x-10)+(x+10)=5x即十字框框住的五个数的和一定能被5整除。
……………………:______江苏省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:苏科版七上全册。
第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.结果为正数的式子是 A .6(1)- B .25-C .|3|--D .31()3-2.下列各组中的两个单项式,属于同类项的一组是 A .23a b 与23ab B .2x 与2xC .23与2aD .4与12-3.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C4.如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是A .文B .明C .诚D .信5.如图所示,AC ⊥BC 于C ,CD ⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段有A .1条B .2条C .3条D .5条6.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人 A .赚16元 B .赔16元C .不赚不赔D .无法确定第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分) 7.比较大小,4-__________3(用“>”“<”或“=”填空).8.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是__________℃. 9.多项式2526235x y x y --+的一次项系数、常数项分别是__________.10.已知2(3)30m m xm --+-=是关于x 的一元一次方程,则m =__________.11.如果21a -与()22b +互为相反数,那么ab 的值为__________. 12.已知3x =是方程()427k x k x +--=的解,则k 的值是__________.13.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =56°23′,则∠BOC 的度数为__________.……○………………内……………… 此……○………………外………………14.如图,长方形纸片的长为6cm ,宽为4cm ,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________.15.小颖按如图所示的程序输入一个正整数x ,最后输出的结果为656,请写出符合条件的所有正整数x 的值为__________.16.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有__________个〇.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)计算:(1)212(3(24)2-÷---; (2)﹣24+16÷(﹣2)3×|﹣3﹣1|. 18.(本小题满分7分)解方程:(1)98512x x -+-+=; (2)11(2)(3)32x x +=+. 19.(本小题满分7分)先化简,再求值:()22234232322⎛⎫--++- ⎪⎝⎭xy x xy y x xy ,其中x =3,y =–1. 20.(本小题满分8分)如图,已知线段a ,b ,用尺规作一条线段c ,使c =2b –a .21.(本小题满分8分)如图,已知∠AOB =90°,∠EOF =60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠COB 和∠AOC 的度数.22.(本小题满分7分)某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的路程为10千米,求A 、B 两地之间的路程.23.(本小题满分8分)有8袋大米,以每袋25kg 标准,超过的千克数记作正数,不足的千克数记作负数,称后记录如下:1.2+,0.1-, 1.0+,0.6-,0.5-,0.3+,0.4-,0.2+.(1)这8袋大米中,最轻和最重的这两袋分别是多少千克? (2)这8袋大米一共多少千克?24.(本小题满分82(10y -=).(1)求x y ,的值;(2)求()()()()()()1111112220192019xy x y x y x y +++⋯+++++++的值.25.(本小题满分8分)老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:()()421132x x -=-+⋯①,84136x x -=--⋯②, 83164x x +=-+⋯③, 111x =-⋯④,111x =-⋯⑤, 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在__________(填编号);然后,你自己细心地接下面的方程: (1)()()335221x x +=-;(2)2157146y y ---=.26.(本小题满分9分)网上办公,手机上网已成为人们日常生活的一部分,我县某通信公司为普及网络使用,特推出以下两种电话拨号上网收费方式,用户可以任选其一. 收费方式一(计时制):0.05元/分;收费方式二(包月制):50元/月(仅限一部个人电话上网); 同时,每一种收费方式均对上网时间加收0.02元/分的通信费. 某用户一周内的上网时间记录如下表:(1)计算该用户一周内平均每天上网的时间.(2)设该用户12月份上网的时间为x 小时,请你分别写出两种收费方式下该用户所支付的费用.(用含x 的代数式表示)(3)如果该用户在一个月(30天)内,按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?并说明理由.27.(本小题满分11分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和(10)a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若60a =,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2019-2020学年上学期期末原创卷A 卷七年级数学·全解全析1.【答案】A【解析】A 、6(1)-=1,故A 正确;B 、25-=–25,–52表示5的2次幂的相反数,为负数,故B 错误;C 、|3|--=–3,故错误;D 、31(3-=–127,故错误.故选A . 2.【答案】D【解析】A .23a b 与23ab ,字母相同,但各字母次数不同,故错误; B .2x 与2x,字母相同,但各字母次数不同,故错误; C .23与2a ,一个为常数项,一个的次数是2,故错误; D .4与12-,均为常数项,故正确;所以答案为:D 3.【答案】C【解析】由A 表示–2,B 表示–1,C 表示0.75,D 表示2. 根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C . 4.【答案】A【解析】这是一个正方体的平面展开图,共有六个面,其中面“文"与“善"相对,面“明"与面“信"相对,“诚”与面“友"相对.故选A . 5.【答案】D【解析】表示点C 到直线AB 的距离的线段为CD ,表示点B 到直线AC 的距离的线段为BC ,表示点A 到直线BC 的距离的线段为AC ,表示点A 到直线DC 的距离的线段为AD ,表示点B 到直线DC 的距离的线段为BD ,共五条.故选D . 6.【答案】B【解析】设此商人赚钱的那件衣服的进价为x 元,则(125%)120x +=,得96x =;设此商人赔钱的那件衣服进价为y 元,则(125%)120y -=,解得160y =; 所以他一件衣服赚了24元,一件衣服赔了40元, 所以卖这两件衣服总共赔了4024=16-(元). 故选B . 7.【答案】<【解析】4 3.-<故答案为:.< 8.【答案】–1【解析】根据题意得:–5+4=–1(℃),∴调高4℃后的温度是–1℃.故答案为:–1. 9.【答案】3-,5【解析】多项式2526235x y x y --+的一次项的系数是–3,常数项是5.故答案为:–3,5. 10.【答案】–3【解析】根据一元一次方程满足的条件可得:21m -=且m –3≠0,解得:m =–3. 11.【答案】–1【解析】由题意可得:221(2)0a b -++=,∴210,20a b -=+=,解得1,22a b ==-, ∴1(2)12ab =⨯-=-.故答案为:–1. 12.【答案】2【解析】把x =3代入方程得:7k ﹣2k ﹣3=7,解得k =2.故答案为:2. 13.【答案】146°23′【解析】∵EO ⊥AB 于点O ,∴∠EOA =90°,又∵∠EOD =56°23′,∴∠COB =∠AOD =∠EOD +∠EOA =90°+56°23′=146°23′.故答案为:146°23′.14.【答案】16【解析】设剪去的长方形的长为a ,宽为b ,a +b =6, 则左下角长方形的长为a ,宽为4–b ,周长为8+2a –2b , 右上角长方形的长为b ,宽为4–a ,周长为8+2b –2a , 所以阴影部分周长和为:8+2a –2b +8+2b –2a =16, 故答案为:16. 15.【答案】5、26、131【解析】由题意得:运行一次程序5x +1=656,解得x =131;运行二次程序5x +1=131,解得x =26;运行三次程序5x +1=26,解得x =5;运行四次程序5x +1=5,解得x =0.8(不符合,即这次没有运行), ∴符合条件的所有正整数x 的值为131、26、5. 故答案为:131、26、5. 16.【答案】6061【解析】观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…, 第n 个图形共有:1+3n ,∴第2020个图形共有1+3×2020=6061,故答案为:6061. 17.【解析】(1)原式54(2)2=-÷-- 2425=-⨯+825=-+25=;(3分) (2)原式=–16+16÷(–8)×4 =–16+(–2)×4 =–16–8 =–24.(7分)18.【解析】(1)去分母得:–10x +2=–9x +8,移项合并得:–x =6, 解得x =–6;(3分) (2)去分母得:2x +4=3x +9, 解得x =–5.(7分)19.【解析】原式=4xy –3x 2+6xy –4y 2+3x 2–6xy =4xy –4y 2.(4分)当x =3,y =–1时,原式=4×3×(–1)–4×(﹣1)2 =–12–4 =–16.(7分)20.【解析】如图所示,线段AD 即为所求.……○………………○…………(8分)21.【解析】90AOB ∠=,OE 平分AOB ∠,45BOE ∴∠=,又60EOF ∠=,604515FOB ∴∠=-=,(4分)OF 平分BOC ∠,21530COB ∴∠=⨯=,3090120AOC BOC AOB ∴∠=∠+∠=+=.(8分)22.【解析】设A 、B 两码头之间的航程为x 千米,则B 、C 间的航程为(x –10)千米,由题意得,1078282x x -+=+-,(4分) 解得x =32.5.答:A 、B 两地之间的路程为32.5千米.(7分)23.【解析】(1)这8袋大米中,最轻和最重的这两袋分别是24.4千克,26.2千克;(4分)(2)258( 1.2)(0.1)( 1.0)(0.6)(0.5)(0.3)(0.4)(0.2)⨯+++-+++-+-+++-+201.1=(千克). 答:这8袋大米一共201.1千克.(8分)24.【解析】(1)根据题意得2010x y -=-=,,解得21x y ==,;(4分) (2)原式111121324320212020=+++⋯+⨯⨯⨯⨯ 111111112233420202021=-+-+-+⋯+-112021=-20202021=.(8分) 25.【解析】小明错在①;故答案为:①;(2分)(1)去括号得:91542x x +=-, 移项合并得:517x =-, 解得 3.4x =-;(5分)(2)去分母得:()()32125712y y ---=, 去括号得:63101412y y --+=, 移项合并得:41y -=,解得0.25y =-.(8分)26.【解析】(1)该用户一周内平均每天上网的时间:354033503474048++++++=40(分钟).答:该用户一周内平均每天上网的时间是40分钟;(3分)(2)采用收费方式一(计时制)的费用为:0.05×60x +0.02×60x =4.2x (元), 采用收费方式二(包月制)的费用为:50+0.02×60x =(50+1.2x )(元);(6分) (3)40分钟=23h . 若一个月内上网的时间为30x =20小时,则计时制应付的费用为4.2×20=84(元),包月制应付的费用为50+1.2×20=74(元). 由84>74,所以包月制合算.(9分)27.【解析】(1)设每个足球的定价是x 元,则每套队服是(x +50)元,根据题意得2(x +50)=3x ,解得x =100,x +50=150.答:每套队服150元,每个足球100元;(4分) (2)到甲商场购买所花的费用为:150×100+100(a ﹣10010)=(100a +14000)元, 到乙商场购买所花的费用为:150×100+0.8×100•a =(80a +15000)元;(8分) (3)当60a =时,到甲商场购买所花的费用为:100×60+14000=20000(元), 到乙商场购买所花的费用为:80×60+15000=19800(元), 所以到乙商场购买合算.(11分)。
河北省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版七上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在-12,0,-2,15,1这五个数中,最小的数为A .0B .-12C .-2D .152.据报道,人类首张黑洞照片于北京时间2019年4月10日子全球六地同步发布,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.其中5500万用科学记数法表示为 A .55×106B .5.5×106C .0.55×108D .5.5×1073.解方程11322xx x-=---去分母得 A .()1132x x =--- B .()1132x x =--- C .()1132x x =--- D .()1132x x -=---4.下列合并同类项正确的是 A .3x +22x =53x B .22a b -2a b =1 C .-ab -ab =0D .-22xy +22xy =05.下列运算中,“去括号”正确的是 A .a +(b -c )=a -b -c B .a -(b +c )=a -b -c C .m -2(p -q )=m -2p +q D .x 2-(-x +y )=x 2+x +y6.下列判断正确的是 A .23a b 与2ba 不是同类项B .单项式32x y -的系数是–1 C .25m n 不是整式D .2235x y xy -+是二次三项式7.已知3a x a +=是关于x 的一元一次方程,则该方程的解为 A .x =1B .x =2C .x =3D .x =48.如果代数式2y 2-y +5的值为7,那么代数式4y 2-2y +1的值为 A .5B .4C .3D .29.如果单项式1b xy +-与2312a x y +是同类项,那么关于x 的方程0axb +=的解为 A .1x =B .1x =-C .2x =D .2x =-10.某工厂原计划用a 天生产b 件产品,由于技术革新实际比原计划少用x 天完成,则实际每天要比原计划多生产件. A .b b a a x -- B .a a xb b -- C .b b a x a-- D .a x ab b-- 11.下列说法:①经过三点中的两点画直线一定可以画三条直线;②两点之间,线段最短;③若点M 是AB 的中点,则MA =MB ;④同角的余角相等; 其中正确的说法有 A .4个B .3个C .2个D .1个12.如图,点C 在线段AB 上,点D 是AC 的中点,如果CD =4,AB =14,那么BC 长度为A .4B .5C .6D .6.513.一个角的补角比这个角的余角的3倍还多10°,则这个角的度数为A .140°B .130°C .50°D .40° 14.如图,△OAB 绕点O 逆时针旋转85°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是A .35°B .45°C .55°D .65°15.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是 A .0.7(1+0.6)x =x -36 B .0.7(1+0.6)x =x +36 C .0.7(1+0.6x )=x -36D .0.7(1+0.6x )=x +3616.观察下列各算式21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,根据上述算式的规律,你认为22019的末位数字应该是 A .8B . 6C .4D .2第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分) 17.一个长方形的宽为 cm x ,长比宽的2倍多1cm ,这个长方形的周长为__________cm . 18.有理数a 、b 、c 在数轴上的位置如图所示,化简|a +b |–|a –c |+|b –c |的结果是__________.19.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m =__________;(2)当y =-2时,n 的值为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)解方程:(1)3x +7=32-2x ;(2)2157123y y ---=. 21.(本小题满分9分)已知x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,求202020192()()2x y ab c+--+的值.22.(本小题满分9分)化简或求值:(1)若A =–2a 2+ab –b 3,B =a 2–2ab +b3,求A –2B 的值.(2)先化简,再求值:5x 2y –3xy 2–7(x 2y –xy 2),其中x =2,y =–1.23.(本小题满分9分)如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,∠FOD =90°.(1)若∠AOF =50°,求∠BOE 的度数; (2)若∠BOD ∶∠BOE =1∶4,求∠AOF 的度数.24.(本小题满分10分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,(1)当2m =时,求线段AB 的长; (2)若C 为线段AB 的三等分点,求m 的值.25.(本小题满分10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度;(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50米?26.(本小题满分11分)已知,A 、B 在数轴上对应的数分别用a 、b 表示,且2(5)|15|0a b ++-=.(1)数轴上点A 表示的数是__________,点B 表示的数是__________.(2)若一动点P 从点A 出发,以3个单位长度/秒速度由A 向B 运动;动点Q 从原点O 出发,以1个单位长度/秒速度向B 运动,点P 、Q 同时出发,点Q 运动到B 点时两点同时停止.设点Q 运动时间为t 秒.①若P 从A 到B 运动,则P 点表示的数为,Q 点表示的数为__________.(用含t 的式子表示) ②当t 为何值时,点P 与点Q 之间的距离为2个单位长度.2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】C【解析】∵-2<12-<0<15<1,∴最小的数是-2,故选C .2.【答案】D【解析】5500万用科学记数法表示为5.5×107.故选D . 3.【答案】C【解析】方程两边都乘(x –2),得1=x –1–3(x –2).故选C . 4.【答案】D【解析】A 、原式不能合并,故错误;B 、原式=2a b ,故错误; C 、原式=–2ab ,故错误;D 、原式=0,故正确,故选D . 5.【答案】B【解析】A 、a +(b -c )=a +b –c ,错误;B 、a -(b +c )=a –b –c ,正确; C 、m -2(p -q )=m –2p +2q ,错误;D 、x 2-(-x +y )=x 2+x –y ,错误,故选B . 6.【答案】B【解析】A .23a b 与2ba 是同类项,故错误;B .单项式32x y -的系数是–1,故正确;C .25m n 是整式,故错误;D .2235x y xy -+是三次三项式,故错误.故选B .7.【答案】B【解析】∵x a+a =3是关于x 的一元一次方程,∴a =1,即方程为x +1=3, 解得:x =2.故选B . 8.【答案】A【解析】∵2y 2-y +5的值为7,∴2y 2-y =2, 则4y 2-2y +1=2(2y 2-y )+1=4+1=5. 故选A . 9.【答案】C【解析】根据题意得:a +2=1,解得:a =–1,b +1=3,解得:b =2,把a =–1,b =2代入方程ax +b =0得:–x +2=0,解得:x =2,故选C . 10.【答案】C【解析】根据题意知,原计划每天生产b a 件,而实际每天生产b a x-件, 则实际每天要比原计划多生产b ba x a--(件),故选C . 11.【答案】B【解析】①过同一平面上不共线的三点中的任意两点画直线,可以画三条直线,当这三点在同一条直线上时,只能作一条直线,故①错误;②两点之间,线段最短,是线段公理,故②正确; ③若点M 是AB 的中点,则MA =MB ,故③正确; ④同角的余角相等,故④正确.故选B .12.【答案】C【解析】∵点D 是AC 的中点,如果CD =4,∴AC =2CD =8, ∵AB =14,∴BC =AB -AC =6,故选C . 13.【答案】C【解析】设这个角为α,则它的余角为90°–α,补角为180°–α, 根据题意得,180°–α=3(90°–α)+10°, 180°–α=270°–3α+10°,解得α=50°.故选C . 14.【答案】C【解析】由题意可知:∠DOB =85°,∵△DCO ≌△BAO ,∴∠D =∠B =40°,∴∠AOB =180°–40°–110°=30°,∴∠α=85°–30°=55°,故选C . 15.【答案】B【解析】设这件夹克衫的成本价是x 元, 依题意,得:0.7(1+0.6)x =x +36.故选B . 16.【答案】A【解析】∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, ∴这些数字的末尾数字依次以2,4,8,6出现, ∵20194=5043÷……,∴22019的末位数字是8,故选A . 17.【答案】(62)x +【解析】一个长方形的长比宽的2倍多1 cm ,若宽为x cm ,则长为:(2x +1)cm ,周长为:2(21)2(31)(62)(cm)x x x x ++=+=+,故答案为:(62)x +.18.【答案】–2a【解析】∵b <0,a >0,||||b a >,∴a +b <0. ∵c <0,a >0,∴a –c >0. ∵b >c ,∴b –c >0.∴||||||a b a c b c +--+-=–(a +b )–(a –c )+(b –c )=–a –b –a +c +b –c =–2a .故答案为:–2a . 19.【答案】3x ;1【解析】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,则m =x +2x =3x .(2)由题知m =3x ,n =2x +3,y =m +n ,则y =3x +2x +3=5x +3,把y =–2代入,–2=5x +3,解得x =–1,则n =2×(–1)+3=1.故答案为:3x ;1.20.【解析】(1)3x +7=32-2x ,移项得:3x +2x =32-7, 合并得:5x =25, 解得:x =5.(4分)(2)2157123y y ---=. 去分母得:3(2y -1)-6=2(5y -7), 去括号得:6y -3-6=10y -14, 移项:6y -10y =-14+6+3, 合并得:-4y =-5, 解得:y =54.(8分) 21.【解析】根据题意得:x +y =0,ab =1,c =2或-2,(4分)∵当c =2或–2时,2=4c , 则原式=0+1+4=5.(9分)22.【解析】(1)∵A =–2a 2+ab –b 3,B =a 2–2ab +b 3,∴A –2B =–2a 2+ab –b 3–2(a 2–2ab +b 3)=–2a 2+ab –b 3–2a 2+4ab –2b 3=–4a 2+5ab –3b 3.(4分) (2)原式=5x 2y -3xy 2-7x 2y +7xy 2=-2x 2y +4xy 2,(7分)当x =2,y =-1时,原式=-2×22×(-1)+4×2×(-1)2=8+8=16.(9分) 23.【解析】(1)∵COF ∠与DOF ∠是邻补角,∴18090COF DOF ∠=︒-∠=︒. ∵AOC ∠与AOF ∠互为余角,∴90905040AOC AOF ∠=︒-∠=︒-︒=︒.(2分) ∵AOC ∠与BOC ∠是邻补角,∴180********COB AOC ∠=︒-∠=︒-︒=︒. ∵OE 平分BOC ,∠ ∴1702BOE BOC ∠=∠=︒.(4分) (2)14BOD BOE ∠∠=∶∶, 设4BOD AOC x BOE COE x ∠=∠=∠=∠=,, ∵AOC ∠与BOC ∠是邻补角, ∴180AOC BOC ∠+∠=︒,(6分) 即44180x x x ++=︒, 解得20x =︒,∵AOC ∠与AOF ∠互为余角,∴90902070AOF AOC ∠=︒-∠=︒-︒=︒.(9分) 24.【解析】(1)当2m =时,有()1122x +=,()2223x +=, 由方程()1122x +=,解得3x =,即3AC =. 由方程()2223x +=,解得1x =,即1BC =.因为C 为线段AB 上一点,所以4AB AC BC =+=.(4分) (2)解方程()112x m +=,得21x m =-, 即21AC m =-.解方程()23x m m +=,得2m x =, 即2mBC =.(6分)①当C 为线段AB 靠近点A 的三等分点时,则2BC AC =,即()2212m m =-,解得47m =. ②当C 为线段AB 靠近点B 的三等分点时, 则2AC BC =,即2122mm -=⋅,解得1m =. 综上可得,47m =或1.(9分) 25.【解析】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据题意得:2(2x –x )=400,(2分) 解得:x =200, ∴2x =400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(5分)(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50米, ①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了50米, 根据题意得:400y –200y =50, 解得:y =14;(7分) ②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了350米, 根据题意得:400y –200y =350, 解得:y =74. 答:第二次相遇前,再经过14或74分钟,小明和爸爸跑道上相距50米.(10分) 26.【解析】(1)−5;15.(4分)∵2(5)|15|0a b ++-=, ∴a +5=0,b −15=0, 解得a =−5,b =15,∴A 表示的数是−5,B 表示的数是15. 故答案为:−5;15. (2)①t .(7分)若P 从A 到B 运动,则P 点表示的数为−5+3t ,Q 点表示的数为t . ②若点P 在Q 点左侧,则−5+3t +2=t ,得:32t =,(9分) 若点P 在Q 点右侧,则−5+3t −2=t , 得:72t =, 综上所述,32t =或72.(11分)。
【典型题】七年级数学上期末试题(带答案) (2)一、选择题1.下列计算正确的是( ) A .2a +3b =5ab B .2a 2+3a 2=5a 4 C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a2.如图所示运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .3B .6C .4D .23.点C 是线段AB 上的三等分点,D 是线段AC 的中点,E 是线段BC 的中点,若6CE =,则AB 的长为( ) A .18 B .36C .16或24D .18或364.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )5.整式23x x -的值是4,则2398x x -+的值是( ) A .20B .4C .16D .-46.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中: ①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( ) A .1个B .2个C .3个D .4个7.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=8.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=-9.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n个图案中白色正方形比黑色正方形( )个.A.n B.(5n+3)C.(5n+2)D.(4n+3)10.一副三角板不能拼出的角的度数是()(拼接要求:既不重叠又不留空隙)A.75︒B.105︒C.120︒D.125︒11.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=()A.4cm B.5cm C.6cm D.7cm12.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题13.若一件商品按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的实际售价为______元.14.一根长80cm的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1kg可使弹簧增长2cm,正常情况下,当挂着xkg的物体时,弹簧的长度是____cm.(用含x的代数式表示)15.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.16.已知多项式kx2+4x﹣x2﹣5是关于x的一次多项式,则k=_____.17.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.18.若代数式45x -与36x -的值互为相反数,则x 的值为____________.19.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元. 20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.22.已知:如图,平面上有A 、B 、C 、D 、F 五个点,根据下列语句画出图形: (Ⅰ)直线BC 与射线AD 相交于点M ;(Ⅱ)连接AB ,并反向延长线段AB 至点E ,使AE =12BE ; (Ⅲ)①在直线BC 上求作一点P ,使点P 到A 、F 两点的距离之和最小; ②作图的依据是 .23.已知∠a =42°,求∠a 的余角和补角.24.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示; 商场 优惠方案 甲 全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?25.先化简再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3),其中x=﹣3,y=﹣2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.2.D解析:D【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.3.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE ,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.4.D解析:D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.5.A解析:A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x2-3x=4,所以3x2-9x=12,所以3x2-9x+8=12+8=20.故选A.【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.6.B解析:B【解析】【分析】根据图示,可得c<a<0,b>0,|a|+|b|=|c|,据此逐项判定即可.【详解】∵c<a<0,b>0,∴选项①不符合题意. ∵c <a <0,b >0,|a |+|b |=|c |, ∴b +c <0, ∴a (b +c )>0, ∴选项②符合题意. ∵c <a <0,b >0,|a |+|b |=|c |, ∴-a +b =-c , ∴a -c =b ,∴选项③符合题意. ∵a cb ab c++=-1+1-1=-1, ∴选项④不符合题意, ∴正确的个数有2个:②、③. 故选B . 【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.7.C解析:C 【解析】 【分析】根据合并同类项法则逐一进行计算即可得答案. 【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误 故选:C 【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.8.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.9.D解析:D 【解析】 【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律. 【详解】第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个, 第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个, 第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个, 依此类推,第n 个图形黑、白两色正方形共3×(2n+1)个,其中黑色n 个,白色3×(2n+1)-n 个, 即:白色正方形5n+3个,黑色正方形n 个, 故第n 个图案中白色正方形比黑色正方形多4n+3个 故选D. 【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律.10.D解析:D 【解析】 【分析】 【详解】解:一副三角板的度数分别为:30°、60°、45°、45°、90°,因此可以拼出75°、105°和120°,不能拼出125°的角. 故选D . 【点睛】本题考查角的计算.11.A解析:A 【解析】从AD的中点C入手,得到CD的长度,再由AB的长度算出DB的长度.【详解】解:∵点C为AD的中点,AC=3cm,∴CD=3cm.∵AB=10cm,AC+CD+DB=AB,∴BD=10-3-3=4cm.故答案选:A.【点睛】本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.12.B解析:B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选:B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.二、填空题13.140【解析】【分析】首先根据题意设这件商品的成本价为x元则这件商品的标价是(1+40)x元;然后根据:这件商品的标价×80=15列出方程求出x的值是多少即可【详解】解:设这件商品的成本价为x元则这解析:140【解析】【分析】首先根据题意,设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元;然后根据:这件商品的标价×80%x=15,列出方程,求出x的值是多少即可.【详解】解:设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元,∴(1+40%)x×80%-x=15,∴1.4x×80%-x=15,整理,可得:0.12x=15,解得:x=125;∴这件商品的成本价为125元.⨯+⨯=⨯⨯=元;∴这件商品的实际售价为:125(140%)80%125 1.40.8140故答案为:140.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.14.(80+2x)【解析】【分析】一根长80cm的弹簧每增加1kg可使弹簧增长2cm当增加xkg的物体时弹簧的长度增加2xcm由此可得答案【详解】根据题意知弹簧的长度是(80+2x)cm故答案为:(80解析:(80+2x).【解析】【分析】一根长80cm的弹簧,每增加1kg可使弹簧增长2cm,当增加xkg的物体时,弹簧的长度增加2xcm,由此可得答案.【详解】根据题意知,弹簧的长度是(80+2x)cm.故答案为:(80+2x).【点睛】此题考查列代数式,理解题意,找出数量关系是解决问题的关键.15.158【解析】试题分析:分析前三个正方形可知规律为右上和左下两个数的积减左上的数等于右下的数且左上左下右上三个数是相邻的偶数因此图中阴影部分的两个数分别是左下是12右上是14解:分析可得图中阴影部分解析:158【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为158.考点:规律型:数字的变化类.16.【解析】【分析】根据多项式的次数的定义来解题要先找到题中的等量关系然后列出方程求解【详解】多项式kx2+4x﹣x2﹣5是关于的一次多项式多项式不含x2项即k-1=0k=1故k的值是1【点睛】本题考査解析:【解析】【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】Q 多项式kx 2+4x ﹣x 2﹣5是关于的一次多项式,∴多项式不含x 2项,即k -1=0,k =1. 故k 的值是1.【点睛】本题考査了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.17.36【解析】【分析】根据题意和展开图求出x 和A 的值然后计算数字综合即可解决【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2A=14∴数字总和为:9+3+6+6+14-2=36故答案为3解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面18.【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到x 的值【详解】解:根据题意得:移项合并得:解得故答案为:【点睛】此题考查了解一元一次方程和相反数的概念解题的关键在于根据相反数的概念列出方 解析:117【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:45+360--=x x ,移项合并得:711x = ,解得117x =, 故答案为:117. 【点睛】此题考查了解一元一次方程和相反数的概念,解题的关键在于根据相反数的概念列出方程.19.100【解析】【分析】设进价是x 元则(1+20)x =200×06解方程可得【详解】解:设进价是x 元则(1+20)x =200×06解得:x =100则这件衬衣的进价是100元故答案为100【点睛】考核知解析:100【解析】【分析】设进价是x 元,则(1+20%)x =200×0.6,解方程可得. 【详解】解:设进价是x 元,则(1+20%)x =200×0.6, 解得:x =100.则这件衬衣的进价是100元.故答案为100.【点睛】考核知识点:一元一次方程的应用.20.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°BM 为∠CBE 的平分线∴∠EBM=∠CBE=×75°=375°∵BN 为∠DBE 的平分线∴∠EBN=∠EBD=×6解析:5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°,BM 为∠CBE 的平分线,∴∠EBM=12∠CBE =12×75°=37.5°, ∵BN 为∠DBE 的平分线,∴∠EBN=12∠EBD=12×60°=30°, ∴∠MBN=∠EBM+∠EBN==37.5°+30°=67.5°故答案为:67.5°. 三、解答题21.222x y +,19【解析】试题分析:先去括号,合并同类项,然后代入求值即可.试题解析:解:原式=22233223x xy x y xy --++=222x y +当1x =-,3y =时,原式=22(1)23-+⨯=19.22.①见解析;②两点之间线段最短【解析】【分析】分别根据直线、射线、相交直线和线段的延长线进行作图即可.【详解】解:如图所示:作图的依据是:两点之间,线段最短.故答案为两点之间,线段最短.【点睛】本题主要考查直线、射线和线段的画法,掌握作图的基本方法是解题的关键. 23.48°,138°.【解析】【分析】根据余角和补角的概念计算即可.【详解】解:∠α的余角=90°﹣42°=48°,∠α的补角=180°﹣42°=138°.【点睛】本题考查的知识点是余角和补角,解题的关键是熟练的掌握余角和补角.24.(1)336,360;(2)这条裤子的标价是370元.【解析】【分析】(1)按照两个商场的优惠方案进行计算即可;(2)设这条裤子的标价是x 元,根据两种优惠方案建立方程求解即可.【详解】解:(1)甲商场实际付款:(290+270)×60%=336(元); 乙商场实际付款:290﹣2×50+270﹣2×50=360(元);故答案为:336,360;(2)设这条裤子的标价是x元,由题意得:(380+x)×60%=380﹣3×50+x﹣3×50,解得:x=370,答:这条裤子的标价是370元.【点睛】本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键.25.﹣y2﹣2x+2y,-2【解析】试题分析:先去括号,然后合并同类项,最后代入数值进行计算即可.试题解析:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+2y﹣x+3y2﹣2x3=﹣y2﹣2x+2y,当x=﹣3,y=﹣2时,原式=﹣(﹣2)2﹣2×(﹣3)+2×(﹣2)=﹣4+6﹣4=﹣2.。
2023-2024学年北京市西城区七年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的绝对值是.()A.3B.C.D.2.特色产业激发乡村发展新活力.据报道,截至2023年10月9日,全国已建设180个优势特色乡村产业集群,全产业链产值超过4600000000000元,辐射带动1000多万户农民.数字4600000000000用科学记数法表示为.()A. B. C. D.3.下图是某个几何体的展开图,则这个几何体是。
()A.三棱柱B.圆柱C.四棱柱D.圆锥4.下列各式计算中正确的是.()A. B.C. D.5.如果一个角等于它的余角的2倍,那么这个角的度数是.()A. B. C. D.6.有理数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A. B. C. D.7.下列解方程的变形过程正确的是()A.方程,移项得B.方程,系数化为1得C.方程,去括号得D.方程,去分母得8.如图,某乡镇的五户居民依次居住在同一条笔直的小道边的A处,B处,C处,D处,E处,且这五户居民的人数依次有1人,2人,3人,3人,2人.乡村扶贫改造期间,该乡镇打算在这条小道上新建一个便民服务点M,使得所有居民到便民服务点的距离之和每户所有居民均需要计算最小,则便民服务点M应建在.()A.A处B.B处C.C处D.D处二、填空题:本题共8小题,每小题2分,共16分。
9.如果向东走5米记作米,那么向西走10米可记作__________米.10.比较大小:__________11.如图所示的网格是正方形网格,则__________填“>”“<”“=”12.如果单项式与单项式的和仍是单项式,那么m的值是__________,n的值是__________.13.若是关于x的方程的解,则a的值为__________.14.若代数式的值为2,则代数式的值为__________.15.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设有x间客房,可列方程为:__________.16.“幻方”最早记载于春秋时期的《大戴礼》中,现将1,2,3,4,5,7,8,9这八个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.若按同样的要求重新填数如图2所示,则的值是__________,的值是__________.三、计算题:本大题共2小题,共20分。
山东省淄博市高青县2015~2016学年度七年级上学期期末数学试卷一、选择题:本题有12小题,每小题只有一个选项是正确的,不选、多选、错选,均不得分.1.8的立方根是()A.2 B.±2 C.D.±2.下列图形是轴对称图形的是()A.B.C. D.3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.函数自变量x的取值范围是()A.x≥1且x≠3 B.x≥1 C.x≠3 D.x>1且x≠35.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C. D.6.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.97.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B. C. D.8.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是()A.∠A=∠D B.∠E=∠C C.∠A=∠C D.∠1=∠29.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°10.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米11.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是()A.B.C.D.12.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为x轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M的个数为()A.1 B.2 C.3 D.4二、填空题:共5小题,每小题4分,共20分.13.的平方根是.14.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为.15.已知点A(2,﹣3),点A与点B关于x轴对称,那么点B关于原点对称的点C的坐标为.16.如图,一只蚂蚁沿着一个长方体表面从点A出发,经过3个面爬到点B,已知底面是边长为2的正方形,高为8,如果它运动的路径是最短的,则最短路径的长为.17.如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是米.三、解答题:共7小题,共52分.18.已知x是16的算术平方根,y是9的平方根,求x2+y2+x﹣2的值.19.如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,则:(1)∠ADE=°;(2)AE EC;(填“=”“>”或“<”)(3)当AB=3,AC=5时,△ABE的周长=.20.如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.21.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.22.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.23.定义:如图,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长.24.某销售公司销售人员的月工资y(元)与月销售量x(件)之间的关系如图所示,已知月销售量为250件时,营销人员的月工资是700元.(1)营销人员的基本工资(即无销量时的工资)是多少元?(2)求月工资y与月销售量x之间的关系式;(3)月销售400件时,月工资是多少元?(4)如果营销人员想每月有1100元的工资收入,那么他每月应销售多少件?山东省淄博市高青县2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题:本题有12小题,每小题只有一个选项是正确的,不选、多选、错选,均不得分.1.8的立方根是()A.2 B.±2 C.D.±【考点】立方根.【分析】根据开方运算,可得答案.【解答】解:23=8,8的立方根是2,故选:A.【点评】本题考查了立方根,立方运算是求立方根的关键.2.下列图形是轴对称图形的是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.函数自变量x的取值范围是()A.x≥1且x≠3 B.x≥1 C.x≠3 D.x>1且x≠3【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,x﹣1≥0且x﹣3≠0,解得x≥1且x≠3.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C. D.【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.【点评】本题考查了方向角,解决本题的关键是熟记方向角的定义.6.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.9【考点】估算无理数的大小.【分析】根据=9,=10,可知9<<10,依此即可得到k的值.【解答】解:∵k<<k+1(k是整数),9<<10,∴k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.7.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B. C. D.【考点】一次函数图象与系数的关系.【专题】压轴题;存在型.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选C.【点评】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.8.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是()A.∠A=∠D B.∠E=∠C C.∠A=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】从已知看,已经有两边相等,则添加两边的夹角或另一边对应相等即可判定其全等,从选项看只有第四项符合题意,所以其为正确答案,其它选项是不能判定两三角形全等的.【解答】解:∵∠1=∠2∵∠1+∠DBE=∠2+∠DBE∴∠ABE=∠CBD∵AB=DB,BC=BE,所以△ABE≌△DBC(SAS),D是可以的;而由A,B,C提供的条件不能证明两三角形全等.故选D【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°【考点】等腰三角形的性质.【专题】分类讨论.【分析】此题要分情况考虑:40°是等腰三角形的底角或40°是等腰三角形的顶角.再进一步根据三角形的内角和定理进行计算.【解答】解:当40°是等腰三角形的顶角时,则顶角就是40°;当40°是等腰三角形的底角时,则顶角是180°﹣40°×2=100°.故选:C.【点评】注意:当等腰三角形中有一个角是锐角时,可能是它的底角,也可能是它的顶角;当等腰三角形中有一个角是锐角时,只能是它的顶角.10.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米【考点】勾股定理的应用.【分析】在Rt△ACB中,根据勾股定理可求得BC的长,而树的高度为AC+BC,AC的长已知,由此得解.【解答】解:Rt△ABC中,AC=1米,AB=2米;由勾股定理,得:BC==米;∴树的高度为:AC+BC=(+1)米;故选C.【点评】正确运用勾股定理,善于观察题目的信息是解题的关键.11.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是()A.B.C.D.【考点】剪纸问题.【专题】操作型.【分析】按照题意要求,动手操作一下,可得到正确的答案.【解答】解:严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论.故选A.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.12.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为x轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M的个数为()A.1 B.2 C.3 D.4【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与x轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为2.故选B.【点评】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.二、填空题:共5小题,每小题4分,共20分.13.的平方根是±.【考点】平方根;算术平方根.【分析】先求得=10,然后再求得10的平方根即可.【解答】解:=10,10的平方根是.故答案为:±.【点评】本题主要考查的是算术平方根和平方根的定义,求得=10是解题的关键.14.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为36°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出∠ABE,最后根据∠EBC=∠ABC﹣∠ABE代入数据进行计算即可得解.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣∠A)=×(180°﹣36°)=72°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=72°﹣36°=36°.故答案为:36°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形的两底角相等的性质,是基础题,熟记性质是解题的关键.15.已知点A(2,﹣3),点A与点B关于x轴对称,那么点B关于原点对称的点C的坐标为(﹣2,﹣3).【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点横坐标相等,纵坐标互为相反数,可得B点坐标,再根据关于原点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:点A(2,﹣3),点A与点B关于x轴对称,得点B(2,3).点B关于原点对称的点C的坐标(﹣2,﹣3),故答案为:(﹣2,﹣3).【点评】本题考查了关于原点的对称的点的坐标,关于x轴对称的点横坐标相等,纵坐标互为相反数,可得B点坐标,再根据关于原点的横坐标互为相反数,纵坐标互为相反数.16.如图,一只蚂蚁沿着一个长方体表面从点A出发,经过3个面爬到点B,已知底面是边长为2的正方形,高为8,如果它运动的路径是最短的,则最短路径的长为10.【考点】平面展开-最短路径问题.【分析】将长方体展开,根据两点之间线段最短,构造出直角三角形,进而根据勾股定理求出AB 的长.【解答】解:如图:AE=2×3=6,BE=8,在Rt△AEB中,AB==10.故最短路径的长为10.故答案为:10.【点评】考查了平面展开﹣最短路径问题,解答此题的关键是根据两点之间线段最短将图形展开,然后利用勾股定理解答.17.如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是504米.【考点】函数的图象.【专题】压轴题;数与式.【分析】本题可设x≥2时,函数解析式为y=kx+b,根据待定系数法即可求出函数解析式,进而即可求出答案.【解答】解:设x≥2时,函数解析式为y=kx+b,∴2k+b=180,4k+b=288,解得k=54,b=72,∴y=54x+72,∴当x=8时,y=504.故填504.【点评】本题用到的知识点是:已知两点,可确定直线的函数解析式.当已知函数的某一点的横坐标时,也可求出相应的y值.三、解答题:共7小题,共52分.18.已知x是16的算术平方根,y是9的平方根,求x2+y2+x﹣2的值.【考点】算术平方根;平方根.【分析】先根据算术平方根、平方根的定义求得x=4,y2=9,然后代入计算即可.【解答】解:根据题意则x=4,y2=9,x2+y2+x﹣2=16+9+4﹣2=27.【点评】本题主要考查的是算术平方根的定义、平方根的定义,求得x=4,y2=9是解题的关键.19.如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,则:(1)∠ADE=90°;(2)AE=EC;(填“=”“>”或“<”)(3)当AB=3,AC=5时,△ABE的周长=7.【考点】线段垂直平分线的性质;勾股定理的应用.【专题】几何图形问题.【分析】(1)由作图可知,MN是线段AC的垂直平分线,故可得出结论;(2)根据线段垂直平分线的性质即可得出结论;(3)先根据勾股定理求出BC的长,进而可得出结论.【解答】解:(1)∵由作图可知,MN是线段AC的垂直平分线,∴∠ADE=90°.故答案为:90°;(2)∵MN是线段AC的垂直平分线,∴AE=EC.故答案为:=;(3)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵AE=CE,∴△ABE的周长=AB+BC=3+4=7.故答案为:7.【点评】本题考查的是线段垂直平分线的性质以及勾股定理的应用,熟知线段垂直平分线的性质是解答此题的关键.20.如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.【考点】勾股定理.【专题】作图题.【分析】(1)由勾股定理可知当直角边为1和3时,则斜边为,由此可得线段PQ;(2)由勾股定理可知当直角边为2和3时,则斜边为,把斜边作为正方形的边长即可得到面积为13的正方形ABCD.【解答】解:(1)(2)如图所示:【点评】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.21.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法解答解析式即可;(2)得出直线与y轴相交于点D的坐标,再利用三角形面积公式解答即可.【解答】解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.【点评】此题考查一次函数问题,关键是根据待定系数法解解析式.23.定义:如图,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长.【考点】勾股定理.【专题】新定义.【分析】分两种情况:①当MN为最大线段时,由勾股定理求出BN;②当BN为最大线段时,由勾股定理求出BN即可.【解答】解:分两种情况:①当MN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===;综上所述:BN的长为或.【点评】本题考查了新定义“勾股分割点”、勾股定理;理解新定义,熟练掌握勾股定理,进行分类讨论是解决问题的关键.24.某销售公司销售人员的月工资y(元)与月销售量x(件)之间的关系如图所示,已知月销售量为250件时,营销人员的月工资是700元.(1)营销人员的基本工资(即无销量时的工资)是多少元?(2)求月工资y与月销售量x之间的关系式;(3)月销售400件时,月工资是多少元?(4)如果营销人员想每月有1100元的工资收入,那么他每月应销售多少件?【考点】一次函数的应用.【分析】(1)由图象可知,无销量时的工资即为x=0时y的值;(2)设月工资y与月销售量x之间的关系式为y=kx+b,将(0,300),(250,700)代入,利用待定系数法即可求解;(3)将x=400代入(2)中所求的函数关系式,求出y值即可;(4)将y=1100代入(2)中所求的函数关系式,求出x的值即可.【解答】解:(1)由图象可知,x=0时,y=300,即营销人员的基本工资(即无销量时的工资)是300元;(2)设月工资y与月销售量x之间的关系式为y=kx+b,将(0,300),(250,700)代入,得,解得,所以月工资y与月销售量x之间的关系式是y=x+300;(3)把x=400代入y=x+300,得y=×400+300=940.答:月销售400件时,月工资是940元;(4)把y=1100代入y=x+300,得x+300=1100,解得x=500.答:如果营销人员想每月有1100元的工资收入,那么他每月应销售500件.【点评】此题考查了一次函数的应用,关键是利用待定系数法求出y与x之间的函数关系式,进而利用函数关系式求解.。