增长率问题
- 格式:ppt
- 大小:361.50 KB
- 文档页数:15
一、增长率问题1、小明爸爸大民对小明说,我现在给你500元钱,如果你把钱存在妈妈那些,且每年将平均增长X%,请问:第一年增长后的量是:500+500*X%=500(1+X%)第二年后增长的量是:500(1+X%)+500(1+X%)X%=500(1+X%)2第三年后的增长量是:500(1+X%)3第n年后的增长率是:500(1+X%)n这就是重要的增长率公式。
例1:两年前生产1吨甲种药品的成本是5000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,请甲药品成本的年平均下降率是多少?解:设甲药品成本的年平均下降率是X依题意得:5000(1-X%)2 =3000解方程,得:X1 =0.225 X2 =1.775(舍去)答: 甲药品成本的年平均下降率是22.5%.例2:某厂今年一月份的总产量为500吨, 三月份的总产量为720吨,平均每月增长率为X,列方程:()A、500(1+2X)=720B、500(1+X)2 =720C、500(1+X2)=720D、720(1+X)2 =500例3:某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份每月的增长率为X,那么满足的方程是:()A、50(1+2X)=182B、50(1+X2)=182C、50+50(1+X)+50(1+2X)=182D、50+50(1+X)+50(1+X)2 =182例4:有3人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染上了几个人?(只需解、设、例)解:设每轮传染中平均一个人传染上了X个人?3(1+X)2 =121能力提升:(中考)某工厂计划在两年内将产量翻一番,如果每年比上年提高的百分率相同,求这个百分数(精确到处%)。
设这个百分数是X,根据题意得:(1+X)2 =2小结:1、平均增长(降低)率公式:A(1+X)2 =B2、(1)注意:1与X的位置不要调换(2)解这类问题列出的方程一般用直接开平方法。
增长率问题(1)增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数(2)两次增长,且增长率相等的问题的基本等量关系式为:原来的量×(1+增长率)增长期数=后来的量说明:(1)上述相等关系仅适用增长率相同的情形;(2)如果是下降率,则上述关系式为:原来的量×(1-增长率)下降期数=后来的量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数。
商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。
(1)当日产量为多少时每日获得的利润为1750元?(2)若可获得的最大利润为1950元,问日产量应为多少?3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
文章标题:一元一次方程增长率问题的应用一、引言在我们生活和工作中,经常会遇到各种各样的增长率问题。
无论是企业的销售额增长,还是个人的投资收益率,都可以用一元一次方程来描述和解决。
本文将以一元一次方程增长率问题为主题,探讨其在实际生活中的应用,并通过丰富的例子和详细的分析,帮助读者更深入地理解这一概念。
二、一元一次方程增长率问题的基本概念1. 了解一元一次方程增长率问题的基本概念是解决实际问题的关键。
一元一次方程通常表示为y=kx+b,其中k代表增长率,b代表初始值。
增长率可以是正数、负数或零,代表了增长或减少的速度和趋势。
通过解一元一次方程,我们可以求得未知数的值,从而得到具体的增长或减少量。
2. 举例说明:某种商品每年销售额增长率为20%,初始销售额为100万,问5年后的销售额是多少?三、实际应用举例分析1. 企业销售额增长问题假设一家公司的销售额每年增长率为15%,初始销售额为200万,我们可以通过一元一次方程来计算未来几年的销售额。
假设第n年的销售额为y,根据一元一次方程,可以列出如下的方程:y=200*(1+15%)^n。
通过求解这个方程,就可以得到未来几年的销售额,从而进行经营规划和决策。
2. 个人投资收益率问题一个人在银行存款,年利率为3%,初始存款为10000元,我们可以通过一元一次方程来计算未来几年的存款额。
假设第n年的存款额为y,根据一元一次方程,可以列出如下的方程:y=10000*(1+3%)^n。
通过求解这个方程,就可以得到未来几年的存款额,从而进行财务规划和投资分析。
四、总结与回顾通过以上的讨论,我们可以得出一元一次方程增长率问题的应用具有广泛的实用性和重要性。
无论是企业经营还是个人理财,都离不开对增长率问题的分析和解决。
掌握了一元一次方程增长率问题的解决方法,我们就可以更好地应对生活和工作中的各种增长问题,实现个人和企业的长期稳健发展。
五、个人观点与理解作为一名文章写手,我对一元一次方程增长率问题的应用有着深刻的理解和体会。
省考行测备考增长率问题讲授在行测资料分析题中,增长率的通常考察方式是材料中给你现期值以及增长量或者基期值,这种情形直接挑选求增长率的公式进行运算即可。
下面作者给大家带来关于省考行测备考增长率问题讲授,期望会对大家的工作与学习有所帮助。
省考行测备考增长率问题讲授一、关于增长率的概念及常见问法由于增长率是表示从基期到现期变化快慢的一种描写方式。
题干中的常见的问法,如“202X年比202X年增长了百分之几?”“202X年到2015年增长最快的是哪年?”等等。
关于增长率的问法比较灵活,但终究都离不开结尾是描写速度的一些名词。
考生需要了解什么情形表示题干在考核我们增长率,增幅、变化幅度、百分数。
二、关于求增长率问题的列式求增长率的公式触及的情形较多,其中,增长率=增长量/基期值是求增长率的核心公式,但在考试题目中考核考生最多的是增长率=[(现期值-基期值)/基期值]×100%=(现期值/基期值)-1。
考生要根据题干给出的不同条件,挑选正确的公式。
例.202X年,我国上市公司通过境内市场累计筹资2385亿元。
202X年上市公司通过境内市场累计筹资1736亿元。
问题:202X年,我国上市公司通过境内市场累计筹资金额比202X年增加了百分之几?A.16.9%B.18.9%C.30.6%D.37.5%【答案】D。
【解析】:由材料可知,2015年,我国上市公司功过境内市场累计筹资2385亿,2014年为1736亿元,则所求为[(2385-1736)/1736]×100% ≈ 37.4%,最接近的是D项。
三、关于求增长率的运算方法对有些运算繁琐的求增长率的式子,我们为了运算简便,可以采取“首数法”,即视察算式a/b,选取俩位有效数字。
同时我们也要去视察选项是否有什么特点。
比如上一题我们就可以很快排除A、B选项,由于只要运算出第一位数字是3我们就可排除出问题,随后在确认第二位是7可以选D选项。
所以技能无处不在。
5、增长率问题(1)增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数(2)两次增长,且增长率相等的问题的基本等量关系式为:原来的×(1+增长率)增长期数=后来的说明:(1)上述相等关系仅适用增长率相同的情形;(2)如果是下降率,则上述关系式为:原来的×(1-增长率)下降期数=后来的(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)。
4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
5.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?6.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数。
7.王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率。