2007年-机械振动试题(参考答案)
- 格式:doc
- 大小:121.00 KB
- 文档页数:3
《机械振动》单元测试题(含答案)一、机械振动选择题1.图(甲)所示为以O点为平衡位置、在A、B两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A.在t=0.2s时,弹簧振子可能运动到B位置B.在t=0.1s与t=0.3s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2s的时间内,弹簧振子的动能持续地增加D.在t=0.2s与t=0.6s两个时刻,弹簧振子的加速度相同2.如图为某简谐运动图象,若t=0时,质点正经过O点向b运动,则下列说法正确的是()A.质点在0.7 s时的位移方向向左,且正在远离平衡位置运动B.质点在1.5 s时的位移最大,方向向左,在1.75 s时,位移为1 cmC.质点在1.2 s到1.4 s过程中,质点的位移在增加,方向向左D.质点从1.6 s到1.8 s时间内,质点的位移正在增大,方向向右3.甲、乙两单摆的振动图像如图所示,由图像可知A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等4.如图所示,质量为m的物块放置在质量为M的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T,振动过程中m、M之间无相对运动,设弹簧的劲度系数为k、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 5.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )6.在“用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F 随时间t 变化的图象如图所示,已知单摆的摆长为l ,则重力加速度g 为( )A .224l tπB .22l t πC .2249l t πD .224l tπ7.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )A .振子的位移增大的过程中,弹力做负功B .振子的速度增大的过程中,弹力做正功C .振子的加速度增大的过程中,弹力做正功D .振子从O 点出发到再次回到O 点的过程中,弹力做的总功为零8.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以t =0时刻作为计时起点,其振动图像如图所示,则A .t =14T 时,货物对车厢底板的压力最大 B .t =12T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =34T 时,货物对车厢底板的压力最小9.下列说法中 不正确 的是( )A .将单摆从地球赤道移到南(北)极,振动频率将变大B .将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C .将单摆移至绕地球运转的人造卫星中,其振动频率将不变D .在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变10.一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动.可把游船浮动简化成竖直方向的简谐运动,振幅为20 cm ,周期为3.0 s .当船上升到最高点时,甲板刚好与码头地面平齐.地面与甲板的高度差不超过10 cm 时,游客能舒服地登船.在一个周期内,游客能舒服登船的时间是( ) A .0.5 sB .0.75 sC .1.0 sD .1.5 s11.如图所示,两根完全相同的轻质弹簧和一根绷紧的轻质细线将甲、乙两物块束缚在光滑水平面上.已知物块甲的质量是物块乙质量的4倍,弹簧振子做简谐运动的周期2mT kπ=,式中m 为振子的质量,k 为弹簧的劲度系数.当细线突然断开后,两物块都开始做简谐运动,在运动过程中,下列说法正确的是________.A .物块甲的振幅是物块乙振幅的4倍B .物块甲的振幅等于物块乙的振幅C .物块甲的最大速度是物块乙最大速度的12D .物块甲的振动周期是物块乙振动周期的2倍 E.物块甲的振动频率是物块乙振动频率的2倍12.如图所示,物块M 与m 叠放在一起,以O 为平衡位置,在ab 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x 随时间t 的变化图像如图,则下列说法正确的是( )A .在1~2Tt 时间内,物块m 的速度和所受摩擦力都沿负方向,且都在增大 B .从1t 时刻开始计时,接下来4T内,两物块通过的路程为AC .在某段时间内,两物块速度增大时,加速度可能增大,也可能减小D .两物块运动到最大位移处时,若轻轻取走m ,则M 的振幅不变13.沿某一电场方向建立x 轴,电场仅分布在-d ≤x ≤d 的区间内,其电场场强与坐标x 的关系如图所示。
机械振动答案(1)选择题1解析:选D.如图所示,设质点在A 、B 之间振动,O 点是它的平衡位置,并设向右为正.在质点由O 向A 运动过程中其位移为负值;而质点向左运动,速度也为负值.质点在通过平衡位置时,位移为零,回复力为零,加速度为零,但速度最大.振子通过平衡位置时,速度方向可正可负,由F =-kx 知,x 相同时F 相同,再由F =ma 知,a 相同,但振子在该点的速度方向可能向左也可能向右.2.解析:选B.据简谐运动的特点可知,振动的物体在平衡位置时速度最大,振动物体的位移为零,此时对应题图中的t 2时刻,B 对.3.解析:选BD.质点做简谐运动时加速度方向与回复力方向相同,与位移方向相反,总是指向平衡位置;位移增加时速度与位移方向相同,位移减小时速度与位移方向相反.4解析:选C.因为弹簧振子固有周期和频率与振幅大小无关,只由系统本身决定,所以f 1∶f 2=1∶1,选C.5解析:选B.对于阻尼振动来说,机械能不断转化为内能,但总能量是守恒的.6.解析:选B.因质点通过A 、B 两点时速度相同,说明A 、B 两点关于平衡位置对称,由时间的对称性可知,质点由B 到最大位移,与由A 到最大位移时间相等;即t 1=0.5 s ,则T2=t AB +2t 1=2 s ,即T =4 s ,由过程的对称性可知:质点在这2 s 内通过的路程恰为2 A ,即2A =12 cm ,A =6 cm ,故B 正确.7.解析:选A.两球释放后到槽最低点前的运动为简谐运动且为单摆模型.其周期T =2πR g,两球周期相同,从释放到最低点O 的时间t =T4相同,所以相遇在O 点,选项A 正确.8.解析:选C.从t =0时经过t =3π2L g 时间,这段时间为34T ,经过34T 摆球具有最大速度,说明此时摆球在平衡位置,在给出的四个图象中,经过34T 具有负向最大速度的只有C 图,选项C 正确.9.解析:选CD.单摆做简谐运动的周期T =2πlg,与摆球的质量无关,因此两单摆周期相同.碰后经过12T 都将回到最低点再次发生碰撞,下一次碰撞一定发生在平衡位置,不可能在平衡位置左侧或右侧.故C 、D 正确.10.解析:选D.通过调整发生器发出的声波就能使酒杯碎掉,是利用共振的原理,因此操作人员一定是将声波发生器发出的声波频率调到500 Hz ,故D 选项正确. 二、填空题(本题共2小题,每小题8分,共16分.把答案填在题中横线上)11答案:(1)B (2)摆长的测量、漏斗重心的变化、液体痕迹偏粗、阻力变化……12答案:(1)ABC (2)①98.50 ②B ③4π2k计算题13.(10分)解析:由题意知弹簧振子的周期T =0.5 s ,振幅A =4×10-2m. (1)a max =kx max m =kA m=40 m/s 2. (2)3 s 为6个周期,所以总路程为s =6×4×4×10-2m =0.96 m.答案:(1)40 m/s 2(2)0.96 m14.(10分)解析:设单摆的摆长为L ,地球的质量为M ,则据万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:g =G M R 2,g h =G M R +h2据单摆的周期公式可知T 0=2πLg ,T =2πL g h由以上各式可求得h =(T T 0-1)R . 答案:(T T 0-1)R15.(12分解析:球A 运动的周期T A =2πl g, 球B 运动的周期T B =2π l /4g =πl g. 则该振动系统的周期T =12T A +12T B =12(T A +T B )=3π2l g. 在每个周期T 内两球会发生两次碰撞,球A 从最大位移处由静止开始释放后,经6T =9πlg,发生12次碰 撞,且第12次碰撞后A 球又回到最大位置处所用时间为t ′=T A /4. 所以从释放A 到发生第12次碰撞所用时间为t =6T -t ′=9πl g -2T 2l g =17π2lg. 答案:17π2l g16.(12分解析:在力F 作用下,玻璃板向上加速,图示OC 间曲线所反映出的是振动的音叉振动位移随时间变化的规律,其中直线OC 代表音叉振动1.5个周期内玻璃板运动的位移,而OA 、AB 、BC 间对应的时间均为0.5个周期,即t =T 2=12f=0.1 s .故可利用匀加速直线运动的规律——连续相等时间内的位移差等于恒量来求加速度.设板竖直向上的加速度为a ,则有:s BA -s AO =aT 2①s CB -s BA =aT 2,其中T =152 s =0.1 s ②由牛顿第二定律得F -mg =ma ③ 解①②③可求得F =24 N. 答案:24 N机械振动(2)机械振动(3)1【解析】 如图所示,图线中a 、b 两处,物体处于同一位置,位移为负值,加速度一定相同,但速度方向分别为负、正,A 错误,C 正确.物体的位移增大时,动能减少,势能增加,D 错误.单摆摆球在最低点时,处于平衡位置,回复力为零,但合外力不为零,B 错误.【答案】 C2【解析】 质量是惯性大小的量度,脱水桶转动过程中质量近似不变,惯性不变,脱水桶的转动频率与转速成正比,随着转动变慢,脱水桶的转动频率减小,因此,t 时刻的转动频率不是最大的,在t 时刻脱水桶的转动频率与机身的固有频率相等发生共振,故C 项正确.【答案】 C3【解析】 摆球从A 运动到B 的过程中绳拉力不为零,时间也不为零,故冲量不为零,所以选项A 错;由动能定理知选项B 对;摆球运动到B 时重力的瞬时功率是mg v cos90°=0,所以选项C 错;摆球从A 运动到B 的过程中,用时T /4,所以重力的平均功率为P =m v 2/2T /4=2m v 2T ,所以选项D 错.【答案】 B4【解析】 由振动图象可看出,在(T 2-Δt )和(T2+Δt )两时刻,振子的速度相同,加速度大小相等方向相反,相对平衡位置的位移大小相等方向相反,振动的能量相同,正确选项是D.【答案】 D5【解析】 据受迫振动发生共振的条件可知甲的振幅较大,因为甲的固有频率接近驱动力的频率.做受迫振动物体的频率等于驱动力的频率,所以B 选项正确.【答案】 B6【解析】 由题意知,在细线未断之前两个弹簧所受到的弹力是相等的,所以当细线断开后,甲、乙两个物体做简谐运动时的振幅是相等的,A 、B 错;两物体在平衡位置时的速度最大,此时的动能等于弹簧刚释放时的弹性势能,所以甲、乙两个物体的最大动能是相等的,则质量大的速度小,所以C 正确,D 错误.【答案】 C题号 1 2 3 4 5 6 7 8 9 10答案 ACBADACBDACADD(T 2-T 1)R/T 17【答案】 C8【解析】 根据题意,由能量守恒可知12kx 2=mg (h +x ),其中k 为弹簧劲度系数,h 为物块下落处距O 点的高度,x 为弹簧压缩量.当x =x 0时,物块速度为0,则kx 0-mg =ma ,a =kx 0-mg m =kx 0m -g =2mg (h +x 0)mx 0-g =2g (h +x 0)x 0-g >g ,故正确答案为D.【答案】 D9【解析】 由题中条件可得单摆的周期为T =0.30.2s =1.5s ,由周期公式T =2πlg可得l=0.56m.【答案】 A10【解析】 当摆球释放后,动能增大,势能减小,当运动至B 点时动能最大,势能最小,然后继续摆动,动能减小,势能增大,到达C 点后动能为零,势能最大,整个过程中摆球只有重力做功,摆球的机械能守恒,综上可知只有D 项正确.【答案】 D机械振动(4)1解析:选A.周期与振幅无关,故A 正确.2解析:选C.由单摆周期公式T =2π lg知周期只与l 、g 有关,与m 和v 无关,周期不变频率不变.又因为没改变质量前,设单摆最低点与最高点高度差为h ,最低点速度为v ,mgh =12m v 2.质量改变后:4mgh ′=12·4m ·(v 2)2,可知h ′≠h ,振幅改变.故选C.3解析:选D.此摆为复合摆,周期等于摆长为L 的半个周期与摆长为L2的半个周期之和,故D 正确.4解析:选B.由简谐运动的对称性可知,t Ob =0.1 s ,t bc =0.1 s ,故T4=0.2 s ,解得T =0.8s ,f =1T=1.25 Hz ,选项B 正确.5解析:选D.当单摆A 振动起来后,单摆B 、C 做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项A 错误而D 正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项C 正确而B 错误.6解析:选BD.速度越来越大,说明振子正在向平衡位置运动,位移变小,A 错B 对;速度与位移反向,C 错D 对.7解析:选AD.P 、N 两点表示摆球的位移大小相等,所以重力势能相等,A 对;P 点的速度大,所以动能大,故B 、C 错D 对.8解析:选BD.受迫振动的频率总等于驱动力的频率,D 正确;驱动力频率越接近固有频率,受迫振动的振幅越大,B 正确.9解析:选B.读图可知,该简谐运动的周期为4 s ,频率为0.25 Hz ,在10 s 内质点经过的路程是2.5×4A =20 cm.第4 s 末的速度最大.在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相反.。
中南大学考试试卷2005 - 2006学年上学期时间门o分钟《机械振动基础》课程32学时1.5学分考试形式:闭卷专业年级:机械03级总分100分,占总评成绩70 %注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1>不同情况进行分类,振动(系统)大致可分成,()和非线性振动;确定振动和();()和强迫振动;周期振动和();()和离散系统。
2、在离散系统屮,弹性元件储存(),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析()的振动性质的基础。
5、系统的固有频率是系统()的频率,它只与系统的()和()有关,与系统受到的激励无关。
二、简答题(本题40分,每小题10分)1、简述机械振动的定义和系统发生振动的原因。
(10分)2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
(10分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)4、多自由系统振动的振型指的是什么?(10分)三、计算题(本题30分)图1 2、图2所示为3自由度无阻尼振动系统。
(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设k t[=k t2=k t3=k t4=k9 /, =/2/5 = /3 = 7,求系统固有频率(10 分)。
13 Kt3四、证明题(本题15分)对振动系统的任一位移{兀},证明Rayleigh商R(x)=⑷严⑷满足材 < 尺⑴ < 忒。
{x}\M\{x}这里,[K]和[M]分别是系统的刚度矩阵和质量矩阵,®和①,分别是系统的最低和最高固有频率。
(提示:用展开定理{x} = y{M} + y2{u2}+……+ y n{u n})3 •简述无阻尼单自由度系统共振的能量集聚过程。
(10 分) 4.简述线性多自由度系统动力响应分析方法。
(10 分)中南大学考试试卷2006 - 2007学年 上 学期 时间120分钟机械振动 课程 32 学时 2 学分 考试形式:闭卷专业年级: 机械04级 总分100分,占总评成绩 70%注:此页不作答题纸,请将答案写在答题纸上一、填空(15分,每空1分)1. 叠加原理在(A )中成立;在一定的条件下,可以用线性关系近似(B ) o2. 在振动系统中,弹性元件储存(C ),惯性元件储存(D ) , (E )元件耗散 能量。
选修1高中物理《机械振动》测试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.甲、乙两单摆的振动图像如图所示,由图像可知A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等3.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为()A.T=2πr GMlB.T=2πrlGMC.T=2πGMr lD.T=2πlrGM4.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。
已知弹簧的劲度系数为k,则下列说法中正确的是()A.细线剪断瞬间A的加速度为0B.A运动到最高点时弹簧弹力为mgC .A 运动到最高点时,A 的加速度为gD .A 振动的振幅为2mgk5.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()A .甲、乙的振幅各为 2 m 和 1 mB .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1C .乙振动的表达式为x= sin4t (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值6.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( )A .丙球最先到达D 点,乙球最后到达D 点B .甲球最先到达D 点,乙球最后到达D 点C .甲球最先到达D 点,丙球最后到达D 点D .甲球最先到达D 点,无法判断哪个球最后到达D 点7.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。
《机械振动》单元测试题(含答案)一、机械振动 选择题1.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是A .物体系统的固有频率为f 0B .当驱动力频率为f 0时,物体系统会发生共振现象C .物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D .驱动力频率越大,物体系统的振幅越大2.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍 B .若2T t ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于m kx m M+ 3.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( )A .丙球最先到达D 点,乙球最后到达D 点B.甲球最先到达D点,乙球最后到达D点C.甲球最先到达D点,丙球最后到达D点D.甲球最先到达D点,无法判断哪个球最后到达D点4.质点做简谐运动,其x—t关系如图,以x轴正向为速度v的正方向,该质点的v—t关系是( )A.B.C.D.5.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O点为平衡位置,在a、b两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( )A.振子的振动周期等于t1B.在t=0时刻,振子的位置在a点C.在t=t1时刻,振子的速度为零D.从t1到t2,振子正从O点向b点运动6.图(甲)所示为以O点为平衡位置、在A、B两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A.在t=0.2s时,弹簧振子可能运动到B位置B.在t=0.1s与t=0.3s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2s的时间内,弹簧振子的动能持续地增加D.在t=0.2s与t=0.6s两个时刻,弹簧振子的加速度相同7.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值8.如图所示,PQ为—竖直弹簧振子振动路径上的两点,振子经过P点时的加速度大小为6m/s2,方向指向Q点;当振子经过Q点时,加速度的大小为8m/s2,方向指向P点,若PQ之间的距离为14cm,已知振子的质量为lkg,则以下说法正确的是()A.振子经过P点时所受的合力比经过Q点时所受的合力大B.该弹簧振子的平衡位置在P点正下方7cm处C.振子经过P点时的速度比经过Q点时的速度大D.该弹簧振子的振幅一定为8cm9.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h 10.如图所示,一根不计质量的弹簧竖直悬吊铁块M ,在其下方吸引了一磁铁m ,已知弹簧的劲度系数为k ,磁铁对铁块的最大吸引力等于3m g ,不计磁铁对其它物体的作用并忽略阻力,为了使M 和m 能够共同沿竖直方向作简谐运动,那么 ( )A .它处于平衡位置时弹簧的伸长量等于()2M m gk + B .振幅的最大值是()2M m gk +C .弹簧弹性势能最大时,弹力的大小等于()2M m g +D .弹簧运动到最高点时,弹簧的弹力等于011.如图所示,轻质弹簧的下端固定在水平地面上,一个质量为m 的小球(可视为质点),从距弹簧上端h 处自由下落并压缩弹簧.若以小球下落点为x 轴正方向起点,设小球从开始下落到压缩弹簧至最短之间的距离为H ,不计任何阻力,弹簧均处于弹性限度内;关于小球下落过程中加速度a 、速度v 、弹簧的弹力F 、弹性势能p E 变化的图像正确的是( )A .B .C.D.12.如图所示为某弹簧振子在0~5s内的振动图象,由图可知,下列说法中正确的是( )A.振动周期为5 sB.振幅为8 cmC.第2 s末振子的速度为零,加速度为正向的最大值D.第3 s末振子的速度为正向的最大值E.从第1 s末到第2 s末振子在做加速运动13.一质点做简谐运动的位移x与时间t的关系如图所示,由图可知( )A.频率是2HzB.振幅是5cmC.t=1.7s时的加速度为正,速度为负D.t=0.5s时,质点所受合外力为零E.t=0.5s时回复力的功率为零14.一个质点沿直线ab在平衡位置O附近做简谐运动.若从质点经O点时开始计时,经过5s质点第一次经过M点(如图所示);再继续运动,又经过2s它第二次经过M点;则该质点第三次经过M点还需要的时间是()A.6s B.4s C.22s D.8s15.如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左边拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置16.如图所示,虚线和实线分别为甲、乙两个弹簧振子做简谐运动的图象.已知甲、乙两个振子质量相等,则( )A .甲、乙两振子的振幅分别为2cm 、1cmB .甲、乙两个振子的相位差总为πC .前2秒内甲、乙两振子的加速度均为正值D .第2秒末甲的速度最大,乙的加速度最大17.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示。
测试题(机械振动概念、激振器)姓名:得分:一、填空题(本题40分,每空2分)1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。
2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析()系统的基础。
5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。
6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。
7、机械振动是指机械或结构在平衡位置附近的()运动。
8、激振器分为()、()、()、()、()等型式。
二、简答题(本题60分)1、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)2、机械振动系统的固有频率与哪些因素有关?关系如何?(15分)3、激振器的概念及其作用?(25分)一、填空题1、线性振动;随机振动;自由振动;2、势能;动能;阻尼3、简谐运动;正弦;余弦4、线性5、刚度;质量6、频响函数;传递函数7、往复弹性8、惯性式、电磁式、电液式、气动式液压式二、简答题1、答:共振是指系统的外加激励与系统的固有频率接近时发生的振动;共振过程中,外加激励的能量被系统吸收,系统的振幅逐渐加大。
2、答:机械振动系统的固有频率与系统的质量矩阵、刚度矩阵和阻尼有关。
质量越大,固有频率越低;刚度越大,固有频率越高;阻尼越大,固有频率越低。
3、答:激振器是附加在某些机械和设备上用以产生激励力的装置,是利用机械振动的重要部件。
激振器能使被激物件获得一定形式和大小的振动量,从而对物体进行振动和强度试验,或对振动测试仪器和传感器进行校准。
激振器还可作为激励部件组成振动机械,用以实现物料或物件的输送、筛分、密实、成型和土壤砂石的捣固等工作。
机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。
(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。
(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。
(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。
(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。
(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。
(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。
(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。
(X )9、隔振系统的阻尼愈大,则隔振效果愈好。
(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。
(J)二、计算题:1、一台面以f频率做垂直正弦运动。
如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。
所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。
的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。
试验装置如图1所示,记录其振动周期。
机械振动试题(含答案)一、机械振动 选择题1.如图所示,PQ 为—竖直弹簧振子振动路径上的两点,振子经过P 点时的加速度大小为6m/s 2,方向指向Q 点;当振子经过Q 点时,加速度的大小为8m/s 2,方向指向P 点,若PQ 之间的距离为14cm ,已知振子的质量为lkg ,则以下说法正确的是( )A .振子经过P 点时所受的合力比经过Q 点时所受的合力大B .该弹簧振子的平衡位置在P 点正下方7cm 处C .振子经过P 点时的速度比经过Q 点时的速度大D .该弹簧振子的振幅一定为8cm2.如图所示,质量为A m 的物块A 用不可伸长的细绳吊着,在A 的下方用弹簧连着质量为B m 的物块B ,开始时静止不动。
现在B 上施加一个竖直向下的力F ,缓慢拉动B 使之向下运动一段距离后静止,弹簧始终在弹性限度内,希望撤去力F 后,B 向上运动并能顶起A ,则力F 的最小值是( )A .(A m +B m )gB .(A m +2B m )gC .2(A m +B m )gD .(2A m +B m )g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A.摆动的周期为5 6 TB.摆动的周期为6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h4.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中()A.甲的最大速度大于乙的最大速度B.甲的最大速度小于乙的最大速度C.甲的振幅大于乙的振幅D.甲的振幅小于乙的振幅5.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为()A.T=2GMlB.T=2lGMC.T 2πGMr lD.T=2rGM6.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。
标准答案
一、 填空题(本题15分,1空1分)
1、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。
2、按不同情况进行分类,振动系统大致可分成,线性振动和(非线性振动);确定性振动和随机振动;自由振动和和(强迫振动);周期振动和(非周期振动);(连续系统)和离散系统。
3、(惯性 )元件、(弹性 )元件、(阻尼 )元件是离散振动系统的三个最基本元素。
4、叠加原理是分析(线性振动系统 )的振动性质的基础。
5、研究随机振动的方法是(统计方法),工程上常见的随机过程的数字特征有:(均值),(方差),(自相关)和互相关函数。
6、系统的无阻尼固有频率只与系统的(质量)和(刚度)有关,与系统受到的激励无关。
二、 简答题(本题40分,每小题5分)
1、简述确定性振动和随机振动的区别,并举例说明。
答:确定性振动的物理描述量可以预测;随机振动的物理描述量不能预测。
比如:单摆振动是确定性振动,汽车在路面行驶时的上下振动是随机振动。
2、简述简谐振动周期、频率和角频率(圆频率)之间的关系。
答:21T f
π
ω==,其中T 是周期、ω是角频率(圆频率),f 是频率。
3、简述无阻尼固有频率和阻尼固有频率的联系,最好用关系式说明。
答:d ωω=d ω是阻尼固有频率,n ω是无阻尼固有频率,ξ是阻尼比。
4、简述非周期强迫振动的处理方法。
答:1)先求系统的脉冲响应函数,然后采用卷积积分方法,求得系统在外加激励下的响应;
2)如果系统的激励满足傅里叶变换条件,且初始条件为0,可以采用傅里叶变换的方法,求得系统的频响函数,求得系统在频域的响应,然后再做傅里叶逆变换,求得系统的时域响应;
3)如果系统的激励满足拉普拉斯变换条件,且初始条件不为0,可以采用拉普拉斯变换的方法,求得系统的频响函数,求得系统在频域的响应,然后再做拉普拉斯逆变换,求得系统的时域响应;
5、什么是共振,并从能量角度简述共振的形成过程。
答:当系统的外加激励与系统的固有频率接近时候,系统发生共振;共振过程中,外加激励的能量被系统吸收,系统的振幅逐渐加大。
6、简述刚度矩阵[K]的元素,i j k 的意义。
答:如果系统的第j 个自由度沿其坐标正方向有一个单位位移,其余各个自由度的位移保持为零,为保持系统这种变形状态需要在各个自由度施加外力,其中在第i 个自由度上施加的外力就是kij 。
7、简述线性变换[U]矩阵的意义,并说明振型和[U]的关系。
答:线性变换[U]矩阵是系统解藕的变换矩阵;[U]矩阵的每列是对应阶的振型。
8、简述线性系统在振动过程中动能和势能之间的关系。
答:线性系统在振动过程中动能和势能相互转换,如果没有阻尼,系统的动能和势能之和为常数。
三、 计算题(本题45分)
1.解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:
1122P k x P k x
=⎧⎨=⎩ 由力的平衡有:1212()P P P k k x =+=+
故等效刚度为:12eq P k k k x ==+ 2)对系统施加力P ,则两个弹簧的变形为: 1122P x k P
x k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+ 故等效刚度为:122112
11eq k k P k x k k k k ===++
2. 解:取圆柱体的转角θ为坐标,逆时针为正,静平衡位置时0θ=,则当m 有θ转角时,系统有:
2222111()()222T E I m r I mr θθθ=+=+
21()2U k r θ= 由()0T d E U +=可知:22()0I mr kr θ
θ++=
即:n ω=(rad/s )
3.解:以静平衡位置为原点,设123,,m m m 的位移123,,x x x 为广义坐标,系统的动能和势能分别为 =++ 222112233111222T E m x m x m x
=+-+-+++22222112123234356211111()()()22222U k x k x x k x x k x k k x
=+++++++--22212123562343212323111()()()222U k k x k k k k x k k x k x x k x x 求偏导得到:
[][]12312
22
235633340010000020;0000
1032021020
023m M m m m k k k K k k k k k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦+--⎡⎤⎡⎤⎢⎥⎢⎥=-+++-=--⎢⎥⎢⎥⎢⎥⎢⎥-+-⎣⎦⎣⎦
得到系统的广义特征值问题方程:[][]1223()0u K M u u ω⎧⎫⎪⎪-=⎨⎬⎪⎪⎩⎭
和频率方程: 2222320()2102200
23k m
k k
k m k k k m ωωωω--=---=--
即:222422()(3)(21622)0k m m km k ωωωω=--+=
解得:2(4k m ω=和23k m ω=
所以:123ωωω=<== 将频率代入广义特征值问题方程解得:
112131::1:0.618:1u u u ≈;
122232::1:0:1u u u ≈-;
132333::0.618:1:0.618u u u ≈--;。