andorid与wsn物联网结合(1)
- 格式:pdf
- 大小:341.36 KB
- 文档页数:7
无线传感器网络与物联网随着科技的不断进步和互联网的普及,无线传感器网络(Wireless Sensor Network,简称WSN)和物联网(Internet of Things,简称IoT)已经成为现代社会中不可或缺的一部分。
它们的出现不仅带来了便利和创新,同时也为我们的生活和工作带来了巨大的改变。
一、无线传感器网络(WSN)无线传感器网络是由分布在广域范围内的无线传感器节点组成的一种网络系统。
传感器节点可以感知和采集周围环境的物理量或状态,并通过内部通信方式将采集到的信息传输到指定位置。
这些节点可以以无线方式相互连接,形成一个自组织的网络结构。
WSN的基本组成部分包括传感器节点、数据处理器、无线通信模块和电源。
WSN在工业、农业、环境监测等领域具有广泛的应用。
例如,在工业领域,WSN可以用于实时监测设备的状态,预测故障,并及时采取相应的措施,提高生产效率和设备可靠性。
在农业领域,WSN可以监测土壤湿度、气温等参数,帮助农民科学地管理农作物,提高农业生产效益。
在环境监测领域,WSN可以用于监测大气污染、水质污染等环境参数,及时预警环境问题,保护生态环境。
二、物联网(IoT)物联网是由各种物理设备、传感器、软件和网络连接而成的智能化系统。
物联网通过各种感应器和控制器,将物理世界与数字世界相互连接,实现设备之间的互联互通。
物联网技术可以为人们的生活提供智能化、便捷化的服务,例如智能家居、智能交通、智能医疗等。
在智能家居领域,物联网技术可以让家中的各种设备(如电视、冰箱、空调等)通过互联网相互连接,实现远程控制和智能管理。
通过智能家居系统,我们可以远程监控家中的安全状况,自动管理家电设备的能耗,提高生活的便利性和舒适度。
在智能交通领域,物联网技术可以实现交通信号灯的智能控制,车辆之间的实时通信,增强交通的安全性和效率。
在智能医疗领域,物联网技术可以用于远程医疗、健康监测等,提高医疗资源的利用效率和健康管理的水平。
无线传感器网络与物联网无线传感器网络(Wireless Sensor Network,简称WSN)和物联网(Internet of Things,简称IoT)是两个在近年来快速发展起来的概念,它们在不同领域中得到了广泛的应用。
本文将探讨无线传感器网络与物联网的关系、发展现状以及未来前景。
一、无线传感器网络的概念和特点无线传感器网络是由大量分布式的、自组织的、无线传感器节点组成的网络系统,用于感知、采集和传输环境中的各种信息。
它可以实时监测和控制环境中的各种参数,如温度、湿度、光照等。
与传统的有线传感器网络相比,无线传感器网络更加灵活、实时,并且能够适应复杂多变的环境。
无线传感器节点通常由传感器、处理器、无线通信模块和能量供应模块组成。
这些节点可以通过自组织的方式形成一个网络,并与存储节点或基站节点进行通信。
在传感器节点间的通信过程中,信息通过无线信号进行传输。
无线传感器网络具有低成本、低功耗、容易部署等特点,因此被广泛应用于农业、环境监测、智能交通等领域。
二、物联网的概念和特点物联网是指通过互联网将各种物理设备、传感器、软件等连接起来,形成一个庞大的网络系统。
物联网可以实现设备之间的信息共享和互联互通,使得设备能够自动感知、识别、跟踪并控制其他设备。
它能够实现人与设备、设备与设备之间的智能交互。
物联网的核心技术包括物理层的传感技术、网络层的通信技术以及应用层的数据处理和管理技术。
通过这些技术,物联网可以实现智能家居、智慧城市、智能交通等应用场景。
物联网的特点主要包括广域性、异构性、复杂性和安全性等。
三、无线传感器网络与物联网的关系无线传感器网络是物联网的基础组成部分,它承担了物联网中的感知任务。
无线传感器网络通过节点间的通信和数据传输,将环境中的信息感知到,并传输给物联网中的其他设备进行处理。
物联网则是通过无线传感器网络获取环境中的实时信息,并基于这些信息进行决策和控制。
无线传感器网络和物联网的关系可以用一个细胞组织的比喻来解释。
无线传感器网络(WSN)的技术与应用无线传感器网络(Wireless Sensor Network,简称WSN)是一种由若干个无线传感器节点构成的网络。
每个传感器节点都具有感知、处理和通信功能,能够通过无线信号进行数据的传输和交流。
WSN技术在近年来得到了广泛的应用和研究,其在环境监测、智能家居、农业、工业控制等领域具有重要的意义。
一、WSN技术的基本原理和特点WSN技术的核心是无线传感器节点,它是由微处理器、传感器、无线通信模块和能量供应装置等组成。
传感器节点可以感知周围环境的不同参数,例如温度、湿度、光照强度等,并将这些数据进行处理和存储。
节点之间通过无线通信进行数据的传输,形成一个自组织的网络结构。
WSN具有以下几个主要特点:1. 无线通信:WSN采用无线通信方式,节点之间可以通过无线信号传输数据,不受布线限制,能够灵活部署在不同的环境中。
2. 自组织性:WSN的节点具有自组织能力,可以根据网络拓扑结构和节点的状态进行自动组网,形成一个动态的网络结构。
3. 分布式处理:WSN中的每个节点都具有数据处理和存储的能力,可以进行分布式的数据处理,实现网络的协同工作。
4. 能量有限:WSN中的节点能量有限,需要通过能量管理或是能量收集技术来延长节点的寿命。
二、WSN的应用领域与案例分析1. 环境监测:WSN可以用于环境参数的实时监测和采集。
例如,在自然灾害预警系统中,通过部署大量的传感器节点,可以实时监测地震、洪水等灾害情况,为应急救援提供及时的信息。
2. 智能家居:WSN可以实现智能家居的自动化控制。
通过部署传感器节点,可以实时感知室内温度、湿度等信息,并进行智能控制,实现温度调节、灯光控制等功能。
3. 农业领域:WSN可以用于农业生产的智能化管理。
通过在农田、温室等地部署传感器节点,可以实时监测土壤湿度、温度等参数,并为农民提供农作物的生长状态和病虫害预警等信息。
4. 工业控制:WSN可以应用于工业生产过程的实时监测和控制。
无线传感器网络与物联网技术无线传感器网络(Wireless Sensor Network,WSN)和物联网(Internet of Things,IoT)是现代科技领域中的热门技术。
它们都能够将传感器与互联网连接起来,实现信息的实时监测和远程控制。
本文将详细探讨无线传感器网络和物联网技术的特点、应用以及未来发展方向等方面。
一、无线传感器网络的特点(300字)无线传感器网络是由大量的传感器节点组成的网络,这些节点能够实时采集和传输环境数据。
它具有以下特点:1. 分布式系统:无线传感器网络中的传感器节点分布广泛,可以覆盖较大的区域。
2. 自组织性:传感器节点能够根据网络的需求自行组织成网络,无需外部干预。
3. 节能性:传感器节点通过休眠和节能技术,可以最大限度地延长电池寿命。
4. 自适应性:传感器节点能够根据网络的变化进行自适应调整,保证数据的可靠传输。
二、物联网技术的特点(300字)物联网是将传感器和互联网技术结合起来,实现物理世界和虚拟世界的连接。
它具有以下特点:1. 多样性:物联网可以连接各种不同类型的物体,如家电、车辆、工业设备等,实现信息的共享和交互。
2. 实时性:物联网能够实时采集和传输数据,实现对物体的实时监测和控制。
3. 智能化:物联网可以通过数据分析和人工智能算法,实现对物体的智能化管理和优化控制。
4. 安全性:物联网需要确保数据的安全传输和隐私保护,以防止恶意攻击和数据泄露。
三、无线传感器网络和物联网的应用(500字)无线传感器网络和物联网技术在各个领域都有广泛的应用。
以下列举几个典型的应用领域:1. 环境监测:无线传感器网络可以用于实时监测环境中的温度、湿度、水质等指标,帮助环境保护和灾害预警。
2. 智能农业:利用无线传感器网络和物联网技术,可以实时监测农田中的土壤湿度、气象条件等,帮助农民合理管理农作物。
3. 智能交通:通过在道路上布置传感器节点,无线传感器网络可以实时监测交通流量、路况等信息,帮助交通管理部门优化交通信号控制。
无线传感器网络(WSN)的特点与应用无线传感器网络(Wireless Sensor Network,简称WSN)是一种由大量的分布式无线传感器节点组成的网络系统。
每个节点都具备感知、处理、存储和通信等能力,用于采集、传输和处理环境中的各种信息。
WSN的特点及其广泛应用使其成为了当代信息技术领域的研究热点。
一、特点1. 分布式自组织:WSN中的节点可以自组织地构建网络,无需人工干预。
节点通过相互通信和协调来共同完成任务,具备较强的自适应性和冗余容错能力。
2. 节点资源受限:WSN中的节点通常具备较小的计算、存储和能量资源。
为了降低成本和延长网络寿命,节点的硬件资源通常被设计为低功耗、低成本的微型设备。
3. 多传感器融合:WSN中的节点通常配备多种类型的传感器,如温度、湿度、光线、声音等。
通过对不同传感器数据的融合分析,可以提供更全面和准确的环境监测和信息获取。
4. 无线通信:WSN中的节点通过无线通信方式进行数据传输和网络连接。
无线通信不受地理位置限制,节点之间可以自由通信,提供了较大范围的网络覆盖。
二、应用1. 环境监测与物联网:WSN可以应用于环境监测领域,如气象、水质、土壤等。
通过部署大量节点,能够实时、精确地获取环境参数,为环境保护和资源管理提供科学依据。
2. 智能交通系统:WSN可用于智能交通系统中,通过节点部署在道路、交叉口等位置,实现车流量、车速等交通信息的实时监测和分析,并通过数据传输实现交通信号的智能控制。
3. 农业生产与精准农业:WSN可以用于农业领域,通过节点在田地中的布置,实时监测农田土壤湿度、温度以及农作物的生长情况,提供数据支持,实现农业生产的科学化和精细化管理。
4. 工业自动化与智能制造:WSN在工业自动化中的应用十分广泛,例如在工厂生产线上布置节点进行生产过程监控、设备状态检测和故障预警等,提高生产效率和质量。
5. 灾害监测与救援:WSN可以用于灾害监测和救援领域,如地震、火灾、洪水等。
物联网的关键技术随着物联网的兴起,越来越多的设备和设施开始连接到互联网上。
物联网是一种以互联网为基础,通过新一代信息技术实现物理设备之间互联互通,无缝连接人与物事物之间的网状网络。
物联网涉及的设备种类繁多,涵盖了从简单的传感器到智能家居、智能制造等大量领域。
物联网的核心是连接,然而连接是有技术含量的,下面我们将详细介绍物联网中的关键技术。
1. 无线传感网络技术(WSN)无线传感器网络(WSN)是一种多节点且具有自组织、分布式的无线网络。
它利用一组小型无线传感器构建一个网络,这些传感器可以捕捉到各种世界上的事件,例如环境温度、气压、光强等,并通过传感器之间的通信进行信息交换。
无线传感器通常采用低功耗的技术,因为这些传感器往往在不间断的环境中长时间运行,因此连接到WSN之后,用户可以实时掌握网络中的各种信息。
2. 射频识别技术(RFID)射频识别技术(RFID)是一种无线通讯技术,利用无源的 RFID 标签(Tag)与读写器进行无线沟通,并将所读取的数据进行解码和处理。
RFID技术因其优异的识别功能,随着物联网的普及,在不同的领域得到广泛的应用,如智能物流、工业自动化、智能零售等。
RFID标签还支持远程读写,能够实现远程管理,提升生产效率等。
3. 机器视觉技术(MV)机器视觉技术(MV)是基于视觉感知技术和人工智能算法,通过智能摄像头和计算机软件等技术手段,实现对物体、场景的自动识别、分析、处理、控制与优化。
机器视觉技术具有识别速度快、精度高等优点,可以广泛应用于生产自动化、智能监控、人脸识别等多个领域。
随着互联网的兴起,机器视觉技术结合物联网技术将扮演越来越重要的角色。
4. 云计算技术(CC)云计算技术(Cloud Computing)是指通过互联网基础设施,为用户提供最新的IT资源,如计算、存储、应用等,而无需自行购买、配置硬件。
云计算是物联网的核心,它最大程度地利用各种计算能力和存储能力,使得IoT应用在计算方面无处不在。
wifi模块与安卓连接原理随着无线技术的发展,现如今的手机都配备了wifi模块,使得手机可以方便地连接到无线网络。
在安卓手机上连接wifi网络的原理主要涉及到两个方面,一是wifi模块的工作原理,二是安卓系统的网络连接机制。
我们来了解一下wifi模块的工作原理。
wifi模块是一种无线通信设备,它通过无线电波进行数据传输。
wifi模块内部包含射频前端、基带处理器、天线等组件。
当我们在安卓手机上打开wifi功能时,手机会自动搜索附近的wifi信号。
搜索到wifi信号后,手机与wifi模块之间进行数据交互,通过射频前端将数字信号转换为无线电波进行传输,然后通过天线将无线电波发送出去。
在接收端,另一个设备的wifi模块接收到无线电波后,再将其转换为数字信号,最终实现数据的传输。
我们来了解一下安卓系统的网络连接机制。
安卓系统提供了一套完整的网络连接框架,使得手机可以方便地连接到不同的网络。
安卓系统的网络连接机制主要包括网络管理器、网络连接器和网络配置器等组件。
当我们在安卓手机上连接wifi网络时,首先需要打开wifi功能,并在设置中选择要连接的wifi网络。
手机会向附近的wifi网络发送连接请求,然后通过网络管理器与wifi模块进行通信。
一旦连接成功,手机就可以通过wifi网络与外界进行数据交互。
在安卓系统中,wifi连接的过程可以分为以下几个步骤:首先,手机打开wifi功能,并扫描附近的wifi信号。
手机会收到周围wifi 网络的广播信号,并将其显示在wifi列表中。
然后,用户选择要连接的wifi网络,并输入正确的密码(如果有的话)。
手机会将连接请求发送给选定的wifi网络,并等待连接确认。
一旦连接成功,手机就可以通过wifi网络进行数据传输。
除了连接wifi网络,安卓手机还可以作为热点,将手机的网络连接分享给其他设备。
在这种情况下,安卓手机充当了一个无线路由器的角色。
当我们在安卓手机上开启热点功能时,手机会创建一个wifi网络,并将网络名称和密码显示在设置中。
android wifi原理在Android设备中,Wifi技术被广泛应用于无线网络连接。
Wifi是一种基于无线局域网(WLAN)技术,通过无线信号进行数据传输。
下面将介绍Android Wifi的工作原理。
Wifi连接分为两个主要的角色:Wifi客户端和Wifi接入点(AP)。
Wifi客户端可以是Android手机、平板电脑或其他支持Wifi连接的设备。
Wifi接入点通常是无线路由器。
当启动Wifi功能时,Android设备将会搜索附近的Wifi网络。
这个搜索过程使用的是Wifi扫描机制,设备会广播请求附近的Wifi接入点响应,从而获取可用网络列表。
通过比较网络信号强度和其他网络参数,设备将选择一个最佳的网络连接。
通过用户选择列表中的网络,设备将尝试和所选的Wifi接入点建立连接。
连接过程可以通过以下步骤完成:1. 设备将向Wifi接入点发送连接请求,并传递设备的唯一身份标识符(即MAC地址)以进行身份验证。
2. Wifi接入点接收到连接请求后,会验证设备的身份。
这通常涉及到密码的验证,以确保只有具有正确凭据的设备可以连接到网络。
3. 如果设备通过了身份验证,Wifi接入点将向设备分配一个IP地址。
通过这个IP地址,设备将能够在Wifi网络上进行数据传输和通信。
4. 连接建立后,设备和Wifi接入点之间会建立一个稳定的通信链路,允许设备在网络上发送和接收数据。
一旦Wifi连接建立,Android设备将自动管理Wifi连接状态。
它会尝试保持和所选Wifi接入点的连接,直到另一个更好的网络出现或用户手动断开连接。
总之,Android Wifi的工作原理涉及到设备的Wifi扫描、连接请求、身份验证和IP地址分配等步骤。
通过这些步骤,Android设备能够和所选的Wifi接入点建立连接,并在无线网络上进行数据传输和通信。
无线传感器网络数据融合技术一、概述无线传感器网络(Wireless Sensor Networks,WSN)作为物联网的核心技术之一,在环境监测、智能交通、军事侦察、医疗健康等众多领域发挥着日益重要的作用。
数据融合技术作为无线传感器网络中的关键环节,能够有效提升网络性能、减少数据传输量、提高数据准确性和可靠性,因此受到了广泛关注和研究。
无线传感器网络数据融合技术主要通过对多个传感器节点采集的数据进行有效地整合和处理,从而提取出更有价值的信息。
这些传感器节点通常分布在一个特定的区域内,它们能够感知并采集环境中的各种信息,如温度、湿度、光照、压力等。
由于无线传感器网络中的节点数量众多且分布广泛,因此如何高效地处理这些海量数据,提取出有用的信息,成为了一个亟待解决的问题。
数据融合技术通过一定的算法和策略,对多个传感器节点的数据进行融合处理,从而实现对环境状态的准确感知和判断。
它可以有效地减少数据传输量,降低网络能耗,提高数据准确性和可靠性。
同时,数据融合技术还可以在一定程度上弥补单个传感器节点在感知能力上的不足,提高整个无线传感器网络的性能。
随着无线传感器网络技术的不断发展,数据融合技术也在不断更新和完善。
目前,已经有许多成熟的算法和策略被应用于无线传感器网络数据融合中,如加权平均法、卡尔曼滤波法、神经网络法等。
这些算法和策略各有优缺点,适用于不同的应用场景和需求。
无线传感器网络数据融合技术是一项重要的技术手段,对于提升无线传感器网络的性能、降低能耗、提高数据准确性和可靠性具有重要意义。
未来,随着物联网技术的不断发展和应用领域的不断拓展,无线传感器网络数据融合技术将会得到更加广泛的研究和应用。
1. 无线传感器网络概述无线传感器网络(Wireless Sensor Networks,WSN)是一种由大量传感器节点以无线通信方式形成自组织网络,用以协作地感知、采集、处理和传输网络覆盖区域内被感知对象的信息,并发送给观察者。
Android与wsn物联网结合运用论述android相关技术简介以及国际发展形势1.1android中对无线传输的支持
Android中提供对GSM/GRPS两种基本无线通信接口层,开发者可以调用android 提供的GSM/GRPS接口对相关功能进行开发,而且这一切代码都是开源的,意思当android本身提供的JAVA接口层不能满足开发者对开发需要时,可以自行重写基于GSM/GRPS通信的底层,达到开发的需要。
目前android在提供可以直接调用的无线通信接口有TLE(电话)接口、SMS(短信发送)接口。
1.2android的国际形势
总所周知android是开源形的项目,用户可以下载google提供的源代码,并且可以自行开发,而且android依赖于google这个老大哥和广大开源支持者正在茁壮发展。
手机移动终端现在三分天下,苹果、android、微软这三大企业的竞争正愈演愈烈,而android在从07宣布发布1.0第一个版本到现在的3.0平板系统,短短几年时间发展让人既惊讶又兴奋。
目前的3.0版本是专门为平板机而生,而目前国内的很多厂家已摇摇欲试,下图为深圳某厂家生产的国产平板机,基于android系统。
这样一款成熟机型零售价:1000-1500RMB
WSN介绍
2.1WSN理论介绍
WSN全程叫无线传感器网络(wireless sensor network), 是一个热点的研究领域,它在环境监测、军事、医疗健康、家庭智能监控和其他商业领域有着广泛的应用前景。
无线传感器网络具有传感器节点密度高,网络拓扑变化频繁,以及节点的功率、计算能力和数据存储能力有限等特点。
WSN节点传输是通过Zigbee技术来进行的,Zigbee技术是通过不断发送脉冲来进行传输,而这个脉冲不能直接和android进行结合,需要通过一定的辅助手段。
3如何将android与WSN结合
3.1技术中各项名词解释
1)传感器节点
通过Zigbee脉冲不断采集数据,并且将数据传输值汇节点的装置。
2)汇节点
通过Zigbee脉冲采集到节点传输过来的数据,并且通过一定的算法进行处理传输过来的数据装置。
3)GSM/GPRS传输设备
通过GSM/RPRS协议进行无线传输的芯片设备,如下所示:
4)中央信息控制中心
对数据进行最终处理以及展示,一般由PC机进行担任,并且提供上网功能。
5)基于android系统的移动终端
安装有android系统的移动终端,可以对接收和发送指令对中央信息控制中心、节点、汇节点进行控制。
3.2模式一
如果将GSM传输设备置于传输节点上,android终端设备即可直接观察和控制节点的状态,并且可以通过inter网与中央信息控制中心进行交互,并且可以通过web在android终端上进行图形化展示。
3.2.1信息交互流程
Android直接和传感节点进行交互,并且可以很容易的对起状态进行监控。
3.2.2特点
Android终端控制节点很容易和方便,但是成本较高,因为要在每一个传感节点上安装GSM发送装置。
3.3模式二
如果将GSM传输设备置于汇节点,android终端设备可以接收和传输汇节点处理过后的信息并且向汇节点发送指令,间接性的控制传感节点,并且可以通过inter网与中央信息控制中心进行交互,并且可以通过web在android终端上进行图形化展示。
3.3.1信息交互流程
Android不直接与传感节点进行交互,而是和汇节点进行交互,并且获取处理过后的数据,并且可以通过汇节点间接性的控制传感节点。
3.3.2特点
Android接收的是汇节点已经处理过后的数据,数据形式丰富,成本也较第一种模式底很多,但是需要的技术手段和专业知识相对复杂。
3.4模式三
在没有GSM/GPRS传输设备情况下,android移动终端直接通过internate或者wifi与中央信息控制中心进行交互,并且可以通过web在android终端上进行图形化展示。
3.4.1信息交互流程
次模式在成本以及各方面相对不成熟的时候才会使用。
3.4.2特点
成本低,无需gsm通信模块。
但是通信效率低,风险高,建议不采用。
4总结
在第三节中所描述的三种模式只是初步构想,还有4、5以致更多的模式可以实现,在这里我就不再一一描述了。
通过android与WSN的结合,可以让WSN物联网真正的进入到我们日常生活汇总,为我们所用。
真正的实现无人工监控工区的理想化思想。
只要我能在上网,即使我在地球的另一端我也能即时、可靠的对工区进行监控和控制。
Android在嵌入式中的应用还有很多方面,这里只阐述在该wsn项目中的应用,如果有兴趣可以下来讨论。
谢谢。