2016年秋北师大版九年级数学上册英才备课同步检测2.1认识一元二次方程.doc
- 格式:doc
- 大小:39.65 KB
- 文档页数:2
北师大版九年级数学上册第二章 2.1 认识一元二次方程 同步练习题第1课时 一元二次方程1.下列方程中是一元二次方程的是(D)A .x 2+1x =0B .ax 2+bx +c =0C .3x 2-2xy -5y 2=0 D .(x -1)(x +2)=22.若关于x 的方程(m +1)x 2+2mx -3=0是一元二次方程,则m 的取值范围是(C) A .任意实数 B .m ≠1 C .m ≠-1 D .m >13.将一元二次方程5x 2-1=4x 化成一般形式后,二次项系数和一次项系数分别是(C) A .5,-1 B .5,4 C .5,-4 D .5,1 4.已知关于x 的方程(a -3)x|a -1|+x -1=0是一元二次方程,则a 的值是(A)A .-1B .2C .-1或3D .35.下列方程中:(1)3(x +1)2=2(x +1);(2)1x 2+1x -2=0;(3)ax 2+bx +c =0;(4)x2+2x =x 2-1中,关于x 的一元二次方程是(1).6.若方程mx 2+3x -4=2x 2是关于x 的一元二次方程,则m 的取值范围是m ≠2. 7.把一元二次方程(x +1)2-x =3(x 2-2)化成一般形式是2x 2-x -7=0.8.若将关于x 的一元二次方程3x 2+x -2=ax(x -2)化成一般形式后,其二次项系数为1,常数项为-2,则该方程中的一次项系数为5.9.若关于x 的一元二次方程(2a -4)x 2+(a 2-4)x +a -8=0没有一次项,则a 的值为-2.10.将下列一元二次方程化为一般形式,并写出方程的二次项系数、一次项系数和常数项:(1)3x(x -2)=4x -1; (2)(y -3)(2y +5)=2-y.解:(1)整理,得3x 2-10x +1=0,所以二次项系数、一次项系数和常数项分别为3,-10,1.(2)整理,得2y 2-17=0,所以二次项系数、一次项系数和常数项分别为2,0,-17.11.已知关于x 的方程(k +1)xk 2+1+(k -3)x -1=0. (1)当k 取何值时,它是一元一次方程? (2)当k 取何值时,它是一元二次方程? 解:(1)由题意得⎩⎪⎨⎪⎧k +1=0,k -3≠0或⎩⎪⎨⎪⎧k 2+1=1,k +1+k -3≠0. 解得k =-1或k =0.∴当k =-1或0时,它是一元一次方程. (2)由题意得⎩⎪⎨⎪⎧k 2+1=2,k +1≠0,解得k =1. ∴当k =1时,它是一元二次方程.12.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖线,记成⎪⎪⎪⎪⎪⎪a b cd ,定义⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,上述记法叫做二阶行列式.那么⎪⎪⎪⎪⎪⎪x +1 x +2x -2 2x =22表示的方程是一元二次方程吗?若是,请写出它的一般形式.解:根据题意,得(x +1)·2x-(x +2)(x -2)=22, 整理,得x 2+2x -18=0,它是一元二次方程,一般形式为x 2+2x -18=0.13.观察下列一元二次方程:①x 2+2x -3=0;②x 2-7x +6=0;③3x 2-2x -1=0;④5x 2+3x -8=0.(1)上面方程的系数有一个公共的特征,请你用等式表示这个特征; (2)请你写出符合此特征的一个一元二次方程.解:(1)在①中,a =1,b =2,c =-3,则a +b +c =0; 在②中,a =1,b =-7,c =6,则a +b +c =0; 在③中,a =3,b =-2,c =-1,则a +b +c =0; 在④中,a =5,b =3,c =-8,则a +b +c =0, 由上可得方程的系数公共特征为a +b +c =0. (2)x 2-x =0(答案不唯一).第2课时 一元二次方程的解及其估算1.下列各未知数的值是方程3x 2+x -2=0的解的是(B) A .x =1 B .x =-1 C .x =2 D .x =-22.(成都青羊区月考)若a -b +c =0,则方程ax 2+bx +c =0(a≠0)必有一个根是(C) A .0 B .1 C .-1 D .-b a3.如果关于x 的一元二次方程(m -3)x 2+3x +m 2-9=0有一个解是0,那么m 的值是(B) A .3 B .-3 C .±3 D .0或-34.先填表,再探索一元二次方程x 2+x -12=0的解的取值范围.从表中看出方程有一个解应介于2和4之间. 5.已知a 2-5a +1=0,则a +1a-3的值为2.6.已知a 是方程x 2-2x -1=0的一个根,则代数式2a 2-4a -1的值为1. 7.已知a 是方程x 2+x -1=0的一个根,则2a 2-1-1a 2-a的值为1. 8.若2-3是方程x 2-4x +c =0的一个根,则c 的值是1.9.已知a 是方程x 2-3x -2=0的根,则代数式a 3-2a 2-5a +2 019的值为2_021.10.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x 米,则可列方程为(35-2x)(20-x)=600(或2x 2-75x +100=0).11.若关于x 的一元二次方程ax 2+bx +c =0的一个根是1,且a ,b 满足b =a -3+3-a +3,求c.解:将x =1代入方程ax 2+bx +c =0, 得a +b +c =0,即c =-a -b.∵a ,b 满足等式b =a -3+3-a +3, ∴a -3≥0,3-a≥0,即a =3.∴b=3. ∴c =-a -b =-6.12.已知x 是一元二次方程x 2+3x -1=0的实数根,求代数式x -33x 2-6x ÷(x+2-5x -2)的值.解:∵x 2+3x -1=0, ∴x 2+3x =1,即x(x +3)=1.∴原式=x -33x (x -2)÷(x +3)(x -3)x -2=13x (x +3)=13.13.某大学为改善校园环境,计划在一块长80 m,宽60 m的长方形场地中央建一个长方形网球场,网球场占地面积为3 500 m2,四周为宽度相等的人行走道,如图.若设人行走道宽为x m.(1)请列出相应的方程;(2)x的值可能小于0吗?说说你的理由;(3)x的值可能大于40吗?可能大于30吗?说说你的理由;(4)你知道人行走道的宽是多少吗?说说你的求解过程.解:(1)由题意可知网球场的长和宽分别为(80-2x)m,(60-2x)m,则可列方程为(80-2x)(60-2x)=3 500,整理,得x2-70x+325=0.(2)x的值不可能小于0,因为人行走道的宽度不可能为负数.(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际的,当然x更不可能大于40.(4)人行走道的宽为5 m,求解过程如下:显然,当x=5时,x-70x+325=0,故人行走道的宽为5 m.。
2.1.1认识一元二次方程一、选择题1.下列方程中是关于x的一元二次方程的是()A.ax2+bx+c=0B.1-x=1x2C.x2-x=2D.(x-1)2+1=x22.方程2x2-6x=9的二次项系数、一次项系数、常数项分别为()A.6,2,9B.2,-6,9C.2,-6,-9D.-2,6,-93.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边.已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%.若设白边的宽为x米,则根据题意可列出方程()A.90%×(2+x)(1+x)=2×1B.90%×(2+2x)(1+2x)=2×1C.90%×(2-2x)(1-2x)=2×1D.(2+2x)(1+2x)=2×1×90%4.将方程2(x+3)(x-4)=x2-10化为一般形式为()A.x2-2x-14=0B.x2+2x+14=0C.x2+2x-14=0D.x2-2x+14=0二、填空题5.三个连续奇数的平方和是251,求这三个数.若设最小的数为x,则可列方程为.6.已知方程(m+2)x2+(m+1)x-m=0是关于x的方程,当m满足条件:时,它是一元一次方程;当m满足条件:时,它是一元二次方程.7.若关于x的一元二次方程(m-1)x2+2x+m2-1=0的常数项为0,则m的值是.8.已知(m-1)x m2+1-3x+1=0是关于x的一元二次方程,则m=.三、解答题9.结合题意列出方程,并将其化成一元二次方程的一般形式.(1)一长方形的面积为64 cm2,若它的长是宽的2倍,则它的长,宽分别是多少?设它的宽为x cm.(2)两数之差是2,平方和是52,求此两数.设较小的数为x.(3)生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学.设全组有x名同学.10.已知关于x的方程(k2-1)x2+(k+1)x-2=0.(1)当k取何值时,此方程为一元一次方程?求出此时方程的解;(2)当k取何值时,此方程为一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项.11、若x2a+b-2x a-b+3=0是关于x的一元二次方程,求a,b的值.张敏的想法如下:a,b必须满足{2a+b=2,a-b=2.张敏的想法全面吗?若不全面,请你写出a,b另外满足的条件.答案[课堂达标] 1.C2.C [解析] 方程2x 2-6x=9化成一般形式可以是2x 2-6x -9=0,∴二次项系数为2,一次项系数为-6,常数项为-9.故选C .3.B4.A5.x 2+(x+2)2+(x+4)2=2516.m=-2 m ≠-2 [解析] 当m+2=0,m+1≠0,即m=-2时,方程是一元一次方程;当m+2≠0,即m ≠-2时,方程是一元二次方程.7.-1 [解析] 根据题意,得m -1≠0,m 2-1=0,所以m=-1. 8.-19.解:(1)根据题意得2x 2=64,即x 2=32,化为一般形式为x 2-32=0(化为一般形式不唯一). (2)根据题意列方程,得x 2+(x+2)2=52, 化为一般形式为x 2+2x -24=0.(3)根据题意得x (x -1)=182,化为一般形式为x 2-x -182=0(化为一般形式不唯一). 10.解:(1)当k=1时,此方程为一元一次方程,其解为x=1.(2)当k ≠±1时,此方程为一元二次方程,二次项系数为k 2-1,一次项系数为k+1,常数项为-2. [素养提升]解:不全面,还有{2a +b =2,a -b =1或{2a +b =2,a -b =0或{2a +b =1,a -b =2或{2a +b =0,a -b =2.2.1.2一元二次方程的解的估算一、选择题1.若2是关于x 的方程x 2-3x+k=0的一个根,则常数k 的值为 ( ) A .1B .2C .-1D .-22.根据下列表格的对应值判断关于x 的方程ax 2+bx+c=0(a ≠0)的一个根x 的范围是 ( )x3.24 3.25 3.26ax 2+bx+c -0.02 0.01 0.03A .x<3.24B .3.24<x<3.25C .3.25<x<3.26D .3.25<x<3.283.观察表格中的数据得出方程x 2-2x -4=0的一个根的十分位上的数字应是 ( )x -2 -1.4 -1.3 -1.2 -1.1 0 x 2-2x -44 0.76 0.29 -0.16 -0.59 -4A.0B.1C.2D.34.已知关于x的方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和4a-2b+c=0,则方程的两个根分别为()A.1,0B.-2,0C.1,-2D.-1,25.已知关于x的一元二次方程x2+bx+a=0有一个非零根-a,则a-b的值为()A.1B.-1C.0D.-26.已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是()A.0<α<1B.1<α<1.5C.1.5<α<2D.2<α<3二、填空题7.为估算方程x2-2x-8=0的解,列出了下表:x-2-101234x2-2x-80-5-8-9-8-50由此可判断方程x2-2x-8=0的解为.8.已知x2-3x+1=0,依据下表,它的一个解x的范围是.x-1-0.500.51x2-3x+152.751-0.25-19.若a是方程3x2-x-2=0的一个根,则2025+2a-6a2的值等于.三、解答题10.已知关于x的一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,求a的值.11.对于向上抛出的物体,在没有空气阻力的条件下,有如下关系:h=vt-1gt2,其中h是离抛出点2的高度,v是初速度,g是重力加速度(g取10 m/s2),t是抛出后所经过的时间.如果将一物体以25 m/s的初速度向上抛出,几秒钟后它在离抛出点20 m高的地方?12、有一个面积为54 m2的矩形,将它的一边剪短5 m,与其相邻的另一边剪短2 m后,恰好变成一个正方形.(1)若设这个正方形的边长为x m,请根据题意列出方程;(2)x可能小于0吗?说说你的理由;(3)正方形的边长可能是2 m吗?可能是3 m吗?为什么?(4)你能求出x的值吗?请写出求解过程.答案[课堂达标]1.B[解析] ∵2是一元二次方程x2-3x+k=0的一个根,∴22-3×2+k=0,解得k=2.故选B.2.B[解析] 观察表格可知,当ax2+bx+c=0(a≠0)时,对应的一个根x的范围是3.24<x<3.25.3.C[解析] ∵当x=-1.3时,x2-2x-4=0.29>0;当x=-1.2时,x2-2x-4=-0.16<0,∴方程x2-2x-4=0的一个根x在-1.3<x<-1.2的范围内,∴方程x2-2x-4=0的一个根的十分位上的数字应是2.故选C.4.C[解析] 当x=1时,a+b+c=0;当x=-2时,4a-2b+c=0.所以方程的两个根分别为1,-2.故选C.5.B[解析] ∵关于x的一元二次方程x2+bx+a=0有一个非零根-a,∴a2-ab+a=0.∵-a≠0,∴a≠0.上式两边同时除以a,得a-b+1=0,∴a-b=-1.6.C7.x=-2或x=48.0<x<0.5[解析] ∵当x=0时,x2-3x+1=1>0;当x=0.5时,x2-3x+1=-0.25<0,∴当x在0<x<0.5的范围内取某一个值时,x2-3x+1=0,∴方程x2-3x+1=0的一个解的范围是0<x<0.5.故答案为0<x<0.5.9.2021[解析] ∵a是方程3x2-x-2=0的一个根,∴3a2-a-2=0,故3a2-a=2,则2025+2a-6a2=2025-2(3a2-a)=2025-2×2=2021.故答案为2021.10.[解析] 根据一元二次方程的定义和一元二次方程的根的定义得到a+1≠0且a2-1=0,然后解不等式和方程即可得到a的值.解:∵一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,∴a+1≠0且a2-1=0,∴a=1.11.解:由题意,得25t-5t2=20,列表略,可得方程的解为t=1或t=4,所以1 s或4 s后,物体在离抛出点20 m高的地方.[素养提升]解:(1)所列方程为(x+5)(x+2)=54,即x2+7x-44=0.(2)x不可能小于0,因为x表示正方形的边长.(3)正方形的边长不可能是2 m,也不可能是3 m,因为x=2和x=3都不满足方程x2+7x-44=0.(4)能.列表如下:x12345x2+7x-44-36-26-14016所以x=4.2.2.1用配方法求解二次项系数为1的一元二次方程一、选择题x2=8的根是()1.方程12A.x=2B.x=4C.x=±2D.x=±42.一元二次方程y2-y-34=0配方后可化为()A.y+122=1B.y-122=1C.y+122=34D.y-122=343.如果一元二次方程x2+bx+5=0配方后为(x-3)2=k,那么b,k的值分别为()A.0,4B.0,5C.-6,5D.-6,4二、填空题4.填空:(1)x2+10x+=(x+)2;(2)x2+()+916=[x+()]2.5.[2020·扬州] 方程(x+1)2=9的根是.6.如果方程x2+4x+n=0可以配方成(x+m)2=3,那么(n-m)2021=.三、解答题7.解下列方程:(1)(x-1)2=36;(2)x2-2x-24=0;(3)x2-x+3=4;(4)x2-3x=3x+16;(5)x2-2√2x-3=0.8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,求道路的宽.9、有n个方程:x2+2x-8=0;x2+2×2x-8×22=0;…;x2+2nx-8n2=0.小静同学解第1个方程x2+2x-8=0的步骤为“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=-2.”(1)小静的解法是从步骤开始出现错误的;(2)用配方法解第n个方程x2+2nx-8n2=0(用含n的式子表示方程的根).答案[课堂达标] 1.D2.B [解析] y 2-y -34=0,y 2-y=34, y 2-y+14=1,y -122=1. 故选B .3.D [解析] ∵(x -3)2=k ,∴x 2-6x+9-k=0.∵一元二次方程x 2+bx+5=0配方后为(x -3)2=k ,∴b=-6,9-k=5,∴k=4,∴b ,k 的值分别为-6,4.故选D . 4.(1)25 5 (2)±32x ±345.x 1=2,x 2=-4 [解析] (x+1)2=9,x+1=±3,x 1=2,x 2=-4.故答案为x 1=2,x 2=-4.6.-1 [解析] 由题意得x 2+4x=-n , ∴x 2+4x+4=4-n ,即(x+2)2=4-n. 又(x+m )2=3,∴m=2,n=1, 则(n -m )2021=(1-2)2021=-1. 故答案为-1.7.解:(1)直接开平方,得x -1=±6, ∴x -1=6或x -1=-6, ∴x 1=7,x 2=-5.(2)移项,得x 2-2x=24.配方,得x 2-2x+1=24+1,即(x -1)2=25. 两边开平方,得x -1=±5. ∴x 1=6,x 2=-4. (3)移项,得x 2-x=1. 配方,得x 2-x+14=54.整理,得x -122=54,∴x -12=±√52, 即x 1=1+√52,x 2=1-√52.(4)原方程可化为x 2-6x=16. 配方,得x 2-6x+9=16+9. 整理,得(x -3)2=25,∴x -3=±5, 即x 1=8,x 2=-2. (5)移项,得x 2-2√2x=3.配方,得x 2-2√2x+(√2)2=(√2)2+3, 即(x -√2)2=5.两边开平方,得x -√2=±√5. ∴x 1=√2+√5,x 2=√2-√5. 8.解:设道路的宽为x 米. 根据题意,得(62-x )(42-x )=2400.整理,得x2-104x+204=0.解得x1=2,x2=102(不合题意,舍去).答:道路的宽是2米.[素养提升]解:(1)⑤(2)x2+2nx-8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x=-n±3n,∴x1=-4n,x2=2n.2.2.2用配方法求解二次项系数不为1的一元二次方程一、选择题1.用配方法解方程2x2-4x+3=0,配方正确的是()A.2x2-4x+4=3+4B.2x2-4x+4=-3+4C .x 2-2x+1=32+1D .x 2-2x+1=-32+12.[2020·聊城] 用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( ).A .x -342=1716B .x -342=12C .x -322=134D .x -322=1143.图中用配方法解方程12x 2-x -2=0的四个步骤中,出现错误的是( )A .①B .②C .③D .④ 4.对于任何实数m ,n ,多项式m 2+n 2-6m -10n+36的值总是 ( )A .2B .0C .大于2D .不小于2二、填空题5.一元二次方程5x 2-4x=1的解为 .6.把方程2x 2+4x -1=0配方后得(x+m )2=k ,则m= ,k= .7.若一个三角形的两边长分别为2和3,第三边长是方程2x 2-3x -5=0的一个根,则这个三角形的周长为 .8.如图,在Rt △ABC 中,∠B=90°,AB=6厘米,BC=3厘米,点P 从点A 开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从点B 开始沿BC 边向点C 以2厘米/秒的速度移动,到点C 停止运动,此时点P 也停止运动.如果点P ,Q 分别从A ,B 两点同时出发,则经过 秒后,P ,Q 两点间的距离为4√2厘米.三、解答题9.用配方法解下列方程:(1)2x2-4x-6=0;(2)2x2+2=5x;=0.(3)2x2+x-1210、求y2+4y+8的最小值.阅读下面的解答过程.解:y2+4y+8=y2+4y+4+4=(y+2)2+4.∵(y+2)2≥0,∴(y+2)2+4≥4,即y2+4y+8的最小值为4.仿照上面的解答过程,解答下列问题.(1)求m2+2m+4的最小值;(2)求4-x2+2x的最大值.答案[课堂达标] 1.D2.A [解析] 移项,得2x 2-3x=1,二次项系数化为1,得x 2-32x=12,配方,得x 2-32x+342=12+342, 即x -342=1716.故选A .3.D4.D [解析] m 2+n 2-6m -10n+36=m 2-6m+9+n 2-10n+25+2=(m -3)2+(n -5)2+2. ∵(m -3)2≥0,(n -5)2≥0, ∴(m -3)2+(n -5)2+2≥2,∴多项式m 2+n 2-6m -10n+36的值总是不小于2.故选D . 5.x 1=-15,x 2=16.1 32[解析] 把方程2x 2+4x -1=0配方得(x+1)2=32.∵把方程2x 2+4x -1=0配方后得(x+m )2=k , ∴m=1,k=32. 7.1528.25 [解析] 设t 秒后PQ=4√2, 则BP=6-t ,BQ=2t. ∵∠B=90°,∴BP 2+BQ 2=PQ 2, ∴(6-t )2+(2t )2=(4√2)2. 解得t=25或t=2. 由题意,得t ≤32,∴t=25.故答案为25.9.解:(1)原方程可化为x 2-2x -3=0, 移项、配方得x 2-2x+1=3+1,即(x -1)2=4, 两边开平方,得x -1=±2, ∴x 1=1+2=3,x 2=1-2=-1. (2)原方程可化为x 2-52x=-1. 配方,得x 2-52x+2516=916,即(x -54)2=916. 两边开平方,得x -54=±34, ∴x 1=2,x 2=12.(3)原方程可化为x 2+12x=14,配方,得x 2+12x+116=14+116,即x+142=516,两边开平方,得x+14=±√54, ∴x 1=-1+√54,x 2=-1-√54.。
2.1认识一元二次方程一.填空题〔共11小题〕1.一元二次方程〔m﹣2〕x2﹣3x+m2﹣4=0的一个根为0 ,那么m= .2.x满足方程x2﹣3x+1=0 ,那么x2+的值为.3.a是方程x2﹣2019x+1=0一个根 ,求a2﹣2019a+的值为.4. ,关于x的方程〔a+5〕x2﹣2ax=1是一元二次方程 ,那么a= .5.假设方程〔m﹣1〕x2+x+m2﹣1=0是一元二次方程 ,那么m .6.假设〔m+1〕x2﹣mx+2=0是关于x的一元二次方程 ,那么m的取值范围是.7.当m= 时 ,关于x的方程〔m﹣1〕x|m|+1﹣mx+5=0是一元二次方程.8.关于x的方程〔a﹣3〕x2﹣4x﹣5=0是一元二次方程 ,那么a的取值范围是.9.假设关于x的一元二次方程〔m+2〕x|m|+2x﹣1=0是一元二次方程 ,那么m= .10.设m是方程x2﹣3x+1=0的一个实数根 ,那么= .11.关于x的二次方程a〔x+h〕2+k=0的解为 ,那么方程的解为.二.选择题〔共16小题〕12.x=1是二次方程〔m2﹣1〕x2﹣mx+m2=0的一个根 ,那么m的值是〔〕A.或﹣1 B.﹣或1 C.或1 D.﹣13.下面三个关于x的一元二次方程ax2+bx+c=0 ,bx2+cx+a=0 ,cx2+ax+b=0恰好有一个相同的实数根a ,那么a+b+c的值为〔〕A.0 B.1 C.3 D.不确定1.m ,n是方程x2﹣2x﹣1=0的两根 ,那么〔2m2﹣4m﹣1〕〔3n2﹣6n+2〕的值等于〔〕A.4 B.5 C.6 D.715.如果〔m﹣2〕x|m|+mx﹣1=0是关于x的一元二次方程 ,那么m的值为〔〕A.2或﹣2 B.2 C.﹣2 D.以上都不正确16.关于x的方程〔a﹣1〕x2+x+2=0是一元二次方程 ,那么a的取值范围是〔〕A.a≠1 B.a≥﹣1且a≠1 C.a>﹣1且a≠1 D.a≠±117.关于x的方程〔a﹣1〕x|a|+1﹣2x﹣1=0是一元二次方程 ,那么a的值为〔〕A.﹣1 B.1 C.0 D.1或﹣118.假设方程〔a﹣2〕x2+x+3=0是关于x的一元二次方程 ,那么a的取值范围是〔〕A.a≠2 B.a≥0 C.a≥0且a≠2 D.任意实数19.关于x的方程+2mx﹣3=0是一元二次方程 ,那么m的取值是〔〕A.任意实数B.1 C.﹣1 D.±120.假设方程〔m﹣1〕x2+x﹣2=0是关于x的一元二次方程 ,那么m的取值范围是〔〕A.m=0 B.m≠1 C.m≥0且m≠1 D.m为任意实数21.二次方程4x〔x+2〕=25化成一般形式得〔〕A.4x2+2=25 B.4x2﹣23=0 C.4x2+8x=25 D.4x2+8x﹣25=022.一元二次方程〔x﹣〕〔x+〕+〔2x﹣1〕2=0化成一般形式正确的选项是〔〕A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=023.方程2x2﹣6x=9的二次项系数、一次项系数、常数项分别为〔〕A.6 ,2 ,9 B.2 ,﹣6 ,9 C.﹣2 ,6 ,9 D.2 ,﹣6 ,﹣924.把方程〔x+1〕〔3x﹣2〕=10化为一元二次方程的一般形式后为〔〕A.2x2+3x﹣10=0 B.2x2+3x﹣10=0 C.3x2﹣x+12=0 D.3x2+x﹣12=025.把一元二次方程〔x﹣3〕2=5化为一般形式 ,二次项系数;一次项系数;常数项分别为〔〕A.1 ,6 ,4 B.1 ,﹣6 ,4 C.1 ,﹣6 ,﹣4 D.1 ,﹣6 ,926.一元二次方程的一般形式是〔〕A.x2+bx+c=0 B.ax2+bx+c=0C.ax2+bx+c=0〔a≠0〕 D.以上答案都不对27.将方程﹣5x2=2x+10化为二次项系数为1的一般形式是〔〕A.x2+x+2=0 B.x2﹣x﹣2=0 C.x2+x+10=0 D.x2﹣2x﹣10=0三.解答题〔共8小题〕28.完成以下问题:〔1〕假设n〔n≠0〕是关于x的方程x2+mx+2n=0的根 ,求m+n的值;〔2〕x ,y为实数 ,且y=﹣3 ,求2xy的值.29.关于x的一元二次方程〔m+1〕x2+5x+m2+3m+2=0的常数项为0 ,求m的值.30.假设关于x的一元二次方程ax2+bx+c=0的一个根是1 ,且a ,b满足b=++3 ,求c.31.阅读以下材料:〔1〕关于x的方程x2﹣3x+1=0〔x≠0〕方程两边同时乘以得:即 , ,〔2〕a3+b3=〔a+b〕〔a2﹣ab+b2〕;a3﹣b3=〔a﹣b〕〔a2+ab+b2〕.根据以上材料 ,解答以下问题:〔1〕x2﹣4x+1=0〔x≠0〕 ,那么= , = , = ;〔2〕2x2﹣7x+2=0〔x≠0〕 ,求的值.32.2是关于x的一元二次方程5x2+bx﹣10=0的一个根 ,求方程的另一个根及b的值.33.:关于x的一元二次方程x2﹣〔2m+3〕x+m2+3m+2=0.〔1〕x=2是方程的一个根 ,求m的值;〔2〕以这个方程的两个实数根作为△ABC中AB、AC〔AB<AC〕的边长 ,当BC=时 ,△ABC是等腰三角形 ,求此时m的值.34.关于x的一元二次方程〔m+2〕x2+3x+〔m2﹣4〕=0有一个解是0 ,求m的值及方程的另一个解.35.阅读以下材料:问题:方程x2+x﹣1=0 ,求一个一元二次方程 ,使它的根分别是方程根的2倍.解:设所求方程的根为y ,那么y=2x ,所以x= ,把x= ,代入方程 ,得〔〕2+﹣1=0.化简 ,得y2+2y﹣4=0 ,故所求方程为y2+2y﹣4=0这种利用方程根的代换求新方程的方法 ,我们称为“换根法〞.请用阅读材料提供的“换根法〞求新方程〔要求:把所求方程化为一般形式〕:〔1〕方程x2+2x﹣1=0 ,求一个一元二次方程 ,使它的根分别是方程根的相反数 ,那么所求方程为;〔2〕关于x的一元二次方程ax2+bx+c=0〔a≠0〕有两个不等于零的实数根 ,求一个一元二次方程 ,使它的根分别是方程根的倒数.参考答案一.填空题1.﹣2.2.7.3.2019.4.≠1.5.≠1.6.m≠﹣1.7.﹣18.a≠39.m=2.10.8.11.x1=﹣ ,x2=0.二.选择题12.D.13.A.14.B.15.C.16.B.17.A.18.C.19.C.20.C.21.D.22.A.23.D.24.C.25.B.26.C.27.A.三.解答题28.解:〔1〕由题意得n2+mn+2n=0 ,∵n≠0 ,∴n+m+2=0 ,得m+n=﹣2;〔2〕解:由题意得 ,2x﹣5≥0且5﹣2x≥0 ,解得x≥且x≤ ,所以 , ,y=﹣3 ,∴2xy=﹣15.29.解:由题意 ,得m2+3m+2=0 ,且m+1≠0 ,解得m=﹣2 ,m的值是﹣2.30.解:将x=1代入方程ax2+bx+c=0 ,得:a+b+c=0;又∵a、b满足等式b=++3 ,∴a﹣3≥0 ,3﹣a≥0;∴a=3 ,∴b=3;那么c=﹣a﹣b=﹣6.31.解;〔1〕∵x2﹣4x+1=0 ,∴x+=4 ,∴〔x+〕2=16 ,∴x2+2+=16 ,∴x2+=14 ,∴〔x2+〕2=196 ,∴x4++2=196 ,∴x4+=194.故答案为4 ,14 ,194.〔2〕∵2x2﹣7x+2=0 ,∴x+= ,x2+= ,∴=〔x+〕〔x2﹣1+〕=×〔﹣1〕=.32.解:把x=2代入方程5x2+bx﹣10=0得5×4+2b﹣10=0 ,解得b=﹣5 ,设方程的另一个根为t ,那么2t=﹣ ,解得t=﹣1 ,即方程的另一根为﹣1.33.解:〔1〕∵x=2是方程的一个根 ,∴4﹣2〔2m+3〕+m2+3m+2=0 ,∴m=0或m=1;〔2〕∵△=〔2m+3〕2﹣4〔m2+3m+2〕=1 ,=1;∴x=∴x1=m+2 ,x2=m+1 ,∵AB、AC〔AB<AC〕的长是这个方程的两个实数根 ,∴AC=m+2 ,AB=m+1.∵BC= ,△ABC是等腰三角形 ,∴当AB=BC时 ,有m+1= ,∴m=﹣1;当AC=BC时 ,有m+2= ,∴m=﹣2 ,综上所述 ,当m=﹣1或m=﹣2时 ,△ABC是等腰三角形.34.解:把x=0代入方程 ,得m2﹣4=0 ,解得m=±2 ,∵m+2≠0 ,∴m≠﹣2 ,∴m=2 ,把m=2代入方程 ,得4x2+3x=0 ,解得x1=0 ,x2=﹣.答:m的值是2 ,方程的另一根是﹣.35.解:〔1〕设所求方程的根为y ,那么y=﹣x ,所以x=﹣y ,把x=﹣y代入方程x2+2x﹣1=0 ,得:y2﹣2y﹣1=0 ,故答案为:y2﹣2y﹣1=0;〔2〕设所求方程的根为y ,那么y=〔x≠0〕 ,于是x=〔y≠0〕 ,把x=代入方程ax2+bx+c=0 ,得a 〔〕2+b〔〕+c=0 ,去分母 ,得 a+by+cy2=0 ,假设c=0 ,有ax2+bx=0 ,于是 ,方程ax2+bx+c=0有一个根为0 ,不合题意 ,∴c≠0 ,故所求方程为a+by+cy2=0 〔 c≠0〕.。
2.1 认识一元二次方程一、判断题(下列方程中是一元二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)( )1. 5x 2+1=0 ( )2. 3x 2+x1+1=0( )3. 4x 2=ax(其中a 为常数) ( )4. 2x 2+3x=0( )5. 5132+x =2x ( )6. 22)(x x + =2x( )7. |x 2+2x |=4二、填空题1. 一元二次方程的一般形式是____________________。
2. 将方程-5x 2+1=6x 化为一般形式为____________________。
3. 将方程(x+1)2=2x 化成一般形式为____________________。
4. 方程2x 2=-8化成一般形式后,一次项系数为__________,常数项为__________。
5. 方程5(x 2-2x+1)=-32x+2的一般形式是____________________,其二次项是__________,一次项是__________,常数项是__________。
6. 若ab ≠0,则a 1x 2+b 1x=0的常数项是__________。
7. 如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a 的取值范围是_______。
8. 关于x 的方程(m -4)x 2+(m+4)x+2m+3=0,当m_____时,是一元二次方程,当m_____时,是一元一次方程。
9、若方程2231kx x x +=+是一元二次方程,则k 的取值范围是。
10、方程214y y --=-化为一般形式后,二次项系数是 ,一次项系数是,常数项是。
11、 若2950ax x -+=是一元二次方程,则不等式360a +>的解集是。
三、选择题1. 下列方程中,不是一元二次方程的是( )A. 2x 2+7=0B. 2x 2+23x+1=0C. 5x 2+x1+4=0 D. 3x 2+(1+x) 2+1=0 2. 方程x 2-2(3x -2)+(x+1)=0的一般形式是( )A. x 2-5x+5=0B. x 2+5x+5=0C. x 2+5x -5=0D. x 2+5=0 3. 一元二次方程7x 2-2x=0的二次项、一次项、常数项依次是( )A. 7x 2,2x,0B. 7x 2,-2x ,无常数项C. 7x 2,0,2xD. 7x 2,-2x,0 4. 方程x 2-3=(1-2)x 化为一般形式,它的各项系数之和可能是( )A.2B.-2C.32-D.3221-+5. 若关于x 的方程a(x -1)2=2x 2-2是一元二次方程,则a 的值是( )A. 2B. -2C. 0D. 不等于2 6. 关于x 2=-2的说法,正确的是( )A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C.x 2=-2是一个一元二次方程D.x 2=-2是一个一元二次方程,但不能解 7、下列方程中,不是整式方程的是( )A .21523x x +=B 3720x +-=C .2213x x+=D .1725x -=8、下列各方程中一定是关于x 的一元二次方程的是( ) A .234x x m =+B .280ax -=C .20x y +=D .560xy x -+=9、若方程2(1)1m x -+=是关于x 的一元二次方程,则m 的取值范围是()A .1m ≠B .m ≥0C .0m ≥且1m ≠D .m 为任意实数 10、下列各方程中属于一元二次方程的是( )(1)214yy -= (2)22t = (3)213x =(40= (5)325x x -= (6)22(1)20x x ++-=A .(1)(2)(3)B .(2)(3)(4)C .(1)(2)(6)D .(1)(2)11、关于x 的一元二次方程22(32)0x m x n n ---=中,二次项系数、一次项系数、常数项分别是( ) A.1,3mn ,22mn n - B.1,3m -,22mn n - C.1,m -,2n - D.1,3m ,22mn n -四、填表2.1 认识一元二次方程参考答案一、1.√ 2.× 3.√ 4.√ 5.√ 6.√ 7.√二、1. ax 2+bx+c=0(a ≠0) 2. 5x 2+6x -1=0 3. x 2+1=0 4. 0 85. 5x 2-22x+3=0;5x 2;-22x ;36. 07. ≠18. ≠4 =49.3k ≠ 10.1,4-,1 11.答案:2a >-且0a ≠三、1.C 2.A 3.D 4.C 5.D 6.D 7. C 8.A 9.C 10.D 11.B。
2.1.1 认识一元二次方程教学目标知识技能:1、理解一元二次方程的概念.2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.过程与方法:1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.4、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.情感态度与价值观:1、培养学生主动探究知识、自主学习和合作交流的意识.2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识. 教学重难点:【重点】一元二次方程的概念及一般形式.【难点】1.由实际问题向数学问题转化的过程.2.正确识别一般形式中的“项”及“系数”.教学过程:一、新课导入:问题1:①2021年奥运会将在北京举办,许多大学生都希望为奥运奉献自己的一份力量。
现组委会决定对高校奥运志愿者进行分批培训,由已合格人员培训第一轮人员,再由前面所有合格人员培训第二轮人员,以此类推来完成此次培训任务。
②某高校学生李红已受训合格,成为一名志愿者,并由她负责培训本校志愿者。
若每轮培训中每个志愿者平均培训x人。
(1)已知经过第一轮培训后该校共有11人合格, 请列出满足条件的方程:(2)若两轮培训后该校共有121人合格,你能列出满足条件的方程吗?问题2:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?问题3:我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度 .通过多媒体播放视频短片,引入情境,提出问题.在第(1)问中,通过教师引导,学生列出方程,解决问题.在第(2)问中,遵循刚才解决问题的思路,由学生思考,列出方程.活动中教师应重点关注:学生对题目的理解,可举例,由特殊到一般,帮助学生理解题意,从而引导学会列出满足条件的方程通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.此题是与实际问题结合的题目,通过演示高度关系,帮助学生理解题意,从而列出符合题意的方程。
北师大版九年级上册2.1 认识一元二次方程一、选择题1. 一元二次方程的二次项系数为1,则它的常数项为()A.1 B.C.3 D.2. 方程,一次项系数为()A.B.C.D.6 A.B.C.D.4. 将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为()A.5,B.5,7 C.,7 D.,5. 下列方程①;②;③;④;⑤;⑥其中是一元二次方程的有()个A.1个B.2个C.3个D.4个6. 若关于的方程是一元二次方程,则的取值范围是()A.B.C.D.7. 方程的一次项系数是()A.B.1 C.D.08. 已知关于x的一元二次方程的一个根为2,则c的值为()A.8 B.C.16 D.9. 已知关于x的方程的一个根为,则实数k的值为()A.1 B.C.2 D.A.B.C.D.11. 如果关于x的一元二次方程的一个解是,则代数式的值为()A.B.1 C.D.2 二、填空题12. 当k_________时,关于x的方程是一元二次方程.13. 方程的二次项系数是 _____,一次项系数是 _____,常数项是_____.14. 已知是一元二次方程的一个根,则代数式的值为______.三、解答题16. 已知一元二次方程.(1)如果这个方程有一个根是0,常数项c有什么特征?(2)如果这个方程有一个根是1,那么满足怎样的关系?(3)如果这个方程有一个根是﹣1,那么满足怎样的关系?17. 已知关于的方程:是一元二次方程,试求的值18. 为何值时,关于的方程:(1)是一元二次方程;(2)是一元一次方程,并求出对应方程的解.19. 已知一元二次方程ax2+bx+c=0的一个根为1,且a、b满足b=+3,求c的值.20. 先化简,再求值:,其中m是关于x的一元二次方程的根。
第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.体会方程的模型思想.阅读教材P31~32,完成下列问题:(一)知识探究1.只含有________个未知数,并且都可以化成ax2+bx+c=0(a,b,c为常数,a________)的形式的________方程,这样的方程叫做一元二次方程.2.我们把____________(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中________,________,________分别为二次项、一次项和常数项,________,________分别称为二次项系数和一次项系数.(二)自学反馈1.下列方程中,是一元二次方程的是()A.x-y2=1 B.x2-1=0C.1x2-1=0 D.x22-x-13=02.将方程(2x+1)x=(3x-2)x+2化简整理写成一般形式后,其中a、b、c分别是() A.2-3,1, 2 B.2-3,1,- 2C.3-2,-3, 2D.3-2,1, 2活动1 小组讨论例1判断下列方程是否为一元二次方程:(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0;(5)(x+3)2=(x-3)2; (6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.判断一个方程是不是一元二次方程,首先需要将方程化简,使方程的右边为0,然后观察其是否具备以下三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.例2将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:方程(8-2x)(5-2x)=18化成一元二次方程的一般形式是2x2-13x+11=0,其中的二次项系数、一次项系数及常数项分别是2,-13,11.(1)将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx,则b=0;若没有出现常数项,则c=0. 活动2 跟踪训练1.下列方程哪些是一元二次方程?(1)7x2-6x=0;(2)2x 2-5xy +6y =0;(3)2x 2-13x-1=0; (4)y22=0; (5)x 2+2x -3=1+x 2.2.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x 2-1=4x; (2)4x 2=81;(3)4x(x +2)=25; (4)(3x -2)(x +1)=8x -3.3.已知方程(a -4)x 2-(2a -1)x -a -1=0.(1)a 取何值时,方程为一元二次方程?(2)a 取何值时,方程为一元一次方程?4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.活动3 课堂小结1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式是ax 2+bx +c =0(a ≠0),特别强调a ≠0.【预习导学】(一)知识探究1.一≠0 整式2.ax 2+bx +c =0ax 2bxcab(二)自学反馈1.D2.C【合作探究】活动2 跟踪训练1.(1)、(4)是一元二次方程.2.(1)5x 2-4x -1=0,二次项系数、一次项系数及常数项分别是5,-4,-1.(2)4x 2-81=0,二次项系数、一次项系数及常数项分别是4,0,-81.(3)4x 2+8x -25=0,二次项系数、一次项系数及常数项分别是4,8,-25.(4)3x 2-7x +1=0,二次项系数、一次项系数及常数项分别是3,-7,1.3.(1)当a -4≠0即a ≠4时,方程为一元二次方程.(2)a -4=0,且2a -1≠0时,原方程为一元一次方程.即a =4时,原方程为一元一次方程.4.(1)根据题意,得4x 2=25,将其化成一元二次方程的一般形式是4x 2-25=0.(2)根据题意,得x(x -2)=100,将其化成一元二次方程的一般形式是x 2-2x -100=0.(3)根据题意,得x =(1-x)2,将其化成一元二次方程的一般形式是x 2-3x +1=0.第2课时 一元二次方程的解1.经历估计一元二次方程解的过程,增进对方程解的认识.。
九年级数学(上)第二章《一元二次方程》同步测试2.1认识一元二次方程一、选择题1. 下列方程中,关于x 的一元二次方程是( )A .(x+1)2=2(x+1)B .21120x x +-= C .ax 2+bx+c=0 D .x 2+2x=x 2-1 2. 若x 0是方程ax 2+2x+c=0(a ≠0)的一个根,设M=1-ac ,N=(ax 0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M=NC .M <ND .不确定3. 下列方程中,一元二次方程共有( )个①x 2-2x-1=0;②ax 2+bx+c=0;③21x +3x-5=0;④-x 2=0;⑤(x-1)2+y 2=2;⑥(x-1)(x-3)=x 2.A .1B .2C .3D .44. 关于x 的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或05. 若关于x 的一元二次方程x 2-x-m=0的一个根是x=1,则m 的值是( )A .1B .0C .-1D .26. 如果关于x 的方程(m-3)27m x--x+3=0是关于x 的一元二次方程,那么m 的值为( )A .±3B .3C .-3D .都不对7. 关于x 的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是0,则a 的值为( )A .1B .-1C .1或-1D .12 8. 若关于x 的方程x 2+(m+1)x+12=0的一个实数根的倒数恰是它本身,则m 的值是( )A .-52B .12C .-52或12D .1 9. 若方程(m-3)x n +2x-3=0是关于x 的一元二次方程,则( )A .m=3,n ≠2B .m=3,n=2C .m ≠3,n=2D .m ≠3,n ≠210. 若x=-2是关于x的一元二次方程x2+32ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4 C.1或-4 D.1或4二、填空题1.若关于x的一元二次方程x2-x-m=0的一个根是x=1,则m的值是2.已知(m-1)x|m|+1-3x+1=0是关于x的一元二次方程,则m= .3.已知m是关于x的方程x2-2x-3=0的一个根,则2m2-4m= .4.关于x的一元二次方程(a-1)x2+x+(a2-1)=0的一个根是0,则a的值是.5.若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2016-a-b的值是.6.关于x的方程a(x+m)2+b=0的解是x1=2,x2=-1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是.7.己知m是关于x的方程x2-2x-7=0的一个根,则2(m2-2m)= .8.若a是方程x2-2x-2015=0的根,则a3-3a2-2013a+1= .三、解答题1. 已知方程:(m2-1)x2+(m+1)x+1=0,求:(1)当m为何值时原方程为一元二次方程.(2)当m为何值时原为一元一次方程.2. 向阳中学数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并解此方程;(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.3. 当m是何值时,关于x的方程(m2+2)x2+(m-1)x-4=3x2(1)是一元二次方程;(2)是一元一次方程;4.设a是方程x2-2006x+1=0的一个根,求代数式a2-2007a+212006a的值.参考答案一、选择题1.A2.B3.B4.A5.B6.C7.B8.C9.C10.C二、填空题1.0;2.-1;3.6;4.-1;5.2021;6. x3=0,x4=-3.7.14;8. -2014.三、解答题1. 解:(1)当m2-1≠0时,(m2-1)x2+(m+1)x+1=0是一元二次方程,解得m≠±1,当m≠±1时,(m2-1)x2+(m+1)x+1=0是一元二次方程;(2)当m2-1=0,且m+1≠0时,(m2-1)x2+(m+1)x+1=0是一元一次方程,解得m=±1,且m≠-1,m=-1(不符合题意的要舍去),m=1.答:当m=1时,(m2-1)x2+(m+1)x+1=0是一元一次方程.2. 解:(1)根据一元二次方程的定义可得21210mm⎧+=⎨+≠⎩,解得m=1,此时方程为2x2-x-1=0,解得x1=1,x2=-12;(2)由题可知m2+1=1或m+1=0时方程为一元一次方程当m2+1=1时,解得m=0,此时方程为-x-1=0,解得x=-1,当m+1=0时,解得m=-1,此时方程为-3x-1=0,解得x=-13.3.解:原方程可化为(m2-1)x2+(m-1)x-4=0,(1)当m2-1≠0,即m≠±1时,是一元二次方程;(2)当m2-1=0,且m-1≠0,即m=-1时,是一元一次方程;4.解:把x=a代入方程,可得:a2-2006a+1=0,所以a2-2006a=-1,a2+1=2006a,所以a2-2007a=-a-1,所以a2-2007a+212006a+=-a-1+20062006a=-1,即a2-2007a+212006a+=-1.。
2.1认识一元二次方程
1. 下列关于x 的方程中,属于一元二次方程的有几个( ) ①
()x x 2432+
=-,
②02
=+b ax ,
③
03)21(22=-+--a x a x ④02
22=-+m x x m , ⑤x x =-522
, ⑥()
02122
=+++ax x a
A .6个
B . 5个
C .4个
D .3个
2.x x 5322
=-化成一般形式后,二次项系数、一次项系数、常项分别为( ). (A )2,-5,-3 (B )2,-3,-5 (C )2,5,-3 (D )2,-5,3 3、下列叙述正确的是( )
A.形如ax 2+bx+c=0的方程叫一元二次方程
B.方程4x 2+3x=6不含有常数项
C.(2-x)2=0是一元二次方程
D.一元二次方程中,二次项系数一次项系数及常数项均不能为0
4、关于x 的方程(k 2-1)x 2 + 2 (k -1) x + 2k + 2=0,当k =______时,是一元二次方程.,当k =_______时,是一元一次方程.
5、当m=_________时,方程
032)1(1
=++-+mx x
m m 是关于x 的一元二次方程。
6.填表计算:
进一步计算
十分位是几?
照此思路可以估算出x的百分位和千分位。